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Dissipation-driven selection of states in
non-equilibrium chemical networks
Daniel Maria Busiello 1✉, Shiling Liang 1, Francesco Piazza 2,3 & Paolo De Los Rios 1,4

Life has most likely originated as a consequence of processes taking place in non-equilibrium

conditions (e.g. in the proximity of deep-sea thermal vents) selecting states of matter that

would have been otherwise unfavorable at equilibrium. Here we present a simple chemical

network in which the selection of states is driven by the thermodynamic necessity of dis-

sipating heat as rapidly as possible in the presence of a thermal gradient: states participating

to faster reactions contribute the most to the dissipation rate, and are the most populated

ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as

the complexity of the chemical network increases, the velocity of the reaction path leading to

a given state determines its selection, giving rise to non-trivial localization phenomena in

state space. A byproduct of our studies is that, in the presence of a temperature gradient,

thermophoresis-like behavior inevitably appears depending on the transport properties of

each individual state, thus hinting at a possible microscopic explanation of this intriguing yet

still not fully understood phenomenon.
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The emergence of cellular life has likely been preceded by
the appearance of molecular replicators, namely molecules
able to use basic building blocks present in the environ-

ment to create copies of themselves1. RNA and other long mac-
romolecules, such as proteins, are considered as the best
candidates for the first replicators2.

Although in the present oxidative conditions long biomolecules
such as RNA are not thermodynamically stable, it is possible that
they could be thermodynamically stable in the primordial Earth
conditions (see refs. 3,4 for the still-open debate). Nonetheless, no
conditions have been found to date such that their building
blocks and their precursors could be thermodynamically stable
and abundant enough to further proceed to their spontaneous
polymerization5 and subsequent self-replication. Relying on
equilibrium thermodynamics is thus unlikely to provide a route
to explain the emergence of life6. The potential relevance of non-
equilibrium conditions in this context has also been highlighted
in several recent works7–9.

A different scenario is the possibility that, from the onset,
external sources of energy might have driven prebiotic mole-
cules away from equilibrium, allowing higher-energy states (i.e.,
more complex and/or longer molecules) to be abundant, even
against their natural tendency to decay according to their
equilibrium fate10–12. Consistently with these arguments, Braun
and coworkers have for example shown that, in the presence
of thermal gradients, the accumulation of molecules in regions
of lower temperature (thermophoresis) increases polymeriza-
tion beyond the prescriptions of mass-action kinetics at
equilibrium13.

In the present work, we hint at the possibility of broadening the
perspective: external energy sources, here a thermal gradient, can
tilt the populations of the different states that participate to a
reaction network, by favoring states not only according to their
energy, but also according to the dissipation along the pathways
they are part of. In particular, we study linear reaction networks
to highlight the basic rules deciding which states are the most
favorable, relating them to kinetic and dissipation rates. Despite
the simplicity of the model, it highlights the onset of unexpected
features in non-isothermal chemistry, leading to potential appli-
cations in real-world examples14.

Results
A temperature gradient favors states involved in faster reaction
pathways. The simple toy model that we propose here com-
prises three states, A, B, and C, which diffuse in space in the
presence of a temperature gradient ΔT. A pedagogical way to
describe this system retaining all its essential non-equilibrium
features is by means of a two-box model as depicted in Fig. 1a.
Here diffusion is captured by allowing each state to move
back and forth between the two boxes, with transport rates
dA, dB, and dC. The system evolves according to a Master
Equation15,16:

dPðX1Þ
dt

¼
X
Y1

kY1!X1
PðY1Þ � kX1!Y1

PðX1Þ
� �

þ

þ dXðPðX2Þ � PðX1ÞÞ
dPðX2Þ

dt
¼

X
Y2

kY2!X2
PðY2Þ � kX2!Y2

PðX2Þ
� �

þ

þ dXðPðX1Þ � PðX2ÞÞ;

ð1Þ

where X, Y= A, B, C. To take into account the energy differ-
ences between the different states, the following relations

between the transition rates must be respected17–20:

kA1!B1
¼ eðEA�EBÞ=kBT1kB1!A1

kA1!C1
¼ eðEA�ECÞ=kBT1kC1!A1

kA2!B2
¼ eðEA�EBÞ=kBT2kB2!A2

kA2!C2
¼ eðEA�ECÞ=kBT2kB2!A2

:

ð2Þ

with T1= Tm+ ΔT/2 and T2= Tm− ΔT/2. We define the
average temperature Tm and the temperature gradient ΔT,
which is responsible for the maintenance of a non-equilibrium
steady state. To further emphasize the effects that we want to
highlight, we set the energies of the states B and C to be equal,
EB= EC (and ΔE= EA− EB= EA− EC), with the additional
condition on the height of the barrier that, à la Arrhenius,
determines the velocity of the reactions

kBi!Ai
¼ e�Δϵ=kBT ikCi!Ai

for i ¼ 1; 2 ð3Þ
with Δϵ= ΔϵB− ΔϵC > 0. Equations (3) imply that, irrespective
of the temperature (hence, in both boxes) the chemical tran-
sitions between C and A are faster than the ones between B and
A. Here, we are implicitly assuming that we can identify each
state as a localized well in the chemical potential landscape, i.e.,
the activation energy for each reaction is much larger than the
thermal energy available.

We are interested in the probability of finding the system in the
lowest energy states, B and C, at stationarity. In the following,
P(B) is identified as P(B1)+ P(B2), and analogously for P(C).
When equilibrium conditions are met, (namely dA= dB= dC= 0
and/or ΔT= 0), the system asymptotically converges to Peq

i ðCÞ ¼
Peq
i ðBÞ>Peq

i ðAÞ in each box and consequently Peq(B)= Peq(C) >
Peq(A) overall. In non-equilibrium conditions the picture
dramatically changes, because the energy symmetry between
states B and C is kinetically broken. In order to emphasize the
role of the barrier difference, Δϵ, we set all the transport rates to
be equal, dA= dB= dC= d. In this simple setting, away from
equilibrium the state with the lowest energy barrier, C in this case,
is the most populated at steady-state in the presence of a
temperature gradient. This is quantified by the ratio between the
probabilities of the C and B states, RCB= P(C)/P(B), whose
logarithm can be interpreted as the effective stabilization energy
of C relative to B (Fig. 1b). RCB is always greater than 1, and in
most physical cases reaches a maximum in the d→∞ limit, i.e.,
when diffusion between the two boxes is much faster than all
other processes in the system. In this limit, it is possible to find
the analytic expression of RCB for an arbitrary number n of boxes:

lim
d!1

RCB ¼ k̂B!Ak̂A!C

k̂C!Ak̂A!B

ð4Þ

with k̂X!Y ¼ Pn
i¼1 kXi!Yi

.
The simple model that we have proposed here provides a clear

example of kinetic symmetry-breaking due to the energy barriers,
which is effective only in a non-equilibrium scenario21. In
particular, the state which is more favorable away from
equilibrium, C, participates in the reactions that, according to
(3), are the fastest. The role of Δϵ in the selection process is
revealed in a small ΔT expansion of Eq. (4):

RCB ¼ 1þ ΔEΔT2

4T4
m

ΔϵþOðΔT4Þ: ð5Þ

As expected, the zeroth order is equal to 1, since at equilibrium
the states B and C are equally populated. Furthermore, all the
odd-order terms vanish because the selection of the fastest state
cannot depend on the direction of the temperature gradient.
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Optimal gradient for selection. When ΔT→ 2Tm, the cold box
tends to be kinetically inert. Hence, the system is dominated by
the warm side, and all populations will eventually relax to their
equilibrium value, corresponding to RCB= 1. Since RCB= 1 also
when ΔT= 0, and is always positive, it must have a maximum at
a given ΔT*, suggesting that maximal selection would stem from a
fine tuning of the parameters of the chemical network for any
given ΔT.

An approximate estimation of the optimal gradient for
selection can be obtained in the infinite diffusion limit. We note
that, up to the second order in ΔT in the exponents,

k̂X!A � 1
2
e�ΔϵX=Tm eΔϵXΔT=2T

2
m þ e�ΔϵXΔT=2T

2
m

� �
ð6Þ

It is possible to identify two different regimes depending on
whether θX≡ ϵXΔT/2T2 is much larger or much smaller than 1.
Since X= B, C, we set as a control parameter the average between
θB and θC, thus estimating the optimal gradient as the crossing
value for the two regimes:

ΔT� ¼ 4T2
m

ΔϵB þ ΔϵC
: ð7Þ

In Fig. 1c we show that indeed this formula provides a good
estimate for the actual ΔT*.

