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Abstract: The Italian peninsula was host to a strong history of migration processes that shaped its
genomic variability since prehistoric times. During the Metal Age, Sicily and Southern Italy were
the protagonists of intense trade networks and settlements along the Mediterranean. Nonetheless,
ancient DNA studies in Southern Italy are, at present, still limited to prehistoric and Roman Apulia.
Here, we present the first mitogenomes from a Middle Bronze Age cave burial in Calabria to address
this knowledge gap. We adopted a hybridization capture approach, which enabled the recovery
of one complete and one partial mitochondrial genome. Phylogenetic analysis assigned these two
individuals to the H1e and H5 subhaplogroups, respectively. This preliminary phylogenetic analysis
supports affinities with coeval Sicilian populations, along with Linearbandkeramik and Bell Beaker
cultures maternal lineages from Central Europe and Iberia. Our work represents a starting point
which contributes to the comprehension of migrations and population dynamics in Southern Italy,
and highlights this knowledge gap yet to be filled by genomic studies.

Keywords: ancient DNA; paleogenomics; human; mitochondrial DNA; archaeology; Italy; Bronze Age

1. Introduction

The genomic variability within the Italian Peninsula is greater today than in any
European country, which may suggest that this area played a pivotal role in the peopling
of the Mediterranean in the past [1]. Genetic studies based on autosomal and uniparental
markers [2–4], genome-wide [1,5–9] and whole genome approaches [10] have dissected
the clinal variability of the present Italian population, revealing multilayered patterns of
prehistorical and historical processes of migration and admixture that occurred throughout
the Peninsula. In particular, these studies provided evidence of an early divergence of
Italian groups dating back to the Late Glacial period, with further differentiation attributed
to Neolithic and Bronze Age migrations [10].
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Modern Southern Italian populations have been extensively studied [4,6,7,10,11],
highlighting a long series of migration processes and cultural exchanges that influenced
this area. High frequencies of maternal lineages from the Caucasus and the Levant were
retrieved, which predate the Neolithic and may support the role of this area as a refugium
during the Last Glacial Maximum (LGM) [6,12]. A wide genetic Mediterranean “continuum”
was identified, which links Southern Italy with Crete and the Caucasus following Neolithic
and Bronze Age migrations from the Near East. In addition, during the Bronze Age, a
non-steppe contribution derived from the Caucasus was detected [7,10].

The Metal Age, in particular, deeply characterized the complex population processes
of protohistoric Italy, leaving clear signatures in modern populations [13]. Territorialization
spread in both Tyrrhenian and Adriatic populations during the Bronze Age, and dynamism
was further promoted following novel social structuring [14]. The emergence of elite groups
during the second millennium BC [15] resulted in community organization pivoted around
kinship and inherited rank in Southern communities [16]. The Cosenza province (central
Calabria) played an important role in the landscape of prehistoric studies of Southern Italy
due to this structuring. Evidence of consistent mining activities nearby the Sila Plateau
allowed protohistoric Calabria to establish itself as one of the fundamental territories for
metallurgy in Italy, and to connect this area in a strong exchange relationship within the
lower Tyrrhenian coastal communities [17]. The presence of a Protoapennine culture in
many Middle Bronze Age (MBA) Calabrian contexts, such as Broglio di Trebisacce [18], was
suggested by Ardesia [19] to be the “Calabrian” Rodì-Tindari-Vallelunga (RTV) horizon,
thus underlining the strong interactions and shared cultural patterns between the southern
areas and the western islands of the peninsula. Nevertheless, a deep analysis of funerary
contexts from protohistoric Southern Italy is essential. The presence of numerous cave sites
that have not yet been investigated in the area of Tyrrhenian Calabria prompt the need
for a deeper knowledge of the ancient communities of Southern Italy. The northwestern
sector of Calabria is rich in cave sites, with over two hundred caves present along the
Tyrrhenian coast and inland, such as Grotte di Cirella in Diamante, Grotte di Torre Talao
in Scalea, Grotta della Madonna in Praia a Mare, Grotta del Romito in Papasidero, Grotte
di Sant’Angelo in Cassano allo Ionio and Grotta di Donna Marsilia [20]. Therefore, paleo-
genetic studies from this area, in particular, are warranted to investigate early population
dynamics. To complement genetic studies on modern populations, ancient DNA (aDNA)
studies have the potential to provide precise insights into early heritage and migrations,
coupled with sociocultural aspects, of past societies. However, aDNA studies in Southern
Italy are limited to prehistoric [21,22] and Roman [23] Apulia. Hence, we aimed here to
produce mitogenome data on Bronze Age communities from Calabria, in Southern Italy,
to provide new information on population dynamics from this understudied area and to
contextualize them with archaeological and anthropological evidence. To achieve this, we
explored the remains of a MBA cave burial in Tyrrhenian Calabria, Grotta della Monaca
(Figure 1).
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Figure 1. Location of Grotta della Monaca. The entrance of the cave is marked by a yellow circle on the bottom right image. 
The scheme of the cave with the m5v area is represented at the top right. 

