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ABSTRACT In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost 

importance for a timely, effective and efficient clinical intervention. The continuous video 

electroencephalogram (v-EEG) is the gold standard for monitoring neonatal seizures, but it requires 

specialized equipment and expert staff available 24/24h. The purpose of this study is to present an overview 

of the main Neonatal Seizure Detection (NSD) systems developed during the last ten years that implement 

Artificial Intelligence techniques to detect and report the temporal occurrence of neonatal seizures. Expert 

systems based on the analysis of EEG, ECG and video recordings are investigated, and their usefulness as 

support tools for the medical staff in detecting and diagnosing neonatal seizures in NICUs is evaluated. EEG-

based NSD systems show better performance than systems based on other signals. Recently ECG analysis, 

particularly the related HRV analysis, seems to be a promising marker of brain damage. Moreover, video 

analysis could be helpful to identify inconspicuous but pathological movements. This study highlights 

possible future developments of the NSD systems: a multimodal approach that exploits and combines the 

results of the EEG, ECG and video approaches and a system able to automatically characterize etiologies 

might provide additional support to clinicians in seizures diagnosis. 

INDEX TERMS Deep learning, ECG, EEG, HRV, machine learning, neonatal seizures, neonatal seizure 

detection, NICUs, NSD, video analysis, Seizure Detection

I. INTRODUCTION 

“Neonatal seizures are defined as paroxysmal alterations of 

neurological functions, that occur within the 28th day of life 

in full-term newborns” [1]. The occurrence of seizures is 

quite common during the neonatal period, especially in 

preterm newborns: the estimated incidence is about 1-

5/1000 live births, and 8.6/1000 in Neonatal Intensive Care 

Units (NICUs) [2]. The immature brain is characterized by 

high hyper-excitability due to poor inhibitory mechanisms 

and a surplus of excitatory neurotransmitters. Thus, weakly 

propagated fragmentary seizures can be generated [3], [4]. 

In NICUs, the early detection of neonatal seizures is of 

utmost importance for an effective and efficient clinical 

intervention. Seizures occurring in newborns are quite 

different from those of adults and children. Poor clinical 

manifestations characterize up to 70% of all neonatal 

seizures, thus they can be confused with normal neonatal 

behaviour [5], [6]. For this reason, electroencephalographic 

(EEG) monitoring is considered the most appropriate 

diagnostic technique to identify neonatal seizures. 

Specifically, the American Clinical Neurophysiology 

Society (ACNS) has recently defined continuous video EEG 

(vEEG) as the gold standard in the diagnosis of neonatal 

seizures [7], [8]. In fact, EEG records the spontaneous 

electrical cerebral activity, and video recordings allow 

monitoring possible clinical manifestation of seizures. 

Commonly, both video and EEG signals are evaluated and 

interpreted by visual inspection. However, this process is 
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time-consuming and requires expert staff available 24/24h. 

Therefore, computer-based and machine learning 

techniques would be helpful to support seizure detection [9], 

[10]. 

Over the years, several studies have proposed Neonatal 

Seizure Detection (NSD) systems to automatically detect 

and characterize critical events, using specific Artificial 

Intelligence (AI) techniques. These systems are mainly 

based on algorithms applied to EEG, electrocardiogram 

(ECG) and video signal. Specifically, EEG is usually 

investigated to identify the presence of irregularities or 

characteristic trends due to seizures [9], [11]-[22]. ECG is 

analyzed to evaluate alterations of the heart rate variability 

due to changes in the control of the cardiovascular system 

[23]-[25]. Few studies in the literature attempted to improve 

the NSD systems’ performances by investigating the 

combination of EEG and ECG signals [26]-[28]. Finally, 

video recordings are examined to detect the presence of 

possible “unusual” movements of the newborn induced by 

the seizure [29]-[36]. Some papers describe the main 

existing approaches for neonatal seizure detection [37], [38]. 

However, in the last years, the interest in developing NSD 

systems increased thanks to the progress in the artificial 

intelligence field, and several novel methods have been 

introduced.  

The purpose of this study is to present a survey of the main 

NSD systems developed in the last ten years that implement 

AI techniques to detect and report the temporal occurrence 

of neonatal seizures. Expert systems based on the analysis 

of EEG, ECG and video recordings are investigated, and 

their usefulness as support tools for the clinical teams in 

diagnosing neonatal seizures in NICUs is evaluated. The 

search was performed in June 2021 based on the Scopus 

database using the following keywords: ‘Neonatal seizure 

detection’. This search identified about 1196 articles. The 

search was then refined considering papers published in the 

last ten years and using the MeSH terms: ‘Automated 

systems / EEG monitoring / HRV / motion detection’ AND 

‘Neonatal seizure’, ‘Seizure detection’ AND ‘NICU’, 

‘image/video’ AND ‘processing’ AND ‘Neonatal seizure / 

NICU’. Some more papers previously published were also 

considered to be milestones in the development of NSD 

systems. Among all the papers, those focusing on expert 

systems for the automatic analysis of multi-channel EEG, 

ECG and video signals in NICUs were selected. Papers 

based on the amplitude-EEG (aEEG) and single-channel 

EEG were excluded. Thus, 27 papers were retained for this 

survey and will be summarized here. 

This paper is organized as follows: Section II introduces and 

explains the main metrics used to report and evaluate the 

NSD systems’ performances. 

In Section III, 13 (Table I, II, III) papers dealing with NSD 

EEG-based systems are summarized. Several studies focus 

on EEG signals, as they allow investigating the electrical 

activation of neuronal patterns that represents the main 

parameter for a first assessment of brain function.  

Section IV presents 3 (Table IV) NSD ECG-based systems. 

The ECG-based analysis is of interest in NSD being 

routinely performed without requiring specialized training. 

However, identifying seizures through ECG analysis is still 

challenging. Thus 3 studies (Table V) attempt to improve 

the NSD systems' performances by investigating the 

combination of EEG and ECG signals. Eight NSD video-

based systems (Table VI) are presented in Section V. Video 

analysis is an appealing contact-less approach for seizure 

detection based on neonatal gestures. Finally, Sections VI, 

VII are devoted to discussing the NSD systems as clinical 

decision support tools, highlighting possible future 

developments of the NSD systems. 

II. MATERIAL AND METHODS 

A.  PERFORMANCE ASSESSMENT 

A standardized performance assessment framework for the 

seizure detection task is currently missing, and the metrics 

used to report NSD systems results vary in the literature 

[39]. Therefore, a comparison of the proposed approaches is 

challenging [39], [40]. 

The main metrics used to describe the performance of 

seizure detection systems can be divided into epoch-based 

and event-based metrics [39], [40].  

The epoch-based metrics are based on the segmentation of 

the signals into specific time windows, called “epochs”. This 

technique is a typical pre-processing step in the NSD 

systems. The set of analyzed epochs is divided into two 

classes: the seizure epochs are conventionally named 

“positive”, and the non-seizure epochs as “negative”. 

Seizure detection is thus a binary problem. Generally, the 

classifiers developed for seizure detection provide the 

probability that a certain epoch belongs to the 

positive/negative class. The performance of the systems is 

obtained by evaluating the decisions made by the classifier 

against the manual labelling made by one or more experts in 

neonatal EEG for each epoch.  

The decision made by the classifier can be represented by 

the so-called confusion matrix, made of four categories: true 

positives (TP), i.e. epochs correctly labelled as seizures; 

false positives (FP), i.e. epochs incorrectly labelled as 

seizure; true negatives (TN) refer to correctly labelled non-

seizure epochs; false negatives (FN) that are epochs 

incorrectly labelled as non-seizure [39]. 

In the literature, three main metrics are widely used: 

Sensitivity (SEN), Specificity (SPE) and Accuracy (ACC). 

SEN (1) is defined as the ratio of the number of epochs 

correctly labelled as seizures and the total number of seizure 

epochs [40]; SPE (2) is defined as the number of epochs 

correctly labelled as non-seizures over the total number of 

non-seizure epochs [39]; ACC (3) is defined as the ratio of 

the number of epochs correctly labelled as seizures and non-

seizure and the total number of epochs.
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SEN =
TP

(TP+FN)
     (1)         

SPE =
TN

(TN+FP)
     (2) 

 

ACC =
TP+TN

(TP+FN+TN+FP)
      (3) 

Most papers also report the Receiver Operator Characteristic 

(ROC) curves, obtained by plotting SEN against SPE (or 1-

SPE). The Area Under the ROC Curve (AUC) is another 

crucial parameter for comparing the performances of 

different systems [39]. Sometimes the Precision-Recall 

curves are used as an alternative to ROC curves: Precision 

is defined as the percentage of correctly labelled seizure 

epochs, and Recall is the same as Sensitivity [39]. 

Usually, the time interval between the start and the end time 

instant of a seizure labelled by the experts is called “event”. 

The main event-based metrics are: 

• Good Detection Rate (GDR), which is the overall 

percentage of the seizure events correctly 

identified by the system [40]. A seizure event is 

correctly identified if the system detects at least 

one epoch during the event. 

• False Discovery Rate (FDR), which is the overall 

percentage of the seizure events incorrectly 

identified by the system [40]. 

• False Detection per Hour (FDH), which describes 

the number of seizures events identified by the 

system in 1 h that have no overlap with the events 

labelled by the expert [39]. 

