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Abstract

The focus of this thesis is on extensions of Markov Modulated Poisson pro-
cesses (MMPPs) with the aim of showing the benefits of continuous time mod-
els in approximating event-driven processes over standard techniques like ma-
chine learning. Generative models like MMPPs enable methods of quantitative
evaluation supporting diagnostic and predictive analytics; their ability of gen-
erating new synthetic sequences of events permits to calculate properties both
through analytic formulas and Monte Carlo simulation of sequences. The first
chapter of the thesis expands on the goal of the thesis and presents preliminar-
ies on markovian processes, respectively discrete and continuous time hidden
Markov models (HMMs and CT-HMMs), Markov Arrival processes (MAPs)
and MMPPs. Finally, the chapter introduces the contributions offered in this
thesis. The subsequent part of the thesis details several extensions of MMPPs
directed to addressing different types of events produced in real world systems.
In the second chapter is described the first extension to MMPP for the efficient
learning of processes that produce events with a discrete type: MarkedMarkov
Modulated Poisson Processes are MMPPs associated with a mark at each obser-
vation; while this mark can be any type of information, focus is given to sim-
plifications for specifically discrete types of events. In the third chapter is de-
scribed the second extension, Marked Markov Modulated Compound Process
(M3CPP), optimized for processes where events are marked by a combination
of any number of discrete dimensions and possibly a single continuous one. An
openproblemofMMPPs is the restriction to exponential distributed times in the
sojourn in states: to lower the impact of this restriction an extension is presented
where normal states are grouped into collections with specific inter-collection
transitions, effectively creating macrostates with acyclic phase-type distributed
sojourn times. For all extensions the likelihood is calculated and the algorithm
for parameter estimation is presented via Expectation Maximization (EM). The
extensions are studied on both simulated and real world datasets. For M3CPP
the comparison is made to the machine learning approach of Long Short-term
Memory (LSTM) showing that the proposed extension is well performing with
respect to current techniques both on simulated and real world datasets. The
fourth chapter presents the conclusions and future work.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Approximations are commonly used to calculate quantitative properties of systems
or processes. Every model is associated to assumptions on the system it is approx-
imating and the correct identification of such assumptions has significant impact
on the results: excessively lax assumptions may end up with the application of a
model that comprises behaviour that violates the invariants of the system, on the
other hand excessively restrictive ones could otherwise lead to themodelling of only
a subset of the system’s behaviour. Stochastic models assume that the observations
of the process under study are describable by random probability distributions and
allow the application of statistical techniques. When the underlying state of the pro-
cess is not directly observed, but can be inferred through secondary observation pro-
cesses, as is for example the case of machinery whose internal state is observed only
through performance indicators, models that themselves have hidden states are com-
monly used. The approximation of processes through stochastic models where a
hidden state influences an observation process has developed along different direc-
tions for discrete and for continuous abstractions of time, focusing onHiddenMarkov
Models (HMMs) and Markovian Arrival Processes (MAPs), respectively. Both are
generative models and as such enable methods of quantitative evaluation support-
ing diagnostic and predictive analytics; their ability of generating new synthetic se-
quences of events furthermore permits the calculation of properties both through
analytic formulas and Monte Carlo simulation of sequences.

On the one hand, HMMs associate observed events with the states of a hidden
Discrete TimeMarkov Chain (DTMC) [Rabiner, 1989], emphasizing the problem of
learning by maximizing likelihood in the sequencing of observation series, through
Expectation Maximization [Dempster et al., 1977] or gradient methods.

Extensions beyond the limits of Markovian behavior have also been developed
to permit learning of dependency of observed behavior on the age of the (discrete)
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4 Introduction and Preliminaries

sojourn time within a state [Murphy, 2002]. Models based on HMM have en-
countered great success when used in several classification tasks, notably in speech
recognition and synthesis [Rabiner, 1989] , though more recent advancements in-
dicate that learning on discrete time observation sequences can achieve better per-
formance with deep learning techniques, e.g. artificial neural networks in the ar-
chitecture of Long Short Term Memory (LSTM) [Zen, 2015]. On the other hand,
in Markovian Arrival Processes (MAPs) [Neuts, 1979] the arrival rate of untyped
observable events is determined by the state of a hidden Continuous Time Markov
Chain (CTMC), to obtain a generative model approximating stochastic behavior of
arrival processes arising in performance evaluation [Lucantoni et al., 1990,Buchholz,
2003,Casale et al., 2009], usually in the steady state, throughMoment Fitting [Casale
et al., 2008,Kriege and Buchholz, 2010, Telek and Horváth, 2007] or also through a
continuous time implementation of ExpectationMaximization [Buchholz, 2003]. To
reduce learning complexity and demand on the volume of training data, Markov-
modulated Poisson processes (MMPPs) restrict MAPs by restraining arrivals not to
change the state of the hidden CTMC [Fischer andMeier-Hellstern, 1993], with suc-
cessful application in modeling network traffic [Okamura et al., 2007], self-adaptive
software systems [Perez-Palacin et al., 2012] and disk I/O patterns [Verma and
Anand, 2007]. In turn,markedMarkov-modulatedPoissonProcesses (M3PP) [Casale
et al., 2016] extend MMPPs by associating arrivals with class labels [He and Neuts,
1998] enabling fitting of arrival processes with typed events. As a main differ-
ence with respect to HMM, in MAP-like models, the current hidden state affects
not only the type and possibly the intensity of emitted events but also their arrival
time, with multiple events occurring during the sojourn in the same state, thus en-
abling the learned model to retain information not only about the sequencing of
observed events but also about their quantitative timing. Moreover, the continuous
time abstraction natively fits the case of asynchronous time series and the needs for
predicting expected behavior within a time rather than within a number of events,
avoiding the need of discretization of timestamps which incurs in a hard trade-off
between accuracy and complexity with critical impact on the quality of the learn-
ing process [Salfner et al., 2010]. This has motivated application for diagnostic and
predictive tasks in a variety of application scenarios such as activity recognition for
ambient assisted living [van Kasteren et al., 2008,Ordóñez and Roggen, 2016], clin-
ical protocols for disease progression monitoring [Liu et al., 2015] on-line failure
prediction [Salfner, 2006], software aging and rejuvenation [Okamura et al., 2009],
run-time verification of self-adaptive software [Calinescu et al., 2012], anomaly de-
tection in cyber-security [Malhotra et al., 2015].

Contributions In this thesis the aim is to extend Markov Modulated Poisson pro-
cesses (MMPPs) to overcome some of their restrictions, with the aim of showing the
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benefits of continuous time models in approximating event-driven processes over
standard techniques like machine learning.

In the second chapter of the thesis is described an extension toMMPP for the effi-
cient learning of processes that produce eventswith a discrete type: MarkedMarkov
Modulated Poisson Processes (MMMPPs or M3PPs) are MMPPs associated with a
mark at each observation; while this mark can be any type of information, focus is
given to simplifications for specifically discrete types of events. We use such model
to abstract a system that evolves across transient states of a hidden process until
reaching a final absorbing state, and produces a sequence of observable events with
stochastic arrival times and types conditioned by the current state. We present an
Expectation-Maximization algorithm to learn the parameters of theM3PP from a set
of observation sequences acquired in repeated execution of the transient behavior
of the system under analysis, as the left-to-right structure of the hidden process re-
quires. The model is then evaluated by calculating the likelihood of different states
of the hidden process at runtime based on the actual sequence of observed events,
and dynamically evaluating the distribution of the remaining time to reach the final
absorbing state. In so doing, we extend the EM algorithm of [Buchholz, 2003] by en-
compassing event types as in marked processes and by tailoring the entire approach
to support online short term prediction, which in particular leads to learning a left-
to-right model with transient behavior from a set of traces and to reducing the space
of parameters in the MMAP to limit computational complexity and data demand.
We also extend the method of [Liu et al., 2015] by learning a model where not only
observation values but also arrivals are conditioned by the current system state.

Applicability of the proposed approach is illustrated with reference to the con-
text of statistical intrusion detection, using synthetic datasets generated according to
the timing of a stochastic attack tree of the literature [Kriaa et al., 2012,Arnold et al.,
2014a] here enriched with a synthetic observation model that associates each vis-
ited state with an expected statistics of types and inter-arrival times of observations.
Experiments are performed so as to evaluate the accuracy of prediction, evaluated
in terms of precision and recall measures defined as in the formulation of online
failure prediction [Salfner and Malek, 2007], under different levels of variability in
the timing of the hidden process as well as in the variability of arrival times and
of ambiguity of event types observed within visited states. Prediction accuracy is
then compared against two variants of the approach that emulate the behavior of
the methods of [Liu et al., 2015] and [Buchholz, 2003] to illustrate how the two
side-channels of observation types and arrival times may have a different relevance
under different conditions of variability.

In the third chapter we extend the class of M3PP by efficiently learning models
where events have composite types, composed of one or more dimensions with dis-
crete values (type) and a dimension with a numerical value of intensity and intro-
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duce a phase-like structure based onContinuous Phase Types [Neuts, 1981,Horváth
and Telek, 2002,Reinecke et al., 2013] that restrains the number of model parameters
while capturing non-exponential sojourn times in hidden states. Complying with
pre-existing models, we term this extension markedMarkov-modulated compound
Poisson process (M3CPP).

For the efficient implementation of the learning task on this model, we introduce
an algorithm of Expectation Maximization based on the one for M3PPs, providing
an explicit representation that permits to accommodate treatment of the numeri-
cal intensity of the events and the restrictions on the structure of the hidden states’
connections. We then address the effectiveness of the model in a task of predic-
tion of the remaining time to the first passage in a state of interest, comparing with
LSTMs, a machine learning technique focused on long term memory. To do so we
first generate datasets from generatormodels in the class of Semi-Markov Processes,
themselves created randomly according to explicit rules about size and variability
of observations, which exhibit homogeneous observable behaviour during the so-
journ in a hidden state, while allowing the age of sojourn to influence remaining
time and choice of the next hidden transition. This setting encompasses many real
world scenarios ranging from ageing systems, where the ending state corresponds
to the system breaking down, to Phased mission systems, where the process simply
reaches its natural end and allow us to infer on the applicability of such models at
large. We find that for such generated datasets M3CPP do indeed have an edge over
LSTM, being on average better or tying.

In chapter four we further explore the potentiality of M3CPP as a model for fail-
ure prediction, applying it to two real world datasets of High-performance comput-
ing, respectively theHPC Intrepid andMira fromArgonneNational Laboratory. On
these datasets the models are used to predict failures from RAS data, demonstrat-
ing the feasibility of the approach. Through the comparison to LSTM, we show that
in these HPC datasets and in more general in the context of event-driven processes
M3CPP has comparable or better performance than LSTM, especially under data
scarcity.

1.2 Preliminaries
Stochastic Process A stochastic process or random process {X(t), t ∈ T } is a col-
lection of random variables indexed by some set T in a given probability space and
measurable space. T is usually thought as the time. If T is a countable set then the
stochastic process is said to be discrete-time. If T is the entire line, then it is said to
be a continuous-time stochastic process.

X(t) is called the state of the process at time t and the set of all possible values
of X(t) is called the state space, often denoted by S.
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Markov Process Markov processes are stochastic processes that have the Markov
property, that is the next value of the process depends only on the current value
irrespective of the past values of the stochastic process.

P{X(t2) = j|X(t1) = s1, X(t0) = s0} = P{X(t2) = j|X(t1) = s1}

For all t2, t1, t0 such that t2 > t1 > t0.
If P{X(t + s) = j|X(t) = s} = P{X(t) = j|X(0) = s} the process is said to be

time-homogeneous.
When the state space is discrete the discrete (continuous) Markov processes are

called discrete (continuous) Markov chains.

Hidden Markov Model
First introduced by Baum [Baum et al., 1970], hiddenMarkov models (HMM) have
been increasingly used in fields like speech recognition and synthesis, finance, bi-
ology and others. A seminal paper for HMM is the tutorial by Rabiner [Rabiner,
1989].

HMMs are doubly stochastic processes {Xn, Yn} composed by a discrete-time
Markov process Xn representing the unobservable hidden state and P(Yn ∈ A|X1 =

x1, . . . , Xn = xn) = P(Yn ∈ A|Xn = xn) for every n > 1,x1, . . . , xn and a measurable
set A.

Figure 1.1: Example of an HMM, Xi are the states, Yk are the observable events; in
this image, aij are the transition probabilities and bik are the emission probabilities
in each state
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P(Yn ∈ A|Xn = xn) is called emission (or output) probability.
It is assumed that the state distribution is irreducible and homogeneous leading

to the existence of an unique and strictly positive stationary distribution.
Due to the inobservability of Xn the inference is based only on the information

relayed by the emission process Yn.
Inference in an HMM is typically likelihood-based since the likelihood can be

written as:

L(π, P, Θ) = ∑
x1∈S
· · · ∑

xn∈S
πx1 P(Y1 = y1|x1)px1,x2 . . . P(Yn = yn|xn)

where π is the vector of initial probabilities of the states and Θ is the sequence
of n observations. To note is that the summation is over n|S| permutations, so it
becomes intractable with exponential speed even for small state spaces.

To remedy the problem, approaches like the ones proposed in [Baumet al., 1970]
and [Rabiner, 1989] are used:

be the forward probability a(t)(i) defined as the probability of being in state xt = i
given the observations up to time t and can be written as:

a(t)(i) = ∑
x1,...,xt−1

πx1 P(Y1 = y1|x1)
t

∏
k=2
{pxk−1,xk P(Yk = yk|xk)1{xt = i}}

Where 1(·) is the indicator function.
And be the backward probability b(t)(i) defined as the probability of observing the

emissions from t + 1 to the end given that at observation t the Markov Chain was in
state i.

b(t)(j) = ∑
xt+1,...,xn

πx11{xt = j}
n

∏
k=t+1

pxk−1,xk{P(Yk = yk|xk)}

From this we can write the likelihood as L(π, P) = ∑|S|i=1 a
(t)(i)b(t)(i)

Since a and b can be updated recursively the problem becomes feasible.
The likelihood function can then be evaluated in multiple ways. In his tutorial

Rabiner [Rabiner, 1989] proposes to use the Expectation-Maximization (EM) algo-
rithm, an extension of the Baum-Welch algorithm.

The algorithm iteratively executes two steps: 1) create the expectation of the com-
plete data likelihood (considering also the hidden state movements) with respect to
the missing data 2) maximize the expectation. This second step can often be done
in analytical form, as is the case for HMMs. Since the algorithm returns at each iter-
ation an improved likelihood the algorithm is stable. A comprehensive description
of the algorithm is given by Bilmes in [Bilmes et al., 1998].
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In brief, let us have a complete log Likelihood CL(θ′|X, Y)where θ′ is the param-
eter vector to estimate, Y is the vector of observations and X is the vector of missing
data (in our case hidden states). Then the Expectation step (E-step) requires the
calculation of

Q(θ′|θ) = Eθ(CL(θ′|X, Y)|X)

with θ being the actual, unseen, parameter vector to approximate. The Maximiza-
tion step (M-step) requires themaximization of Q(θ′|θ)with respect to θ. Such steps
are repeated until some convergence criterion is met. To note, is that in the case of
HMMmultiple local maxima exist so a single execution of the algorithm only guar-
antees reaching a local maxima.