State selection is governed by dissipation. An intuitive grasp of
the mechanism leading to selection of the fastest state can be
provided by Fig. 2a, where the direction of the currents have been
highlighted. Thermal energy is converted into chemical energy,
namely excess of C over B, through diffusive cycles taking place in
the system. Particles are heated up in the hot box (B and C toward
A), thus absorbing heat, whereas they relax (A to B and C) in the
cold box, thus releasing heat. This unbalance generates a current
of A from the warm to the cold box, where it splits preferentially
along the faster decay path, that is, toward C, before being
transported back into the hot box. Hence, C is depopulated

during the heat absorption phase and populated when the heat is
dissipated. This cycle is thus driven by the constant absorption
and dissipation of energy, which is related to entropy
production16,22:

_S ¼
X2
i¼1

X
X¼B;C

JAi!Xi
ln

kAi!Xi

kXi!Ai

¼ ΔE
ΔT
T1T2

JA2!B2
þ JA2!C2

� �
;

ð8Þ

where JAi!Xi
¼ kAi!Xi

PðAiÞ � kXi!Ai
PðXiÞ is the flux from Ai to

Xi, with i indicating the box. We used JA1!X1
¼ �JA2!X2

(Fig. 2),
and the contributions from the interbox currents vanish because
the rates in the two directions are equal. _S is positive because the
currents flow away from A at the colder temperature (T2) and
toward A at the warmer one (T1).

Expanding Eq. (8) up to the second order in ΔT, and using Eq.
(5), we have:

RCB ’ 1þ
_S
ΔE

1
PeqðAÞ

Δϵ

e�ΔϵB=Tm þ e�ΔϵC=Tm
ð9Þ

Despite the validity of this formula only for small gradients and
fast diffusion, it suggests a correlation between RCB, which
quantifies selection, and _S=ΔE, which is related to dissipation in
the system. Intuitively, a similar relation could have been deduced
noting that the probability fluxes towards C are associated with
the dissipation phase of the system.

In Fig. 2b, we show that indeed RCB and _S=ΔE are
highly correlated for a set of (random) thermal gradients
kBΔT= kB(T1− T2) and values of the typical energy scale ΔE.
Here it is clear that the gradient ΔT quantifies the available
(thermal) energy driving the selection of the fastest state C
through dissipation. Indeed, as ΔT increases, the probability of
escaping from B, diffusing, and populating C by dissipating
energy increases as well. However, as said before, when the

Fig. 1 Selection of states in a three-state two-box model. a A three-state chemical system diffusing in a temperature gradient, modeled as two connected
boxes at different temperatures, T1= Tm+ΔT/2 and T2= Tm−ΔT/2. The states B and C have the same energy and the energy barrier between A and C,
ΔϵC (cyan/light gray), is lower than the one between A and B, ΔϵB (green/dark gray), i.e., Δϵ=ΔϵB−ΔϵC. b The quantity RCB= (P(C1)+ P(C2))/(P(B1)+ P
(B2)) gauges the global non-equilibrium unbalance between B and C. Under non-equilibrium conditions, C is favored with respect to B, since it participates
in faster reactions. Here, Tm= 0.1, ΔE= 2, ΔϵC= 1 and d= dA= dB= dC, with kB set to 1. RCB is a monotonously increasing function of d, and the dashed
lines indicate the limit for d→∞, computed in Eq. (4). c log RCB

� �
is plotted as a function of the thermal gradient for different choice of parameters. The

ones that remain fixed are as in b. Black dashed lines indicate the approximate value of the optimal gradient in both cases, Eq. (7). As we can see, it
provides a good estimate of the actual value, even for finite diffusion.
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gradient is too high, chemical selection is abolished. Remarkably,
fixing the thermal gradient, RCB is always strongly correlated with
the steady-state entropy production, rescaled by the probability of
the high-energy state in analogy with Eq. (9), as a function of the
energy ΔE (Insets of Fig. 2b). In the Supplementary Discussion,
we show that the correlation is preserved also in the case of finite
diffusion and for for different values of energy barriers and
temperature gradient (see Figs. S2 and S3).