• Mean False Detection Duration (MFDD), 

proposed by Temko et al. [39], “is assessed by 

averaging the duration of all false detections 

produced by the system at a single operating point 

(with a chosen threshold)”. 

The existing NSD systems can be divided into patient-

independent and patient-specific ones. 

The patient-independent approach aims at developing 

systems able to detect seizures across different subjects. 

Usually, these systems are validated by implementing the 

leave one-subject out (LOSO) cross-validation: “this way, 

all but one patients’ data is used for training and the 

remaining patient’s data is used for testing. This procedure 

is repeated until each patient has been a test subject and the 

mean result is reported” [16]. This operation evaluates the 

systems’ ability to generalize the classification: once trained 

on all available data, it allows achieving performances 

similar to those obtained by the system with an unknown 

dataset [16]. 

The patient-specific approach aims at developing systems in 

which the classifiers’ architecture is designed for each 

patient. In the patient-specific models, the k-fold cross-

validation and the hold out validation are usually 

implemented [41]. The patient-specific approach shows 

higher performances than the patient-independent one, but it 

requires pre/peri-natal data that cannot be obtained [42]. 

Moreover, the comparison of the existing systems is 

challenging as open access neonatal datasets are rarely 

available. The Helsinki dataset [43] is the only public one 

containing neonatal EEG recordings with annotations of 

seizures to the best of our knowledge. It collects multi-

channel EEG signals from 79 full-term newborns at the 

NICU of the Helsinki University Central Hospital. The 

recordings have a mean duration of 1 h and were obtained 

using 19 electrodes in the so-called double-banana layout. 

Only critical events with a duration > 10 s are considered. 

Three experts separately annotated the signals: 39 out of 79 

newborns have seizure activity with the unanimous 

consensus of the three experts. 

III. NSD EEG-BASED SYSTEMS 

In this section, the main NSD systems based on the analysis 

of the EEG recordings are summarized.  

These systems aim at distinguishing the seizure epochs from 

the non-seizure ones investigating EEG recordings. 

Generally, algorithms developed for the seizure detection 

task provide the probability that a certain epoch belongs to 

the seizure / non-seizure class. Threshold values to take 

decisions must be defined. 

Several studies proposed computer-based systems based on 

three approaches: the heuristic, the data-driven and the deep-

learning approaches.  

A. THE HEURISTIC ALGORITHMS 

The heuristic algorithms are based on the empirical 

definition of rules, threshold values, and specific parameters 

obtained testing the data. Specifically, these algorithms are 

usually based on the morphology of the EEG traces, 

mimicking the visual inspection made by the clinician that 

searches for a variation in the signal trend from the regular 

background activity, usually looking for repetitive 

waveforms characterized by the presence of spikes or 

regular oscillations [37].  

Liu et al. [11] developed a system based on autocorrelation 

analysis to characterize periodic activity in neonatal EEGs 

and distinguish seizures from background behaviour. A 

dataset of 12-channels EEG signals from 14 newborns was 

considered. The signal from each EEG channel was 

separately pre-processed and segmented into 30 s epochs. 

From the EEGs of 9 out of 14 newborns, 2-11 epochs 

containing seizure activity were selected; control EEG 

epochs were extracted from recordings of 11 newborns. The 

system gave: SEN = 84% and SPE = 98%. 

Gotman et al. [12] presented three methods to detect 

rhythmic discharges, multiple spikes, and very slow 

rhythmic discharges. They compared some important 

features about rhythmicity, power and stability of the 

spectrum of a specific epoch with those of an earlier epoch
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in the background. A dataset of 55 newborns was considered 

for the training step, coming from 3 centers: Montreal 

Children's Hospital, Montreal, Canada; Sydney Children's 

Hospital, Sydney, Australia; Texas Children's Hospital, 

Houston, Texas. The testing dataset was composed of EEG 

signals from 9 newborns at the Montreal Children’s 

Hospital, Montreal, Canada; 14 newborns at the Sydney 

Children's Hospital, Sydney, Australia; 18 newborns at the 

Texas Children's Hospital, Houston, Texas [44]. The EEG 

signals were segmented into 10 s epochs with 75% overlap. 

The system gave: SEN = 71%. 

Deburchgraeve et al. [13] identified two major seizures 

patterns and developed two separate detection algorithms 

running in parallel. The first algorithm aimed at detecting 

high-frequency activity and the so-called “spike train 

seizures”; the second aimed at detecting low-frequency 

activity, and the so-called “oscillatory seizures”. The 

detection occurred if one or both algorithms detected a 

seizure. A dataset of EEG recordings of 26 full-term 

newborns at the NICUs of the Sophia Children’s Hospital, 

Netherlands, was considered, among which 21 newborns 

had seizures. The signal from each EEG channel was 

separately pre-processed and segmented into 5 s epochs, 

with 4 s overlap. The combined algorithms gave: SEN = 

88%, FDH = 0.66 h-1. 

Navakatikyan et al. [14] developed a neonatal detection 

system in which the EEG traces were divided into parallel 

wave sequences to mimic the manual segmentation made by 

an expert clinician. The algorithm aimed at detecting 

increased regularity in EEG wave sequences to detect 

seizure discharges. A dataset of multi-channel EEG from 61 

newborns at Royal Brisbane and Women’s Hospital, and 

Royal Children’s Hospital, Brisbane, Australia, was 

considered. The recordings from 6 newborns were selected 

for the training, the recordings of the remaining 55 newborns 

were considered for the testing. The algorithm's 

performance was evaluated using three different methods. In 

the first method, the sensitivity was defined as the 

percentage of detected seizures marked by the specialist 

[14]. In the second method, the sensitivity was defined 

considering the duration of both seizures and events instead 

of their number [14]. In the third one, only the intersecting 

time of the detected event with a marked seizure was 

considered a match, or a true-positive time interval [14]. The 

three methods gave sensitivity values ranging between 83% 

and 95%. 

Table I summarizes methods, datasets, pre-processing and 

performances of the studies mentioned above based on 

the heuristic approach. 

B. THE DATA-DRIVEN ALGORITHMS 

The data-driven approaches use machine-learning 

techniques based on the extraction of specific features to 

characterize the data and thus to make decisions. The 

features, rules and thresholds for the decision-making 

process are learned from the data during the training step. 

Generally, the EEG traces are segmented into epochs in 

which the signal is almost stationary, and the features are 

extracted from these epochs [37]. The features are defined 

in the frequency, time and information theory domains. 

Thomas et al. [15] presented a real-time NSD system based 

on Gaussian Mixture Models (GMM) classifiers. The 

dataset used in this study was recorded in the NICU at Cork 

University Maternity Hospital, Cork, Ireland. It comprises 

8-channel EEG signals from 55 full-term newborns with 

Hypoxic-Ischemic Encephalopathy (HIE), of which 17 had 

seizures. The dataset contained 267 h of EEG recordings and 

a total of 705 seizure events with a duration average of 3.89 

min. This set was used for training and testing using LOSO 

cross-validation. The signal from each EEG channel was 

separately pre-processed and segmented into 8 s epochs 

using a sliding window with 50% overlap between epochs. 

From each epoch, 55 features were extracted, defined in 

time, frequency and information theory domains. The 

Principal Component Analysis (PCA) at 99% and the Linear 

Discriminant Analysis (LDA) were implemented to reduce 

the feature space’s dimensionality and improve the 

classification, obtaining a subspace of 30 features. The 

features from each epoch and each channel were fed into 

Gaussian Mixture Model (GMM) classifiers. Each classifier 

provided the probability that a certain epoch belongs to the 

seizure/non-seizure class. These decisions for single 

channels were combined into a multi-channel decision. 

Then, the collar operation, which consists of joining 

consecutive outputs of the classifier, was implemented [39]. 

The system, trained on 30 features, gave: GDR = 79%, FDH 

= 0.5 h-1, MFDD = 2 min, SPE = 93%, SEN = 76%. The test 

was then applied to the signals of three more patients, 

confirming these performances. This result highlights that 

the LOSO operation appropriately describes the system’s 

ability to generalize the classification. False detections were 

caused by background activity, artefacts and seizure-like 

patterns. Missed seizures were seizures of short duration (< 

1 min). 

Temko et al. [16] replicated the above-mentioned study: 

they replaced the GMM classifiers with Support Vector 

Machine (SVM) classifiers. The proposed system correctly 

detected 89% of seizure events (GDR) with 1 false detection 

in 1 h (FDH), 96% with 2 false detections and the 100% with 

4 false detections. 

Pavel et al. [17] developed and evaluated a new NSD system 

called “ANSeR” (Algorithm for Neonatal Seizure 

Recognition). They performed a “multicentre, randomized, 

two-arm, parallel, controlled study” [17] in eight NICUs 

across Ireland, Netherlands, Sweden and the UK. A dataset 

of 258 newborns (gestational age between 36 and 44 weeks) 

was considered. The newborns were split into two groups: 

“the algorithm group” and the “non-algorithm group”. The 

first one was made of 128 newborns (32 of which with 

seizures) monitored using both cEEG and ANSeR
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TABLE I 

NSD EEG-BASED SYSTEMS BASED ON THE HEURISTIC APPROACH. 

ADOPTED METHOD, SIZE OF THE DATASETS, EPOCHS DURATION AND SYSTEMS’ PERFORMANCES ARE SUMMARIZED. 