Continuous Time Hidden Markov Model

HiddenMarkovModels encounter difficulties due to their sojourn timedistributions
being geometric. Many different solutions have been tested by changing the number
of time units allowed in a single state to multinomial distributions or more complex
discrete distributions (Hidden Semi-Markov Models [Salfner, 2006].

Expanding in a different direction, Liu et al. [Liu et al., 2015], as others, have
proposed an extension of the HiddenMarkovModel to account for continuous time
spent in each state and continuous time delay between observations of events named
Continuous Time Hidden Markov Model (CT-HMM). Given the necessity of the
Markov condition the only sojourn time and emission distribution allowed is the
exponential distribution.

To note is that the processes of the states’ evolution and of the emission of ob-
servations become independent: it is now possible to emit multiple observations in
the same state and move between multiple states before producing the subsequent
observation.

The complete likelihood (as if it were fully observed) of a CT-HMM can thus be
written as:

CL =
V′−1

∏
v′=0

qxv′ ,xv′+1
e−qxv′ ,τv′

V

∏
v=0

P(yv|s(tv))

where v′, v are the indexes of the V′ and V total changes of state and emis-
sions, qi,j is the (i,j)-th element of the infinitesimal generator of the Continuous time
markov chain underlying the CT-HMM and s(tv) is the state at time tv.

The learning of CT-HMM consists in solving two challenges: estimating the pos-
terior state probabilities and computing end-state statistics.

While we refer to [Liu et al., 2015] for the actual solution to the problems we
note how resolving the first problem requires reformulating the problem as a time-
inhomogeneous HMM and solving using standard HMM techniques.
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Markov Arrival Process and Markov Modulated Poisson Process

Markovian Arrival Processes (MAPs) reproduce the statistics of a sequence of un-
typed events through a structured process where arrival rates are modulated by a
hidden Continuous Time Markov Chain (CTMC) [Neuts, 1979]. This class, which
includesMarkovModulated Poisson Processes (MMPPs) as a special case, has been
widely investigated and applied to fit characteristics of real workload series in vari-
ous processes of performance engineering [Casale et al., 2009].

Various techniques have been proposed for the identification of a MAP from
an observation trace capturing dependencies in the steady-state behavior of a sys-
tem [Buchholz, 2003], facing with various approaches the complexity of non-linear
optimization of a large number of parameters and further afflicted by the length of
the training trace needed to capture long term dependencies [Kriege and Buchholz,
2010,Casale et al., 2008,Telek and Horváth, 2007].

In particular, in [Buchholz, 2003], fitting is performed through a continuous time
variant of the EM algorithm, with good results in the reproduction of autocorrela-
tion observed in a real traffic stream.

BothMarkov-modulated PoissonProcess (MMPP) [Fischer andMeier-Hellstern,
1993] and Markov Arrival Processes(MAP) [Neuts, ], are doubly stochastic pro-
cesses {N(t), J(t)}, where N(t) is a counting processmodelling the number of arrivals
(events) in [0, t] and J(t) is the instantaneous internal state of a hidden process. In a
MMPP (or MAP) of order n, n is the size of the state space of the CTMC underlying
the hidden process. LetQ be the n× n infinitesimal generator matrix of the CTMC.
The matrix Q can be seen as the sum of two matrices D0 and D1, representing re-
spectively the rates of unobservable transitions (i.e., transitions that do not produce an
event) and the rates of observable transitions (i.e., transitions that produce an event),
i.e., Q = D0 +D1. D0 and D1 are usually termed transition rate matrix and emission
rate matrix, respectively. Both MMPPs and MAPs can then be defined as the pair of
parameters (D0,D1), with

D0 =


−µ1,1 µ1,2 · · · µ1,n
µ2,1 −µ2,2 · · · µ2,n
... ... . . . ...

µn,1 µn,2 · · · −µn,n



D1 =


λ1,1 λ1,2 · · · λ1,n
λ2,1 λ2,2 · · · λ2,n
... ... . . . ...

λn,1 λn,2 · · · λn,n


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with all µi,j and λi,j non-negative and µi,i = ∑j 6=i µi,j + ∑j λi,j.
MMPPs differ fromMAPs in the fact that arrivals of events do not affect the hid-

den process, that is while in MAP observations can be associated to an underlying
change of state, inMMPP changing state and observing emissions are separate facts.
Figure 1.2 gives an example of MMPP: the straight arrows represent transitions be-
tween states, the dotted arrows represent emissions of events. To note hownodotted
arrow connects different states.

1

2

3

λ1,1

λ2,2

μ3,2

μ1,2

μ2,1

Figure 1.2: Example of anMMPP: λi,j are the rate of emissions of observations while
µi,j are the rate of transition between states.

According to this, for a MMPP of order n D1 is a diagonal matrix with entries
λ1,1, . . . , λn,n, i.e., D1 = diag(λ1,1, . . . , λn,n).

To note, if λi,i = λ ∀ i ∈ [1, n], then the MMPP is just a Poisson process with
rate λ.

Learning MAP and MMPP has been generally done in two ways, 1) through the
fitting of the moments, 2) by maximizing the likelihood. We will introduce only the
second case and refer the reader to [Buchholz et al., 2010] and [Casale et al., 2016]
for the first case.

The likelihood estimation for MAP and MMPP is similar and usually based on
the forward and backward likelihoods vectors a(t) and b(t) containing at the i-th
component (state) the value a(t)(i) and b(t)(i). To note that we refer with t more
generally to the index of the observation sequence.

a(t) = a(t−1)D0[δt]P1

with a0 = π

b(t) = D0[δt]P1bt+1
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with bn = eT where eT is the vector of 1s, and δi is the delay between observations i
and i + 1.

Where D0[δt] is the transition matrix (of the hidden state) after a time δt has
elapsed.

The calculation of this matrix involves matrix exponentials, that is the sum of a
convergent power series of matrixes, due to the possibility of a potentially unlimited
number of steps taken in the time δt.

As for HMM the likelihood can be written as L = ∑|S|i=1 at(i)bt(i) and calculated
through multiple methods.

To use Newton type algorithms requires differentiation with respect to parame-
ters from a product of matrices and is thus complex.

Ramesh [Ramesh, 1995] uses the downhill simplexmethod to avoid such deriva-
tives.

Asmussen [Asmussen et al., 1996] and Ryden [Rydén, 1996] utilized the EM
algorithm considering as missing date the entire sequence of hidden state changes.

Buchholz in [Buchholz, 2003] applies the technique of uniformization [Stewart,
1994] to improve upon past EM algorithms.



Chapter 2

Marked Markov Modulated Poisson
Processes

The class of Marked Markovian Arrival Processes (MMAP or MMAP[K]) [He and
Neuts, 1998] extends the expressivity ofMAPs by associating each observed event to
a mark. In the following, for simplicity, we will always consider marks to be discrete
types, although they can be of any kind, e.g. continuous or multidimensional.

MMAPs allow the distinguishing of a finite set of arrival classes (i.e., multiple
types of observed events) but also further exacerbate the complexity of the fitting
problem, which was thus addressed with multi-step approaches able to fit selected
moments and joint-moments of data while restraining the impact of non-linear op-
timization [Buchholz et al., 2010].

MarkedMarkovmodulatedPoissonprocesses (M3PPorMMMPP) [Casale et al.,
2016,Carnevali et al., 2019], akin to MMAPs, are MMPPs where events have a dis-
crete type which depends on the state of the hidden process. Specifically, an M3PP
of order n is an MMPP of order n with arrivals belonging to a set C of m discrete
classes. I.e. it can be considered as an MMPP with a multinomial distribution as-
sociated to each emission rate. In [Carnevali et al., 2019] M3PPs are used to study
non-stationary intervals, as such a vector of initial state probabilities was introduced
to the notation, which we maintain: η ∈ [0, 1]n, a n-sized row vector. An M3PP is
thus defined by the tuple (η,D0,D1,C), where

• η is the n-sized vector of initial state probabilities such that η(0) = 1 and η(i) =
0 ∀ i ∈ S with i 6= 0 (due to the fact that, as discussed in Section 2.1, for the
training set we consider sequences of events observed since the entrance in the
initial, less aged, state of the system);

• D0 is the n× n upper-triangular transition rate matrix, i.e.,D0(i, j) = 0 ∀ i, j ∈
S such that i > j,D0(i, j) ≥ 0 ∀ i, j ∈ S such that i < j, andD0(i, i) ≤ 0 ∀ i ∈ S;

13
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• D1 is the n× n emission rate matrix, i.e., D1(i, j) = 0 ∀ i, j ∈ S such that i 6= j
and D1(i, i) ≥ 0 ∀ i ∈ S;

• the sum of D0 and D1 is the generator matrix of a CTMC, i.e., ∑j∈S(D0(i, j) +
D1(i, j)) = 0 ∀ i ∈ S;

• C is the n×m event probability matrix associating each state i ∈ S and each class
c ∈ C = {0, . . . , m− 1} with the probability that an event of class c is emitted
in state i, i.e., C(i, c) ∈ [0, 1] ∀ i ∈ S, ∀ c ∈ C, and ∑c∈C C(i, c) = 1 ∀ i ∈ S.

In particular, it turns out that D0(n, n) = −D1(n, n).

C =


c1,1 c1,2 · · · c1,m
c2,1 c2,2 · · · c2,m
... ... . . . ...

cn,1 cm,2 · · · cm,n


Where all ci,t are non-negative ∀i, t and ∑m

t=1 ci,t = 1 ∀i
Note that an M3PP is a marked doubly stochastic Poisson process whose arrival

rate and arrival type both depend on the state of a hidden CTMC, i.e., when the
CTMC is in state i, events occur according to a Poisson process with rate λi, each
event being of class c ∈ C with probability C(i, c). If λi = λ ∀ i ∈ S, then the M3PP
is a Poisson process with rate λ whose arrival type still depends on the state of a
hidden CTMC according to a discrete distribution. Fig. 2.1 shows an M3PP with
3 states and 4 classes of events, defined by the vector η = (1 0 0) of initial state
probabilities and by the following matrices:

D0 =

 −10 3 2
0 −8 6
0 0 −7

 D1 =

 5 0 0
0 2 0
0 0 7



C =

 0.6 0.2 0.18 0.02
0.25 0.5 0.23 0.02
0.01 0.02 0.02 0.95


(2.1)

Note that the following chapter contains verbatim material from Carnevali et
al. [Carnevali et al., 2019], © 2019, IEEE.
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Figure 2.1: The M3PP defined by Eq. (2.1). States are represented as circles; unob-
servable transitions from state i to state j with i 6= j are represented as dashed di-
rected arcs labeled with the transition rate D0(i, j); and, observable self-transitions
from state i to state i are represented as solid directed arcs labeled with the emission
rateD1(i, i) andwith the histogram of the probability density function of the classes
of the events emitted in state i. © 2019, IEEE
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An EM algorithm for M3PPs
In the following, we first define the forward and backward likelihood of a state of
an M3PP, and the likelihood of a sequence of observed events. Then, we use these
quantitative measures to illustrate the expectation step and the maximization step
of the proposed EM algorithm.

Likelihood of an event sequence

Given an M3PP and an event sequence, we term forward likelihood of a state of the
M3PP the joint probability that the event sequence is observed and that the system
is in the considered state after such sequence of observations. Specifically, given an
M3PPM = (η,D0,D1,C) and an event sequence T = 〈ω1, . . . , ωK〉 such that each
event ωk = 〈ek, tk〉 consists of a type ek and a time-stamp tk ∀ k ∈ {1, . . . , K} (as
discussed in Section 2.1), we define the n-sized (row) forward vector a(k) containing
the forward likelihood of each state i ∈ S with respect to the subsequence T 1,k =

〈ω1, . . . , ωk〉 ∀ k ∈ {1, . . . , K}, i.e. a(k)(i) := P{X(tk) = i, T 1,k |M} ∀ i ∈ S. Each
forward vector a(k) can be computed as follows:

a(k) = a(k−1) Πτk P1 ◦ C(·, ek)
T (2.2)

where: a(0) := η := (1 0 · · · 0) is an n-sized row vector with the first element equal
to 1 and the remaining ones equal to 0;
τk := tk − tk−1 is the time elapsed between the observations ωk−1 and ωk ∀ k ∈
{1, . . . , K}, with τ1 := t1 being the time elapsed from a fictitious observation ω0

representing the start of system monitoring until the first observation ω1; Πτk is the
n × n matrix of transient state probabilities of the hidden CTMC, i.e., Πτk(i, j) :=
P{X(τk) = i |X(0) = j} ∀ i ∈ S, computed through the uniformizationmethod [Stew-
art, 1994]; P1 = D1/α, with α being the uniformization rate [Stewart, 1994]; and,
C(·, ek) is the n-sized columnvector corresponding the columnof the event probabil-
itymatrixC indexed by the type ek of the k-th event. In turn, transient state probabil-
ities are computed by analyzing a DTMCwith transitionmatrix P = I+Q/α [Stew-
art, 1994], i.e., ΠτkP1 = ∑rk

u=lk
ψ(u, α τk)P0

u−1P1, where: I is the n× n identity ma-
trix; α is selected such that α ≥ maxi∈S{|D0(i, i)|}; ψ(u, α τk) is the probability that
u events occur during the interval [0, τk) in a Poisson process with rate α; matrix P
can be represented as P = P0 + P1 with P0 = I+D0/α and P1 = D1/α; and, lk
and rk are the left and the right truncation points for the evaluation of the Poisson
probabilities during the interval [0, τk), respectively [Fox and Glynn, 1988].