2. Materials and Methods 
2.1. Archaeological Context and Human Remains 

Grotta della Monaca is a karstic cave located in Sant’Agata di Esaro at 600 m above 
sea level, close to the Esaro river (Cosenza, northwestern Calabria, Southern Italy) (Figure 
1). The cave has a long human history [20,24,25] due to mining activities that began during 
the Upper Paleolithic period and intensified during the Late Neolithic/Early Chalcolithic 
period [26]. The cave partially changed its role during the MBA, when the deepest areas 
were used as burial grounds [27,28]. Archaeological investigations conducted between 
2003 and 2010 recovered a mass grave with numerous human skeletal remains in a niche 
of the area of Cunicoli terminali (hereafter m5v). Collective burials in a natural cave were 
a common and uninterrupted ritual in protohistoric Southern Italy, particularly in the 
coastal sites facing the Tyrrhenian Sea [29]. From the Early Bronze Age (EBA), this 
funerary practice was reserved for high-status individuals [30]. Fragmented pottery and 
funerary artifacts evidence a link between the burials in Grotta della Monaca and the so-
called Apennine culture [31], which was an archaeological complex that was widespread 
in the Italian Peninsula and Sicily during the second half of the second millennium BC. 
The remains found in the m5v context represent at least 24 different commingled 
individuals (File S1 and Table S1), and were in a poor state of preservation due to several 
taphonomic factors [32]. The osteological remains buried in m5v of Grotta della Monaca 
were examined by traditional anthropological methodologies at the Laboratory of 
Archaeo-Anthropology and Forensic Anthropology of the University of Ferrara (See File 
S1 for details about the methods used and the anthropological data acquired). 

Radiocarbon analysis of the human bone samples was conducted at CEDAD (Center 
of Applied Physics, Dating and Diagnostics, University of Salento, Lecce, Italy). Six out of 
seven samples were successfully dated and were assigned to the MBA period. Calibrated 
and uncalibrated dates are summarized in Table S2.  

Figure 1. Location of Grotta della Monaca. The entrance of the cave is marked by a yellow circle on the bottom right image.
The scheme of the cave with the m5v area is represented at the top right.

2. Materials and Methods
2.1. Archaeological Context and Human Remains

Grotta della Monaca is a karstic cave located in Sant’Agata di Esaro at 600 m above sea
level, close to the Esaro river (Cosenza, northwestern Calabria, Southern Italy) (Figure 1).
The cave has a long human history [20,24,25] due to mining activities that began during
the Upper Paleolithic period and intensified during the Late Neolithic/Early Chalcolithic
period [26]. The cave partially changed its role during the MBA, when the deepest areas
were used as burial grounds [27,28]. Archaeological investigations conducted between
2003 and 2010 recovered a mass grave with numerous human skeletal remains in a niche
of the area of Cunicoli terminali (hereafter m5v). Collective burials in a natural cave were
a common and uninterrupted ritual in protohistoric Southern Italy, particularly in the
coastal sites facing the Tyrrhenian Sea [29]. From the Early Bronze Age (EBA), this funerary
practice was reserved for high-status individuals [30]. Fragmented pottery and funerary
artifacts evidence a link between the burials in Grotta della Monaca and the so-called
Apennine culture [31], which was an archaeological complex that was widespread in the
Italian Peninsula and Sicily during the second half of the second millennium BC. The
remains found in the m5v context represent at least 24 different commingled individuals
(File S1 and Table S1), and were in a poor state of preservation due to several taphonomic
factors [32]. The osteological remains buried in m5v of Grotta della Monaca were examined
by traditional anthropological methodologies at the Laboratory of Archaeo-Anthropology
and Forensic Anthropology of the University of Ferrara (See File S1 for details about the
methods used and the anthropological data acquired).

