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Abstract

Auranofin is an oral gold(I) compound, initially developed for

the treatment of rheumatoid arthritis. Currently, Auranofin is

under investigation for oncological application within a drug

repurposing plan due to the relevant antineoplastic activity

observed both in vitro and in vivo tumor models. In this review,

we analysed studies in which Auranofin was used as a single

drug or in combination with other molecules to enhance their

anticancer activity or to overcome chemoresistance. The ana-

lysis of different targets/pathways affected by this drug in

different cancer types has allowed us to highlight several
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interesting targets and effects of Auranofin besides the already

well‐known inhibition of thioredoxin reductase. Among these

targets, inhibitory‐κB kinase, deubiquitinates, protein kinase C

iota have been frequently suggested. To rationalize the effects

of Auranofin by a system biology‐like approach, we exploited

transcriptomic data obtained from a wide range of cell models,

extrapolating the data deposited in the Connectivity Maps

website and we attempted to provide a general conclusion and

discussed the major points that need further investigation.

K E YWORD S

Auranofin, cancer, drug resistance, NF‐kB inhibition, proteasome
inhibition, thioredoxin reductase inhibition

1 | INTRODUCTION

Auranofin (AF) is a linear gold(I) complex bearing triethylphosphine and thioglucose tetraacetate as ligands

(Figure 1). AF has been adopted in clinical use since 1985 for the treatment of rheumatoid arthritis. It is an orally

administered drug and is considered safe for human use due to the well‐known toxicity profile. After oral

administration, 15%–25% of the drug can be detected in plasma and the serum albumin has been found to carry

about 80%–95% of gold circulating in the blood.1,2 The pharmacokinetics of AF has been extensively described by

Chaffman et al.3 The mean pick of AF concentration, following a single 6mg dose, was attained after 102–120min

and it ranged between of 0.066 and 0.23 µg/ml (corresponding to a molar concentration of 0.1–0.34 µM). Steady‐

state plasma gold concentrations following at least 12 weeks of 2–9mg daily dose of AF were 0.20–1.0 µg/ml,

respectively corresponding to 0.3–1.5 µM. More recently in a Phase I human study, where AF was used as an

antiparasitic agent at the dose of 7mg daily (dose recommended in rheumatoid arthritis therapy), gold level in

plasma of treated subjects for over a week reached 1–1.5 µM.4 The triethyl‐phosphine ligand is lipophilic, con-

ferring membrane solubility to the complex. Once the compound has entered into the cells, the thiol ligand reacts

with thiol and selenol groups, with which it forms stable and irreversible adducts.5 In mammals most of the effects

caused by this drug are thought to be related to its inhibitory activity against the thioredoxin reductase enzymes:

TrxR1 and TrxR2.6–10 The thioredoxin reductase enzymes play an important role in multiple intracellular processes

including DNA synthesis, transcriptional regulation, cell growth and resistance to oxidative agents that induce

oxidative stress and apoptosis. An increase of the thioredoxin reductase/thioredoxin (TrxR/Trx) system has been

reported in many tumors compared to normal tissues and the ability of certain cancer cells to maintain a highly

reduced intracellular environment is correlated with tumor aggressiveness and drug resistance. Furthermore, high

expression level of TrxR/Trx system directly correlates with poor prognosis in a variety of cancers including lung

F IGURE 1 Chemical structure of Auranofin
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cancer11 and breast cancer.12 Indeed, this system plays a pivotal role in maintaining the reduced and active state of

several proteins including phosphatase and tensin homolog (PTEN) that negatively regulates phosphatidylinositol‐3‐

kinase/AKT Serine/Threonine Kinase 1 (PI3K/Akt) pathway which is positively involved cell survival.13 Several

elegant reviews have already discussed the role of TrxR/Trx system under physiological and pathological

conditions.14,15 Other areas of research for the antiproliferative activity of AF focus on the inhibition of signal

transducer and activator of transcription 3 (STAT3),16–18 nuclear factor‐kappa B (NF‐κB)18,19 and protein kinase

C iota (PKCiota)20,21 signaling. Furthermore, proteasome inhibition and activation of forkhead box O3 (FOXO3)

were also reported as possible mechanisms involved in AF cytotoxicity.22 Based on this evidence, AF is today object

of important drug repurposing plans in anticancer therapy with encouraging results, as summarized in this review. In

this context, results obtained by research studies have already been translated into clinical trials to develop new

alternative therapeutic strategies. Indeed, despite enormous advances in cancer research and treatment, there are

still some types of cancer for which there is no specific therapy and hence, chemotherapy and radiation therapy

remain pillars of cancer treatment. Furthermore, in these cases patients often respond only partially to therapy and

develop resistance over long‐term treatment. Hence, the development of combination therapies may be useful to

eradicate cancer cells that are unresponsive to monotherapy. Up to now, Phase I and II studies on chronic lym-

phocytic leukemia (NCT01419691) and a pilot study on ovarian cancer (NCT01747798) have been completed,

while other clinical trials with AF as monotherapy or in combination with other drugs are ongoing on glioblastoma

(NCT02770378), on lung cancer (NCT01737502), on ovarian cancer (NCT03456700). AF is also under investigation

for use in infective diseases (NCT02736968 for Giardia protozoa, NCT02961829 for HIV, and NCT02968927 for

tuberculosis).

In this review we have reviewed articles that use AF (alone or in combination with other molecules) as an

anticancer drug. We focused first on the effect of AF on different types of cancer cells and/or animal models and

then we analysed and integrated the results by a system biology‐like approach, with the data available on

Connectivity Map website (https://clue.io/cmap). Finally, we attempted to extrapolate general conclusion and

discussed the major points that need further investigation. In Table 1 we reported AF effect and mechanism of

action on different cancer models (cell lines and/or animal model). Most of the articles are commented on

throughout the text.

The bibliographic research was limited to studies published from 1980 to 2020 and found in PubMed and

Google Scholar databases. Keywords used to retrieve documents were “Auranofin and cancer.” In PubMed the

option “Best match” was applied. The word “auranofin” had to be cited in the title, in the abstract or among

keywords. Studies performed with auranofin analogues, but not auranofin, were not included.

2 | AF REPURPOSING IN CANCER THERAPY

2.1 | Blood cancers

AF has been shown to exert a significant anticancer activity on several different types of blood cancer cells, namely

myeloma, leukemia, and lymphoma. Indeed, as reported in the introduction, AF is currently in phase II clinical trials

for the treatment of chronic lymphocytic leukemia.

2.1.1 | Multiple myeloma (MM)

MM is the second most common hematological malignancy after non‐Hodgkin's lymphoma, and is characterized by

the presence of differentiated plasma cells (PCs) in the bone marrow.23 Standard therapies for MM are based on a

combination of proteasome inhibitors (bortezomib and carfilzomib) and immunomodulatory agents (thalidomide and
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lenalidomide).24–26 However, due to acquired drug resistance and the heterogeneity of myeloma cells, MM remains

incurable. Therefore, new therapeutic approaches are needed to overcome drug resistance and improve clinical

outcomes in the treatment of MM.