 

Heuristic approach 

 Method Dataset (newborns) Epochs Performance 

Liu et al. [11] Autocorrelation analysis 14  30 s epochs SENa = 84%  

SPEa = 98% 

Gotman et al. [12] Detection of three characteristic  

patterns 

55  10 s epochs, 75% overlap SENa = 71% 

  
Deburchgraeve et al. [13] Detection of  

two major  

seizures patterns 

26   5 s epochs, 4 s overlap SENa = 88% 

FDHa = 0.66 h-1 

Navakatikyan et al. [14] Detection of increased  

regularity in EEG wave sequences 

66  N.A.a SENa = 83 – 95% 

aSEN = Sensitivity, SPE = Specificity, FDH = False Discovery per Hour, N.A. = Not Available. 

 

algorithm. The other 130 newborns (38 with seizures) were 

assigned to the “non-algorithm group” and controlled with 

routine cEEG monitoring alone. The cEEG recordings were 

annotated twice by independent expert neurophysiologists. 

A patient was considered as a “neonate with seizures” if 

there was at least one seizure with an overlap of 30 s 

between the two experts’ annotations (“confirmed seizure”). 

A time-interval of EEG recordings lasting 1 hour was 

defined “seizure hour” if there was at least one confirmed 

electrographic seizure within that hour. The ANSeR system 

displayed the seizure probability trend in real-time, and 

when a predefined threshold was reached, an audible and 

visible alarm was activated. In this study, only seizures with 

a duration > 30 s were considered. Although the 

performance in distinguishing between pathological and 

healthy newborns was not significantly different between 

the two groups (in the non-algorithm group: SEN = 89.5%, 

SPE = 89.1%, FDR = 22.7%; in the algorithm group: SEN 

= 81.3%, SPE = 84.4%, FDR = 36.6%), the use of ANSeR 

enhanced the recognition of seizures’ hours. Specifically, in 

the non-algorithm group: SEN = 45.3% and in the algorithm 

group: SEN = 66%. 

Tapani et al. [18] presented a NSD system based on the 

autocorrelation analysis that aims at highlighting the time-

varying periodicity characteristic of seizure’s epochs. They 

built a new and public database [43]. It was made of 18-

channel EEG signals from 79 full-term newborns admitted 

in the NICU of the Helsinki University Central Hospital. 

The recordings have a mean duration of 1 h and were made 

using 19 electrodes in a double-banana layout. In this study, 

only critical events with a duration > 10 s were considered. 

Three experts annotated the dataset separately; 39 out of 79 

newborns have seizure activity with unanimous consensus 

by the three experts. The signal from each EEG channel was 

separately pre-processed and segmented into 32 s epochs 

using a sliding window with 28 s of overlap between epochs. 

From each epoch, 21 features were extracted, defined in  

time, frequency and information theory domains, and 

characteristics of autocorrelation analysis. These features 

were fed into SVM classifiers. The single channel binary 

decisions were combined into a multi-channel binary 

decision, and then the collar operation was implemented. 

The system was trained and evaluated implementing the 

LOSO cross-validation, and it gave: AUC = 92%; SEN = 

76%; SPE = 99%. 

In Table II a summary shows methods, datasets, validations 

and performances of the above-mentioned studies based on 

the data-driven approach. 

C. THE DEEP-LEARNING ALGORITHMS 

The choice of the features in data-driven methods is a crucial 

operation as it determines the classifiers’ performances. The 

need for feature extraction can be overcome by introducing 

deep-learning algorithms that do not require hand-designed 

features [44]. Among the different types of existing Deep 

Neural Networks (DNN), the Convolutional Neural 

Networks (CNN) are the most used in image analysis and 

signal processing, where time series can be processed as 

images through spectrograms. Recently, CNNs and in 

general deep neural networks were used to analyze EEG 

recordings too. 

Ansari et al. [19] compared a novel algorithm based on 

CNN, heuristic and data-driven algorithms. They 

implemented the heuristic model developed by 

Deburchgraeve et al. [13], based on the detection of “spike-

train seizures” and “oscillatory seizures” and the data-driven 

one proposed by Thomas et al. [15], in which they replaced 

the SVM classifiers with Random Forest ones. A dataset of 

multi-channel EEG recordings from 48 full-term newborns 

was used. These patients, with assumed HIE, were admitted 

to the NICUS of Sophia Children’s Hospital, Rotterdam, 

Netherlands. In the training step, 30.000 epochs of 90 s 

duration each were selected from 26 newborns from all 

available bipolar channels. For the test dataset, the 

recordings of the 22 remaining patients were segmented
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TABLE II 

MAIN NSD EEG-BASED SYSTEMS BASED ON THE DATA-DRIVEN APPROACH. 

ADOPTED METHOD, SIZE OF THE DATASETS, EPOCHS DURATION AND THE SYSTEMS’ PERFORMANCE ARE SUMMARIZED. 

 

Data-driven approach 

 Method Dataset 

(newborns) 

Validation Epochs  Performance 

Thomas et al. [15] GMM 55 with HIE LOSO a 8 s epochs, 

50% overlap 

GDRa = 79%,  

FDHa = 0.5 h-1  

MFDDa = 2 min  

SPEa = 93% 

SENa = 76% 

Temko et al. [16] SVM 55 with HIE LOSO a 8 s epochs, 

50% overlap 

GDRa = 89%, FDH = 1 h-1 

GDRa = 96%, FDH = 2 h-1 

GDRa = 100%, FDH = 4 h-1 

Pavel et al. [17] ANSeR 258  N.A.a N.A.a Distinction pathological/ healthy newborns:  

non-algorithm group:  

SENa = 89.5%, SPEa = 89.1%, FDRa = 22.7%  

algorithm group:  

SENa = 81.3%, SPEa = 84.4%, FDRa = 36.6% 

recognition of seizures hours:  

non-algorithm group: SENa = 45.3%  

algorithm group: SENa = 66% 

Tapani et al. [18] SVM, 

Autocorrelation 

analysis 

79  LOSO a 32 s epochs, 

28 s overlap 

AUCa = 92% 

SENa = 76% 

SPEa = 99%. 

aLOSO = Leave One Subject Out, SEN = Sensitivity, SPE = Specificity, FDH = False Discovery per Hour, GDR = Good Detection Rate, MFDD = Mean False 

Discovery Duration, AUC = Area Under the ROC Curve, N.A. = Not Available. 

 

into 90 s epochs, with 60 s overlap. A CNN algorithm is 

proposed that does not need hand-designed features. After 

the training, a Random Forest classifier replaced the last five 

classifying layers to improve the performances. In this way, 

the remaining layers of the CNN work as an “automatic 

feature extractor”. The overall performances highlights that 

the CNN-based method was more efficient than the data-

driven ones (AUC = 83%; SEN = 77%; SPE = 78%; GDR 

= 77%; FDH = 0.90 h-1), but less than the heuristic one 

(AUC = 88%; SEN = 77%; SPE = 90%; GDR = 77%; FDH 

=  0.63 h-1). This could be due to the limited amount of data 

used for the study: indeed, CNN requires a large, varied and 

balanced database. Instead, the heuristic method, which 

aims at mimicking a human observer, is based on the 

clinicians’ knowledge. 

O’ Shea et al. [20] presented a comparison between two 

feature-based and data-driven machine learning algorithms 

(Temko et al. [16], Tapani et al. [18]) and two novel systems 

based on Fully Convolutional Neural Network (FCNN): the 

1D FCNN architecture, and the 2D FCNN one. In the 

training phase of the 1D FCNN, a single EEG channel was 

processed at a time, needed for the so-called “strong labels” 

that are seizure events annotated both in time and in space. 

The 2D FCNN architecture, which has multiple EEG 

channels as input, could be trained using only the “weak 

labels”: in this case, the start and end time of the seizure 

were defined, but the spatial location was not specified. In 

the FCNN systems, all the EEG channels were segmented in 

8 s epochs and sampled at 32 Hz. A number of 256x1 vectors 

was used as input of the 1D architecture, and 256xN arrays 

as input of the 2D one, where N is the number of the EEG 

channels. They were trained and evaluated implementing 

the LOSO cross-validation on the Cork dataset [16] and 

tested on the Helsinki dataset [43]. It was shown that the 

FCNN architecture outperformed the other algorithms, 

confirming that the FCNN-based approaches can overcome 

the problem of finding appropriate features. Specifically, the  

2D FCNN, based on weakly labelled data, showed the best 

performance (concatenated AUC = 95.6%). This 

architecture does not need the time consuming “strong-

labels”, therefore reducing the workload for the clinical 

annotators. 

Tanveer et al. [21] developed a system based on the public 

dataset collected at the Helsinki University Hospital. 

Specifically, only the 19-channel EEG signals of the 39 

newborns with seizure activity were considered. They 

presented three different 2D CNNs. Each model was trained 

and tested on one expert annotation. The EEG signals, 

sampled at 256 Hz, were segmented into 1 s epochs. To 

increase the number of seizure’s samples, an overlap of 50% 

was used for seizure epochs. The models had as input all the 

EEG channels during a certain time window: 256x19 arrays 
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were the input of the neural networks. To prevent 

overfitting, a categorical cross-entropy based loss function 

was introduced. It measures the distance between the output 

probabilities of the network and the truth values [45]. During 

the model training, the model weights are tuned to minimize 

the cross-entropy loss. The dataset was split into a training 

set (90%) and a validation set (10%), using the 10-cross fold 

validation technique. To define an overall prediction, a 

method based on all three model predictions was 

implemented that outperformed the single CNNs, giving: 

ACC = 96.3% and AUC = 99.3%. 