Furthermore, given an event sequence, we term backward likelihood of a state of
the M3PP the probability of observing that trace starting from that state. Specifi-
cally, given an M3PPM and an event sequence T = 〈ω1, . . . , ωK〉, we define the n-
sized (column) backward vector b(k) containing the backward likelihood of each state
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i ∈ S with respect to T k+1,K = 〈ωk+1, . . . , ωK〉 ∀ k ∈ {1, . . . , K − 1}, i.e., b(k)(i) :=
P{T k+1,K |X(tk) = i, M}. Each backward vector b(k) can be computed as follows:

b(k) = Πτk P1 ◦ F b(k+1) (2.3)

where b(K) := 1T and F is an n× n matrix whose rows are all equal to the n-sized
row vector C(·, ek)

T.
Finally, the likelihood L(T ,M) of a sequence T of K observed events with re-

spect to an M3PPM is the sum of the forward likelihoods of the states ofM:

L(T ,M) := a(K) 1T. (2.4)

E-step

Given a sequence of events T = 〈ω1, . . . , ωk〉 and the current estimates of the ma-
trices P0, P1, and C, the expectation step the EM algorithm evaluates the expected
value of the number of: unobservable transitions between each pair of states, observ-
able transitions between each pair of states, and event types emitted in each state.
These expected values are stored in the n × n, n × n, and n × m matrices X0, X1,
and Y, respectively, and computed separately for each time interval of duration
τk := tk − tk−1 elapsed between the observations ωk−1 and ωk ∀ k ∈ {1, . . . , K}
(where ω0 is a fictitious observation representing the start of system monitoring),
exploiting the current forward vector a(k) and backward vector b(k). The evaluation
yields the n × n, n × n, and n × m matrices X0

(k), X1
(k), and Y(k), whose elements

can be computed as follows for each state i, j ∈ S of the hidden process and for each
event type c ∈ C:

X0
(k)(i, j) =

rk

∑
u=lk

ψ(u, α τk)
u−2

∑
l=0

v(k−1)
l (i)P0(i, j)w(k)

u−l−2(j) (2.5)

X1
(k)(i, i)

=
rk

∑
u=lk

ψ(u, α τk) v
(k−1)
u−1 (i)P1(i, i)C(i, ek)b(k)(i) (2.6)

Y(k)(i, c) =

{
X1

(k)(i, i) if ek = c
0 otherwise

(2.7)

where: v(k−1)
u := a(k−1) P0

u is an n-sized row vector whose i-th element contains
the conditional probability that the hidden process has performed u additional un-
observable transitions during the time interval between ωk−1 and ωk and that it
has reached state i, given the observation of the event subsequence T 1,k−1; w(k)

u :=
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P0
u P1 ◦ F b(k) is an n-sized column vector whose i-th element contains the proba-

bility that the hidden process has performed u additional unobservable transitions
during the time interval between ωk−1 and ωk, that it has reached state i observing ek
as the type of the k-th observed event, and that the event subsequence T k+1,K is then
observed. Then, X0, X1, and Y are obtained summing X0

(k), X1
(k), and Y(k), respec-

tively, for each k ∈ {1, . . . , K}, i.e., X0 = ∑K
k=1 X0

(k), X1 = ∑K
k=1 X1

(k), Y = ∑K
k=1 Y

(k).

M-step

The maximization step of the EM algorithm derives the values of P0, P1, and C
that maximize the likelihood of the considered trace computed by exploiting the
expected values derived by the E-step. The new estimates for P0, P1, and C are rep-
resented by the n× n, n× n, and n×m matrices X̂0, X̂1, and Ŷ, respectively, whose
elements can be computed as follows for each state i, j ∈ S and event type c ∈ C:

X̂0(i, j) =
X0(i, j)

n−1

∑
z=0

X0(i, z) + X1(i, i)

(2.8)

X̂1(i, i) =
X1(i, i)

n−1

∑
z=0

X0(i, z) + X1(i, i)

(2.9)

Ŷ(i, c) =
Y(i, c)

m−1

∑
w=0

Y(i, w)

(2.10)

EM algorithm

We consider a dataset of R event sequences, i.e. T = 〈T1, . . . , TR〉. Each sequence Tr

consists of Kr events, i.e., Tr = 〈ωr
1, . . . ωr

Kr
〉 ∀ r ∈ {1, . . . , R}. In turn, each event ωr

k
of Tr encodes a type er

k and a time-stamp tr
k, i.e., ωr

k = 〈er
k, tr

k〉 ∀ k ∈ {1, . . . , Kr},
∀ r ∈ {1, . . . , R}. The time elapsed between any two consecutive events ωr

k−1 and
ωr

k is denoted by τr
k := tr

k− tr
k−1 ∀ k ∈ {1, . . . , Kr}, ∀ r ∈ {1, . . . , R}, with ωr

0 = 〈er
0, tr

0〉
being a fictitious event representing the start of systemmonitoring ∀ r ∈ {1, . . . , R}.

Given such a dataset T, the EM procedure in Algorithm 2 iteratively performs
the E-step (lines 10–22) and the M-step (lines 24–27) on all the traces of T, until the
estimates of P0 and P1 converge with an error bound ε, i.e., the algorithm is halted
when max{

∥∥P0 − P0
′∥∥ ,
∥∥P1 − P1

′∥∥ ,
∥∥C−C′

∥∥} ≤ ε (line 29), where 〈P0,P1,C〉 and
〈P0
′,P1

′,C〉 are the estimates produced by the last and by the second to last itera-
tion, respectively, and ‖·‖ is the matrix norm 1. Moreover, as in the approach of [Ra-
biner, 1989], in each iteration on trace Tr, the expected values encoded byX0

(k),X1
(k),
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and Y(k) are weighted by the inverse of the likelihood L(Tr,M) of the trace when
summed to X0, X1, and Y, respectively (lines 14, 20–21).

Finally, D0 and D1 are derived by inverting the relations P0 = I + D0/α and
P1 = D1/α, respectively (lines 30–31).

Algorithm 1 Expectation Maximization
Input: T = 〈T1, . . . , TR〉
Output: M = (η,D0,D1,C)
1: ε� 1
2: η← (1 0 · · · 0)

3: α←
(

min
r∈{1,...,R},k∈{1,...,Kr}

{τr
k}
)−1

4: Choose P0 and P1 such that P0 is upper-triangular, P1 is diagonal, and P0 + P1
is stochastic

5: Choose C such that it contains non-negative elements
6: procedure EM(T , ε, α,P0,P1,C)
7: X0 ← 0n×n, X1 ← 0n×n, Y← 0n×m
8: repeat
9: for r = 1, . . . , R do
10: Compute L(Tr,M) according to Eq. (2.4)
11: for k ∈ {1, . . . , Kr} do
12: Compute a(k) according to Eq. (3.2)
13: end for
14: for k = K, . . . , 1 do
15: Compute b(k) according to Eq. (3.4)
16: Compute X0

(k) according to Eq. (3.12)
17: Compute X1

(k) according to Eq. (3.13)
18: Compute Y(k) according to Eq. (3.14)
19: X0 ← X0 + X0

(k)/L(Tr,M)

20: X1 ← X1 + X1
(k)/L(Tr,M)

21: Y← Y+ Y(k)/L(Tr,M)
22: end for
23: end for
24: P0

′ ← P0, P1
′ ← P1, C′ ← C

25: Compute X̂0 according to Eq. (2.8)
26: Compute X̂1 according to Eq. (2.9)
27: Compute Ŷ according to Eq. (2.10)
28: P0 ← X̂0, P1 ← X̂1, C← Ŷ
29: until max{

∥∥P0 − P0
′∥∥ ,
∥∥P1 − P1

′∥∥ ,
∥∥C−C′

∥∥} ≤ ε

30: D0 ← α(P0 − diag(P01T + P11T))
31: D1 ← αP1
32: end procedure
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2.1 Inference and prediction with M3PPs
In the following, we first describe a system characterized by a hidden state process
and an observation process then we define the technique with which M3PPs can be
used to identify the current state of the hidden process and predict the time when
the state of maximum degradation is reache, given a sequence of observed events.

Hidden process

We consider a continuous-time process {X(t), t ≥ 0} with state space S, where
X(t) ∈ S is the state of the process at time t, e.g., aging in software systems, disease
progression in human patients, execution of security attacks in information technol-
ogy systems. The states of the process are regenerations (i.e., states that satisfy the
Markov condition), so that the sequence of states visited during any time interval
is a Markov renewal sequence. The sojourn time in each state s ∈ S is characterized
by a non-exponential Cumulative Distribution Function (CDF) Fs

soj : Isoj → [0, 1]
with Isoj ⊆ [0, ∞), i.e., Fs

soj(x) 6= 1− exp(−λ x) ∀ λ ∈ R>0. According to this, the
considered phenomenon behaves like a Semi-Markov Process (SMP). Transient be-
havior is assumed to be an almost left-to-right process, with transitions from states
of minor progression to states of major progression. Right-to-left transitions are still
allowed to account for rejuvenation or maintenance, provided that a unique absorb-
ing state s? (representing the state ofmaximumprogression) is always reachedwith
probability 1, e.g., failure of a software system, death of a human patient, success of
a security attack.

Observed process

The considered transient process cannot be directly observed (i.e., it is hidden).
However, in each state s ∈ S, it emits typed eventswith (exponential or non-exponential)
inter-event time CDF Fs

int : Iint → [0, 1], where Iint ⊆ [0, ∞). The type and the time
of the emitted events can be directly observed, comprising an SMP {W(t), ∀ t ≥ t1}
with discrete state space E, where t1 is the time of the first event and W(t) ∈ E is
the type of the last event emitted during the time interval [t1, t]. Therefore, if ω1,
. . . , ωK is a sequence of K events, where each event ωk = 〈ek, tk〉 consists of a type
ek ∈ E and a time-stamp tk ≥ t1 ∀ k ∈ {1, . . . , K}, then W(t) = ek ∀ t ∈ [tk, tk+1) and
∀ k ∈ {1, . . . , K}, with tK+1 = ∞.

The type of the events emitted in each state s ∈ S of the transient process is
sampled from a discrete Probability Density Function (PDF) Cs : E→ [0, 1]. A con-
clusive event of type e? ∈ E characterizes the sojourn in the absorbing state s? ∈ S.
Specifically, in the absorbing state, the probability of a conclusive event is signif-
icantly larger than the probability of an event of any other type, i.e., Cs?(e?) >>
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Cs?(e) ∀ e ∈ E \ {e?}. On the other hand, in any state except for the absorbing state,
the probability of a conclusive event is significantly lower than the probability of an
event of any other type, i.e., Cs(e?) << Cs(e) ∀ s ∈ S \ {s?}, ∀ e ∈ E \ {e?}.

Offline learning
We aim at learning a model of the aging process from a dataset of event sequences
ω1 = 〈e1, t1〉, . . . , ωK = 〈eK, tK〉 observed from the entrance in the initial (less aged)
state at least until when the absorbing state s? is reached. On the one hand, each
event ωk = 〈ek, tk〉 such that ek 6= e? is not likely to be emitted in s? and thus can be
considered as unlabeled data. On the other hand, each event ωk = 〈e?, tk〉 observed
at the end of an observation sequence is likely to be emitted in s? and thus can be
considered as labeled data. According to this, the problem of deriving a model of
the aging process can be regarded as an instance of semi-supervised learning [Zhu
and Goldberg, 2009].

Online prediction
Given a model of the aging process and a sequence of events observed from an ar-
bitrary time (coincident with or subsequent to the entrance in the initial state) until
a time t, we predict when the state of maximum progression s? will be reached,
which comprises a failure event for the system. As usual in online failure predic-
tion [Salfner et al., 2010], the forecast emitted at time t holds during a time window
I = [t + ∆tL, t + ∆tL + ∆tP], where ∆tL is the lead period representing the time inter-
val after which prediction is valid and ∆tP is the prediction period representing the
time window duration. As shown in Fig. 2.2, a prediction is repetitively made at
times t1, . . . , tH with time step ∆tS exploiting the sequence of events observed until
that time, i.e., th+1 − th = ∆tS ∀ h ∈ {1, . . . , H − 1}, and it is valid during the time
windows I1, . . . , IH, respectively, i.e., Ih = [th +∆tL, th +∆tL +∆tP] ∀ h ∈ {1, . . . , H}.

Figure 2.2: Prediction is repetitively issued at times t1, . . . , tM with time step ∆tS
based on the event sequence observed until t1, . . . , tM, respectively, and it is valid
during the time windows I1 = [t1 + ∆tL, t1 + ∆tL + ∆tP], . . . , IM = [tM + ∆tL, tM +
∆tL + ∆tP], respectively. © 2019, IEEE
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Given a sequence of observed events and the corresponding failure time t?, we
say that the prediction emitted at time th and valid during the time window Ih, with
i ∈ {1, . . . , H}, is: i) a true positive if Ih contains t? and it is actually predicted to
contain t?; ii) a false positive if Ih does not contain t? but it is predicted to contain t?;
or, iii) a false negative if Ih contains t? but it is predicted not to contain t?.

Given a data set made of N sequences of observed events, each sequence being
associated with a failure time and a prediction sequence, let TP, FP, and FN be the
total number of attained true positives, false positives, and false negatives, respec-
tively. To evaluate performance, we define the following micro-averaged measures:
precision P = TP/(TP + FP) and recall R = TP/(TP + FN). Different P and R val-
ues can be obtained by using different thresholds to determine when an example is
predicted as positive. From such values, the precision-recall curve can be computed
and the area under that curve, termed Area Under Precision-Recall Curve (AUPRC),
can be used to measure the prediction performance [Davis and Goadrich, 2006].

Current state classification
Given a sequence of events T1,k = 〈ω1, . . . , ωk〉 observed during a time interval [0, t],
the objective of classification is to derive, for each hidden state i ∈ S, the probabil-
ity γ(i, t, T 1,k) that the system is in state i ∈ S at time t given T 1,k, with ωh = 〈eh, th〉
∀ h ∈ {1, . . . , k} and 0 ≤ t1 ≤ . . . ≤ tk ≤ t:

γ(i, t, T 1,k) := P{X(t) = i |M, T 1,k}. (2.11)

We assume not to know whether the start time of monitoring coincides with the
beginning of the hidden process. Therefore, we consider a non-informative prior on
the hidden state at the start of monitoring, estimating the initial probability of each
state i ∈ S as the ratio of the expected sojourn time in i and the sum of the expected
sojourn times in each state, i.e., a(0)(i) := E[σi]/ ∑j∈S E[σj], where σi is the sojourn
time in state i and E[σi] is its expected value. Then, the probability that the system
is in state i right after the observation of event ωk is represented by the i-th entry of
the normalized forward vector â(k), i.e., γ(i, tk, T 1,k) = â(k)(i) ∀ i ∈ {0, . . . , n}.

Finally, the n-sized row vector dt,T 1,k whose i-th entry contains the probability
that the system is in state i at time t given the event sequence T 1,k observed during
the interval [0, t], i.e., dt,T 1,k(i) := γ(i, t, T 1,k) ∀ i ∈ S, can be derived as dt,T 1,k =

â(k) Πt−tk /(dt,T 1,k1T), where Πt−tk is the n× n matrix of transient state probabilities
of the hidden CTMC.

Failure time prediction
Given the vectordt,T 1,k of state probabilities at a time t conditioned to the observation
of the event sequence T1,k, the objective of prediction is to determine whether the
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state of maximumprogression s? := sn−1 will be reached at a time t? within the time
interval I = [t+∆tL, t+∆tL +∆tP], as illustrated in Section 2.1. To this end, at time t,
we derive the Cumulative Distribution Function (CDF) of the remaining time τ? to
the entrance in the failure state s?, whichwe denote as Φ(τ) := P{τ? ≤ τ |M, T 1,k}.
And, we predict that I contains t? if the probability that t? ∈ I is larger than a
prediction threshold δ, i.e., if Φ(∆tL + ∆tP)−Φ(∆tL) ≥ δ.