The first study dealing with the potential use of AF to treat MM was carried out by Nakaya et al.18 They

selected this gold(I) compound based on its well‐known anti‐inflammatory and immunosuppressive properties

through the inactivation of NF‐κB signaling.19,27 It has been reported that chemoresistance in MM is associated

with constitutive activation of NF‐κB and tyrosine‐protein kinase Janus Kinase 2 (JAK2)/STAT3 signaling.28 Con-

sequently, Nakaya et al. examined whether AF could exert anticancer activity through the inhibition of these

signaling pathways. They carried out the analysis on the human myeloma cell line U266 confirming some of the

experiments also in the RPMI8226 and IM‐9 cell lines as well as in cells isolated from bone marrow samples of three

patients. The results pointed out the ability of 0.05 µM AF, after 24 h of treatment, to arrest cell cycle in subG1

phase followed by apoptosis via both extrinsic and intrinsic pathways. Apoptosis was achieved by the inhibition of

interleukin‐6 (IL‐6) induced‐JAK/STAT3 pathway and the downregulation of the antiapoptotic induced myeloid

leukemia cell differentiation protein (Mcl‐1), one of the key proteins for survival of myeloma cells.29,30 Furthermore,

Nakaya et al. demonstrated that the combinatory treatment with 0.05 µM AF and the specific NF‐κB inhibitor

SN‐50 potentiates the downregulation of Mcl‐1 and consequently the apoptotic effect. Raninga et al. showed for

the first time a positive correlation between myeloma growth, chemoresistance and highTrx1 and TrxR1 expression

levels.31 They used AF as a selective inhibitor of TrxR1 and the compound PX‐12 to target Trx1. AF (1–4 µM) and

PX‐12 treatment disrupted intracellular redox homeostasis in myeloma cells (RPMI8226 and U266) leading to cell

growth arrest and activation of the apoptotic pathway. Therefore, they proposed to consider the inhibition of Trx1

and TrxR1 as a potential novel strategy to treat drug‐resistant MM. In a subsequent study Raninga et al. sought to

analyze in more depth the role of TrxR1 in the acquisition of bortezomib (first proteasome inhibitor to be approved

by the FDA) resistance in MM.32 It is known that hypoxia is a key factor in the acquisition of bortezomib resistance

even if the molecular mechanisms involved are still to be elucidated.33,34 The authors first showed, by using the

gene expression data set (GSE4581), that higher TrxR1 levels were associated to acquired drug resistance and to

decreased myeloma patient survival. Second, they found an overexpression of TrxR1 in hypoxic myeloma cells

RPMI8226 and U266 resistant to bortezomib, suggesting a possible involvement of this enzyme in the hypoxia‐

induced bortezomib resistance. Thus, they used AF (1–4 µM) as a selectiveTrxR1 inhibitor in hypoxic myeloma cells.

The results pointed out that TrxR1 inhibition overcame hypoxia‐induced bortezomib resistance. Accordingly, they

demonstrated that hypoxia increased NF‐κB subunit p65 nuclear protein levels and that AF‐induced TrxR1

inhibition, decreased both NF‐κB p65 protein and messenger RNA (mRNA) levels as well as mRNA levels of

downstream NF‐κB regulated genes, Survivin and Cyclin D1. Based on these data, the authors proposed TrxR1

inhibitors, such as AF, as single drug or in combination therapy to bypass bortezomib resistance and to increase

myeloma patient survival. In the same year Raninga and colleagues investigated a possible crosstalk between TrxR

and heme oxygenase‐1 (HO‐1) in multiple myeloma cell lines RPMI8226, U266, and OPM2, aiming to demonstrate

the need to target multiple antioxidant systems.35 HO‐1 participates in hemoglobin degradation and catalyzes the

conversion of intracellular heme into biliverdin, free iron, and carbon monoxide.36 In turn, biliverdin is reduced by

biliverdin reductase to bilirubin which has anti‐inflammatory, antioxidative, and antiapoptosis properties.37 HO‐1

expression and activity has been found increased in several types of cancer implying its potential involvement in

chemoresistance. Moreover, HO‐1 expression is regulated by many transcription factors including NF‐κB38 and

nuclear factor erythroid 2‐related factor 2 (Nrf2)39 but its regulation in myeloma cells is unclear. The obtained

results pointed out that TrxR inhibition by a sublethal concentration of AF (1 µM) induced HO‐1 expression through

the Nrf2 signaling pathway without leading to apoptosis. The study demonstrated that this increase was a com-

pensatory effect to the decrease of TrxR activity and protected cells from undergoing apoptosis. Indeed, only a

combinatory use of HO‐1 inhibitor Zinc Protoporphyrin IX (ZnPP IX) and a sublethal AF dose triggered apoptosis in

myeloma cells. The idea of a combinatory use of AF in chemoresistant MM treatment was evaluated by Tessoulin

and colleagues.40 The aim of the study was to overcome chemoresistance in p53 or Bax/Bak mutated myeloma cells
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by targeting oxidative stress. Prima‐1Met (APR‐246) is a compound able to interact with mutated p53 protein

restoring its tumor‐suppressor function and triggering cell death in various cancer types. Since Prima‐1Met has

been shown to target TrxR1,41 the authors investigated whether AF could display the same anticancer activity on a

panel of 18 myeloma cell lines and in 10 primary cells from patients with multiple myeloma or plasma cell leukemia.

The results confirmed the ability of both AF (0.4 µM) and Prima‐1Met to overcome resistance to apoptosis in

p53 mutated MM cells inducing ROS dependent cell death. Besides, both compounds showed antiproliferative

activity in myeloma cells resistant to the Bcl2‐specific BH3‐mimetic venetoclax, inducing apoptosis in a

Bak/Bax‐independent manner.

The in vivo anticancer activity of AF was assessed in a human RPMI8226 xenograft model by Sze et al.42 They

demonstrated that AF was able to arrest tumor growth and induce apoptosis through TrxR inhibition.

Overall, these studies have strengthened the idea of a possible clinical use of AF. Indeed, very recently, AF, at a

concentration ranging from 0.01 to 10 µM, was evaluated by Bonolo de Campos et al. in a “Direct Drug” screening

with other 76 FDA‐approved oncology drugs and emerging therapeutics in 25 MM and 15 non‐Hodgkin's

lymphoma cell lines and in 113 primary MM samples.43 The aim of the study was to correlate the drug sensitivities

to clinical phenotype, genetic mutation, and transcriptional profiles to favor individualized therapeutic approaches

in MM and to support clinical trials. AF turned out to have the broadest cytotoxicity in primary MM among with

proteasome inhibitors, dinaciclib, selinexor, venetoclax, and histone deacetylating agents.

2.1.2 | Leukemia

In the last 40 years, several in vivo and in vitro studies have been published on AF as a potential anticancer agent

for leukemia treatment. The first in vivo investigations were published in 1981 and 1985; these studies demon-

strated the ability of this gold(I) compound to increase the life span of C57BL ×DBA/2 F mice inoculated with the

lymphocytic leukemia P388 cell line.44,45 Later, the cytotoxic activity of AF was analyzed in acute promyelocytic

leukemia (APL) model cells. This type of cancer is characterized by a block of differentiation and an accumulation of

promyelocytic cells. All‐trans‐retinoic acid (ATRA) was utilized in the treatment of APL with a 90%–95% complete

remission rate of patients.46 High doses of ATRA can restart cell differentiation even if 30% of patients relapse

within 4–5 years.47 Several studies suggested a potential therapeutic benefit in treating APL with a combination of

AF and a low dose of ATRA48 or 1,25(OH)2 vitamin D349 (another differentiation‐inducing agent50 thus overcoming

the harmful side effects caused by high doses of these drugs (i.e., ATRA resistance in relapsed APL patients and the

hypercalcemic side effect and incomplete cell differentiation with 1,25(OH)2 vitamin D351). In particular, Park et al.

deciphered the molecular mechanism responsible for AF‐induced apoptosis demonstrating that AF (2 µM)

proapoptotic effects in human HL‐60 cells depended on p38 mitogen‐activated protein kinase (MAPK) signaling

activation.52 ROS induction by AF was proposed as a mechanism of p38 MAPK activation, since N‐acetyl‐L‐cysteine

(NAC) inhibited p38 MAPK phosphorylation, preventing apoptosis.