Caliskan et al. [9] introduced a novel patient-specific NSD 

system based on the transfer learning technique, overcoming 

the CNNs’ need for a large amount of data samples for 

training. Transfer learning is a machine learning tool that 

allows “to transfer the knowledge from the source domain 

to the target domain by relaxing the assumption that the 

training data and the test data must be independent and 

identically distributed” [46]. They presented some well-

known pre-trained Deep CNNs (p-DCNNs) trained on the 

ImageNet database, such as AlexNet, GoogleNet, DenseNet 

and ResNet18. The last three layers of the networks were 

adapted to identify neonatal seizures. The public dataset of 

the Helsinki University Hospital [43] was considered. 

Specifically, in this study, a subset of multi-channel EEG 

signals from 39 epileptic newborns was considered (mean 

duration per patient 74 min). The signal from each EEG 

channel was separately pre-processed and segmented into 30 

s epochs, with a 2 s sliding interval. The networks’ inputs 

were created, converting the raw windowed EEG signals to 

3 channel, 24 bits colour images. Specifically, a dataset of 

106.796 images was built, 37.269 of which were labelled as 

a seizure. 50% of images were randomly selected for each 

patient to build the training and the test sets. To evaluate the 

classification performance, Caliskan et al. compared the 

results obtained using AlexNet, GoogleNet, Densenet and 

ResNet18 and built a conventional CNN with 6 layer depth. 

The accuracy and the AUC curve for all the 39 newborns 

showed that the DenseNet-based method has the best 

performance (mean AUC = 99%). A statistical analysis 

highlighted that all the p-DCNNs have better performance 

than the CNN, thus allowing the detection of neonatal 

seizures overcoming the limited dimension of the training 

data set. 

Recently, O’ Shea et al. [22] presented a novel system based 

on deep learning algorithms to detect neonatal seizures, 

focusing on preterm infants. In this study, they considered 

two of the above-mentioned algorithms, trained on datasets 

of full-term patients: the SVM-based one [16] and the 

FCNN-based one [20]. These approaches were tested on a 

dataset of 8-channel EEG of 16 preterm newborns 

(gestational age < 32 weeks) admitted to the NICUs of the 

Cork University Maternity Hospital, Ireland (total duration 

575 h). Six out of 16 patients had seizure events, and the 

remaining 10 were control patients. The SVM-based 

algorithm (called “SVM T-SDA”, where T stands for full-

term newborns) gave AUC = 88.3%, and the FCNN-based 

one (called “DL T-SDA”, where T stands for full-term 

newborns) gave AUC = 93.3%. Then, they retrained the 

algorithms on a dataset of 14-channel EEG recordings from 

17 preterm newborns (gestational age < 32 weeks) admitted 

in the NICUs of Parma University Hospital, Italy (mean 

duration 1 h and 19 min). These algorithms were tested on 

the Cork preterm dataset with the following results: AUC = 

89.7% with SVM P-SDA (where P stands for preterm 

newborns), and AUC = 93.5% with DL P-SDA (where P 

stands for preterm newborns). The gestational age (GA) 

strongly influences the morphology of the EEG signal. 

Therefore O’ Shea et al. divided the training and test sets 

into 3 groups according to the GA of the newborns and 

developed SVM-based and FCNN-based specific 

algorithms for each GA group. Finally, they evaluated the 

fusion between the FCNN trained on the term newborns and 

the FCNN trained on the preterm newborns, divided into GA 

groups. The system obtained by the fusion of classifiers gave 

AUC = 95.4%. 

Table III summarizes methods, datasets, validation and 

performance of the mentioned studies based on the deep-

learning approach. 

IV. NSD ECG-BASED SYSTEMS 

This section describes the main NSD systems based on ECG 

analysis. Indeed, several studies suggest that neonatal 

seizures strongly influence cardiocirculatory activity. 

Goldberg et al. [47] considered a dataset of ECG signals 

from 9 paralyzed newborns, finding changes in ECG 

rhythmicity, heart rate, blood pressure and oxygenation. 

Therefore, they concluded that these fluctuations could be 

used as indicators of critical events. Similarly, Watanabe et 

al. [48] observed heart rate and respiratory rate changes 

during seizures in 215 newborns.  

Although many pacemaker tissues exist that control heart 

contraction, heart rate and cardiac rhythmicity are largely 

regulated by the Autonomic Nervous System (ANS). 

Indeed, the sympathetic and parasympathetic nervous 

systems stimulate the heart by increasing and decreasing 

heart rate. Therefore, the evaluation of changes in inter-beat 

time intervals (Heart Rate Variability – HRV) can provide 

important information about the effects that seizures have on 

ANS’s functions. For example, Bersani et al. [49] suggested 

the HRV analysis as “a possible marker of brain damage” 

in the case of HIE. In order to perform the HRV analysis, 

the ECGs signals are usually pre-processed through a 

denoising procedure that preserves clinically relevant 

information. Afterwards, signals are segmented into 

individual beats [50], highlighting the QRS complexes. 

Generally, the HRV spectrum is divided into spectral bands, 

and each of these bands is associated with different activities 

of the sympathetic and parasympathetic nervous systems 

[51]. In the literature, several ranges of frequency bands
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TABLE III 

MAIN NSD EEG-BASED SYSTEMS BASED ON THE DEEP-LEARNING APPROACH. 

ADOPTED METHOD, SIZE OF THE DATASETS, EPOCHS DURATION AND THE SYSTEMS’ PERFORMANCES ARE SUMMARIZED. 

 

Deep-learning approach 

 Method Dataset (newborns) Validation Epochs Performance 

Ansari et al. [19] CNN + Random Forest 48 with presumed HIE Hold out  90 s epochs, 

60 s overlap 

AUCa = 83%; SENa = 

77%; SPEa = 78%; GDRa = 

77%; FDHa = 0.90 h-1 

O’ Shea et al. [20] 2D FCNN 55 with HIE + 79 LOSO a 8 s epochs concatenated AUCa = 

95.6% 

Tanveer et al. [21] 2D CNN 39 10 cross-fold 1 s epochs, 

50% overlap 

ACCa = 96.3% AUCa = 

99.3%. 

Caliskan et al. [9] p-CNN 39 Hold out 30 s epochs, 

2 s shift 

Patient specific 

AUCa = 99% 

O’ Shea et al. [22] fusion between the 

FCNN trained on the 

term newborns and the 

FCNN trained on the pre-

term newborns 

16 pre-term N.A.a SVM T-SDAb: 8 s epochs, 

4 s overlap; 

DL T-SDAb: 8 s epochs, 

7 s overlap; 

AUCa = 95.4%. 

a LOSO = Leave One Subject Out, SEN = Sensitivity, SPE = Specificity, FDH = False Discovery per Hour, GDR = Good Detection Rate, MFDD = Mean False 

Discovery Duration, AUC = Area Under the ROC Curve, N.A. = Not Available. 
b SVM T-SDA = SVM based Term Seizure Detection Algorithm, DL T-SDA = Deep Learning based Term Seizure Detection Algorithm [22]. 

 

have been defined. In fact, these values strongly depend on 

the health of the ANS, age, and the patient's physiological 

conditions. The HRV signal can be obtained from the ECG, 

and its characteristics can be analyzed with different 

algorithms in the time or frequency domain. Several 

researchers have recently focused their studies on HRV 

analysis to detect seizures. ECG signal is routinely 

performed, and its recording is easier and less invasive than 

EEG [25]. 

Malarvili et al. [23] investigated the HRV signals by 

evaluating the Time-Frequency Distribution (TFD). The 

TFD is a bidimensional function that describes the 

instantaneous frequency of the signal in the combined time-

frequency domain. This study considered a dataset of one-

channel ECG signal of 5 newborns collected at the Royal 

Children’s Hospital, Brisbane, Australia. This dataset 

consisted of 6 seizure events and 4 non-seizure events of 64 

s each from 5 different newborns. All ECG traces were 

processed to extract the HRV signal. To analyse the HRV 

signal and recognize seizure events, the selected features 

were the first and the second conditional moments of the 

three spectral components: Low Frequency (0.03–0.07 Hz), 

Mid Frequency (0.07–0.15 Hz) and High Frequency (0.15–

0.6 Hz). The LOSO cross-validation was implemented. By 

evaluating the overall performances, it was shown that the 

first conditional moment allows discriminating critical 

events from non-critical ones at low frequencies. This 

suggests that neonatal seizures mainly affect the HRV 

components in the low-frequency band, which are attributed 

to sympathetic activity by the authors (SEN = 83.33%, SPE 

= 100%).  