The CDF Φ(τ) can be derived from the CDFs Φi(τ) of the remaining failure time
conditioned to each possible state i ∈ S at time t, which are weighted by probability
of each state at that time, i.e., Φ(τ) = ∑i∈S dt,T 1,k(i)Φi(τ), where Φi(τ) := P{τ? ≤
τ |M, T 1,k, X(t) = i} and dt,T 1,k(i) is the probability that the system is in state i at
time t conditioned on the observed event sequence T 1,k. In turn, given the set Zi of
the sequences of states 〈i, . . . , s?〉 visited by the sequences of hidden transitions that
bring the system from state i to state s?, Φi(τ) can be derived ∀ i ∈ S from the CDF
of the sojourn time in each state of Zi, i.e., Φi(τ) = ∑ρ∈Zi

pρΦi,ρ(τ), where pρ is the
probability of the sequence of hidden transitions that visit the sequence of states ρ

(obtained as the product of transition probabilities) and Φi,ρ(τ) is the CDF of the
sum of sojourn times in states of Zi except for s?, i.e., Φi,ρ(τ) := P{∑j∈Zi\{s?} σj ≤
τ |M, T 1,k, X(t) = i}. Note that, due to the fact that the sojourn time in each hid-
den state is exponentially distributed, the remaining sojourn time in state si has an
exponential distribution with the same rate of the sojourn time σi. In the present ex-
perimentation, Φi,ρ(τ) is derived through Monte Carlo simulation ∀ i ∈ S, ∀ ρ ∈ Zi.

2.2 Experimentation
The proposed approach lends itself to application in a variety of scenarios where
software reliability is supported by on-line diagnosis and prediction. As a com-
mon trait, in all these cases, effectiveness of analysis results largely depends on
the statistics of observable data, specifically on its diversity along different phases
of operation. To characterize this dependency, we report experimental results on
a synthetic dataset generated by stochastic simulation of the attack tree model of
the Stuxnet case [Kriaa et al., 2012] using stochastic durations proposed in [Arnold
et al., 2014b]. To this end, the model is enriched with a controlled statistics of types
and inter-arrival times of observable events in each intermediate step of the attack.

To illustrate sensitivity to statistical characteristics of observed data, multiple
datasets are generated by controlled variants of the model with different coefficient
of variation of durations and different emission rate of events in each state (and
thus different confusion among events during the steps of the attack). Each dataset
is exploited to learn three different models, which exploit only the arrival times of
untyped observations (as would result from the application of [Buchholz, 2003]),
or the types of time-stamped observations, under the assumption that the arrival
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rate of observations of any type is the same in every state (as would result from
the application of [Liu et al., 2015]), or the combination of the two aspects, relax-
ing the assumption of state-independent arrival times of observations of any type.
The effectiveness of the different learned models in predicting the completion time
of the attack is evaluated in terms of false and missed alarms, as discussed in the
formulation of Section 2.1.

Experiments were performed through a Java implementation of the proposed
approach, exploiting the SIRIO library [SIRIO Library, 2018] of the ORIS tool [Biagi
et al., 2017, ORIS Tool, 2019] for the computation of Poisson probabilities and for
stochastic simulation of the attack model.

Experimental setup

Attack scenario

The attack scenario is specified through the formalism of Stochastic Time Petri Nets
(STPNs) [Vicario et al., 2009], which support representation of concurrent stochas-
tic systems. Specifically, places (depicted as circles) represent logical conditions
encoded by tokens (depicted as dots); transitions (depicted as bars) represent ac-
tivities; preconditions and postconditions (depicted as directed arrows from places
to transitions and viceversa, respectively) control the enabling of transitions and the
token moves at their firing: a transition becomes enabled when all its input places
are not empty, sampling a time to fire from a given (possibly non-Markovian) distri-
bution; then, the transition with minimum time to fire is selected as the next event,
removing a token from each input place and adding a token to each output place.
Enabling and update functions can be used to restrict the enabling of transitions by
constraints on token counts and to perform additional updates of token counts after
transition firings, respectively. A formal definition of STPN syntax and semantics is
reported in [Vicario et al., 2009].

Fig. 2.3 shows the STPN model of the attack by the StuxNet malicious com-
puter worm [Kriaa et al., 2012], targeting Supervisory Control and Data Acquisi-
tion (SCADA) systems that use Microsoft Windows and Programmable Logic Con-
trollers (PLCs) [Kriaa et al., 2012]. In the first of two phases, the worm infiltrates
the business corporate network through an infected removable drive (in Fig. 2.3,
this step is represented by transition injectViaUsb), and it updates itself to the last
version either by establishing a peer-to-peer (P2P) communication with a Remote
Procedure Call (RPC) server (p2pComm) or by directly connecting to a Control and
Command (C&C) server (ccServerCmd). Then, the worm propagates through the
network infecting workstations by means of removable media (removableMedia),
network shared resources (networkShares), the print spooler service exploit
(printServerVuln), theWindows server service exploit (serviceRpcVuln), orWinCC
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Figure 2.3: STPN model of the StuxNet attack. Thick white bars and thick black
bars represent transitions with exponential distribution and with general (i.e., non-
exponential) distribution, respectively. Specifically, exp(λ) and erl(k, ˘) denote
an exponential distribution with rate λ and an Erlang distribution with shape k
and rate λ, respectively. Update functions are annotated next to transitions as
“place← expression”. Times are expressed in days. © 2019, IEEE

project files (userOpenWinCC). In the second phase of the attack, the wormwaits un-
til it infects a pc in the process control network (infectPc), typically via a removable
drive, and then it compromises the SCADA system by modifying the PLC function
blocks, with different steps depending on the CPU type: for 300–series systems, the
worm collects data for a long time (collectData) before sending false data to the
physical infrastructure (plcSendsFalseData); for 400–series systems, the worm in-
tercepts input and output signals of the PLC (interceptIO) andmodifies the output
signals by sending false data (modifyOutput). Finally, the worm compromises the
physical infrastructure (cascadeCentrifuges), which consisted of centrifuges for
separation of nuclear material in the attack to Iranian nuclear enrichment facilities.

The model of the StuxNet attack shown in Fig. 2.3 assumes the stochastic tempo-
ral parameters reported in [Arnold et al., 2014b], except for the rate of the Erlang dis-
tribution of transitions infectPc, collectData, and interceptIO, which has been
increased from 0.2 to 2, from 0.1 to 1, and from 0.1 to 1, respectively, not to make the
final state too easily identifiable.

The model is enriched with a set of observable events detailed in Table 2.1, de-
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rived from the description of the StuxNet attack in [Kriaa et al., 2012]. Each event
type (column 1) can be observed in one or more steps of the attack, identified by
an enabling condition referred to the STPN model of Fig. 2.3 (column 2), and it is
associated with an exponential arrival time CDF (column 3), defined on the basis
of the structure of the attack and the sojourn times in its steps not to make the at-
tack too easily detectable. On the one hand, the SCADA system recurrently emits
events, in any step of the attack. On the other hand, the StuxNet worm also emits
events, which can be of the same type as those emitted by the SCADA system, and
which can be either recurrent or one-shot. For instance, port80Comm is emitted by
the SCADA system with rate 0.1 in any step of the attack, and by the StuxNet worm
with rate 4 in the second step only (i.e., after infiltrating the network through an
infected removable media, before updating to the last version).

Note that a one-shot event could be represented through an extension of M3PPs
as an observable transition from a state where such event can be observed to a coun-
terpart state where such event cannot be observed. Nevertheless, experimental re-
sults discussed in Section 3.2 show that the present model achieves sufficient accu-
racy for the context of use.
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Table 2.1: Observable events enriching the attack model of Fig. 2.3. Rates of expo-
nential distributions are expressed in days. © 2019, IEEE

System events
Recurrent events

Event type Enabling condition Inter-arrival
time CDF

port80Comm TRUE exp(0.1)
rpcOp TRUE exp(0.5)
newLib TRUE exp(0.05)

degradation TRUE exp(0.2)
sendData TRUE exp(0.1)

checkWindow TRUE exp(0.1)
checkAdmin TRUE exp(0.1)
databaseConn TRUE exp(0.3)

StuxNet events
Recurrent events

Event type Enabling condition Inter-arrival
time CDF

rpcOp InjectedViaUsb == 1 exp(3)
port80Comm InjectedViaUsb == 1 exp(4)

rpcOp ModuleExecuted == 1 exp(5)
newLib NetCompromised == 1 exp(0.5)

sendData
Sys300Compromised == 1

exp(10)|| Sys400Compromised == 1
degradation ScadaSysCompromised == 1 exp(2)
attackSuccess StuxNetSuccess == 1 exp(50)

One-shot events

Event type Enabling condition Single-arrival
time CDF

checkWindow Start == 1 exp(4)
checkAdmin Start == 1 exp(4)
databaseConn ModuleExecuted == 1 exp(10)

Synthetic datasets

We generate datasets of event sequences observed during the attack scenario of Sec-
tion 2.2. Specifically, stochastic simulation of the attack model of Fig. 2.3 is per-
formed, yielding the sequence of states visited in each simulation run and the cor-
responding sojourn times. For each state, a sample is extracted from the arrival time
CDF of each event specified in Table 2.1 that can be observed in that state, selecting
the event with minimum arrival time as the next observed event. This step is iter-
ated, under the assumption that one-shot events can be observed only once, until
the sum of the observed inter-event times is larger then the sojourn time. In so do-
ing, a sequence of typed and time-stamped events is obtained for each performed
simulation run.

Wegenerate three datasets to evaluate sensitivity of prediction accuracy to stochas-
tic parameters of the attack scenario: i) a dataset aimed at showing performance
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prediction on the StuxNet attack illustrated in Section 2.2, whichwe term SN-dataset;
ii) a variant of the SN-dataset aimed at showing sensitivity to the statistics of sojourn
times in hidden states, whichwe term ST-dataset; and, iii) a variant of the SN-dataset
aimed at showing sensitivity to the statistics of event emission rates, which we term
ER-dataset. Specifically:

• SN-dataset. The dataset is generated exploiting the attack model of Fig. 2.3
and the observable events of Table 2.1.

• ST-dataset. Thedataset is generated exploiting a variant of themodel of Fig. 2.3
obtained by halving the coefficient of variation of the sojourn time distribution
in each state, while maintaining the same expected value. According to this,
each Erlang CDF with shape k and rate λ is replaced by an Erlang CDF with
shape 4 k e rate 4 λ (note that an exponential CDF is regarded as an Erlang
CDF with shape 1 and the same rate, thus being replaced by an Erlang CDF
with shape 4 and quadrupled rate). By compacting sojourn time distributions
around their respective mean value, this dataset is expected to make the dif-
ferent steps of the attack more easily detectable.

• ER-dataset. The dataset is generated exploiting a variant of the observable
events of Table 2.1 obtained by making the sum of rates of the StuxNet events
equal to 4 in every step of the attack (e.g., in the attack step identified by
the enabling condition InjectedViaUsb == 1, the rates of rpcInstall and
port80Comm are both turned into 2). In so doing, this dataset is expected to
make the time elapsed between consecutive observed events less informative.

Each generated dataset consists of 1100 traces with average duration equal to
7.6 days and average number of observed events equal to 25. Each dataset is split
into a training set of 1000 traces and a test set of 100 traces. Each training trace
starts at the beginning of the attack and terminates with its success. Each test trace
terminates with the attack success as well, but it starts at a random time after the be-
ginning of the attack. In so doing, assuming a prior distribution based on expected
sojourn times is non-informative. In the applicative perspective, this assumption
corresponds to considering a system that is able to detect ongoing attacks, not nec-
essarily at their beginning.

Learned models

For each generated dataset, we learn three models: i) an M3PP; ii) a variant of
M3PPs that does not exploit observed event types, which we term No Event Type
M3PP (NET-M3PP); and, iii) a variant of M3PPs that does not exploit the time
elapsed between consecutive observed events of any type, which we term No Inter-
Event Time M3PP (NIET-M3PP). Specifically:
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Figure 2.4: Prediction performance of the learned models on the SN-dataset (left),
the ST-dataset (center), and the ER-dataset (right). © 2019, IEEE
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• M3PP. The model is learned through the EM procedure of Algorithm 2. In
particular, P0 and P1 are selected randomly so that the overall average sojourn
time in the hidden states, except for the absorbing state s?, is equal to the aver-
age duration of the event sequences observed in the training set until when s?

is reached. And, C is initialized with the observed probability (i.e., computed
over the training set) that each event type is emitted by the SCADA system in
each state.

• NET-M3PP.Themodel is anM3PPvariantwhere the set of event types consists
of the conclusive event e? and a non-conclusive event e. The model is learned
by a variant of Algorithm 2: P0 and P1 are initialized as for M3PPs; C is initial-
ized so that i) in every state except for s?, the probability of e and e? is 1 and 0,
respectively, and ii) in s?, the probability of e is equal to the observed probabil-
ity p that a non-conclusive event is emitted by the SCADA system in s?, and the
probability of e? is equal to 1− p; and, C is never modified after initialization
(matrices Y(k), Y, and Ŷ are not computed).

Note that distinguishing the conclusive event facilitates failure predictionwith
respect to a direct application of the method of [Buchholz, 2003] which does
not exploit event types.

• NIET-M3PP. The model is an M3PP variant where the diagonal elements of
D1 are equal to each other, except for the one in the last row. According to
this, while events of different type can be emitted with different rate in each
state, their sum is constrained to be the same in every state, except for s?. The
model is learned by a variant of Algorithm 2: P0, P1, andC are initialized as for
M3PPs, under the assumption that P1 = diag(p, . . . , p, q); P1 is never modified
after initialization (X1 and X̂1 are not computed); and, X̂0(i, j) is computed as
X̂0(i, j) = (1 − P1(i, j))X0(i, j)/ ∑n−1

z=0 X0(i, z)
∀ i, j ∈ S (see line 24 of Algorithm 2).

Note that assigning a different inter-arrival rate to the conclusive event with
respect to the other events facilitates failure prediction with respect to a di-
rect application of the method of [Liu et al., 2015] which does not exploit the
information encoded by the inter-arrival times of events of any type.

Experimental results
Each training set is used to learn the three models defined in Section 2.2, while the
corresponding test set is used to asses the model accuracy in predicting the comple-
tion time of the attack, as illustrated in Section 2.1. In particular, we consider the
following parameter values: n = 10 hidden states, time step ∆tS = 0.5, lead period
∆tL = 0.1, and prediction period ∆tP = 1.0, where times are expressed in days.
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Moreover, for each model learned on each dataset, we compute the minimum and
the maximum value of the output probability (i.e. the probability that the state of
maximum progression is reached at a time contained in the prediction window),
and we discretize such interval in 100 slots to obtain the precision-recall curves.

Fig. 2.4-left shows the results obtained on the SN-dataset. The M3PP approach
largely outperforms the NET-M3PP approach while performing slightly better than
the NIET-M3PP approach, showing that the information encoded in event types is
far more important than the one included in event timing on this specific dataset.
Specifically, the M3PP approach achieves an AUPRC equal to 0.602, slightly larger
than the one obtained by the NIET-M3PP approach (0.588), and far above that of
the NET-M3PP (0.307).

Fig. 2.4-center shows the results obtained on the ST-dataset. On this dataset, the
M3PP approach largely outperforms both the competitors, showing that reducing
the CV of the sojourn times in the steps of the attack improves the performance of
the approaches that heavily rely on the information encoded by event timing. In
fact, the gain with respect to the SN-dataset is muchmore evident for theM3PP and
the NET-M3PP approaches. Overall, the M3PP approach achieves an AUPRC equal
to 0.704, slightly larger than the one obtained by the NIET-M3PP approach (0.616),
and far above that of the NET-M3PP (0.469).