Fiskus et al. attempted to provide rationale to AF repurposing for chronic lymphocytic leukemia (CLL) ther-

apy.53 Standard therapy is based on myelotoxic chemoimmunotherapy.54 However, in case of relapse a different

treatment is required as standard therapy is no longer effective. This type of cancer was suitable for AF repurposing

because CLL cells have intrinsically higher levels of ROS.55 The authors demonstrated for the first time thatAF 1 µM

triggered lethal oxidative stress through TrxR inhibition and ER stress response in cultured and patient derived

primary CLL cells, including those with genetic features associated with poor clinical outcome. AF anticancer

activity was also proved to be efficient in TCL‐1 transgenic mice, an in vivo model of CCL.56

Chen et al.57 evaluated AF on chronic myelogenous leukemia (CML) cell and animal models, as an alternative therapy

to overcome acquired resistance to Imatinib mesylate (IM), a drug resistance mainly due to mutation in Bcr‐Abl.58,59 They

demonstrated that AF had antiproliferative activity in both Bcr‐Abl wild‐type and resistant Bcr‐Abl‐T315I CML cell lines as

well as in mouse IM‐resistant xenograft models, thus illustrating AF ability to overcome drug resistance. AF‐induced

18 | GAMBERI ET AL.



apoptosis depended on both Bcr/Abl signaling downregulation and proteasome‐dependent caspase activation, while ROS

were not involved in cell death process. In a subsequent study, Clapper et al. demonstrated that in imatinib resistant CML

cells theTrxR/Trx systemwas upregulated.60 The inhibition of theTrxR enzyme by AF and the gold compound [Au(d2pype)

2]Cl decreased Bcr‐Abl and proto‐oncogene c‐myc protein expression leading to apoptosis also in IM resistant CML cells.

The obtained results highlighted the effectiveness of TrxR targeting in overcoming IM resistance as well as the crosstalk

between the TrxR system and Bcr‐Abl signaling pathway.

Acute lymphoblastic leukemia (AAL) is the most frequent neoplasm in childhood61 and, as various other

cancers, it is characterized by an unbalanced redox homeostasis.62 For this reason, Haß et al.63 selected different

ROS inducers to sensitize ALL cells to therapeutic treatment based on the second mitochondria‐derived activator of

caspases (Smac) mimetic LCL161 that antagonizes inhibitor of Apoptosis (IAP) proteins. They used AF alone or in

combination with LCL161 to target TrxR, Erastin to inhibit the cystine/glutamate transporter XCT required for GSH

production and buthionine sulfoximine (BSO) as specific inhibitor of γ‐glutamylcysteine ligase (γ‐GCL).64 The results

pointed out the effectiveness of this approach in being able to prime ALL cells for LCL161‐induced cell death. The

thioredoxin system was also evaluated as a novel therapeutic target against B‐cell acute lymphoblastic leukemia

(BCP‐ALL) by Fidyt et al.65 This blood cancer is characterized by genetic heterogeneity and abnormal expansion of

immature B cells. The currently available chemotherapy is effective in most cases. However, patients harboring

certain genetic lesions, such as MLL rearrangements or Bcr‐Abl1 fusion, are resistant and need novel therapeutic

approaches. The authors used AF and adenanthin (ADE), to inhibit the thioredoxin system. The results showed that

these compounds triggered oxidative stress and ER stress leading to cell death, both in BCP‐ALL cell lines, pediatric

and adult BCP‐ALL primary cells, including primary cells cocultured with bone marrow‐derived stem cells. AF

efficacy was also demonstrated in vivo using a patient‐derived xenograft model. Recently Liu et al. identified a

mitochondrial isoform of TrxR3 as a new target of AF.66 The authors found that TrxR3 was overexpressed in

myelomonocytic leukemia MV4‐11 cells resistant to sorafenib (MV4‐11R) in comparison to parental cell line and

furthermore, patients with high‐risk acute myeloid leukemia showed high expression of this enzyme and worse

survival in comparison to low‐risk patients. They demonstrated, both in vitro and in vivo models, that TrxR3 high

expression conferred sorafenib resistance and that AF was able to overcome resistance.

2.1.3 | Lymphoma

To our knowledge, the first study carried out on AF anticancer activity on lymphoma cell lines was published by Cox

et al.67 They demonstrated that AF treatment activated apoptotic signaling through a Bcl‐2 homologous antagonist/

(Bax/Bak)‐dependent mechanism associated to TrxR inhibition and peroxiredoxin3 (Prx3) oxidation in Jurkat

T‐lymphoma and U937 monocytic cell lines. Celegato et al. investigated repurposing AF for refractory classical

Hodgkin lymphoma (cHL).68 Its antitumour activity was demonstrated both in vitro and in vivo tumor models. AF

(0.1–10 µM) has showed antiproliferative effects in L‐1236, L‐428, KM‐H2, HDLM‐2, and L‐540 cHL‐derived cell

lines, in L‐540 gemcitabine‐resistant and HDLM‐2 brentuximab resistant cells. Furthermore, AF showed a

synergistic activity with three chemotherapeutic drugs widely used in cHL treatment such as doxorubicin, cisplatin,

and gemcitabine. This cytotoxicity was also demonstrated in L‐540 gemcitabine resistant–derived tumor xenograft.

The proposed mechanism of action encompassed the inhibition of TrxR, ROS increase, and apoptotic pathway

activation.

ROS‐induced apoptosis was also proposed as main mechanism in other studies where AF was used alone or in

combination with other pro‐oxidant compound as L‐ascorbate, used at pharmacological concentration of 200 µM,

and BSO.69,70 Finally, Wang et al. repurposed AF to treat TP53‐mutated or (PTEN) deleted refractory B‐cell

lymphoma.71 In several refractory mantle cell lymphoma (MCL) and diffuse large B‐cell lymphoma (DLBCL) models,

they demonstrated that AF inhibited TrxR, increased ROS production and apoptosis. Its cytotoxicity was mainly
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effective in TP53‐mutated or PTEN‐deleted lymphomas strengthening the hypothesis of AF repurposing for

treatment of TP53‐mutated or PTEN‐deleted refractory B‐cell lymphoma.

2.2 | Breast cancer

Breast cancer is the most common female cancer and the second most common cause of cancer death in women.

Up to 20% of breast cancers are “triple negative” tumors (TNBC) as the three most common types of receptors

known to fuel most breast cancer growth—estrogen, progesterone, and the receptor tyrosine‐protein kinase

(HER‐2/neu) gene—are not present in cancer cells. TNBC are not treatable with antihormone therapy, thus

chemotherapy and radiation therapy represent the only possible form of treatment. Unfortunately, most patients

develop resistance to these interventions and there is an unmet clinical need to find novel targeted and combi-

nation therapies.

Several studies have recently investigated the ability of AF to counteract breast cancer both in vitro and in vivo.