Greene et al. [24] introduced a NSD ECG-based system 

using a Linear Discriminant (LD) classifier. A dataset of 8 

ECG recordings from 7 full-term newborns admitted in 

NICU for HIE was considered. It was made of 520 seizure 

events (mean duration 3.86 min). Seven out of 8 ECG 

signals were recorded in the NICUs of the Unified Maternity 

Hospitals in Cork, Ireland, the remaining one was recorded 

in the NICU of Kings College Hospital, London. The ECG 

signals were segmented into 60 s epochs. An epoch was 

defined as a seizure epoch if 50% of its duration was 

interested in the critical activity. The R peaks were detected 

using an appropriate QRS detection algorithm, and features  

describing RR intervals’ properties in time, frequency and 

information theory domains were extracted. These features 

were fed into a supervised LD classifier that looks for the 

best linear combination of features to distinguish seizure and 

non-seizure classes. Greene et al. developed a patient-

specific and a patient-independent system. The patient-

specific approach showed better results than the patient-

independent one. It was evaluated by implementing a ten-

fold cross-validation on each record. Specifically, each 

record was iteratively and randomly split into 10 folds, and 

9 of these folds were used to train the classifier; the 

remaining one was used to test the classification. The 

obtained results were averaged, and the classifier’s 

performance for each patient was evaluated. The patient-

specific system gave: ACC = 66.04%; SEN = 75.52%; SPE 

= 57.70%. The patient-independent systems were validated 

implementing the LOSO operation, giving ACC = 61.80%; 

SEN = 78%; SPE = 51.75%. The patient-specific approach 

shows higher performances than the patient-independent 
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one: however, it requires patient-specific data that cannot be 

obtained before the baby is born [42]. 

Doyle et al. [25] investigated the utility of HRV analysis to 

develop a NSD based on a SVM classifier. The Cork dataset 

was considered [16]. Specifically, only the recordings of 14 

out of 17 newborns were considered with a total duration of 

207.86 h. They are characterized by the presence of 697 

seizure events (mean duration 3.83 min). Firstly, the HRV 

signal was extracted from the ECGs and segmented into 60 

s epochs. Then, from each epoch, 62 features defined in time 

and frequency domains were extracted. These features were 

fed into two SVM classifiers: one characterized by a linear 

kernel and the other by a non-linear kernel. The two systems 

were evaluated by implementing the LOSO cross-

validation. Both the systems gave: mean AUC = 60% and 

mean SEN = 60%. Later, the feature selection operation was 

implemented to select the most suitable features to 

discriminate between seizure and non-seizures epochs and 

prevent redundancy problems. Therefore, the non-linear 

SVM system was re-trained with a subset of 35 features, 

giving a lower value of AUC (55%): in fact, some features 

relevant for some patients were removed by the selection 

operation.  

Table IV summarizes methods, datasets, pre-processing and 

performances of the mentioned studies based on the ECG 

analysis. 

A.  NSD SYSTEMS BASED ON THE COMBINATION OF 
EEG AND ECG 

Few studies in the literature attempted to improve the NSD 

systems’ performances by investigating the combination of 

EEG and ECG signals. 

Greene et al. [26] considered two methods for combining 

ECG and EEG signals: the early integration (EI) and the late 

integration (LI). The first one is based on a single feature 

vector, obtained concatenating the EEG and ECG features 

and fed them into a classifier. The late integration made use 

of one classifier for each signal: two output probabilities are 

combined to define an overall probability of seizure. A 

dataset of 12 recordings from 10 full-term newborns 

admitted to NICU for HIE was considered. Ten out of 12 

recordings were made in the Unified Maternity Hospitals in 

Cork, Ireland (sampled at 256 Hz); the remaining one was 

made at Kings College Hospital, London (sampled at 200 

Hz). Each recording was composed of multi-channel EEGs 

and one-channel ECGs. The EEG signals were annotated by 

expert clinicians that detected 633 seizure events (mean 

duration 4.60 min). The ECG signals were segmented into 

non-overlapping 60 s epochs as described in [24]. A total of 

16.384 samples was obtained: 15.360 for a record sampled 

at 256 Hz and 12.000 for a record sampled at 200 Hz. The R 

peaks were detected from each epoch, and 6 features 

describing RR intervals’ properties in time, frequency and 

information theory domains were extracted. The signal from 

each EEG channel was separately pre-processed and 

segmented into non-overlapping 8 s epochs (2048 samples 

at 256 Hz). From each epoch, 6 features defined in time, 

frequency and information theory domains were extracted. 

Each feature vector from different channels was 

concatenated to create a single “super feature vector”. A 

sorting function was implemented to remove information 

about the spatial location of the seizure by distinguishing 

feature values of “channel involved in a seizure” and 

“channels not-involved”. The ECG signal was segmented 

into non-overlapping 60 s epochs and the EEG signal into 

non-overlapping 8 s epochs: to combine the information of 

the two signals, the ECG frame rate was matched to the EEG 

frame rate by interpolation. The EI and LI frameworks were 

developed using LD classifiers, and both approaches were 

evaluated in patient-specific and patient-independent 

configurations. The 10-fold cross-validation was 

implemented for the patient-specific classifier, while for the 

patient-independent one, the LOSO cross-validation was 

implemented. The performances were evaluated by 

averaging the results across recordings. In the patient-

specific framework the EI approach gave: GDR = 95.82%; 

FDR = 11.23%; ACC = 86.32%; SEN = 76.37%; SPE = 

88.77%, while the LI approach gave: GDR = 97.52%; FDR 

= 13.18%; ACC = 84.66%; SEN = 74.08%; SPE = 86.82%. 

In the patient-independent framework the EI approach gave: 

GDR = 81.44%; FDR = 28.57%; ACC = 71.51%; SEN = 

71.73%; SPE = 71.43% while the LI approach gave: GDR = 

81.27%; FDR = 33.05%; ACC = 68.89%; SEN = 74.39%; 

SPE = 66.95%. The patient-specific approach shows higher 

performances than the patient-independent one. However, 

as mentioned above, the patient-specific approach is not 

suitable for neonatal application [42]. The patient-

independent performances result appealing, but their clinical 

utility is limited by the high FDR. 

Based on the above-mentioned study [26], Mesbah et al. 

[27] investigated the early integration (“feature fusion”) and 

the late integration (“classifier fusion”), introducing some 

changes and novelties. They considered a different dataset 

and segmented the EEG and ECG signal into epochs of 

different duration. Moreover, they selected different sets of 

features to analyse the signals and considered different types 

of classifiers. The dataset was made of EEG-ECG 

recordings from 8 full-term newborns admitted to the Royal 

Brisbane Hospital, Brisbane, Australia. A paediatric 

neurologist annotated the EEG, hence 13 seizure events 

were identified (mean duration 2.54 min). Then, the ECG 

signals were segmented into 64 s epochs. Twenty-one 

seizure epochs and 13 non-seizure epochs were randomly 

selected and considered. The EEG signals were segmented 

into 64 s epochs too, and each epoch was further divided into 

non-overlapping 12.8 s epochs. Moreover, Mesbah et al. 

introduced some non-stationary features: in ECG analysis, 

they considered features defined in time and in time-

frequency domains; in EEG analysis, they considered 

features defined in time, frequency, time–frequency, and
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TABLE IV 

MAIN NSD ECG-BASED SYSTEMS. 

METHOD, SIZE OF THE DATASETS, VALIDATION METHODS AND THE SYSTEMS’ PERFORMANCES ARE SUMMARIZED. 

 

ECG-based systems 

 Method  Dataset (newborns) Validation  Epochs Performances 

Malarvili et al. [23] Heuristic 

TFD 

5 LOSO a 64 s epochs SENa = 83.33%  

SPEa = 100% 

Greene et al. [24] LD 7 10-fold  

 

 

 

LOSO a  

60 s epochs patient-specific:  

ACCa = 66.04%  

SENa = 75.52%  

SPEa = 57.70%;  

patient-independent  

ACCa = 61.80%  

SENa = 78%  

SPEa = 51.75% 

Doyle et al. [25] SVM  55 with HIE LOSO a 60 s epochs mean AUCa = 60%  

mean SENa = 60% 

aLOSO = Leave One Subject Out, SEN = Sensitivity, SPE = Specificity, FDH = False Discovery per Hour, GDR = Good Detection Rate, MFDD = Mean False 

Discovery Duration, AUC = Area Under the ROC Curve, ACC = Accuracy. 

 

time-scale domains. For both signals, the feature selection 

operation was implemented to prevent redundancy 

problems, and the LOSO cross-validation was implemented. 

The feature fusion framework, based on 1-NN classifier 

trained on the selected features, gave: SEN = 95.20%; SPE 

= 88.60%. The classifier fusion framework, based on linear 

classifier (ECG) and 1-NN classifier (EEG) trained on the 

selected features, gave: SEN = 95.20%; SPE = 94.30%. 

Temko et al. [28] investigated automated multimodal 

prediction of outcome in newborns with HIE, based on 

features extracted from clinical analysis, EEG and ECG 

signals. A dataset of video-multichannel-EEGs and ECGs 

from 38 full-term newborns admitted in the NICUs of Cork 

University Maternity Hospital was considered. From these 

recordings, 1-h segments per patient free from visual 

artefacts were selected. The 1-h segments from each EEG 

channel were further segmented into 60 s non-overlapping 

epochs. A set of 57 features defined in time, frequency, and 

information theory domains describing the brain symmetry 

were extracted from each epoch. To combine the 

information across channels, the mean value of the features 

was considered. The R peaks were detected using an 

appropriate QRS detection algorithm, defining the HRV 

signal. As for the EEG signal, the 1-h recording was 

segmented into 60 s non-overlapping epochs. A set of 60 

features defined in time, frequency, and information theory 

domains was extracted from each epoch. Regarding the 

clinical features, the Apgar score, the initial pH and the Base 

deficit were analyzed. The EEG and HR features were 

synchronized, and the clinical features were characterized 

by one value per patient that was replicated for each epoch. 