Fig. 2.4-right shows the results on the ER-dataset. In this setting, the performance
of the NET-approach heavily drops, due to the fact that the sum of the event rates is
the same in each state, which makes it hard to identify the steps of the attack based
on event timing only. As in the previous cases, theM3PP-approach achieves the best
result. Specifically, the M3PP approach achieves an AUPRC equal to 0.746, slightly
larger than the one obtained by the NIET-M3PP approach (0.717), and far above
that of the NET-M3PP (0.156).





Chapter 3

Marked Markov Modulated
Compound Poisson Processes

In this chapter we introduce a model that extends marked MMPPs along two dif-
ferent directions: we introduce the combination of a MMPP with an ordinary com-
poundPoissonprocess, whichwe refer to asMarkedMarkov-modulatedCompound
Poisson Processes (M3CPPs), and we define restrictions to the structure of the in-
finitesimal generator to model non-markovian sojourn times with little added com-
plexity.

We report notes onLong short-termMemoryRecurrentNeuralNetworks (Chap-
ter 3), which are used to obtain a comparison for the experiments.

In the following, we denote vectors andmatrices with bold lowercase letters and
bold uppercase letters, respectively.

M3CPP

M3CPPs extendM3PPs by adding to the arrivals a continuous component, themag-
nitude of the events, which depends on the discrete type of the arrival and on the
state of the hidden process.

M3CPPs are likewise extensions ofMarkov-modulatedCompoundProcesses (MM-
CPP) [Okamura et al., 2007] where discrete types are added to the arrivals, which
already have a magnitude.

An M3CPP is thus defined by the tuple (η,D0,D1,C,G(x)), where G(x) is the
n × m probability density function matrix associating each state i ∈ [1, n] and each
event type t ∈ C with a probability density function (p.d.f) that an event of type t
and emitted in state i has magnitude x ∈ R.

33
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G(x) =

 g1,1(x) · · · g1,m(x)
... . . . ...

gn,1(x) · · · gn,m(x)


It is important to note that while marked MMPP technically already cover any

combination of types, the restriction to only events characterised by one ormore dis-
crete dimensions and a single continuous dimension allows for the efficient learning
of the parameters through the separation in D0,D1 and G and permits the possi-
ble "sharing" of parameters between different states akin to Hierarchical Hidden
Markov Models (HHMM) [Bui et al., 2004].

It is well known that an exponential distribution cannot approximate well a non-
markovian one. If the hidden process wewant to learn has a state space of size n and
contains non-markovian sojourn times then an infinitesimal generator of size n× n
will not be able to approximate it well. It is intuitive that increasing the dimension
of D0 may produce better results, yet it brings a problem: increasing the size of
the n × n matrix of a single unit results in an increase of 2n free parameters, with
the resulting higher computation costs and data volume requirements. Continuous
phase-type distributions (CPHs) [Neuts, 1981] are able, given a sufficient number of
states, to approximate any distribution and can be exploited to limit the exponential
increase in complexity. We substitute the exponential sojourn times inD0 for Acyclic
CPHs (ACPH) in Canonical Form 1 [Cumani, 1982]: such change can be reached
by restricting D0 to the following structure:

D0 =


A1

0
α2 ∗ µ1,2

· · · 0
αn ∗ µ1,n

... ... . . . ...
0

α1 ∗ µn,1

0
α2 ∗ µn,2

· · · An



Ak =


−µk

1,1 µk
1,2 0 · · · 0

0 −µk
2,2 µk

2,3 0 · · ·
... ... . . . . . . ...
0 · · · 0 −µk

r−1,r−1 µk
r−1,r

0 0 · · · 0 −µk
r,r


The resulting D0 is an (n ∗ r) × (n ∗ r) matrix where n is the number of CPHs or
macrostates, r is the number of inner states in each CPH and αi is a r-sized row vector
of initial probabilities of the i-thCPH. Tonote is that no changes happen to the arrival
process: each phase of the ACPH Ai is still associated to the same emission rate λi
andD1 is still a n× n matrix. All µi,j and µk

i,j are non-negative, µk
i,i = µk

i,i+1 + λk ∀i 6=
r and µk

r,r = ∑j 6=k µk,j + λk. With this structure, adding an inner state to better fit a
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sojourn distribution requires only 2 additional parameters, one for the connection
and one for the initial probability of the CPH. The partitioning of D0 can also be
seen from the point of view of an infinitesimal generator of size n ∗ r × n ∗ r with
restrictions imposed to reduce the complexity: with regards toD0 only, the number
of free parameters goes from (n ∗ r− 1)2 to n ∗ (n ∗ r− 1).

Background on Long Short-TermMemory

In Section 3.2 we report results of M3CPPs applied to diagnosis and prediction; to
provide a benchmark we compare them to a successful machine learning technique
used for time series, Long short-termMemory (LSTM) [Hochreiter and Schmidhu-
ber, 1997], a Recurrent Neural Network (RNNs), we report here some details.

LSTMs are noteworthy due to their ability to maintain long term memory, over-
coming the vanishing gradient problem of RNNs and consequently have been use-
ful for learning sequences containing long term correlations of unknown length.
LSTMs are well suited to the tasks of classification and prediction on discrete time
series and have obtained success in several fields other thanHPC e.g. activity recog-
nition [Ordóñez and Roggen, 2016], anomaly detection [Malhotra et al., 2015], neu-
ral machine translation [Wu et al., 2016]. A common LSTM memory block is com-
posed of four units: a cell, which maintains the dependencies between the observed
events; an input gate IG which controls the intensity of changes to the cell due to new
values; an output gate OG which controls the extent to which the cell state partici-
pates to the output activation; a forget gate FG that determines how much of the cell
state is preserved for the next time step (the forget gate was introduced in [Gers
et al., 1999]). The three gates prevent the cell from being affected by irrelevant in-
puts. In Figure 3.1 the scheme of an LSTMmemory block can be seen. The cell state
is marked in red, the crosses represent multiplications.

The equations for the forward pass (production of an output vector from an input
vector) of an LSTM block with a forget gate are:

• fG(t) = σg(W f x(t) + U f h(t− 1) + b f

• iG(t) = σg(Wix(t) + Uih(t− 1) + bi

• oG(t) = σg(Wox(t) + Uoh(t− 1) + bo

• C̃(t) = σh(Wcx(t) + Uch(t− 1) + bc

• C(t) = fG(t) ◦ C(t− 1) + iG(t) ◦ C̃(t)

• h(t) = oG(t) ◦ σh(C(t))
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Figure 3.1: Overview of a memory block in a LSTM-RNN.

Where ◦ is the Hadamard product, σg, σh are the sigmoid and hyperbolic tan-
gent activation functions and W−, U− and b− are respectively the weight and biases
vectors, which need to be learned during training, the rest are:

• x(t) ∈ Rd : input vector to the LSTM unit at time t

• fG(t) ∈ Rh : forget gate’s activation vector at time t

• iG(t) ∈ Rh : input gate’s activation vector at time t

• oG(t) ∈ Rh : output gate’s activation vector at time t

• h(t) ∈ Rh : hidden state (output) vector at time t

• C̃(t) ∈ Rh : cell input activation vector at time t

• c(t) ∈ Rh : cell state vector at time t

Given a time series, at the t-th iteration each gate activation function applies a non-
linear transformation (sigmoid or tanh) to the linear combination of the current
input x(t) and previous hidden state h(t− 1) with the weight and bias vectors; the
hidden state h(t) is emitted as output. A backward pass can be applied to modify the
weights and biases based on the output to conduct learning.
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Typically multiple memory blocks are organized in a set, termed layer, where
they all receive the same input x(t). Layers can then be stacked, receiving as an
input the outputs of the blocks of the preceding layer, to learn higher level temporal
features.

Time discretization Deep learning models generally deal with time series whose
values occur equidistantly [Box et al., 2015] that is, from period-based approaches.
However applications like HPC, where data is not sampled at discrete intervals, but
rather produced irregularly are also common. It is known that simply adding the
time of an event as a feature in input to the model does not produce optimal results.

 time
 A  B  A B  A  C

Figure 3.2: Discretization of event-driven time series into
fixed length time slots.

A straightforward approach to incorporate an event’s continuous timestamp into
a discrete time series is to identify a fixed length with which divide the continuous
time in intervals [Wei et al., 2002]. Figure 3.2 shows a time series discretized in time
slots. If no events are present in a time slot, a special event representing “silence” is
considered. This approach hides some problems:

• there is always a non-null probability that more than one event are contained
in the same time slot

• time resolution is weakened since it is no longer known when in the time slot
the event happened

While a simple solution would be to reduce the discretization step (and so the slots
widths) to minimize co-occurrence, small time steps incur problems when long se-
quences of "silences" are present. Even LSTM,which is able tomaintain a longmem-
ory, eventually suffers from the vanishing gradient problem. In general, if the inter-
event times vary greatly, for example when the hidden processmodes have different
emission rates as is the case in failure prediction, identifying the correct discretiza-
tion step has a significant impact on the results.
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3.1 Parameter Estimation for M3CPP

Expectation Maximization Algorithm

In this section we present the parameter estimation procedures for M3CPPs. We
first remind the Expectation Maximization (EM) principles and then develop the
concrete EM algorithm. As prerequisite, we define the forward and backward like-
lihood of a state of an M3CPP. While by themselves each step is not novel, being
largely based on the M3PP one, we are effectively introducing in the formulation of
our EM algorithm the key details to create hierarchies of states and of event types
needed for the construction of a model that is continuous time and hierarchical in
both fields.

Consider the sequence of events T = 〈ω1, . . . , ωK〉 such that each event ωk =

〈tk, ek, xk〉 consists of a continuous time-stamp tk, a type ek and a intensity xk ∀ k ∈
{1, . . . , K}. Given an M3CPPM = (η,D0,D1,C,G(x)) with n macrostates and r
inner states per macrostate we want to find the parameters that maximize the like-
lihood of producing the sequence T .

Following the uniformization method we discretize the underlying CTMC and
compute P0 = I+D0/α and P1 = D1/α, with α being the uniformization rate such
that α ≥ maxi∈S{|D0(i, i)|} and I is the identity matrix. Respectively P0 is an (n ∗
r)× (n ∗ r)matrixwith elements p0

i,j ( by construction it preserves the partitioning in
CPHofD0) andP1 is a n ∗ nmatrixwith elements p1

i . As a result ∑i(∑j p0
i,j)+ p1

i = 1;
the components p0

i,j, p1
i are the transition probabilities of the resulting uniformized

DTMC. Obtaining the parameters that maximize the likelihood of the uniformized
DTMC is equivalent to maximizing the likelihood of the original CTMC.D0 andD1
can be obtained through the following equations D0 = α(P0 − diag(P01T + PE

11
T)),

D1 = αP1. Where PE
1 is the (n ∗ r)× (n ∗ r) diagonal matrix with pE

i = p1
δ(i) ∀i ∈

[1, n ∗ r], with δ(i) function that returns the index of the corresponding macrostate
i.e. expands P1 so that it has the same dimension of P0.

Given i, j ∈ [1, n ∗ r] and t ∈ [1, m]we define the following unobserved variables:

• X̂(k)
0 (i, j): number of transitions from state i to j in the interval (tk−1, tk)

• X̂(k)
1 (i): number of emissions in state i in the interval (tk−1, tk)

• Ŷ(k)
(i, t): number of emissions in state i of type t in the interval (tk−1, tk)

The complete log-likelihood on the uniformized DTMC is then given by:
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CLL =
n∗r
∑
i=1

I(J(0) = i) log ηi +
K

∑
k=1

n∗r
∑
i=1

n∗r
∑
j=1

X̂(k)
0 (i, j) log p0

i,j+

K

∑
k=1

n∗r
∑
i=1

X̂(k)
1 (i) log pE

i +

K

∑
k=1

n∗r
∑
i=1

m

∑
t=1

Ŷ(k)
(i, t) log cδ(i),t+

K

∑
k=1

n∗r
∑
i=1

m

∑
t=1

Ŷ(k)
(i, t) log gδ(i),t(xk; θδ(i),t) (3.1)

where I(·) is the indicator function and θp,t are parameters of the distribution gp,t(·).
In the following, we present the cases where gp,t(·) is either an exponential output,
with only the rate βp,t to maximize (in Eq. 3.10) and the case where gp,t(·) is a
multinomial distribution of (fixed and known) values [g1

p,t, ..., gw
p,t] (in Eq. 3.11);

an extension to the continuous case for Gaussian mixture can be easily achieved by
incorporating the Maximization steps described in the EM algorithm for Gaussian
Mixture fitting of [Bilmes et al., 1998]. Let O be a random variable corresponding
to the observed data and θ the previous parameter set.

To average over the possible observation sequenceswedefine the following quan-
tities X0

(k) := E[X̂(k)
0 O|θ], X1

(k) := E[X̂(k)
1 O|θ], Y(k) := E[Ŷ(k)O|θ].

To calculate the previous expected values we need to define the forward and
backward likelihood of a state. Let a(k) be a (n ∗ r)-sized row vector that contains
in position i the joint likelihood of being in state i at time tk and observing the first
k events. When normalized over i, a(k)(i) is equal to P{J(tk) = i, T 1,k |M}, where
T 1,k = 〈ω1, . . . , ωk〉 is the subsequence of T containing the observations from 1 to
k included.

a(k) = a(k−1) Πτk P
E
1 ◦ f(ek, xk) (3.2)

where a(0) := η, τk := tk − tk−1, ◦ denotes the Hadamard product, Πτk is the
n × n matrix of transient state probabilities of the hidden CTMC, i.e., Πτk(i, j) :=
P{J(τk) = i | J(0) = j} and, f(ek, xk) is defined as a (n ∗ r)-sized row vector contain-
ing at the i-th place C(δ(i), ek) ∗G(δ(i), ek). In turn

ΠτkP
E
1 =

rk

∑
u=lk

ψ(u, α τk)P0
u−1PE

1 (3.3)

where ψ(u, α τk) is the probability that u events occur during the interval [0, τk) in
a Poisson process with rate α; lk and rk are respectively the left and right truncation
points for the evaluation of the Poisson probabilities during the interval [0, τk) [Fox
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and Glynn, 1988]. Let b(k) be a (n ∗ r)-sized column vector that contains in position
i the likelihood of observing the events k + 1 to K, given that the state at time tk is i.

Likewise b(k)(i) is proportional to P{T k+1,K | J(tk) = i, M}.

b(k) = Πτk+1 P
E
1 ◦ F(ek, xk) b(k+1) (3.4)

where b(K) := 1T and F(ek, xk) is an (n ∗ r)× (n ∗ r)matrix whose rows are all equal
to f(ek, xk).