In most of them, AF has been used in combination with at least one other drug to increase oxidative stress and

induce cell death. Scarbrough et al. reported that simultaneous targeting of both GSH with BSO and TrxR with AF

(0.5 µM), enhanced chemo‐sensitization to 17‐Allylamino‐17‐demethoxygeldanamycin (17AAG) (an experimental

chemotherapeutic agent believed to increase oxygen free radicals) and 2‐deoxy‐D‐glucose (2DG) combined treat-

ment in MDA‐MB 23 and SUM159 cell lines.72 The same research group also proved that inhibition of TrxR by AF

(1 µM) potentiated cancer cells clonogenic killing induced by inhibiting both glycolysis (with 2‐DG) and pentose

phosphate cycle (with dehydroepiandrosterone DHEA).73 Similar results were also obtained using PC‐3 prostate

cancer cell lines73 Kim et al. demonstrated that AF (0.5–1 µM) was able to inhibit cell proliferation and cell growth

on soft agar in MDA‐MB 23 through inhibition of STAT3 phosphorylation, in a ROS‐dependent fashion.17 Other

two studies on triple negative cell lines indicated that 0.5 µM AF in combination with vitamin C (used as prooxidant)

or with vitamin C plus menadione induced cell death mostly through the generation of oxidative stress,

strengthening the unbalance of the redox homeostasis as main mechanism of AF action.74,75 On the other hand, in

2014 Liu et al. reported for the first time that proteasome inhibition, and not ROS production, was required for

AF‐induced cytotoxicity and apoptosis both in vitro and in vivo model.76 They demonstrated that AF inhibited the

activity of deubiquitinases (DUBs) associated to 19S regulatory subunit of proteasome in MCF‐7 and in HepG2

(hepatoma cell line). This caused and accumulation of ubiquitinated proteins that was already detected after 3 h of

0.5 µM AF treatment indicating the proteasome inhibition occurred early and at low dose of the drug.

Very recently, AF was used in combination with an antiprogrammed death‐1 ligand (PD‐L1) antibodies to target

this key immune checkpoint.77 In fact, the immune system plays a critical role in controlling neoplastic transfor-

mation and progression and targeting immune checkpoints constitutes a valid possibility to treat tumors refractory

to conventional therapies. One of these checkpoints is represented by programmed death‐1 (PD‐1) receptor and

PD‐L1. PD‐1 receptor is expressed on the surface of T‐cells and displays immunoinhibitory activity. Cancer cells

express PD‐L1 on their surface and interact with cytotoxic T‐cells, inhibiting their function and evading host

immunosurveillance. In several cancers, PD‐L1 expression increases in response to chemotherapy and leads to drug

resistance; in triple negative breast cancer it is overexpressed in approximately 20%–30% of patients and is

associated with poor prognosis.78 The authors demonstrated that AF induced cell death in different breast cancer

cell lines (with IC50 values ranging between 0.5 and 2 µM inTNBC cells) and impaired the growth of TNBC‐derived

spheroids. AF treatment exerted significant in vivo antitumour activity in multiple TNBC models including the

syngenic 4T1.2 model, MDA‐MB‐231 xenograft and patient‐derived tumor xenograft. Interestingly the authors

showed that AF alone failed to completely eliminate tumors in all in vivo models due to AF‐induced increased

PD‐L1 expression through the ERK1/2‐myc axis. This observation led to the rationale of the implementation of a

combined AF and anti‐PD‐L1 antibodies treatment. Combined treatment synergistically impaired the growth of

4T1.2 primary tumors, overcoming the AF‐induced increased PD‐L1 expression.

20 | GAMBERI ET AL.



In addition, Rodman et al. have shown that AF is also capable of potentiating the response to radiation therapy

both in vivo and in vitro.79 They demonstrated that combined inhibition of GSH synthesis with BSO and TrxR with

AF‐enhanced cancer cell clonogenic killing and radiation responses via a mechanism that could be inhibited by

N‐acetylcysteine (NAC), thus depending on thiol redox state. Furthermore, pre‐treating breast cancer stem cells

with AF sensitized them to radiation. Finally, in vitro results were confirmed by in vivo experiments showing that in

human breast cancer xenografts, combined administration of AF and BSO before radiation significantly increased

survival rate and decreased the number of cancer stem cells. Very recently, Kim et al. found that the RNA binding

protein NONO was bounded to STAT3 mRNA and to STAT3 protein, increasing its stability, transcriptional activity

and contributing to STAT3 oncogenic function.80 Using a high‐throughput drug screening, they revealed that AF

was a potential inhibitor of the expression of NONO, suggesting a new way in which AF could carry out its

antitumour activity.

2.3 | Colon cancer and gastric cancer

Colon cancer is one of main cancer types that lead to cancer‐related death worldwide.81 Chemotherapy is an

important treatment approach for this pathology; however, patients have few treatment options after two

cycles of therapy. Hence, the discovery of new treatments for colon cancer care is mandatory. AF (0.5 µM)

was combined with 5Z‐7‐oxozeaenol (5 µM), a molecule able to inhibit the transforming growth factor β‐

activated kinase 1 (TAK1), leading to colon carcinoma cell death both in vivo and in vitro.82 The inhibition of

TrxR activity and the increased Trx oxidation were proposed to be responsible for the enhancement of

sensitization of cancer cells to 5Z‐7‐oxozeaenol. Moreover, AF has been used in combination with the anti‐

inflammatory drug celecoxib (CE) in different colon carcinoma cell lines.83 The findings show that AF/CE

combination greatly enhanced AF therapeutic efficacy both in vitro and in vivo. Drug mixture generated

oxidative stress that inhibited hexokinase, induced TrxR oxidation and modifies mitochondrial redox state.

Particularly in mitochondria, AF/CE promoted the oxidation of TrxR2 and the degradation of the cytochrome

c oxidase subunit II, a component of complex IV of the electron transport chain. As consequence,

mitochondrial respiration and ATP production resulted inhibited.

5‐FU is widely used in chemotherapy for colon cancer, but drug resistance limits its clinical effectiveness. In a

recent study, Liu et al. found that nuclear FOXO3 was decreased in 5‐FU‐resistant SW620 and HCT‐8 (SW620/

5‐FU and HCT‐8/5‐FU) cells, and that overexpressing FOXO3 could significantly reverse 5‐FU resistance.84

FOXO3 is a transcription factor with key role in cell cycle, apoptosis, aging regulation, and tumor suppression.

Several protein kinases (IkB kinase, Akt, MAP) phosphorylate FOXO3, promoting its translocation from the nucleus

to the cytosol where it is degraded via the ubiquitin‐proteasome pathway.85 Its inhibition leads to tumor devel-

opment and progression, suggesting that FOXO3 reactivation could be a promising strategy to develop anticancer

therapeutic drugs. The authors demonstrated that TrxR1 was the key protein participating in the regulation of

FOXO3‐mediated 5‐FU resistance. Thus, they used AF as FOXO3 agonist and TrxR1 inhibitor to overcome 5‐FU

resistance both in vitro and in vivo models.

The possible beneficial effect of AF during radiation treatment has been analysed in subcutaneous CT26 colon

tumors, in normal gastrointestinal epithelium of mice and in human organoids formed using malignant and non-

malignant tissues from the same patient.86 Indeed, one of the disadvantages in the use of radiotherapy in colon

carcinoma therapy is the elevated radio sensitivity of normal intestinal epithelium. The results showed that AF

pretreatment prevented radiation toxicity in normal cells in all these models. In fact, AF caused cell cycle arrest and

p53/p21 pathway activation, leading to reduction of the irradiation‐induced DNA damages and increasing cell

survival. On the other hand, in malignant cells AF inhibited proteasome activity and induced endoplasmic reticulum

stress/unfolded protein response, activating apoptosis.
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Concerning gastric cancer, Peng et al. demonstrated that in gastric cell lines, the natural compound

piperlongumine (PL), known to induce ROS production, enhanced AF cytotoxicity.87 In particular, 4 µM AF induced

ROS increase, ER stress and mitochondrial dysfunction leading to apoptosis. The combination of AF and PL resulted

in an increase of cell death in vitro and in a reduction of tumor size in vivo.