The SVM classifier and the LOSO cross-validation were 

implemented. The feature selection operation, named 

Recursive Feature Elimination (RFE), was applied in each 

iteration to the EEG and HRV sets. The classifier trained on 

12 features from EEG, HR and Apgar showed the best 

performances, giving AUC = 86.8%. 

Table V summarizes methods, datasets, pre-processing and 

performances of the mentioned studies based on the 

combined ECG-EEG analysis. 

VI. NSD VIDEO-BASED SYSTEMS 

This section aims at outlining the most significant papers 

about NSD video-based systems. The newborns’ 

movements can provide crucial information about their 

physio-pathological state. The analysis of movement 

characteristics and properties can be useful for a timely 

diagnosis of neurological and neurodevelopmental 

disorders. 

Over the years, many approaches were proposed to evaluate 

the newborns’ movements involving their body and head 

through video analysis. Indeed “limbs and head are the 

infant body parts mostly affected by seizure-caused motion” 

[29]. At present, the detection and classification of neonatal 

seizures based on video recordings cannot replace EEG 

analysis but allows creating a contact-less seizure detection 

system as a support to the clinical decision [52]. Indeed, 

Malone et al. [53] showed that “health care professionals 

have difficulty in discriminating between neonatal seizure 

and non-seizure movements” analyzing video recordings of 

the movements only. They considered a dataset made of 

video clips of 11 newborns with EEG-confirmed seizures 

(clonic and subtle), and 9 newborns with random 

movements. These videos were recorded at King’s College 

Hospital London, United Kingdom, and at Cork University 

Maternity Hospital, Ireland. The recordings were examined 

by 137 health care professionals: the seizure events were 

correctly identified only by 20% to 50% of the professionals
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TABLE V 

MAIN NSD SYSTEMS BASED ON THE COMBINATION BETWEEN EEG AND ECG. 

METHOD, SIZE OF THE DATASETS, VALIDATION METHODS AND THE SYSTEMS’ PERFORMANCES ARE SUMMARIZED. 

 

Systems based on combination between EEG and ECG 

 Method Dataset (newborns) Validation Epochs Performances 

Greene et al. [26] Early and Late 

fusions with LD 

classifiers 

10 10-fold 

LOSO a 

60 s epochs EIa patient-specific  

GDRa = 95.82% 

FDRa = 11.23%  

ACCa = 86.32%  

SENa = 76.37%  

SPEa = 88.77%;  

LIa patient-specific  

GDRa = 97.52%  

FDRa = 13.18%  

ACCa = 84.66%  

SENa = 74.08%  

SPEa = 86.82%;  

EIa patient-independent  

GDRa = 81.44%  

FDRa = 28.57%  

ACCa = 71.51%  

SENa = 71.73%  

SPEa = 71.43%; 

LIa patient-independent  

GDRa = 81.27%  

FDRa = 33.05%  

ACCa = 68.89%  

SENa = 74.39%  

SPEa = 66.95% 

Mesbah et al. [27] Early and Late 

fusion with 1-

NN and linear 

classifiers 

8 LOSO a 64 s epochs EIa with 1-NN  

SENa = 95.20 

SPEa = 88.60;  

LIa with linear classifier and 1-NN classifier  

SENa = 95.20  

SPEa = 94.30 

Temko et al. [28] SVM 38 LOSO a  60 s epochs AUCa = 86.8% 

aLOSO = Leave One Subject Out, SEN = Sensitivity, SPE = Specificity, FDH = False Discovery per Hour, GDR = Good Detection Rate, MFDD = Mean False 

Discovery Duration, AUC = Area Under the ROC Curve, ACC = Accuracy, EI = early integration, LI = late integration. 

 

 (41% on average). Therefore, developing additional 

systems based on video analysis capable of identifying even 

inconspicuous movements would be useful. 

Three main approaches in newborns motion detection can 

be found: 

• frame differencing that aims at highlighting 

the patient’s movement by evaluating the 

difference between consecutive video-frames. 

• optical flow, based on the relative movement 

between the observer and the scene. It allows 

computing the speed vector associated with 

each pixel of the frame.  

• tracking methods, based on the selection of 

regions of interest and their tracking in a 

sequence of frames [38], [33]. 

Ntonfo et al. [29] developed a system that aimed at 

distinguishing the clonic (“periodic seizures over short time 

intervals”) and myoclonic (“seizures that are brief, rapid, 

single or arrhythmic repetitive jerks”) seizures. This system 

applies the optical flow technique to define the maximum 

optical flow vector amplitude (MIMP) to detect the part of 

the body interested by a strong and pathological movement. 

Around the MIMP, the Region of Interest (ROI) was 

selected on which the subsequent analysis was focused. 

Moreover, the ROI was tracked in the image sequences 

using the template matching technique that is based on the 

Mean Absolute Difference (MAD) similarity measure. To 

characterize the motion, each RGB frame of the sequences 

was converted into the greyscale, and then the frame 

difference between two consecutive frames was computed. 

In this way, a sequence of frames in which the movement 

was highlighted was obtained. These frames were converted 

into a binary scale by selecting a suitable threshold [1]. 

Taking into account that the bright binary pixels were related 

to the moving body parts, the average luminosity motion 

signal was defined by evaluating the average number of 

white pixels in each frame. To distinguish the clonic and 

myoclonic seizures, the periodicity of the average 

luminosity motion signal was evaluated by defining the 

Broadening Factor, “an indicator of how impulsive the 

entire movement is” [29], and the maximum distance 

between consecutive pairs of zeros of the average luminosity 

motion signal. 

Later, Ntonfo et al. [30] presented another system that 

distinguished between clonic and myoclonic seizures by 

analyzing gesture trajectories. They defined the MIMPs as 

in [29] and tracked them in the frame sequences using the 

template matching technique. The final movement 

trajectories were formed “by joining all the points given by 

consecutive MIMP coordinates in a sequential manner” 

[30]. Some trajectory features were defined and analyzed by 

clustering to create groups of movements with similar 

characteristics. A cluster with high cardinality highlights a 

repetitive movement. A dataset of 2 recordings from 2
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newborns at the Department of Gynecology, Obstetric, and 

Neonatal Sciences of the University of Parma, Italy, was 

considered. One patient was affected by clonic seizures, the 

other one by random movements.  

Pisani et al. [31] developed and validated a system that aims 

at identifying clonic seizures from other movements and 

noise. A dataset of 23 video recordings was analyzed from 

12 full-term newborns admitted to the NICUs of Parma 

University Hospital. These videos, containing 78 seizures of 

clonic type, were analyzed by visual inspection. 502 noise 

events, with a total duration of 04:44:08 h (mean duration 

00:00:34) and 668 motor events with a total duration of 

04:15:22 h (mean duration 00:00:23) were identified. Each 

frame of the video recordings was converted into a grey 

scale, and the frame difference between two consecutive 

frames was computed. The average luminosity motion 

signal was obtained as described in [29]. The periodicity of 

the signal was evaluated by defining the Normalized 

AutoCorrelation Function (NACF) and the Cumulative 

Mean Normalized Difference Function (CMNDF) [1]. The 

periodicity was analyzed considering: “disjoint consecutive 

frame windows, where each window lasts 10 s; two 

interlaced windows, with 50% overlapping; three 

consecutive interlaced windows, with 50% overlap between 

consecutive pairs” [31]. The described procedure was also 

applied to 6 video recordings of 5 healthy newborns (total 

duration 04:34:29 h, mean duration 00:45:45 h). In these 

videos, 426 motor events (total duration 01:19:02 h, mean 

duration 00:00:11 h) and 99 noise events (total duration 

00:14:00 h, mean duration 00:00:08 h) were detected. The 

system developed using two interlaced windows gave the 

best performances in detecting clonic seizures: AUC = 

79.6%; SEN = 71%; SPE = 69%. In detecting motor and 

environmental phenomena, the system developed using 

three interlaced windows gave: SPE = 97%. 

Cattani et al. [32] developed a system based on the average 

luminosity motion signal analysis, obtained as described in 

[30]. To study the periodicity of the signal and detect the 

clonic seizures, the Maximum Likelihood criterion was 

adopted. The motion signals were acquired through multiple 

cameras, and depth sensors were considered. Specifically, 

three video cameras were set up in the NICUs of the 

University Hospital of Parma: two cameras recorded the 

newborn from the front and the side and the third camera 

was attached to the cot to focus on the face. A dataset of 4 

recordings of a newborn with the three cameras was 

collected. The first 2 videos were characterized by the 

presence of pathological movements related to clonic 

seizures, while physiological movements characterized the 

remaining 2 videos. The analysis was performed 

considering two 10 s interlaced windows with 50% 

overlapping. The system gave: SEN ≈ 90%, SPE ≈ 90%, 

outperforming the systems based on one or two cameras 

only.  