Radiocarbon analysis of the human bone samples was conducted at CEDAD (Center
of Applied Physics, Dating and Diagnostics, University of Salento, Lecce, Italy). Six out of
seven samples were successfully dated and were assigned to the MBA period. Calibrated
and uncalibrated dates are summarized in Table S2.
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2.2. Experimental Procedure

Ancient DNA analysis was performed on seven individuals (Table S3 and Figure S1)
from the m5v mass grave. Due to the poor preservation of the remains, the only petrous
bone available (preferred because it is DNA-rich [33,34]) was associated with individual 24.
Thus, four shafts of long bones (GdM5, GdM6, GdM7, GdM12) and two cranial fragments
(GdM11, GdM14) were sampled along with the petrous bone (GdM24). The samples were
selected based on the preservation state, and took into account the bone elements used to
calculate the minimum number of individuals (MNI), to make sure we sampled different
individuals. Analysis was conducted in the ancient DNA Laboratory (aDNA Lab) of
the Department of Cultural Heritage, University of Bologna (Ravenna, Italy). Post-PCR
procedures were performed in a separate laboratory, and negative control was carried out
alongside each experiment to confirm the absence of intra-laboratory contamination. All
materials and instruments used were DNA-free and decontaminated before use with bleach
and/or DNA ExitusPlus™ (AppliChem GmbH, Darmstadt, Germany) and researchers
followed high-sterility protocols according to ancient DNA authenticity criteria [35–38].

Specimens were first cleaned with sterile scalpels to remove sediments and calcareous
concretions, and 1–2 mm of the outer layer of bones was abraded with circular drilling discs.
Bones were decontaminated for 1 h under UV irradiation, and 140 to 340 mg fragments of
the bone specimens were pulverized, while 255 mg of bone powder was collected from
petrous bone by directly drilling the densest region of the cochlea.

2.3. Ancient DNA Extraction

DNA from the samples was extracted following a two-day silica spin-column proto-
col [39,40] with slight modifications, as in Cilli et al. [41]. Samples were digested in a rotator
at 37 ◦C overnight in 3000 µL solution composed of 2700 µL EDTA, 37.5 µL Proteinase K
and H2O. Supernatant was centrifuged and transferred with PB binding buffer (Qiagen,
Hilden, Germany) into silica columns (Roche-High Pure Viral Nucleic Acid Large Volume
Kit, Roche, Basel, Switzerland). After two washing steps with PE buffer (Qiagen), DNA
was eluted in 50 µL of EB buffer (Qiagen).

2.4. Library Preparation and Enrichment

Double-stranded library preparation was performed according to Carøe et al. [42].
Libraries were indexed with Illumina sequencing adapters and no enzymatic damage
repair was carried out in order to preserve patterns of ancient DNA fragments. A qPCR
quantification was performed prior to indexing, in order to assign correct amplification
cycles to each library and to reduce the formation of heteroduplex structures. A total
volume of 30 µL from each library was split in 2/3 aliquots and used for indexing PCR.
PCR indexing products were purified with MinElute PCR Purification kit (Qiagen), eluted
in EBT buffer (10 mM Tris-Cl, pH 8.5 and 0.05% Tween-20) and analyzed on Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) to produce qualitative and quantitative
estimations of the libraries.

Indexed libraries were equimolarly pooled to a total of maximum 2 µg and enriched
for human mitochondrial DNA (mtDNA) for the bead-capture method using long-range
PCR products, according to Maricic et al. [43]. The captured libraries were quantified using
Agilent 2100 Bioanalyzer and sequenced on Illumina MiSeq platform at the Advanced
Genomic Centre of the University of Florence. The sequencing was run as paired-end with
75 × 2 + 8 + 8 cycles.

2.5. Bioinformatic Analysis

Raw reads were first visualized with FastQC [44], and adapter sequences were filtered
using AdapterRemoval v2.3.0 [45]. Fragments shorter than 30 bp and with a ‘minquality <
25’ (PHRED values) were discarded, and paired-end reads with overlaps of at least 10 bp
were collapsed into single sequences. Filtered reads were mapped against the revised
Cambridge Reference Sequence (rCRS, NC_012920.1) [46] with BWA v.0.7.17-r188 [47].
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Command ‘aln’ was set with -n number to 0.01, seed-length option deactivated and -o
value at 3 for tolerating a higher number of gaps in the alignment. The generated .sai file
was aligned against the reference fasta file with ‘samse’ command, and then converted to
.bam files and sorted by leftmost coordinate using SAMtools v1.10 [48] ‘view’ and ‘sort’
commands. The Picard tool MarkDuplicates [49] was used on the .bam files to mark and
remove PCR duplicates, and reads were locally realigned through Genome Analysis Toolkit
tools’ [50] ‘RealignerTargetCreator’ and ‘IndelRealigner’ commands, to minimize the number
of mismatches around the indels that may be easily mistaken as SNPs.