Finally, the parameters that maximize the expected CLL are given by:

ηi =
a(0)(i) ∗ b0(i)

∑n∗r
j=1 a(0)(j) ∗ b0(j)

(3.5)

Where a(0)(i) ∗ b(0)(i) gives the probability of being in i at time 0 given O.

p1
v =

∑K
k=1 ∑i,δ(i)=v X1

k(i)

∑K
k=1 ∑i,δ(i)=v(X1

k(i) + ∑n∗r
j=1 X0

k(i, j))
(3.6)

Given that the emission probability in amacrostate is the same for all inner states,
all expected emissions of the macrostate are considered (i.e. sum over all the inner
states) .

αv(p) =
∑K

k=1 ∑n∗r
i=1,δ(i) 6=v X0

(k)(i, (v− 1) ∗ r + p)

∑K
k=1 ∑n∗r

i=1,δ(i) 6=v ∑r
p′=1 X0

(k)(i, (v− 1) ∗ r + p′)
(3.7)

The initial probability in a CPH is obtained from the expected arrivals in it from
the other CPHs, which can be exited only from the last inner state.

p0
i,j =



∑K
k=1 X0

k(i,j)
∑K

k=1 ∑n∗r
v=1 X0

k(i,v))
∗ (1− p1

δ(i)) if δ(i) = δ(j).

∑K
k=1 ∑r

p=1 X0
k(i,δ(j)+p)

∑K
k=1 ∑n∗r

v=1 X0
k(i,v))

∗

(1− p1
δ(i)) ∗ αδ(j)(j− (δ(j)− 1) ∗ r) otherwise.

(3.8)

For simplicity, p0
i,j is determined afterP1 since the same emission probabilities are

shared in P0. The value of p0
i,j depends on if i and j belong to the same macrostate,

when they are in different macrostates the expected emission from i to the δ(j)-th
macrostate are collected and divided based on αδ(j). By construction, only from the
last inner state of a macrostate can a different macrostate be reached.
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cv,t =
∑K

k=1 ∑i,δ(i)=v Y(k)(i, t)

∑K
k=1 ∑i,δ(i)=v ∑m

t′=1 Y
(k)(i, t′)

(3.9)

βv,t =
∑K

k=1 ∑i,δ(i)=v xkYk(i, t)

∑K
k=1 ∑i,δ(i)=v Yk(i, t)

(3.10)

gv,t(gi
v,t) =

∑K
k=1 ∑i,δ(i)=v I(xk = gi

v,t)Y
(k)(i, t)

∑K
k=1 ∑i,δ(i)=v ∑m

t′=1 Y
(k)(i, t′)

(3.11)

In eq. 3.9, 3.10 and 3.11 the expected emissions in all inner states belonging to
the same macrostate need to be collected.

The matrices X0
(k), X1

(k), and Y(k) are computed as follows:

X0
(k)(i, j) =

rk

∑
u=lk

ψ(u, α τk)∗

u−2

∑
l=0

(a(k−1) P0
l)(i)P0(i, j) (P0

u−l−2 PE
1 ◦ F(ek, xk) b(k))(j) (3.12)

X1
(k)(i) = a(k)(i)b(k)(i) (3.13)

Y(k)(i, t) =

{
X1

(k)(i) if ek = t
0 otherwise

(3.14)

Of these formulas, equations 2, 4 and 11 to 13 correspond to the Expectation step
of the EM algorithm; equations 5 to 10 correspond to the Maximization step. Algo-
rithm 2 summarizes the procedure. It iteratively performs the E-step (lines 7–12)
and the M-step (lines 14–17) until a termination condition is reached. Common
termination conditions are reaching a minimum relative change in the dataset like-
lihood, a maximum number of iterations or a minimum change in the norm of the
matrices.

Multiple observation sequences

If the matrixD0 is reducible, i.e. there exist an absorbing state or a Bottom Strongly
Connected Component (BSCC), the transient nature of the model only allows a fi-
nite, usually small, number of observations before the process falls into the BSCC.
As such, to have reliable estimates for all parameters, a single long sequence of ob-
servations is insufficient and multiple observation sequences are needed.
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Algorithm 2 Expectation Maximization Algorithm
Input: T = 〈T1, . . . , T 〉, n, r
Output: M = (η,D0,D1,C,G(x))
1: Initialize η and C such that they are stochastic
2: Initialize G(x)

3: α←
(

min
r∈{1,...,R},k∈{1,...,Kr}

{τr
k}
)−1

4: Initialize P1 such that P1 is diagonal
5: Initialize P0 such that it is partitioned in n CPHs and P0 + PE

1 is stochastic
6: procedure EM(T , α,P0,P1,C,G(x))
7: repeat
8: for k ∈ {1, . . . , K} do
9: Compute a(k) and b(k) according to Eq. (3.2) and Eq. (3.4)
10: end for
11: for k = K, . . . , 1 do
12: Compute X0

(k), X1
(k) and Y(k) according to Eq.(11), (12) and (13)

13: end for
14: Compute P1 according to Eq. (3.6)
15: Compute P0 according to Eq. (3.8)
16: Compute C according to Eq. (3.9)
17: Compute G(x) according to Eq. (3.10)
18: until ending condition satisfied
19: D0 ← α(P0 − diag(P01T + PE

11
T))

20: D1 ← αP1
21: end procedure

Cases where the D0 matrix may be desired to be reducible are when the under-
lying hidden process contains failure modes or ages, rendering the process left-to-
right.

The modifications to the equations 3.5 to 3.10 are straightforward: the numer-
ators and denominators are calculated separately for each sequence, scaled by the
inverse of the sequence probability and added together. The same procedure can be
seen applied to HMMs in [Rabiner, 1989] and to M3PPs in [Carnevali et al., 2019].

Eq. 3.15 is an example of the changes to eq. 3.5.

ηi =
∑R

r=1
1
Pr
a(0)r (i) ∗ b(0)

r (i)

∑R
r=1

1
Pr

∑n∗r
j=1 a

(0)
r (j) ∗ b(0)

r (j)
(3.15)

Where R is the number of sequences, ar and br are respectively the forward and
backward likelihood of the r-th sequence and Pr is the probability of the r-th se-
quence. Where:

Pr = a(Kr)1T
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with Kr number of observations of the r-th sequence.

First passage time to a state of interest

Given a sequence of events T1,k = 〈ω1, . . . , ωk〉 and an M3CPPM we may want
to compute the CDF of the first passage time to some state of interest from instant
tk: a practical example is if the state represents a failure in a failure prediction sce-
nario or more generally an absorbing state in a left-to-right model [Carnevali et al.,
2019]. To do so we need to first calculate P{J(tk) = i |M, T 1,k} for each hid-
den state i, that is to diagnose the current state at time tk: it is the i-th entry of
the normalized forward vector â(k). Depending on the sequence start we may
need to use a prior for the initial probability that differs from η. If we are inter-
ested in the distribution at a time t > tk then P{J(t) = i | t > tk,M, T 1,k} is ob-
tained by normalizing a(k)Πt−tk . Let τ? be the remaining time to the entrance in the
state of interest s?. We term as Φ(τ) := P{τ? ≤ τ |M, T 1,k} the CDF of τ? and
Φi(τ) := P{τ? ≤ τ |M, T 1,k, J(t) = i} the CDFs of the remaining time conditioned
to being in the hidden state i at time t. Φ(τ) can then be computed from the Φi(τ)

by their sum weighted by the probability of being in state i at that time. Φi(τ) can
be computed either analytically, by enumerating and calculating the probability of
the possible paths to the state of interest, if finite, or by simulation. In the present
experimentation, the Φi(τ) are derived through Monte Carlo simulation.

3.2 Experimentation
In this sectionwe evaluate the effectiveness of the proposedEMalgorithm forM3CPPs
by comparing the performance of the learned model to LSTMs.

Specifically we aim to learn the behavior of a Semi-Markov Process (SMPs) en-
hanced with an Observation Model, i.e. a process made of a set of Modes, each
characterized by a sojourn time distribution and by an emission process produc-
ing observations characterized by a discrete type, a continuous space intensity, and
a continuous timestamp. In doing so we evaluate the degree to which a M3CPP
model can approximate the more general class of Continuous time SMPs with ob-
servations. Given a set of sequences of events generated from the SMP, we first train
the models and then examine their performance in the online evaluation of the re-
maining time to a chosen Mode of interest given a partial sequence of events; the
task is described in Subsection 3.2. The quality of the fitting jointly depends on the
capacity (expressivity) of the class of M3CPPs and LSTMsmodels in encompassing
the behavior of the generator model, on the optimization approach implemented in
the learning process, and on inherent diagnosability and predictability of the model
that generates the dataset. In order to marginalize the impact of the latter factor,
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we identify 3 classes of SMPs from which we generate a suite of synthetic datasets
(Subsection 3.2) so as to have controlled variation of the factors that affect the rec-
ognizability of the generator model. In Subsection 3.2 we subsequently introduce
the results through Precision-Recall curves and conduct a statistical hypothesis test
to see if the models are statistically equivalent.

Application scenario

We consider a hidden continuous-time process {J(t), t ≥ 0} with state space S,
where J(t) ∈ S is the state of the process at time t which contains a state or Mode
of interest s?. The hidden, unobservable, process is enhanced by an Observation
Process such that each state s ∈ S emits events, associated to a discrete type and
a continuous intensity. This kind of processes can be used as abstractions of ag-
ing in software systems [Cotroneo et al., 2014], disease progression in human pa-
tients [Liu et al., 2015], execution of security attacks in information technology sys-
tems [Carnevali et al., 2019]. We consider then the application scenario where the
observations in a sequence of events produced by such an hidden process are used
by a Monitor to learn a M3CPPmodel fitting the observed statistics and then to pre-
dict the arrival in some absorbing state.

Failure prediction Following the standard formulated by Salfner andMalek [Salfner
and Malek, 2007] for online failure prediction, the chosen task in our experimenta-
tion is to predict if the absorbing state is reached inside of a specific window of
prediction.

Δtd
Δtw

Δtl

Δtp

t
time

Figure 3.3: Time relations in online failure prediction:
t – present time; ∆tl – lead time; ∆tw – warning time;
∆tp – prediction period; ∆td – data window size

A visualization of the time relations in the task is given in Figure 3.3 . Specifically,
given a time t at which we perform the prediction, we want to know whether the
state of interestwill be reached in thewindow [t+∆tl, t+∆tl +∆tp], where∆tl is the
lead time, ∆tp is the prediction period and describes the lenght of time over which the
prediction holds. ∆tw is the warning time, a lower bound over the lead time, needed
so that responses to the prediction can be enacted e.g. time needed for preventive
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shutdowns. ∆td is the data window size and corresponds to length of the datawindow
considered when making the prediction (in our case all data is considered).

To note, the prediction period width requires careful balance: it needs to be suf-
ficiently wide so that the probability of containing the event of interest (arrival in
the absorbing state) is significant while small enough to maintain precision of the
prediction.

It is worth nothing that the task considers only the reach of a particular absorb-
ing state inside a window of prediction: in the learning phase we only need to learn
when the state is reached; the sojourn time or distribution of event types (or intensi-
ties) of the absorbing state are of interest only to identify a posteriori when the state
has been reached. As such, to facilitate the fitting we relabel all the events emitted
in the absorbing state as conclusive events e?, a type that is produced only by the
absorbing state. As a remark, seeing such ending event in the sequence allows our
model to know with certainty that the absorbing state has been reached but it does
not eliminate the uncertainty aboutwhen the statewas first entered. Conversely see-
ing any other event type is proof that the absorbing event has not yet been reached.
This special treatment for the ending events lets us consider the task as a problem
in the class of semi-supervised learning [Zhu and Goldberg, 2009], since only some
events are associated to a "label". As a consequence of the task, we require that with
probability 1 the ending state is eventually reached in the future. As such, the in-
finitesimal generator of the M3CPP is reducible and thus the learning phase cannot
be accomplished by a single, sufficiently long, sequence of events: to learn themodel
multiple sequences (that not necessarily reach the absorbing state) are needed.

Generator Models
We consider the case where the hidden process’ states are regenerations (i.e. satisfy
theMarkov condition) and the sojourn time in each state s ∈ S and the time between
emission are characterized by a non-exponential Cumulative Distribution Function
(CDF). Accordingly the hidden process under consideration behaves like a Semi-
Markov Process.

Since the intent of our experimentation is to evaluate the effectiveness of M3CPP
and LSTM in learning the generator model, we desire to perform a sensitivity analy-
sis by experimenting on a suite of synthetic datasets where variations on the key fea-
tures that determine mode recognizability are exercised (i.e. modes sojourn times,
frequency and range of types and intensities of observed events).

We thus introduce a way to generate Semi-Markov Processes with the required
variations to produce the datasets.

In Figure 3.4 we have a general description of our SMPs. Each generator model
is associated with a molteplicity of Modes, each of which is described by a sojourn
time spent in the Mode, an Observation Process and a number of outgoing Tran-
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Generator Model Mode Observable

Transition
CDF

Weight

* *

Figure 3.4: Structure of the Semi-Markov Process generator

sitions. The Observation Process is defined by an inter-event time distribution, a
set of emission types and a probability and a distribution of intensity for each event
type associatedwith the process. Each Transition is associatedwith an arrival Mode
and with CDF and a weight. While not explicitly drawn nor technically required,
to simplify the model we allow at most a single transition between each couple of
modes.

As required by Section 3.2, there exists a special absorbing Mode s? capable of
emitting only events of type e?, which are exclusive to this Mode. A single Mode is
the initial Mode of the model.

The generator model starts in the initial Mode; at the arrival in each mode a
transition, outgoing from the mode, is selected with probability dependent on their
associated weight and a sojourn time is sampled from the correspondent CDF. In
parallel, an observation time is sampled from the Observation Process associated
with the currentMode. If the observation time precedes the remaining sojourn time
then the sojourn time is decreased by the corresponding value, the event is observed
(its type and intensities are sampled) and a new observation firing time is sampled.

In general the generator models are (Continuous Time) Hidden Semi-Markov
Processes and as such described by:

• S := a set of states with cardinality N

• Gij(t) := P(t1 ≤ t ∧ S(t1) = j|S(0) = i) a global kernel, where t1 is the time of
first transition and S(t) is the state at time t

• Oi := observation process in state i

The observation process describes the events observed in a state and their arrival
process. Like the sojourn time, the observation process can have different degrees
of expressivity: arrivals of events (consisting in the type and intensity) may be de-
pendent and the inter-events time can have memory.

While many of the parameters of the generator model can (and are) randomly
sampled at the start (e.g. transition weights and firing time distributions), to satisfy
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required invariants (e.g. existance of a path from initial to ending Mode) some re-
strictions have been applied to definewhat transitions are permitted. Depending on
the connections between modes the corresponding reachability graph could result
in not being connected (presence of multiple cliques) or present multiple Bottom
Strongly Connected Components (BSCCs) other than the absorbing mode of inter-
est. While the former does not introduce problems (the actual model being the con-
nected component containing both initial and ending mode), we decide to disallow
the possibility of multiple BSCC. Although not required by the theory, for the sake
of simplicity and to reduce the amount of data required for learning, we further re-
strict ourselves to left-to-right models. As such, given the number of Modes in the
SMP, the connections between sequential modes (i.e. from mode i to mode i + 1)
are fixed while we randomly sample, given a probability of connection p, the exis-
tence of the other left-to-right connections. Consequently the adjacency matrix of
the Semi-Markov Process is an upper diagonalmatrixwhere the first super-diagonal
has only non-zero elements.