2.4 | Lung cancer

Lung cancer is the leading cause of cancer‐related deaths in men and women.88 In particular, non‐small cell lung

cancer (NSCLC) accounts for about 85% of all lung cancers and has a poor prognosis with a 5‐year survival rate of

17%. Currently common therapies for NSCLC include platinum‐based chemotherapy with concurrent radiotherapy

but cancer cell resistance limits treatment utility.

Fath et al. investigated AF efficacy in combination with 2DG and carboplatin in both in vitro and in vivo

models.89 First, the authors demonstrated that 2DG enhanced carboplatin‐induced clonogenic cell killing and that

this effect was almost abolished by NAC, indicating that 2DG plus carboplatin effect in lung cancer cells was

mediated by disruptions of thiol metabolism. Second, they showed that inhibiting both GSH synthesis with BSO and

TrxR activity with AF resulted in the clonogenic killing of A459 and H292 cell lines (with AF 5 and 0.5 µM,

respectively), while single drug treatment had no effect on A459 cell line and low effect on H292. These results

represented the rationale to treat cancer cells with a combination of AF + BSO and 2DG + carboplatin. As expected,

this treatment caused a decrease of the clonogenic survival of 2DG + carboplatin treated A549 cells as well as

increasing thiol oxidation that was inhibited by NAC. Most importantly, in A549 xenograft mice, the combination of

AF + BSO + carboplatin resulted in a highly significant decrease in tumor growth rate when compared to control and

to treatment with BSO + AF or carboplatin alone.

Fan et al. demonstrated that selenocysteine (SeC) acted as a natural inhibitor of TrxR1 in vitro and in vivo to

enhance AF‐induced human lung cancer cells killing through ROS‐mediated apoptosis and inactivation of Mitogen‐

Activated Protein Kinase 1 (Erk) and Akt pathways.90 Also, in this study, treatment of A459 with AF alone (6 µM)

was not able to induce cell death, but pretreatment with SeC resulted in a severe cell death increase. The data were

also confirmed in vivo: indeed, A459, xenograft growth in nude mice was more effectively inhibited by combined

treatment with SeC and AF than with AF alone.

PI3K/Akt pathway plays a pivotal role in cancer cell growth and survival and inhibition of this pathway may

represent a tool in cancer therapy. It has been reported that a large subset of NSCLC cells does not respond to Akt

inhibitors,91 thus Dai et al. used a genome‐wide siRNA library screening to identify synthetic lethality loci with Akt

inhibitor MK2206.92 Among these loci, they identified the TrxR1gene and demonstrated that inhibiting TrxR1 with

siRNA or AF, sensitized lung cancer cell lines resistant to MK2206 to treatment with this drug. The combined

treatment with AF 0.1 µM induced apoptosis by ROS activation of mitogen‐activated protein kinase 8 (JNK).

Furthermore, in H1993 xenograft nude mice, treatment with MK2206 or AF as single drugs had no effect on tumor

growth, but their combination significantly inhibited tumor growth and significantly prolonged animal survival.

The same research group also investigated the cytotoxicity of AF alone in 10 different NSCLC cell lines and they

found that AF sensitivity ranged from less than 1 µM to up to 2 µM.93 They demonstrated that sensitive cells

presented lower expression of TrxR1 than resistant cell lines. The authors selected representative sensitive (Calu3

and HCC366) and resistant (A549) cell lines for further experiments. In the sensitive cell lines, a high‐throughput

protein profiling analysis of 214 proteins and phosphoproteins was performed and several key nodes in the PI3K/

Akt/mTOR pathway resulted repressed. Since the transient overexpression of the TrxR1 protein partially reversed

this repression, they postulated that TrxR1 may participate in the regulation of PI3K/Akt/mTOR pathway and that

high TrxR1 levels can attenuate AF‐induced inhibition of the PI3K/Akt/mTOR pathway. The activity of AF was

confirmed in vivo in Calu3 xenograft nude mice. The same group also proved that the antitumour activity of a
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combination of TUSC2 gene (tumor suppressor candidate 2) delivered by nanovesicles and erlotinib (epidermal

growth factor receptor [EGFR] inhibitor) was enhanced by AF both in vitro and in vivo.94

Hou et al. investigated the effect of AF on cancer stem cell side‐population (SP).95 SP represents a

subpopulation of stem‐like cancer cells that have a pivotal role in drug resistance due to their high expression of the

ATP‐binding cassette transporter ABCG2 involved in drug export. The authors found that A549 cell line, contained

a considerable amount of SP and AF could effectively deplete SP cells by increasing ROS generation. Interestingly,

they proved that AF inhibited the glycolytic enzyme hexokinase leading to ATP depletion and decreasing the

activity of ABCG2 pump. Furthermore, the synergistic effect of AF and the chemotherapeutic agent adriamycin was

proved both in vivo and in vitro.

Trx/TrxR and glutathione/glutathione‐disulfide reductase (GSH/GSR) are the most relevant cellular antioxidant

systems and functional deficiency in one of these systems renders cells dependent on the other system for

survival.96 Thus, it has been hypothesized that cells harboring a compromised GSH/GSR system could be more

sensitive to TrxR inhibition. Yan et al. found that GSR gene is delete in 6% of lung adenocarcinoma. To investigate

whether this deletion could sensitize cells to AF treatment, the authors evaluated AF sensitivity in several cell lines

with different expression of genes involved in GSH homeostasis and in AF resistant A459 cell line in which GSR

gene was knocked out or silenced. In all these conditions the authors demonstrated that the alteration of GSH

homeostasis was correlated with increased sensitivity to AF treatment.97 Moreover, they also demonstrated in vivo

activity of AF in two lung cancer patient‐derived xenograft models with relatively low levels of GSR and glutamate‐

cysteine ligase catalytic subunit expression.

Activating EGF mutations represent a driven force in lung tumor progression and limit the therapy based on

EGFR inhibitors. It is interesting to note that AF (0.25 µM) enhanced ibrutinib activity in EGFR mutant non‐small cell

lung cancer cells by inhibiting the expression or phosphorylation of multiple key nodes in Akt/mTOR and MEK/ERK

pathways.98 Ito et al. proved that AF in combination with IPA‐3, an inhibitor of p21 activate kinase (PAK1) which is

in turn regulated by PKCiota, had a highly synergistic effect in EGFR or KRAS mutant adenocarcinoma and

squamous cell carcinoma cell lines and decreased tumor volume in mice models.99 In these cell lines the

combination of IPA‐3 and AF abrogated the expression and/or phosphorylation of serine/threonine‐protein kinase

PAK1, PKCiota, ERK 1/2, mTOR, Akt, and transcriptional coactivator YAP1 proteins.

Liu et al. developed a high‐throughput drug screen strategy to identify new drugs that can synergistically

enhance antitumour efficiency of cisplatin in chemoresistant small cell lung carcinoma (SCLC) cells.100 Among the

FDA‐approved drug library of 1092 compounds they found that AF was able to overcome cisplatin resistance. In

this study the authors demonstrated that AF synergized with cisplatin resulting in ROS overproduction, which in

turn led to mitochondrial dysfunction and DNA damage in SCLC. The combination resulted in significant reduction

of tumor growth also in vivo.

2.5 | Ovarian cancer (OC)

OC is the most lethal gynecological disease and is characterized by heterogeneity, high risk of relapse and de-

velopment of platinum resistance that result in poor prognosis. The cornerstone of treatment is maximal‐effort

surgical cytoreduction combined with cytotoxic chemotherapy. An estimated 80%–85% of patients with OC who

achieve full remission following first‐line platinum‐based therapy will develop recurrent disease and median survival

for these patients ranges from 12 months to 24 months.101 Except for bevacizumab and poly ADP‐ribose

polymerase inhibitors, approved for BRCA1/2 mutated patients and for platinum‐sensitive patients without BRCA

1/2 mutation, there are few other options for women with platinum‐resistant OC.