Data authenticity and post-mortem damage were investigated through MapDamage
v2.0.8 [51] and a new rescaled .bam file was generated with the ‘rescale’ option, that down-
scales the quality scores at positions likely affected by damage patterns. Damage patterns
at the 5′ and 3′ ends of the reads were also computed with contDeam, a tool provided
within the Schmutzi package [52], and present-day human contamination estimates were
performed with Schmutzi, using a non-redundant database of 256 mitogenomes available
in the software package. Results are summarized in Table S3. Mitochondrial genomes were
called using Schmutzi, and variants were then investigated using GATK ‘HaplotypeCaller’
and filtered with ‘VariantFiltration’ command, storing only detected variants with quality
‘QUAL20’ (≥20) and depth of coverage ‘COV3’ (≥3). Diagnostic variants were checked
and verified with snpToolkit v2.2.3 [53], and only variants with ratio −r 0.9 were used to
determine the haplogroup.

2.6. Phylogenetic Analyses

Phylogenetic analyses were performed on the complete mitogenome of individual
GdM24, while GdM7 was only analyzed for haplogroup assignment. The other samples
were not included due to inconsistencies in the data (Table S3). The mtDNA haplogroup
assignment was predicted using both Haplofind [54] and HaploGrep [55] software, and
checked manually according to PhyloTree build 17 [56]. The consensus sequence obtained
for GdM24 was then compared to a reference dataset of 97 ancient individuals extracted
from the literature (Table S4). In addition, 13 published mitogenomes from ancient African
and European samples that supply basal lineage information for phylogenetic reconstruc-
tion were included in the analyses (Table S5). The RSRS and rCRS reference sequences
were also added for comparison purposes in the Network analysis.

Sequence alignment was performed with the DNA Alignment software [57] and
was visually confirmed. The poly-C and AC-indels at 303–315, 515–524, 573–576 and
16,180–16,193 positions, as well as the nucleotide position 16,519, were excluded from
phylogenetic analyses [58]. A Median Joining Network was calculated by using Network
v.10.2 [59] with no pre- or post-processing steps. Furthermore, a phylogenetic tree, based
on the same multi-alignment dataset after retaining unique sequences, was reconstructed
with BEAST v1.8.0 [60] by using reference ancient dated samples as calibration points
(Table S5). The best substitution model for the dataset was tested with Mega 5.2 [61],
resulting in the Hasegawa–Kishino–Yano model with fixed fraction of invariable sites and
gamma distributed rates (HKY + I + G). We ran BEAST analysis with 200,000,000 MCMC
generations, and sampled every 2000 iterations by testing different combinations of clock
models (i.e., Strict clock vs. Uncorrelated Relaxed Lognormal-ULN clock) and tree models
(i.e., Constant Population Size vs. Bayesian Skyline). Chain convergence was assessed with
Tracer v 1.6, resulting in Effective Sampling Size (ESS) values higher than 200 for all the
parameters and in all the tested model combinations. Evaluating the maximum likelihood
estimates (MLE) for the four combinations of clock and tree models further revealed the
best support for the Relaxed ULN clock model and Bayesian Skyline tree model; therefore,
this combination was chosen for the final step of analysis. The Maximum Clade Credibility
tree was calculated using TreeAnnotator v1.8.0 by discarding the first 20% of iterations as
burn-in. The resulting phylogenetic tree was graphically represented with FigTree [62].
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3. Results

Six human bone fragments and one petrous bone from the m5v burial area of Grotta
della Monaca were analyzed for ancient mtDNA on the Illumina MiSeq platform. Five
out of seven samples contained low concentrations of DNA (Table S3) and were not
further analyzed. For the sample GdM24, we obtained 10,471 mapping reads with quality
≥30, which resulted in a mean coverage of 34X, and 100% of positions covered at least
3-fold. GdM7 contained 550 reads mapped with quality ≥30, resulting in a mean coverage
of 2X, and 91% of positions covered at least 1-fold. Analysis of the read datasets with
MapDamage v2.0.8 revealed miscoding lesion distribution patterns typical of ancient DNA
in both samples (Figure S2). The presence of positions’ specific substitutions increases at
the ends of the reads, with an average frequency of 28.67% (GdM7) and 45.46% (GdM24) of
C-to-T substitution at the first base at 5′, and similar average frequency of 33.80% (GdM7)
and 42.85% (GdM24) G-to-A substitution at 3′ ends. The average fragment length is around
56.49 for GdM24 and 77.33 for GdM7. These data are consistent with the antiquity of the
samples and the environmental conditions of the site.