To ease the distinction between seizure and non-seizure 

events, Karayiannis et al. [33] presented a system 

performing a post-seizure analysis based on newborns’ 

motor activity. They defined the temporal motion strength 

through the spatiotemporal decomposition of an image 

sequence. In this way, a specific subband of the decomposed 

image sequence was identified, detecting motion between 

consecutive frames. The subband was processed by 

applying median filters and segmented, implementing an 

adaptive version of the k-means algorithm (k = 3). The white 

areas in the segmented frames display the moving parts of 

the body. The temporal motion strength was defined by 

evaluating the average of white areas in consecutive frames. 

Moreover, the temporal motor activity signal was defined by 

tracking anatomical sites, such as right leg, left hand, and 

right hand, through a modified version of the Kanade-Lucas-

Thomasi (KLT) algorithm. These anatomical sites were 

projected to both the horizontal and the vertical axes across 

the frames. Four video recordings from the Clinical 

Research Centers for Neonatal Seizures (CRCNS), Houston, 

TX, were considered: 2 out of 4 were characterized by the 

presence of myoclonic seizures, the other 2 by the presence 

of focal clonic seizures. 

Later, Karayiannis et al. [34], [35] proposed an improved 

method to extract the temporal motion strength signal. As 

above, frame differencing was implemented to highlight the 

moving parts of the body, but the resulting frames were 

segmented with the vector form of the k-means algorithm (k 

= 4 clusters of vectors). In this way, the number of vectors 

made of background pixels erroneously classified as moving 

body parts was reduced. 

Moreover, Karayiannis et al. [36] developed a Feed-

Forward Neural Network (FFNN) to classify and recognize 

myoclonic, focal clonic seizures and physiological motion. 

Two different approaches were compared regarding the 

temporal motion strength signal: the one described in [34] 

and another based on the optical flow [54]. In the latter, the 

velocity vectors associated with each pixel of the frame were 

defined, and the area containing all the pixels with a speed 

greater than a defined threshold was computed. Similarly, to 

define the motor activity signal, the predictive block 

matching technique [55], [56] was compared to methods 

involving other models of blocks (“robust motion trackers”) 

[57]. In these studies, a block of pixels of predefined 

dimension (“reference block”) was defined in the first frame 

of the considered sequence around the anatomical sites of 

interest. The location of the block was then predicted, 

looking for the most similar block in subsequent frames 

using Kalman filtering. A dataset of 240 videos from 43 

newborns was considered. These recordings were made at 

the CRCNS. Specifically, 80 out of 240 records were 

characterized by the presence of myoclonic seizures, 80 by 

focal clonic seizures and the remaining 80 by physiological 

movements. A preliminary comparison between different
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techniques highlighted that the most reliable approach to 

estimate the motion strength signal was the one based on the 

optical flow, while the one based on the robust motion 

trackers was found the best to estimate the motor activity 

signal. The dataset was split into training (50%) and test 

(50%) sets. Firstly, features such as the variance of time 

intervals, energy ratio, maximum spike duration and the 

number of spikes were extracted from the motion strength 

signal. These features were fed into the FFNN, that gave 

SEN > 95%, SPE > 95% on the training set, and SEN > 90%, 

SPE > 95% on the test set. Then, features such as energy 

ratio, maximum spike duration, the variance of the time 

intervals between the extrema and number of extrema were 

extracted by the motor activity signal. These features were 

fed into the FFNN, that gave: SEN > 90%, SPE > 90% on 

the training set, and SEN < 90%, SPE > 90% on the test set. 

Finally, the features extracted from both motion strength and 

motor activity signals were fed into the FFNN, which gave 

SEN > 90%, SPE > 95% on the training set, and SEN < 90%, 

SPE > 90% on the test set. 

Table VI summarizes methods, datasets, pre-processing and 

performances of the mentioned studies based on the video 

analysis. 

VI. DISCUSSION 

This paper presents a survey of the expert systems 

developed in the last ten years for Neonatal Seizures 

Detection in NICUs.  

Over the years, many approaches were proposed to 

automatically detect seizure activity in adults and children, 

investigating EEG and other physiological signals [58]. In 

fact, epilepsy, which is a neurological disease, can affect 

spontaneous electrical cerebral activity. Other signals that 

are under cerebral control can also provide information 

about the state of the brain [58]. For example, HR alterations 

commonly occur in adults with seizures [58], making heart 

rate analysis crucial for seizure detection. HR can be 

achieved through ECG or photoplethysmography (PPG). 

Also respiratory activity is relevant and can help in seizure 

detection [59]. In fact, seizure activity can frequently alter 

the normal and physiological respiratory rate. Irregular 

ventilation during seizures can be investigated by 

monitoring blood oxygenation: several studies showed 

increased cerebral oxygen saturation before seizures that can 

be efficiently measured using near-infrared spectroscopy 

(NIRS) techniques. Furthermore, seizure-related changes in 

sympathetic activity can be evaluated by investigating skin 

conductance (SC) modulation, or generally electrodermal 

activity (EDA). Motor manifestations of seizures can be 

analysed by examining the electromyographic (EMG) signal 

and using accelerometer-based (ACM) devices. While the 

applications of these methodologies to the newborn are very 

scarce, there are many studies and results regarding the adult 

and the child. The reasons concern not only the peculiar 

physiological characteristics of the newborn, as already 

pointed out above [60], but also the difficulty of applying 

and using adequate sensors in NICUs. Even though a survey 

concerning adult and child monitoring would be interesting, 

it is out of the scope of this work. We suggest survey papers 

[58], [59], and [61] to the interested reader. Thus, most of 

the expert systems developed for Neonatal Seizures 

Detection in NICUs summarized in this review are based on 

EEG, ECG and video analysis, as these signals are usually 

recorded and monitored in NICUs. Several studies 

investigated how the seizures occurrence affects the 

electrophysiological signals. Specifically, EEG is usually 

investigated to identify the presence of irregularities or 

characteristic trends due to seizures [11]-[22]; ECG is 

analyzed to evaluate the heart rate variability due to changes 

in the cardiovascular system during or close to ictal events 

[23]-[25], while video recordings are examined to detect the 

presence of possible “unusual” movements of the newborn 

induced by the seizure [29]-[36]. Only one recent study 

investigating the NIRS technique applied to newborns exists 

[62]. This paper summarizes and improves previous studies, 

highlighting the clinical relevance of the combined analysis 

of aEEG and NIRS signals. Indeed, seizures are 

characterized by a drop in cerebral oxygen saturation due to 

an increase in cerebral metabolic demand. 

The lack of complete public datasets of neonatal seizures 

makes the implementation of an automated seizure detector 

in newborns more difficult. The availability of public 

electrophysiological and video signals datasets is indeed 

crucial for the development and evaluation of computer-

based systems for the targeted task. To the best of our 

knowledge, the Helsinki dataset [43] is the only public one 

containing neonatal EEG recordings with multi-expert 

annotations of seizures. The majority of the NSD systems 

proposed in the literature are evaluated on private datasets 

only, making the comparison between the existing 

approaches unachievable. Furthermore, this comparison is 

still challenging because the metrics used to report the 

results of the NSD systems vary in the literature [39]. 

Therefore, a standard set of metrics would be advisable to 

evaluate the usefulness and the efficiency of the developed 

techniques for the neonatal seizure detection task. 

Another crucial issue concerns the validation methods 

applied to evaluate the generalization ability or precision of 

the proposed methods in the seizure detection task. As 

mentioned in this paper, the existing NSD systems can be 

divided into patient-independent, and patient-specific ones. 

The patient-independent approach, which aims at 

developing systems able to detect seizures across different 

subjects, is usually validated through the LOSO operation.  

Instead, in the patient-specific approach, aiming at 

developing systems in which the classifiers’ architecture is 

designed for each patient, the k-fold cross-validation and the 

hold out validation [41] are usually implemented. Although 

the patient-specific method is appealing, it requires specific 

electrophysiological data that cannot be obtained before
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TABLE VI 

 MAIN NSD VIDEO-BASED SYSTEMS 

METHOD, SIZE OF THE DATASETS, VALIDATION METHODS AND THE SYSTEMS’ PERFORMANCES ARE SUMMARIZED. 

 

Video-based systems 

 Method Dataset 

(newborns) 

Validation Epochs Performances Notes 

Ntonfo et al. [29] • Optical flow, 

• Template 

matching 

N.A. a  N.A. a N.A. a N.A. a Distinction between 

clonic and myoclonic 

seizures 

Ntonfo et al. [30] • Optical flow, 

• Template 

matching, 

• Clustering gesture 

trajectories  

2 Qualitative 

evaluation 

N.A. a N.A.a Distinction between 

clonic and myoclonic 

seizures 

Pisani et al. [31] • Frame 

differencing 

12 Binary 

statistical 

analysis 

10 s epochs, 

50% overlap 

detecting clonic 

seizures:  

AUCa = 79.6%  

SENa = 71% 

SPEa = 69%; 

detecting motor and 

environmental 

phenomena  

SPEa = 97% 

 

Distinction between 

clonic seizures and 

random movements 

Cattani et al. [32] • Frame 

differencing 

(3 cameras) 

1 N.A.a 10 s epochs, 

50% overlap 

SENa ≈ 90%  

SPEa ≈ 90% 

Detection of clonic 

seizures 

Karayiannis et 

al. [33] 

• Frame 

differencing, 

• KLT 

4 Qualitative 

evaluation 

N.A. a N.A.a Distinction between 

myoclonic and focal 

clonic seizures 

Karayiannis et 

al. [34], [35] 

• Frame 

differencing, 

N.A. N.A. a N.A. a N.A. a Distinction between 

myoclonic and focal 

clonic seizures 

Karayiannis et 

al. [36] 

• FFNN, 

• Frame 

differencing, 

• Optical flow,  

• block matching, 

• robust motion 

trackers 

43 Hold out N.A. a training set 

SENa > 90%  

SPEa > 95% 

 test set  

SENa < 90%  

SPEa > 90%  

Distinction between 

myoclonic and focal 

clonic seizures 

a N.A. = Not Available, SEN = Sensitivity, SPE = Specificity, ACC = Accuracy. 