The first articles that report a cytotoxic activity of AF on ovarian cancer cells were published by Marzano102

and Rigobello.103 In these studies, the authors demonstrated that AF could overcome cisplatin resistance in the

cisplatin‐resistant variant (C13*) of the sensitive 2008 cell line. AF, by inhibiting TrxR activity, induced ROS

GAMBERI ET AL. | 23



mediated activation of apoptosis. The authors also explored the effect of AF (1 µM) in combination with selenite

that is a powerful pro‐oxidant compound at moderate to high concentrations. Selenite pretreatment induced a

dramatic increase in AF cytotoxicity in both resistant and sensitive cells. Cytotoxic AF properties have been

investigated by 2D‐gel proteomic approach.104,105 These studies, performed on A2780 sensitive and cisplatin‐

resistant (A2780R) cells showed that AF (0.5 µM) affected the proteins involved in redox balance (peroxiredoxin 1

and 6, thioredoxin‐like 1 protein) and in protein degradation.

In 2013, Wang and collaborators found a new AF target: the PKCiota protein a member of the protein kinase

C family.106 The authors cultured ES2 and SKOV3 ovarian cell lines in stem cell medium to obtain cells with

tumorigenic tumor initiating cell (TIC) properties (TICs cells). TIC properties include expression of stem‐related

genes, clonal expansion, enhanced transformed growth, resistance to chemotherapy. These characteristics re-

semble properties of ovarian cancer stem cells that play a key role in relapse following systemic chemotherapy.107

These authors demonstrated that ovarian TICs require PKCiota for clonal expansion, enhanced anchorage‐

independent‐growth, and tumor initiation in vivo. Pharmacologic inhibition of PKCiota with AF blocks the TIC

phenotype in vitro and TIC‐mediated tumor formation in vivo. PKCiota inhibition was achieved with AF 1 µM

treatment for 24 h. This inhibition was probably direct, since it has been previously demonstrated that two

analogues of AF, namely aurothiomalate and aurothioglucose, interact with a critical cysteine residue within the

PKCiota PB1 (Phox and Bem 1) domain leading to inhibition of oncogenic PKCiota signaling.108

Two other interesting articles focused on the inhibition of FOXO3 pathway. Park et al. showed that AF at

0.1 µM for 48 h downregulated the expression of IkB‐kinase, one of the kinase responsible of FOXO3 phos-

phorylation109 and induced the nuclear translocation of FOXO3 in SKOV3 cells that are p53 null.22 Furthermore,

FOXO3 silencing caused a decrease in apoptosis indicating that in this cell line, AF induced apoptosis through

FOXO3. The same research group reported that the anticancer activity of AF via FOXO3 regulation could be

enhanced by inhibition of the expression of mucin 4 (MUC4).110 MUC4 is a membrane glycoprotein, it is over-

expressed in several cancers and promotes tumor formation, tumor aggressiveness, and poor outcomes in various

types of epithelial carcinomas, including ovarian cancer.111 AF combined with MUC4 silencing decreased the

expression of receptor tyrosine‐protein kinase erbB‐2 (Her2) and Akt phosphorylation, leading to inhibition of the

Her2/Akt/FOXO3 pathway and thus inhibiting FOXO3 translocation from nucleus to cytosol.

It is well known that BRCA 1/2 mutation predisposes women to increased risks of developing ovarian and

breast cancers. Oommen et al. demonstrated that in OVCAR5 and SKOV3 cells, BRCA1 silencing increased

AF cytotoxicity and that AF‐induced DNA double strand brakes in a ROS‐dependent manner, thus demon-

strating that BRCA1 deficiency renders tumor cells more sensitive to AF.112 Hyter et al. tested the cyto-

toxicity of AF alone or in combination with HSP90 inhibitors in ten ovarian cancer cell lines founding that

there were remarkable differences in AF sensitivity in different lines.113 They utilized A1847 and PEO4 as

representative cell lines for the sensitive and resistant groups respectively and they demonstrated a synergic

effect of AF and the HSP90 inhibitor AUY922. They used the most effective synergic concentration to

evaluate apoptosis, protein ubiquitination and expression level of Nrf2, a transcription factor that binds to

the antioxidant response element of several detoxifying genes. They also created multigene signatures linked

to sensitivity or resistance and sought out the prevalence of these genes in publicly available TCGA data-

bases. This approach pointed out that the resistant cell lines were more like clinical samples and were more

appropriate models. Recently Marzo et al. analysed the in vitro and in vivo properties of AF and an AF

analogue, the iodido(triethylphosphine)gold(I) complex (Et3PAuI) in which the thiosugar ligand was simply

replaced by one iodide ligand.114 The two compounds exerted similar cytotoxic and proapoptotic effect on

A2780 human ovarian cancer cells in vitro. However, when evaluated in a preclinical orthotopic model of

ovarian cancer, Et3PAuI produced a far superior anticancer action than AF, inducing almost complete tumor

remission. This result confirmed that the thiosugar ligand is not mechanistically indispensable and that the

[Et3PAu]+ moiety is likely to be the true pharmacophore.
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2.6 | Other cancers

The literature contains several other studies concerning the use of AF as a cytotoxic and potentially antitumor agent

in other cancer types. Taken together they confirm the possible broad spectrum of application of this drug.

Concerning hepatoma, Kim et al. reported that 2 μM AF was able to inhibit IL‐6 activation of JAK1‐STAT3

pathway in a ROS‐independent fashion.16 Huang et al. found that AF (0.2 μM) in combination with Disulfiram

(an aldehyde dehydrogenase, in clinical use to treat alcoholism) synergistically induced proteasome‐associated

DUBs inhibition, reticulum endoplasmic (RE) stress and apoptosis in HepG2 and SMMC‐7721 cell lines.115 They also

proved that this mechanism was ROS‐independent since scavenging of ROS by 100 µM Vitamin C failed to block

cell death. As already shown for other cancer types, also in hepatocellular carcinoma TrxR1 expression positively

correlated with advanced clinical staging and poorer patient survival.116 Thus, inhibition of TrxR1 represents a valid

tool to counteract cancer progression. Lee et al. demonstrated that AF treatment sensitized several hepatoma cells

lines toward conventional therapeutic Sorafenib and furthermore, AF alone was able to inhibit tumor growth in

vivo.117 Hwang‐Bo et al. demonstrated that 1 µM AF was able to induce oxidative stress in Hep3B cells and that the

natural compounds morin and sulforaphane enhanced its anticancer activity.118,119 They showed that cotreatment

with morin induced activation of both extrinsic and intrinsic pathways of apoptosis by upregulating death receptors

DR4 and DR5 and by modulating Bcl2 family proteins. Furthermore, AF plus sulforaphane displayed a synergic

induction of ROS‐mediated PI3K/Akt signaling.