We consider the sojourn time distributions and emission distributions as Erlang
distributions, where for each transition and observation process we randomly sam-
ple the rate λ given a fixed shape k. We fix the Erlang distributions’ shape to given
values as a way to determine their coefficient of variation and ease of approxima-
tion. For the intensity of the events in the observation process we utilize Gaussian
distributions where we randomly sample the mean and variance.

Specifically we consider 3 classes of generator models:

• Default Model (DM): a "small" model with "clearly defined Modes"

• Undisciplined Model (UM): a small model with higher ambiguity between
Modes

• Larger Model (LM): a "bigger" model, with clearly defined Modes.

Behind our choice of generator models is the desire of comparing the performance
ofM3CPP and LSTM on a default model and then study their reactions to variations
that branch both on the dimension of the model and on the ease of recognition of
the component modes.

Default Model

• 5 modes

• probability of having connections betweenmodes (non-first super-diagonal of
the adjacency matrix) is p = 0.4 for an average of 6.4 total transitions ( 4 fixed
on the first super-diagonal and 6*0.4=2.4 on the rest)
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• CDF of inter-event and sojourn times are Erlang distributions with shape 4
and rate λ, with λ chosen such that k/λ is a random variable with Uniform
distribution ∈ (0, 10]

• each mode can emit 3 types of events out of 10

• intensity has mean and variance Uniform ∈ (0, 10]

• window of prediction is set at [t + 1, t + 5]

Undisciplined Model Differs from DM in:

• CDF of inter-event and sojourn times are Erlang distributionswith shape 2 and
rate λ such that e k/λ is Uniform ∈ (0, 10]

• each mode can emit 5 types of events out of 10

Larger Model Differs from DM in:

• 10 modes

• probability of having connections betweenmodes (non-first super-diagonal of
the adjacencymatrix) is p = 0.4 for an average of 23.4 total transitions ( 9 fixed
on the first super-diagonal and 36*0.4=14.4 on the rest)

We consider the models as disciplined when the Erlang distributions have shape 4
due to the lower coefficient of variation (1/2 versus 1/

√
2) and the lower probability

of overlapping event types.
For each of these 3 classes of generatormodelsweproduce 20 instances tomarginal-

ize the inherent diagnosability and predictability of the model that generates the
dataset due to parameters selection. From each instance we generate 3 datasets: all
the testsets are composed of 1000 sequences while the training sets are respectively
composed by 1000, 300, and 100 sequences to evaluate the models performance un-
der different quantities of data. The training set sequences start all on the initial
mode and terminate on the endingmode of interest. The test set sequences starts on
the initial mode and end after a random percentage of the time needed to reach the
absorbing state, possibly not simultaneously with an event; the test sequences are
all associated to the sampled remaining time to reach the absorbing state: this time
is compared to the window of prediction to determine if the state is reached inside
of it.

The dimension of the window of prediction is the primary factor in determining
if the absorbing state has been reached inside of it; this promotes differences between
the 3 generator classes: DM and UM, requiring a lower average time to reach the
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absorbing state will likely have a higher number of True Positives since the window
of prediction covers an higher percentage of the transient behavior, this results in an
higher number of test cases that correspond to a positive event(absorption inside
the window); conversely for LM the same is true for True Negatives.

Setting the model hyperparameters Before learning the models multiple hyper-
parameters need to be set: in the case of LSTM the parameters are the number of
cells in each layer, the number of layers in the stack and the discretization step; in
the case of M3CPP the hyper-parameters refer to the number of macrostates and the
number of local states inside each macrostate.

Specifically, for each of the 3 generatormodels, wefirst identify the hyper-parameters
that optimize the first of the 20 instance-datasets with 1000 sequences for both tech-
niques and thendirectly apply those values of the parameters for the other 19 datasets.
While the 20 datasets for each generator model are created such that different con-
ditions for the hidden states recognizability are presented, they still maintain the
properties shared by the generator class which are the number of states and the
overall ambiguity or discipline of the datasets: we consider these shared charac-
teristics as sufficient to capture the degree of complexity of the models and so are
enough to identify the correct number of macrostates and local states for each gen-
erator model. We assume that the optimal number of states for the M3CPP will be
comparable to the number of states of the generator model while the number of lo-
cal states will depend on the degree of uncertainty in the sojourn time: we assume
that in the disciplined models the higher certainty will actually require more local
states to lower the coefficient of variations of the M3CPP to be closer to that of the
generator model’s hidden states.

Specifically, the hyper-parameters values we considered for the LSTM are 10 and
30 cells in a configuration of either 1 or 2 layers. We also considered the discretized
time steps corresponding to 0.5,1 and 2 units of time.

For the M3CPPs the number of macrostates tested ranged from 5 to 8 states for
the smaller models and 10 to 15 states for the larger one. Regarding the number of
local states per macrostate considered, instead of optimizing the number in a range,
all experiments were done with both 1 and 3 local states to show the differences
in the introduction of non-markovian behavior for sojourn times. In all cases we
considered only normal distributions to learn the intensity of the events.

In the case of the M3CPP the model is learned through the EM procedure de-
scribed in Algorithm 2. In particular the initial values of the infinitesimal gener-
ator D0 and D1 are selected randomly so that the overall average sojourn time in
the hidden states, except for the absorbing state, is equal to the average duration of
the event sequences observed in the training set until when the absorbing state is
reached. The event probability matrix C is initialized with the observed probabil-
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ity (collected over the training set) that each event type is emitted by the generator
model in each state. Likewise, the initial means and variances of the gaussian distri-
butions are set to the means and variances calculated over all the events of the same
type in the dataset.

For the LSTM model, the chosen loss is binary crossentropy while the chosen
optimizer is ADAM, no optimization was done on the rate.

Experimental results

After determining the probability of reaching the absorption state inside the win-
dow of prediction, as described in Section 3.1, to determine if our prediction is pos-
itive or negative we need to compare the calculated probability to a threshold. If
the model produces a probability that is higher than a given threshold then we say
that the model has predicted the arrival in the absorbing state. If the model has
predicted the arrival and the window of prediction actually contains it then the pre-
diction is a true positive else if the window does not actually contain the arrival it is
a false positive. If the model has predicted that there will not be an arrival and the
window actually contains it, it is a false negative otherwise a true negative.

Given a testset let TP, FP, and FN be the total number of attained true positives,
false positives, and false negatives, respectively. To evaluate performance, we define
the following measures: precision P = TP/(TP + FP) and recall R = TP/(TP + FN).
Different P and R values can be obtained by using different thresholds to deter-
mine when an example is predicted as positive. With these values we can com-
pute the Precision-Recall curve and the area under the curve, termed Area Under
Precision-Recall Curve (AUPRC),which can be used tomeasure the prediction perfor-
mance [Davis and Goadrich, 2006]. To note that given the unbalance of the testcases
accuracy would not have been a good measure.

Each training set (for each of 3 classes, 3 data dimensions and 20 instances) is
used to learn the M3CPP (with both 1 and 3 local states) and LSTM models while
the corresponding test set is used to asses the model performance in predicting the
arrival to the absorbing state.

For each model learned on each dataset, we discretize the Recall in 100 slots and
compute the corresponding Precision by gradually lowering the threshold.

After fixing the generator class and the data dimension, we compute the mean
Precision-Recall curve by averaging over the values of the Precision at each Recall
slot in the 20 instances.

Figures 3.5-3.7 contain the mean Precision-Recall graphs, respectively of the De-
fault Model, Undisciplined Model and Large Model. At the left the models are
trained over 1000 sequences, in the center over 300 sequences and in the right they
are trained over 100 sequences.
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To corroborate the results, we conducted an hypothesis test based on the work
of [Hanley and McNeil, 1983] and [Hajian-Tilaki, 2013]. Specifically we want to de-
termine from theAUPRC if theM3CPP-3 and LSTM are equivalent: the null hypoth-
esis is that they are equivalent, the alternative is that the differences in the Precision-
Recall curve are statistically significant. In order for the null hypothesis to be rejected
at the 95% confidence level |Zobs| > 1.96, where Zobs is the observed value of the Z-
score. The score is calculated from the formula 3.16

Z =
ˆAUCM − ˆAUCL√

Var( ˆAUCM) + Var( ˆAUCL)− 2Cov(AUCM − AUCL)
(3.16)

Where Var(·) is the variance and Cov(·) is the covariance, calculated from [DeLong
et al., 1988].

In Table 3.1 are contained the AUPRC values and the Z-score between M3CPP
with 3 local states and LSTM.

In Figure 3.5 are shown respectively the results, averaged over the 20 instances
for the 3 dimension of the datasets for the Default Model.

It can be seen how the methods are comparable with 1000 sequences, then the
results tend to degrade as the sequence number lowers and that LSTMs clearly is
more sensitive to the data available.

In Figure 3.6 are shown the results for the Undisciplined Model.
In this case we can see that respect to the more recognizable Default Model the

techniques find greater difficulty in predicting the arrival in the absorbing state.
In Figure 3.7 are shown the results for the Larger Model.
In this setting, the performance of the approaches drops since the underlying

generatormodel ismore complex and so harder to learn, particularly for the increase
of connections between states (from 6.4 to 23.4 on average). Overall M3CPP with 3
local states appears to be better performing than both the 1 local state version and
LSTM: as predicted the increase of performance over the 1 local state ismore evident
in the DM and LM models, whose Erlang distributions have more phases. There is
a clear trend in losing performance when the number of training sequences lowers,
specially for LSTM for which it is common knowledge that it require a large amount
of data to perform. On the other hand it has been proven that deep learning mod-
els with a sufficiently large dimension can approximate any distribution [Lee et al.,
2017], as such, with virtually infinite data and time of computation LSTM would
certainly outperform M3CPP, by perfectly approximating the generator model.

While the mean AUPRC gain over LSTM would appear to be significant, the Z-
score shows that even with low sequences (and thus relatively high difference in
performance between M3CPP-3 and LSTM) the null hypothesis cannot be rejected:
it is due to the very high variance of the prediction over the different instances, that
is not completely countered by the covariance. By studying the results, while most
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Figure 3.5: Mean Precision-Recall graphs over the DM, with models trained on 1000
(left), 300 (center) and 100 (right) sequences
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Figure 3.6: Mean Precision-Recall graphs over the UM, with models trained on 1000
(left), 300 (center) and 100 (right) sequences
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Table 3.1: Prediction performance of the learned models

AUPRC
Model - size M3CPP-1 M3CPP-3 LSTM Z
DM - 1000 0.409 0.419 0.413 0.71
DM - 300 0.418 0.423 0.405 0.42
DM - 100 0.405 0.406 0.334 0.71
UM - 1000 0.368 0.365 0.373 0.31
UM - 300 0.370 0.359 0.354 0.45
UM - 100 0.353 0.356 0.290 0.74
LM - 1000 0.346 0.384 0.385 0.02
LM - 300 0.333 0.376 0.364 0.31
LM - 100 0.339 0.361 0.304 0.82

instances show high values of AUPRC some have extremely poor results, likely due
to peculiar sampling of the generator models, lowering the mean and introducing
high variance.

In conclusion we find that M3PCC is always at least comparable to LSTM and
shows marked benefits when data becomes scarce, as one would expect from the
intrinsic machine learning weakness.





Chapter 4

Application of M3CPP to
High-performance computing

In this chapter we apply the M3CPP model described in Chapter 3 to real world
datasets in the field of High-performance computing, respectively the HPC Intrpid
andMira fromArgonne National Laboratory. The comparison to LSTM allows us to
show that the previous results, although obtained on a broad spectrum of models,
are not simply theoretical but find confirmation in a practical application.

4.1 Background on High-performance computing
We give a brief overview of the application context of HPC clusters, describing RAS
and Job logs from the Intrepid Blue Gene/P system at Argonne National Lab., and
finally formulate the failure prediction task.

RAS Log and Job Log from Intrepid

Intrepidwas a 40-rack BlueGene/P system that operated at ArgonneNational Labo-
ratory for theU.S. Department of Energy from 2008 until 2013when itwas dismissed
after his natural life-cycle ended [Collins, 2013]. A more in-depth overview of the
HPC framework can be had from [Almasi et al., 2008]. In the HPC a Core Mon-
itoring and Control System (CMCS) reported anomalous events in the hardware
components as Reliability, Availability, and Serviceability (RAS) event messages.

Logs have been made publicly available by the Argonne Leadership Computing
Facility [Data, ] and by [Zheng et al., 2011]. In this work we exploit RAS logs and
Job logs spanning 273 days, from 2009-01-05 to 2009-08-31, respectively of 1.1 GB and
55MB.

An example of event record from Intrepid RAS log is shown in Table 4.1. The
major fields are explained below.
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RECID 26123930
MSG_ID KERN_0802
COMPONENT KERNEL
SUBCOMPONENT _bgp_unit_ddr
ERRCODE _bgp_err_ddr_single_symbol_error
SEVERITY WARN
EVENT_TIME 2009-01-05-00.02.51.162211
FLAGS -
LOCATION ANL-R46-M0-512
SERIAL_NUMBER 44V3575YL12M80156ZH
MESSAGE ECC-correctable single symbol error..

Table 4.1: Example of RAS event message

• RECID is the sequence number of the message. record

• MSG_ID is the source of the message.

• COMPONENT is the software component that has detected and reported the
event, the possibilities are : MMCS,KERNEL,MC,APPLICATION,BAREMETAL,
CARD, or DIAGS.

• SUBCOMPONENT is the functional area of the component that generated the
message. There exists a total of 40 subcomponents.

• ERRCODE identifies the event type information. There exists a total of 182
unique error codes.

• SEVERITY can be INFO,WARN or FATAL in order of increasing severity level.
INFO provide information about progress of system software. WARN events
represent recoverable "soft" errors. FATAL events likely produce interruptions
in the Job or Jobs in execution.

• EVENT_TIME identifies the time of detection.

• LOCATION identifies where the event has occurred: can be a node, midplane,
rack or multiple racks.

• MESSAGE is a summarization of the event condition and can contain informa-
tion from other fields.

Besides, Job Logs collected by the scheduler include:

• Execution File is the executable path.

• Start Time is the time when the job started to run.
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• End Time is the timewhen the job exits whether by finishing or by interruption.

• Location is the location of the execution with a minimum of one midplane.

Smaller jobs tend to take 1 rack and larger jobs with up to 16 racks were common.
An administrator was not required for any job with less than 32 racks.

In this kind of context where any failure in multiple nodes can cause an inter-
ruption in a job execution, the prediction of the FATAL severity events has a central
importance for failure tolerance approaches to mitigate damage.

Failure Prediction Described in section 3.2, online failure prediction methods can
generally be classified into two groups depending on the definition of the data win-
dow size ∆td: the period-based approach and the event-driven approach which dif-
fer in their trigger mechanism [Salfner, 2006].