The GdM24 mitochondrial genome was assigned with 85.63% accuracy (Haplogrep)
and 1.0 score (Haplofind) to the H1e mitochondrial subclade, based on the relevance of
the eleven diagnostic variants detected (263G, 1438G, 3010A, 4769G, 5460A, 6779G, 8860G,
15326G, 16172C, 16224C, 16519C). Regarding GdM7, haplogroup assignment was inferred
on the partial sequence, evaluating the presence of diagnostic variants (263G, 1438G, 2626C,
4769G, 8860G, 16304C, 16310A). This appears to belong to the mitochondrial subclade
H5, with 79.95% accuracy on Haplogrep and 1.0 quality score on Haplofind, respectively.
However, due to the low coverage and incompleteness of the mitogenome, GdM7 was not
included in the subsequent phylogenetic analysis.

Phylogenetic reconstruction performed with both Median Joining Network (MJN) and
Bayesian Evolutionary Analysis of Sampling Trees (BEAST) confirmed the attribution of
GdM24 to the mtDNA haplogroup H1e. Accordingly, the sample indeed clusters with the
other H1e samples extracted from the literature, within a clade that splits up after H1 and
the other basal-considered lineages (Figures 2 and 3). A star-like pattern characterized both
H1 and H1e haplotypes in the Network analysis (Figure 2). In particular, the GdM24 sample
branches, along with two Sicilian Bronze Age samples (I3876 and I7774 [63]) from a median
vector, originated from the H1e basal node which contains samples from Middle/Late
Neolithic and Bronze Age cultures from Central Europe, and a Bell Beaker sample from
Southern Italy (I4930 [63]). The same clustering pattern was consistently confirmed in the
BEAST reconstructed phylogenetic tree (Figure 3), with the branch leading to the GdM24
sequence, particularly, dating at 4125 years BP (95% HPD: 2301–6332).
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4. Discussion

Excluding Sicily and Sardinia that experienced different processes of migration and
admixture and were covered by several paleogenomic studies [63–69], Bronze Age Southern
Italy has not been studied with an aDNA approach. In this study we attempted analysis of
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the mitochondrial DNA variation of seven MBA samples from Grotta della Monaca cave,
located in Calabria, Southern Italy, with the aim of filling the gap in the contribution of
ancient genetic data to the population dynamics of this peculiar area. This is of particular
interest and importance considering the key role that the Italian Peninsula played in past
demographic processes, as evidenced by the wide variability in genomic diversity in
present-day Italian populations [1].

Despite the poor preservation of the remains, the hybridization capture method
allowed us to retrieve and reconstruct the complete mitochondrial genome of individual
GdM24, and partially reconstruct the mitochondrial genome of individual GdM7. These
are the first attested ancient molecular data from the Calabria region, as highlighted by
a recent review of the state-of-the-art European paleogenomic data [70]. Unsurprisingly,
GdM24 was the only sample for which the petrous bone was available from this burial area.
Previous studies suggest that this skeletal element preserves the endogenous DNA better
than other bones or tissues [33,71]. Thus, this type of sample is confirmed as fundamental
in the recovery of ancient endogenous DNA from particularly difficult contexts, such as
those at low latitudes.

The two samples for which we obtained complete mitogenomes are both assigned
to mitochondrial macrohaplogroup H. Nowadays, this is the most widespread in Europe,
encompassing over 40% of the total mtDNA variation, and could be considered as the
quintessential Eurasiatic marker. Previous studies have shown how haplogroup H arrived
in Europe from the Near East before LGM (∼22,000 BP), survived in south western glacial
refugia and then colonized Central and Northern Europe [72,73]. In particular, GdM24 was
assigned to mitochondrial sublineage H1e, and GdM7 to H5.