Annexin A5 (ANXA5) has a pivotal role in mediating cytotoxicity, apoptosis, and anti‐inflammatory effects.120

Park et al. suggested that, in PC3 prostate cancer cell lines, AF (2.5 µM) induced ANXA5 expression and translo-

cation into mitochondria where it possible participated in VDAC oligomerization and activation of caspase‐3.121

More recently, the same group demonstrated that AF suppressed cyclooxygenase 2 (COX‐2) expression through

ANXA5 induction, thus inhibiting COX‐2 mediated inflammation.122 In PC‐3 cells, induction of ANXA5 by AF was

also proposed to enhance apoptosis by suppressing the expression of plasminogen activator inhibitor (PAI‐2),123 a

protein involved in tumor vascularization, cell migration, and tumor metastasis.124

Androgen receptor is often overexpressed in prostate cancer and is strongly linked to tumor growth and

progression, thus, its targeting with competitive inhibitors or its down regulation is crucial for therapy. In this

context, Liu et al. proved that AF (1 µM) promoted androgen receptor protein degradation and inhibited androgen

receptor transcription in two androgen receptor‐positive cell lines, LNcap and 22RV1.125 Xu et al. demonstrated

that the combination of enzalutamide (ENZ) and docetaxel (DTX) effectively inhibited the growth of prostate cancer

cells that are resistant to either single drug.126 Thus, the authors generated a cell line resistant to both DTX and

ENZ and demonstrated that AF could overcome resistance by inhibiting the growth of these drug‐resistant prostate

cancer cells both in vitro and in vivo.

In prostate cancer as well as in other cancers, some regions of tumor microenvironments are often nutrient‐

deprived and hypoxic because of aberrant cell proliferation and insufficient vascularization. Recently, Onodera et al.

found that inhibitors of the redox system displayed preferential cytotoxicity to cancer cells in nutrient‐deprived

conditions.127 AF treatment in PANC‐1 cells showed preferential cytotoxicity under nutrient‐deprived compared

with nutrient‐sufficient condition with an EC50 of 0.64 and 2.18, respectively.

In literature there are only two studies concerning AF in treatment of head and neck squamous cell carcinoma

(HNSCC).128,129 Both were based on the prooxidative activity of AF. Overall, they demonstrated that inhibition of

the Nrf2 pathway in addition to inhibition of γ ‐GCL and TrxR could effectively eliminate resistant cells.

The high‐throughput screen of FDA approved drugs was used to discover new therapies for osteosarcoma and Ewing

sarcoma.130,131 In both cases AF emerged as a possible alternative to traditional treatments both as a single drug and in

combination with rapamycin or vorinostat (for osteosarcoma) and with ganetespib, an HSP90 inhibitor (for Ewing sarcoma).

Few papers dealing with AF and melanoma emerged from Pubmed research. To the best of our knowledge, AF

cytotoxic effects were examined in a melanoma cell line (B16 melanoma cells) for the first time by Mirabelli et al. in

1985.45 Subsequently, Sachweh and colleagues proposed the inhibition of TrxR1 through compounds such as AF, as
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a possible therapy for malignant melanoma.132 This type of cancer is the most dangerous type of skin cancer due to

drug resistance and relapse following treatment and, in most cases, it is characterized by the inactivation of the

tumor suppressor p53 through dysregulation of upstream pathways. In the attempt to find a new melanoma

therapeutic strategy, the authors screened for compounds that can reactivate p53 in melanoma cells. They identify

the nongenotoxic compound MJ25 (2‐[2‐(1,3‐benzothiazol‐2‐ ylsulfonyl)ethyl]thio}−1,3‐benzoxazole) and proved

that MJ25 could inhibit TrxR1. Thus they demonstrated that AF displayed effects comparable with MJ25 on several

melanoma cells lines, confirming TrxR inhibition as a potential therapeutic strategy.

The AF efficacy has also been investigated in melanogenesis; Goenka et al. found that nontoxic concentrations

of AF (0.25–1 µM) showed antimelanogenic activity in a dose‐dependent manner both in mouse B16F10 and MNT‐

1 human melanoma cells lines, by inhibiting intracellular tyrosinase activity, decreasing cAMP levels and increasing

immature melanosomes.133

Lastly, AF‐induced cell death via oxidative stress also in HeLa cervical cancer cells and was used in combination

with 2‐DG and BSO (inhibitors of glycolysis and GSH synthesis, respectively) to treat highly glycolytic cervical

cancer cell lines that were resistant to standard therapy with cisplatin plus pelvic irradiation.134,135

3 | DOSE‐DEPENDENT EFFECTS OF AURANOFIN THROUGH A SYSTEM
BIOLOGY‐LIKE APPROACH

In the first part of this review, we reported an update on AF effects according to clinical applications in different cancers.

Reporting the results obtained from different cell models, with different concentrations and exposition times, generates a

fragmented vision of the AF mechanism of action. Thus, in this section we have summarized the major effects of AF in

cancer cells by revisiting a large data set of transcriptomic data obtained with a wide range of cell models exposed to AF.

The data are deposited in the connectivity maps (CMAP) website (https://clue.io/cmap)136 that, using transcriptional

expression data (mRNA transcript abundance of 978 “landmark” genes), allows to probe the relationships between drugs

and many cellular models of diseases. In practice, changes in gene expression in response to a genetic perturbation

(knockdown or overexpression of a gene) or treatments with small molecules (perturbagenes) are compared by similarity to

all perturbation signatures of the database (more than 1 million of available profiles) obtaining a “tau score” which

allows to predict the effects of a perturbagene. CMAP is equipped with all the bioinformatic tools and transcriptomic data

sets to compare the effects of different drug dosages and exposition times in many cancer cell lines.

Searching for the connectivities of AF with other “perturbagenes,” CMAP performs its prediction using the gene

expression profiles of nine cell lines (A375, A549, HCC515, HEPG2, HT29, MCF7, PC3, HA1E, and VCAP) exposed for 6 h

at 10µM of AF which is generally considered a high dose. The highest AF connection is with the NF‐κB inhibition

(Figure 2A). The NF‐κB inhibition effects of AF have long been known. Jeon et al. were the first to show that NF‐κB was

inhibited with 5–10µM of AF treatment for 4 h in lipopolysaccharide stimulated macrophages blocking IκB kinase (IKK)

activity.19,27 Later, Nakaya et al. reported that 0.05µM of AF inhibited NF‐κB DNA binding and decreased NF‐κB nuclear

protein level in U266 multiple myeloma cells.18 Moreover, Saei et al. recently proposed a proteomic based strategy to find

candidate protein targets of AF, at 3 µM drug dose concentration, in HCT116 colon cancer cells.137 Also in this case,

NF‐κB resulted to be the most probable gold target while TrxR1 was only in third position.

The second AF correlation predicted by CMAP is with proteasome inhibitor family. Inhibition of DUBs by AF

(0.5 µM for 3 h) was firstly proposed by Liu et al. in HEPG2 and MCF7 cells.76 Later the same research group

confirmed this finding in vitro and in vivo models of prostate cancer.115

On the other hand, in a recent proteomic study Zhang et al. compared the proteome profiles of HCT116 colon cancer

cells treated with AF, with the proteasome inhibitor bortezomib and with the 19S DUBs inhibitor b‐AP15.138 They showed

that AF dependent DUBs and proteasome inhibition only occurred at high dose of AF (>2.5 µM). Furthermore, AF (used at

1 and 5µM concentration) induced a proteomic expression profile distinct from that of bortezomib and of AP15, both of

which induced similar responses. Thus, AF‐dependent proteasome inhibition was considered an off‐target effect occurring
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at high dose ofAF. Indeed, in the same study, monitoring the level of 1 HO‐1, considered a readout of Nrf2 activation, they

observed that oxidative stress induced by TrxR1 inhibition occurred at lower concentration of AF (0.25µM) compared to

HCT116 cells IC50 (1.5µM) and for this reason it should be considered the dominant mechanism underlying AF cyto-

toxicity. In our opinion, to try to interpret this set of sometimes conflicting results it should be considered that the cell type