Period-based approaches rely on constant monitoring of some resource e.g. the
amount of freememory in aRAMto identify symptoms of someunderlying anomaly
that has not yet manifested itself as a failure. As such their data window size is
fixed to some length usually multiple of the window of prediction. Some of their
kind tend to approximate a function of the failure probability to make predictions.
Event-driven approaches instead rely on information from logged events, like the
RAS logs. As such their data window is ideally the entire sequence of events ob-
served. In practice due to space and computation constraints and thanks to the less
usefulness of distant events for prediction, even the event-driven data size is limited
and can assume fixed or flexible lengths.

In our case RAS message logs naturally lend themselves to event-driven ap-
proaches, as it has been shown in [Yu et al., 2011].

4.2 Experimentation
In this sectionwe fully describe our specific task of failure prediction andhowweuse
M3CPP and LSTM to predict failure times from RASmessage logs (Subsection 4.2).
We then evaluate the proposed approach on the Intrepid 2009 RAS log dataset and
analyze the experiment results (Subsection 4.2).

Approach
Our workflow is described in Fig. 4.1. The task we seek to resolve is to predict if
a specific job will fail in a given window of prediction basing our information on
all and only the messages recorded in the RAS event log in the racks, midplanes
and nodes assigned to the job. In doing so we intentionally disregard messages
being produced in different locations as it has been shown in [Zheng et al., 2011]
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that they rarely propagate between jobs. We consider a failure the case where a
FATAL severity event is produced by a location pertaining to the job under analysis
although FATAL events not necessarily always produce interruptions.

Specifically to fit our models we create for each job in the Job Log a sequence of
events corresponding to all and only the events reported by locations overlapping
with the job, as we assume that any event originating from overlapping locations is
produced by a shared node. Likewise, when an event is recorded with missing lo-
cation information (some typology of events do not have it) we assume that it refers
to all the location in Intrepid and as such are included in all concurrent sequences.

Specifically we are concerned with the problem of failure prediction to optimize
checkpointing. As such we consider only sequences that correspond to jobs not
scheduled to already failing or failed nodes: between the job start and the FATAL
event at least another message has to be recorded. We justify this by considering
that in such cases checkpointing would be ineffective as too little work would have
been executed for a checkpoint to be of worth. Li et al. [Li et al., 2008] have shown
that only with sufficient accuracy run-time fault management can be effective. Due
to that we consider the worst case scenario: all the task we consider are doomed to
fail during their execution, where their natural execution end to be at a sufficiently
distant future time. As such our models are trained (and tested) only on sequences
of events that originate from jobs that have observed a FATAL event during their
execution (but not necessarily have been interrupted by them). Such FATAL events
corresponds to the end of each sequence under consideration.

As described in Section 4.1, our dataset is composed of RAS message logs and
Job logs collected on the Intrepid BlueGene/P system over the period from 2009-01-
05 to 2009-08-31. During the 237 days 68,794 jobs and 2,084,392 RAS records, with
33,370 FATAL messages, have been logged. In case of the RAS events, records are
extremely redundant:the events corresponding to the same failure can be reported
multiple times by different nodes or by the same monitoring service.

It is common knowledge that HPC RAS logs contain unnecessary records: it
has been shown that such records can be compressed by over 99% without loss of
information [Liang et al., 2005]. Filtering RAS logs has been an active area of re-
search with other works such as [Oliner and Stearley, 2007,Zheng et al., 2009,Zheng
et al., 2012]. Main techniques applied are spatial-temporal filters: temporal filters
use thresholds to remove multiple events being reported in the same location while
spatial filters remove the same type of event being reported in multiple locations.
On our very dataset, [Zheng et al., 2011] also apply a causality-related filter to iden-
tify and filter sets of fatal events co-occurring together. Through these operations
Zheng at al. have been able to reduce the FATAL severity records from 33,370 to 549
events (compression ratio of 98.35%).

Likewise we apply some crude filtering to reduce the amount of records and in-
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Generate sequences of
events with same location

and job

Isolate failure sequences
and study non-fatal events

Build M3CPP and LSTM

Predict time to failure

Figure 4.1: The Prediction Workflow

crease prediction accuracy. Comparatively we do not need to apply spatial filters
as we consider each job’s location separately: the redundant information is instead
useful to us as it informs us about which locations are affected by the unobserved
anomaly. The filter has 2 phases: first we disregard any non-FATAL message that
is produced before 1 second has elapsed from the last, (effectively we can be con-
sidered to be discretizing the time in a time series for non-FATAL events), then we
limit the messages with the same component, subcomponent and error code (and
location) to be repeated only once each 5 seconds.

After this operation our dataset results to have a total of 610 sequences ending
in FATAL events. To limit computation time we bounded the maximum number
of events preceding the FATAL message to 60. We assume that older events do not
introduce ulterior information and are far enough in time to not see the FATAL event
in their predictionwindow. After this passage the average ofmessages per sequence
is 14.7 . In these sequences only 46 error codes appear of the original 182.

We note that the resulting dataset contains sequences that are identical as con-
current jobs can be terminated by the same FATAL error and observe only events
without a specified location.



62 Application of M3CPP to High-performance computing

This dataset is still composed of raw RAS logs, which we cannot directly input
in our models.

In [Liang et al., 2005] clustering RAS event data was first introduced to compress
the logs and improve prediction accuracy. Following the approach of [Chen et al.,
2013] we apply a frequency analysis to the error codes to cluster them in more man-
ageable and generalizable groups. We consider the distribution of the mean time
to failure of the non-FATAL events in our sequences and define as belonging to the
same cluster all the events falling in specific bounds. In Fig. 4.2 we can see the dis-
tribution of the mean times to failure for the 46 error codes versus the number of
actual observed events. The vertical lines represents bounds for the specific case of
STEP=30 seconds.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1000  2000  3000  4000  5000

N
um

be
r 

of
 m

es
sa

ge
s 

ob
se

rv
ed

Mean time to failure

Figure 4.2: Average time to failure and frequency for each message type, bounds of
the 120 seconds case.

In the real world it is not possible to choose the prediction window and the
frequency of failure predictions based only on the best result from the prediction
method: similarly we aim to show howM3CPP and LSTM perform under differing
conditions of predictionwindow size and lead time. The chosen predictionwindow
sizes and lead times are multiples of the prediction step, i.e. the time after which we
must make another prediction. Respectively we tested the configurations of win-
dows [1*step,3*step],[1*step,6*step],[2*step,6*step]. With step assuming the values of
30,60,90,120 and 150 seconds. The first window configuration for step 30 seconds
would come to have a lead time of 30 seconds and a width of 60 seconds.

The cluster bounds are fixed as multiples of the prediction step: respectively
[0,3*step],[3*step,5*step],[8*step,10*step] andgreater than 10*step. Events not observed
in sequences ending with FATAL events are either unassigned, if assent from the
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entire dataset or placed in the last class if present in non-FATAL sequences. We
furnish to M3CPP and LSTM both the Component and the cluster information of
each message: in case of unassigned events(although they do not happen in our ex-
perimentation) the Component part of the message can still be exploited to obtain
information based on collected statistics.

After the clustering of the events, to limit the instability of the initial learning
phases, we bounded the maximum inter-event times to 300 seconds, a value that we
assume sufficiently high to still "hide" the preceding events while sufficiently low to
not impact too much the computation of either M3CPP and LSTM.

Experimental Results
We evaluate the effectiveness of the proposed EM algorithm for M3CPPs by com-
paring the performance of the learned model to LSTMs. The models are compared
in a variety of datasets which vary in their predictability. We further study the effect
of the dimension of training set on themodels by fitting the models only on half and
a quarter of the training set (note that the entire training set was used to determine
the clustering).

The dataset was split into 80% training and 20% test set.
The test set sequences are prematurely ended after a random percentage of the

entire sequence. The models are required to produce a prediction of failure every
time step from the start of the sequence up to the premature end.

The M3CPP model was tested under different numbers of macrostates and the
chosen configuration is 10 macrostates, we show the differences in results by learn-
ing with both one and three local inner states. For the LSTMmodel we use a 2-layer
stack of 20 LSTM cells. 10 seconds was identified as a good discretization step. The
input to the LSTM models were bounded to 100 discretization steps. For the LSTM
model, the chosen loss is binary cross-entropywhile the chosen optimizer is ADAM,
no optimization was done on the rate.

After the model has determined the probability of reaching the absorption state
(forM3CPP, Section 3.1) or a measure of confidence of the failure (for LSTM) inside
the window of prediction; to determine if our prediction is positive or negative we
need to compare the calculated value to a threshold. If the model produces a mea-
sure that is higher than a given threshold then we say that the model has predicted
the failure in the window. If the model has predicted the failure and the window of
prediction actually contains it then the prediction is a true positive else if the window
does not actually contain the failure it is a false positive. If the model has predicted
that therewill not be a failure and thewindow actually contains it, it is a false negative
otherwise a true negative.

By gradually increasing(or decreasing) the values of the two thresholds, dif-
ferent precision and recall values can be obtained as the windows are increasingly
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Figure 4.3: Mean Precision-Recall graphs for different window of predictions and
lead times, top [1,3] center [1,6] bottom [2,6] with the same step of 120 seconds,
for different learning techniques (straight - M3CPP with one local state, dashed -
M3CPP with three local states, dotted - LSTM)

(decreasingly) classified as not containing failures. These values can be used to
graph aPrecision-Recall curve and obtain the area under the curve, termedAreaUnder
Precision-Recall Curve (AUPRC), which can be used to measure the prediction per-
formance [Hanley and McNeil, 1983,Davis and Goadrich, 2006]. To note that given
the unbalance of the classes in the test set (multiple non-failure windows precede
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Table 4.2: Prediction performance (AUPRC) of models (M3CPP with one and three
local states, LSTM) for different configurations: step 120 and 180 seconds seconds
[1,3],[1,6] and [2,6] prediction windows over the entire and halved datasets

Config M3PC-1 M3PC-3 LSTM
step start, end full halve full halve full halve

1 / 3 0.2840 0.2867 0.4731 0.3280 0.1830 0.1614
120s 1 / 6 0.4895 0.4955 0.4731 0.5072 0.5151 0.5292

2 / 6 0.4354 0.4421 0.5135 0.4593 0.4646 0.4496
1 / 3 0.2380 0.2785 0.3608 0.2634 0.3042 0.1954

180s 1 / 6 0.5743 0.5657 0.6127 0.5908 0.5580 0.4482
2 / 6 0.4675 0.4994 0.5396 0.4969 0.5246 0.4174

the failure ones), accuracy would not have been a good measure. For each model
learned on each dataset, we discretize the [0, 1] range of the Recall in 100 slots and
compute the corresponding Precision by gradually lowering the threshold.

Figure 4.3 contains the mean Precision-Recall graphs for selected configurations
of the window of prediction given the fixed step of 120 seconds to compare visually.
All the AUPRC of the different configurations for step, window of prediction and
size of the dataset, are summarized in Table 4.2. In each graph the straight line rep-
resents M3CPP with a single local state per macrostate; the dashed line represents
M3CPPwith three local states per macrostate; and the dotted line represents LSTM.

The graphs in figure 4.3 shows that the threemodels are comparablewithM3CPP-
3 outperforming the others. It is clear that changing window sizes and lead times
has significant effect on the results.

Overall M3CPP with three local states is superior or comparable to both the sin-
gle local state version and LSTM. The single innerstate model, more simple, works
better when we have little data as it overfits less.

M3CPPmodels tend to degrade less than LSTMwhen there is data scarcity, they
are more robust in this sense: this is predictable since machine learning approaches
are known to require large amount of data to perform.

In conclusion, as with the previous chapter, we find that M3PCC models are
always at least comparable to our implementation of LSTM and are affected less by
data scarcity.





Chapter 5

Conclusions

5.1 Concluding remarks
In this thesis extensions of MMPPs have been studied and tested on synthetic and
real world event-driven datasets against appropriate techniques. In particular we
presented EM procedures to learn the parameters of a marked MMPP with left-to-
right structure and a marked MMPP enhanced with a Compound Poisson Process
and extended to comprise non-markovian sojourn times. Such models have been
used to represent degradation processes emitting events with stochastic type and
arrival time depending on the current state. The model have been used at runtime
to infer the current state of the process from a sequence of observed events and to
evaluate the remaining time to the final absorbing state. The approaches have been
applied to three different application contexts: 1) predictive analysis of an attack
scenario (StuxNet) where the model is compared with variants that do not exploit
the information carried either by event types or by the average emission rate in each
state; 2) predictive analysis of absorbing Semi-Markov Processes where multiple
datasets have been clinically constructed varying key properties to test the validity
of the claim that M3PCC are useful even when compared to relatively current tech-
niques like Long Short-Term Recurrent Neural Networks; 3) predictive analysis of
failures on two real world case studies of High Performance computing where the
M3PCC approach was again tested against LSTM.

Overall, the approach comprises a fully data-driven method that automatically
exploits the information available in data, being it in the timing of events and/or in
their type, the latter of which can comprise multiple dimensions.

5.2 Questions and future studies
We have found that M3CPPs are able to predict failures but are still limited in the
information they can accept: when subsequent events are dependent on one an-
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other for example the when we have linked events like opening and closing a signal
no structuring of the transition graph is enough for the M3CPP to learn the relation.
This completely cuts off themodel from fields like Activity Recognition, wheremost
events belong to a coupling. While the markov property implicitly leads to the ab-
sence of memory and thus relative independence of events allowing the model to
capture such information would allow its application to a greater number of fields
of study.

Findingways for themodel to capture such faucet is thus an important challenge
that future studies may tackle.

On the other side, M3CPPs have been proposed along machine learning algo-
rithms as a way to better approximate event-driven processes where the time scale
results in difficult discretization. Pressure from enhancements in machine learning
algorithms, like the current Attention Mechanisms, requires further study in better
M3CPPs or extensions so that their usefulness may not "die in the cradle".



Appendix A

Publications

Journal papers
1. Laura Carnevali, Reinhard German, Francesco Santoni, and Enrico Vicario

“CompositionalAnalysis ofHierarchicalUMLStatecharts”, Transactions on Soft-
ware Engineering, 2021. Candidate’s contributions: Designed part of algo-
rithms and part of proofs,partial design of experiments, implementation and
execution of experiments, some writing and editing of paper.

Peer reviewed conference papers
1. Biagi Marco, Carnevali Laura, Santoni Francesco, and Vicario Enrico “Hospi-

tal InventoryManagement throughMarkovDecision Processes @runtime”, In-
ternational Conference on Quantitative Evaluation of SysTems (QEST), 2018. Can-
didate’s contributions: Design, implementation and execution of all experi-
ments, writing of relative part in the article.

2. Carnevali Laura, Santoni Francesco, and Vicario Enrico “Hospital Inventory
Management throughMarkov Decision Processes @runtime”, Learning marked
Markov modulated Poisson processes for online predictive analysis of attack scenar-
ios, 2019. Candidate’s contributions: Designed algorithms and proofs,partial
design of experiments, implementation and execution of experiments, some
writing and editing of paper.
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