 

birth [42]. Thus, the patient-independent approach is more 

advisable in the NSD task. In particular, the LOSO is 

preferable as it allows a good evaluation of the systems’ 

ability to generalize the classification in small datasets [16]. 

Instead, if datasets are not quite large [63] other validation 

approaches, such as k-fold o hold out, tend to overestimate 

the performances of the systems [41]. 

The NSD EEG-based systems aim at detecting the neonatal 

seizure events analysing and characterizing the EEG 

recordings. These systems show better performance than 

those based on other electrophysiological signals: indeed, 

the EEG is the most appropriate diagnostic technique to 

detect neonatal epileptic seizures as it allows investigating 

the electrical activation of neuronal patterns. As shown in 

Table III the deep-learning—based approaches lead to a 

remarkable improvement in NSD performances, however 

these systems require larger datasets than heuristic and 

machine-learning—based methods. The interest in studying 

and analysing ECG recordings for the NSD task is growing 

more and more because the ECG signal is routinely 

performed, and its recording is easier and less invasive than 

the EEG one [25]. However, the performances of ECG-

based patient-independent systems are not so appealing and 

at present they cannot replace the EEG-based systems. 
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Despite that, ECG analysis, and in particular the related 

HRV analysis, seems to be a promising marker of brain 

damage. Bersani et al. [49] presented a systematic review 

that highlights a possible relationship between HIE and 

abnormal HRV values, suggesting that HRV analysis may 

represent a valid alternative to EEG to detect the most 

common etiology of neonatal seizures. Statello et al. [64] 

also analyzed the behaviour of the sympathetic and the 

parasympathetic systems during neonatal seizures by 

investigating HRV indices. They found that the vagal-

mediated HRV signal in newborns with seizures is lower 

than in healthy newborns and that a short-term increase in 

vagal-mediated HRV characterizes seizures. 

To increase the performances of the developed NSD 

systems, some studies in the literature investigated the 

combination of EEG and ECG signals [26]-[28]. As a result, 

this combination has led to a more robust system for 

neonatal seizure detection than a system based on the ECG 

signal only. To the best of our knowledge, for ECG/HRV 

analysis, no deep-learning method was proposed in the 

literature for neonatal seizure detection. Considering the 

improvement obtained by DL techniques on EEG, these 

methods should also be evaluated on NSD experiments with 

ECG signals. Finally, to improve performances of ECG-

based NSD, more efforts should be made in the study of 

brain-heart interactions [65], [66] during ictal events in 

newborns. Indeed, the link between the cardio-regulatory 

system and neonatal seizures is not yet fully understood. 

Some findings [27], [64] suggested that seizures can directly 

or indirectly alter the cardio-regulatory system. However, 

evidence about mechanisms occurring during these events 

and the corresponding etiology are still missing or 

incomplete. Identifying and measuring them might allow the 

use of more specific and useful features for the neonatal 

seizure detection task through ECG signals. 

Computer-based systems based on video recordings analysis 

can be useful to characterize the newborns’ movements and 

thus their physio-pathological state. The systems described 

in this work apply different and interesting approaches to the 

analysis of video recordings. Most of these papers aim to 

detect and distinguish clonic and myoclonic seizures 

characterized by intense clinical manifestations. However, 

up to 70% of all neonatal seizures are characterized by poor 

clinical manifestations [3], [6]. These seizures are called 

subtle and are characterized by eye deviations, repetitive 

opening and closing of the eyelids, sucking, oral-buccal-

lingual movements, "swimming" or "pedalling" movements 

[6], [67]. As very few clinical correlates exist, the subtle 

seizures can be confused with normal neonatal behaviour 

[3], [6]. Malone et al. [53] highlighted the health care 

professionals’ difficulty in identifying subtle seizures: while 

clonic seizures were correctly identified by about two out of 

three professionals on average (with identification of single 

cases ranging from 36% to 95%), subtle seizures were 

recognized only by an average of one out of three 

professionals (with individual detection between 20% and 

50% at best). Therefore, developing additional systems 

based on video analysis, capable of identifying even 

inconspicuous movements and automating the semiology of 

facial expressions, would be useful. However, it is difficult 

to automatically recognize and track the newborns’ faces in 

the NICUs, as electrodes or cannulas often cover part of the 

face, cameras may be inappropriately placed, and lighting 

may be poor. Furthermore, the majority of the systems 

mentioned in this study are based on video recordings with 

a single video-camera. Using more cameras could improve 

the systems’ performances allowing a view of the newborn 

from different perspectives and ensuring an adequate 

coverage of the observed scene, as already evaluated by. 

Cattani et al. [33]. They found that the use of multiple 

cameras improved performances in detecting clonic seizures 

[33]. 

The papers summarized here do not provide information 

about etiologies of the detected seizures. However, some of 

them [68], [69] pointed out that the cause of seizure events 

could be identified by analyzing seizure events themselves. 

Therefore, NSD systems able to automatically characterize 

the etiologies investigating the available 

electrophysiological and clinical signals could be an 

additional support tool to clinicians. Indeed, identifying 

etiologies is crucial to determine specific pharmacological 

treatments and subsequent prognoses. 

Another crucial aspect concerns the methods of displaying 

the information obtained with the NSD systems. Few papers 

focus on developing an appropriate user interface and 

evaluate how it could affect seizure detection in a clinical 

environment [17], [70]. Temko et al. [70] investigated 

different ways to provide the output of a NSD system to 

clinicians, showing that a viable system interface is 

fundamental to assess the real usefulness of the NSD 

systems as support tools for the medical staff in the 

diagnosis of neonatal seizures in NICUs. Moreover, 

evaluating the seizure detection delay in NSD systems is 

crucial for understanding their clinical usefulness. The 

seizure detection delay is defined as “the time delay between 

the seizure detected by the algorithm and the seizure onset 

marked by an expert” [71]. This delay is heavily influenced 

by the time duration of the epochs in which the signal is 

segmented and the processing time required to run the 

algorithms [20], [50]. Specifically, the processing time is 

given by the algorithms' complexity and the computational 

performances. According to the seizure detection delay, two 

different types of expert systems applications are defined: 

online and offline. The first one ensures a timely, effective 

and efficient clinical intervention during the acquisition of 

electrophysiological and clinical signals.  [10]. In fact, 

neonatal seizures may lead to acute neurological impairment 

and neonatal death. Thus they should be treated as soon as 

possible [72]. The offline analysis is useful as it marks out 

the seizure epochs. Thus the neurologists can examine the
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 detected epochs necessary for a correct diagnosis [10]. Only 

few papers summarized in this survey explicitly define their 

algorithms as suitable for online analysis ([12]-[15], [17], 

[19], [20], [29], [31], [35]). Other papers do not give any 

information about the time delay in seizure detection or the 

kind of application.  

To conclude, the purpose of this survey was to highlight the 

results of the analysis of EEG, ECG and video recordings 

for the identification of epileptic seizures in the newborn. 

This paper also aims at highlighting that the combined use 

of the three signals can lead to significant improvements 

providing complementary information. Cabon et al. [73] 

proposed a semi-automatic system for the estimation of the 

sleep stages of premature newborns in NICUs through video 

and audio recordings analysis; Chen et al. [74] presented a 

wearable sensor system for simultaneous recording of ECG 

and respiration in newborns to monitor the neonatal health 

status. However, to the best of our knowledge, none of the 

existing systems combine the three signals for the neonatal 

seizure detection task in NICUs. Implementing a 

multimodal approach that exploits the results of several 

domains could be useful for developing an efficient and 

reliable automatic system to support clinicians. 

VII. CONCLUSIONS 

This paper summarises the main attempts to develop NSD 

systems proposed in the last ten years. Several studies 

focused on the EEG analysis to define a system that 

automatically recognizes critical events. Indeed, 

investigating the EEG signal allows obtaining higher 

performances than other electrophysiological and clinical 

signals. ECG- and video-based systems have also been 

investigated: the former is based on evaluating the seizures 

influence on the heart rate, the latter on the recognition and 

characterization of “unusual” movements. It has been shown 

that the technological progress and the development of 

signal processing techniques allowed defining possible 

support tools for the medical staff, which could improve 

neonatal seizure detection in clinical scenarios. Moreover, it 

has been shown that the EEG, ECG and video signals 

provide complementary information. Therefore, a 

multimodal approach that exploits and combines the results 

of the three approaches could be investigated in future. NSD 

systems able to automatically characterize the etiologies 

investigating the available electrophysiological and clinical 

signals could be a valuable support for clinicians.
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