F IGURE 2 (A) Output of the connectivity map of AF realized with the transcriptomic data of nine cancer cell
lines exposed to 10 µM of AF for 6 h. The median tau score is calculated from the tau score of each cell line. Only
the “perturbagene” classes with tau score greater than 90 were reported. (B) Hierarchical clustering of the
transcription profiles of A549 and MCF7 cell lines exposed to different AF concentrations together with the
transcription profile of TrxR1‐silenced cells. (C) Hierarchical clustering of the transcription profiles of 45 cancer cell
lines exposed to 10 µM of AF for 6 h. AF, Auranofin [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Overview of the main targets and the main signaling pathways affected by auranofin [Color figure
can be viewed at wileyonlinelibrary.com]
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specific genetic background could also play a key role in determining the primary AF targets. This is confirmed by the

comparison of the transcript expression profiles between different AF concentrations in two cancer cell lines and the

effects of TrxR1 silencing, available in the CMAP data set. For example, A549 cells (lung cancer) exposed to 1µM AF

generate effects very similar to TrxR silencing whereas, MCF7 cells (breast cancer) exposed to different concentration of

AF (1 nM to 10µM) show low correlations with TrxR1 silencing (Figure 2B). Furthermore, considering the hierarchical

clustering of the CMAP transcriptomic profiles of 45 cancer cell lines exposed to 10µM AF for 6 h, three major clusters

can be distinguished (Figure 2C). Cluster 1 is characterized by 14 cell lines showing very heterogeneous response to the

treatment. Cluster 2 consists of 27 cell lines showing predominant transcript downregulation mostly linked to the cell cycle.

Cluster 3 consists of four cell lines showing predominant transcript upregulation belonging to proliferative pathways such

as PI3K–Akt and Jak–STAT3. Overall, these data confirm both dose and cell type‐dependent effects of AF and can provide

a key to the interpretation of the different results reported in the studies summarized in previous paragraphs.

4 | CONCLUSION AND PERSPECTIVES

Based on the studies performed on different cancer models, several mechanisms have been proposed to explain

how AF alone or in combination with other drugs can exert its anticancer activity. These mechanisms can be

partially overlapping and tumor and/or AF dosage dependent. As summarized in Table 1, AF EC50 after 24–48 h

ranges between 0.5 and 2 µM in most of the cells. Most of the experiments were performed using AF in this range

concentration for 12–24 h h. In some studies, AF was used at higher concentration (6–10 µM) for a shorter amount

of time (2–6 h). These different approaches could lead to different pathway activations and complicate overall data

interpretation as discussed in the previous paragraph. Since in humans, the plasma steady‐state physiological range

of AF is 1–1.5 µM,3,4 it is reasonable to hypothesize that in vivo, targets inhibited by low concentrations of AF have

greater relevance.

In conclusion the main direct and indirect targets of AF are shown in Figure 3 and, in particularly, a direct

interaction has been shown for the following proteins:

• TrxR inhibition

The direct inhibition of TrxR was demonstrated for the first time in 1998 and up to date it represents the most

proposed mechanism.6 In most articles, the inhibition of TrxR1 and the consequent increase of ROS has been proposed

as the primary way by which AF induces cytotoxicity. In this context, it should be also mentioned that TrxR1 inhibition

can influence the redox state of several proteins controlled by theTrxR/Trx system and therefore the ultimate effector

of AF action may result difficult to identify.13,27,57 Another point to be considered is that not all cancers have the same

expression level of this enzyme and thus, AF sensitivity may depend on this feature. In fact, several studies have shown

that cell lines where TrxR1 expression levels were higher were also more resistant to AF cytotoxic activity.31

• IκB kinase

IκB kinase was proposed as direct AF target by Jeon et al. in LPS‐stimulated macrophages. The same authors

also demonstrated that AF binds Cys179 of IκB kinase, thus blocking its activity.19,27 IκB kinase activity is strictly

related to activation of NF‐κB. Indeed, IκB kinase phosphorylates IκB protein that binds NF‐κB and sequestrates

it in the cytosol in an inactive state. Once phosphorylated, IκB dissociates from NF‐κB, that migrates in the

nucleus where it carries out its transcriptional activity.139 In this review we have described several studies

pointing out a reduction of NF‐κB activity upon AF treatment. This can impact on cancer progression, since NF‐

κB regulates the expression of a plethora of genes involved in inflammation, oxidative stress and cell survival. In

particular, since the correlation between tumor aggressiveness and inflammation has been extensively proved,

the anti‐inflammatory properties of AF could be relevant if used in combination with other antitumour drugs.140

Interestingly, IκB is not the only substrate of IκB kinase, indeed Hu et al. found that it also phosphorylates the

tumor suppressor FOXO3 that once phosphorylated, translocates to the cytosol and becomes inactive.109 Thus,
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IκB kinase inhibition by AF can evoke various responses whose importance for the cytotoxicity of the drug could

depend on the specific cell type and, in vivo, on the tumor microenvironment.

• PKCiota

PKCiota was indicated as AF target in 2013 by Wang et al.20 A possible direct interaction has been proposed

since two analogues of AF, namely aurothiomalate and aurothioglucose, inhibit the enzyme, by binding a critical

cysteine residue.108 Amplification of the PKCiota gene and elevated PKCiota mRNA level are observed in several

cancers, that is, human primary lung squamous cell carcinomas, serous epithelial ovarian cancer, and cervical

cancer.141 Furthermore, high PKCiota expression level is associated with decreased survival in patients with

NSCLC, ovarian, bile duct, and prostate tumors, suggesting its possible role as prognostic marker.142 In con-

sideration of all these aspects the AF inhibitory role on this kinase needs further investigation especially in cancer

with high expression of this enzyme.

• Hexokinase

The study of Hou et al. demonstrated that the purified enzyme hexokinase was inhibited by AF at 4–6 μM

and that in vivo cellular glucose uptake, lactate and ATP production were also significantly suppressed by the

same dose.95 Most cancer cells express high levels of hexokinase and this is implicated in the accelerated

glycolytic flux.143 Furthermore, hexokinase (in particular the isoform II) can bind to mitochondria, where it plays

additional functions such as cell death inhibition and autophagy regulation.144 Thus, targeting hexokinase is

considered a promising antitumour strategy, but further evidence is needed to understand the possible in-

volvement of AF especially if used at more physiological doses.

• Proteasome‐associated DUBs

In 2014 Liu et al. demonstrated that the proteasome associated deubiquitinases UCHL5 and USP14 of the

16S regulatory subunit are inhibited by AF both in vitro and in vivo and that this inhibition played a key role in AF

cytotoxicity.76,125 As discussed in previous paragraph, Zhang et al. considered DUBs an off‐target effect oc-

curring at high dose of AF.138 Further studies are needed to better understand dose‐dependent and/or cell type

dependent inhibition of these targets.

All the other proteins summarized in Figure 3 resulted affected by AF treatment but, as fa as we know, no

evidence was provided regarding a direct interaction. It is reasonable to assume that their modulation is related

to the inhibition of the direct targets previously described, but in several cases the signaling cascade has not

been clarified. Furthermore, more than one mechanism can contribute to the ultimate effect of the drug.

Overall, the studies described in this review support the use of AF in combination with the drugs normally

used in the therapy of specific cancer, as a valuable aid to overcome resistance to chemotherapy and/or enhance

the effectiveness of conventional therapies. Further efforts are needed to understand the effective mechanism

through which AF performs its action on different types of cancer in relation to specific genome background and

protein pattern expression. The studies reported in this review confirm the growing interest in AF drug re-

purposing and provide the basis for further insights that can support the translation of research in this field into

clinical trials.
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