Among the subclades, H1 is the most frequent in modern-day Europeans, followed
by H3 and H5 [74]. When compared to other present-day European and Middle Eastern
populations, haplogroup H1 shows frequency peaks in the Franco-Cantabrian region,
declining from the west towards Eastern and Southern Europe [75]. Taking into account
both the distribution and the coalescence age of this subhaplogroup (9.3–12.8 kya; [76]),
it has been hypothesized that it could be correlated with a Late Glacial re-expansion of
populations from the Franco-Iberian refugial areas at the end of the Ice Age, from ∼15 kya,
or at the end of the Younger Dryas, ∼11.5 kya [77–81]. Along with H3, H1 subclade was
also proposed as a marker for a Bell Beaker complex expansion originating in Iberia [72];
however, a recent genome-wide study on ancient genomes does not support migration as an
important mechanism of the spread of this culture between Iberia and Central Europe [66].
Ancient DNA evidence also highlighted the earliest presence of the H1e subhaplogroup
in Neolithic samples from Hungary (∼7000 BP) [82] and Germany (∼6100 BP) [72]. In
Italy, the H1e subhaplogroup was retrieved in Sicily from two Middle Neolithic samples
(∼6800 BP), an Eneolithic (∼4700 BP) and an EBA sample (∼4000 BP) [63]. In the present
study, phylogenetic analyses of GdM24 highlighted the proximity of this sample, among
others, with two Sicilian Bronze Age samples (I3876 and I7774 [63]) recovered in Marcita
and Contrada Paolina necropolises, respectively.

Regarding H5, this subhaplogroup shows a coalescence time of ∼10.7–17.1 kya [76].
There is no agreement about the place of origin of H5; hypotheses have been made about
eastern Mediterranean [74,80] or south-west European origin, where it has expanded after
the Ice Age, with several possible dispersal routes [76]. However, the dynamics that led
to the diffusion of this haplogroup are not yet clearly understood. The oldest evidence
of H5 lineage was retrieved in Anatolia (∼8200 BP) [83] and Bulgaria (∼7600 BP) [84]. A
migration with a center of origin in the eastern Mediterranean, that would have carried
this lineage into Italy and, to a lesser extent, the western Mediterranean, until northern and
western Iberia, has been hypothesized [80].

The mitochondrial haplogroups found in present-day Calabria ([7], personal data)
include all of the haplogroups that have been found in the ancient individuals analyzed here
(H1e and H5). None of these are unique to the ancient Southern Italian populations and,
therefore, cannot be taken as indisputable proof of local population continuity. Nonetheless,
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they deserve to be more deeply analyzed at the nuclear level to obtain more information
about the ancestry and migration patterns of this area.

In the neighboring Sicily, past population dynamics are better understood due to
sampling conducted in two projects [63,66] that detected ancestry typical of early European
farmers as a mixture of Anatolia Neolithic and Western Hunter-Gatherer, and no evidence
of steppe ancestry in Middle Neolithic samples. They found evidence of steppe ancestry in
the EBA, by around 2200 BC, with the forming of a clade with EBA Mallorca, suggesting
that the population may harbor ancestry most plausibly from Iberia, with a scenario of
west-to-east gene flow. Fernandes et al. [63] retrieved Iranian-related ancestry in Sicily,
from the MBA (1800–1500 BC) and Late Bronze Age (LBA), which was widespread among
the Aegean by the MBA, along with the Mycenaean cultural expansion or earlier.

The active role of Tyrrhenian Calabria in cultural connections between eastern Sicily,
the Aeolian Islands and the Adriatic environments in protohistoric times have been high-
lighted [85–89]. These connections are demonstrated by the chrono-typological study
of pottery, and reflect strong relations between central-southern Calabria, the Aeolian
Islands and the northern part of Sicily [90]. However, the so-called Palma Campania facies
that identifies the MBA contexts of southwestern Italy still generates uncertainties, espe-
cially in Tyrrhenian Calabria, due to the lack of in-depth knowledge of the archaeological
contexts, and the absence of ancient genomic data. In light of this evidence, our data
represents a baseline for a deeper comprehension of the population pattern of prehistoric
and protohistoric Southern Italy.

In the area of Tyrrhenian Calabria, the presence of over two hundred cave sites
with attested past human frequentation, not yet investigated, prompts the need for a
deeper knowledge of the ancient communities of Southern Italy. Future studies, focused
on genome-wide data from this peculiar area, could clarify migratory and demographic
processes that took place in the prehistory and protohistory of the Southern European
continent, provide information about the ancestry of individuals through time and allow
the study of intrinsic differences in migratory behavior related to sex-biased processes,
adaptation and admixture.
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