Characteristic lengthscale for selection. Extending this two-
box model to a thermal gradient in continuous space is of
course more realistic, and reveals further features that are inac-
cessible to the discrete box description. In continuous space (say,
x∈ [0, 1]), the system evolves according to the differential
Chapman–Kolmogorov equation15:

∂tpXðxÞ ¼
X
Y

kY!XðxÞpYðxÞ � kY!XðxÞpXðxÞ
� �

þ DX∂
2
xpXðxÞ;

ð10Þ

where X, Y=A, B, C. We impose no-flux boundary conditions,
i.e., ∂xpX(0)= ∂xpX(1)= 0. In Eq. (10), the Laplacian captures
diffusion while the part involving discrete transitions captures the
chemical reactions between species, which are governed by rates

analogous to the ones introduced before:

kA!BðxÞ ¼ eðEA�EBÞ=kBTðxÞkB!AðxÞ
kA!CðxÞ ¼ eðEA�ECÞ=kBTðxÞkC!AðxÞ;

ð11Þ

with the additional condition on the energy barriers:

kB!AðxÞ ¼ e�Δϵ=kBTðxÞkC!AðxÞ : ð12Þ
Also in this case, the transport coefficient is the same for all states:
DX≡D, ∀ X. In what follows P(X)= ∫dxpX(x) (note that we use p
for the space dependent distribution, and P to indicate their
integral over space).

Although it is difficult to solve Eq. (10) analytically for any
value of the parameters, approximate solutions can be worked out
in selected cases. The limit of large diffusion (D→∞), which is
analogous to the case of infinitely fast transport between the two
boxes analyzed above, can be tackled using the standard approach
of time-scale separation15,23. To the leading orders in 1/D, the
solution is uniform in space, and RCB is the same as in Eq. (4),
with k̂X!Y ¼ R

dx kX!YðxÞ.
The case of a linear temperature gradient T(x)= T0+ ΔT ⋅ x

can also be analytically explored for small ΔT. Expanding all rates
and probabilities in powers of ΔT as

kX!Y ¼
X
n

1
n!
xnΔTn∂nTkX!YjΔT¼0

pXðxÞ ¼
X
n

ΔTnpðnÞX ðxÞ;
ð13Þ

inserting them in (10) and solving it order by order it is easy to
obtain at 0th order

pð0ÞB ¼ pð0ÞC ¼ eΔE=kBT0

2eΔE=kBT0 þ 1
; ð14Þ

which is the equilibrium solution for ΔT= 0.
Up to second order, RCB is

RCB ¼ 1þ ΔT2

2Pð0Þ
B

Pð2Þ
C � Pð2Þ

B

� �
; ð15Þ

where PðnÞ
X is defined as the integral of pðnÞX ðxÞ over the whole

domain. After a further expansion in Δϵ, i.e., the symmetry
between B and C is only infinitesimally broken by the kinetics, we
obtain

Pð2Þ
C � Pð2Þ

B ¼ ΔE

T4
0

PeqL2s 1� 2Ls tanh
1
2Ls

� �� �
Δϵ; ð16Þ

with Ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðkB!A þ 2kA!BÞ

p
and Peq ¼ Pð0Þ

B ¼ Pð0Þ
C . This

difference is always positive, implying that states participating
in fast reactions are always favored in this system, and it vanishes
when D→ 0, as expected because the system locally relaxes at
equilibrium. In particular, Ls represents a typical length-scale that
can be interpreted as the space traveled by the system between
two state transitions, namely the distance below which the system
can absorb and dissipate energy, thus setting a lengthscale for
dissipation-driven selection.

Analogously to the two-box scenario, an optimal gradient can
be appreciated also in this case. Since the system lives in a
continuous domain, its physical origin is slightly different. When
ΔT→∞, all states tends to be equally populated, i.e., RCB→ 1,
abolishing chemical selection. The positivity of RCB, and the fact
that it goes to zero when for a vanishing gradient, leads to the
existence of a maximum at ΔT*. In the Supplementary Methods,
we present a more in-depth discussion on this (see Fig. S1).

Fig. 2 Features connecting dissipation and selection in a three-state two-
box model. a Diffusive cycles convert thermal energy into chemical energy.
The direction and thickness of each arrow represent respectively direction
and intensity of the net probability flux between two states. b Correlation
between RCB= P(C)/P(B) and _S=ΔE, which is the steady state entropy
production divided by the characteristic energy scale of the system, for
different values of ΔE and ΔT. Here, Δϵ= 2, Tm= 0.7, d→+∞, both ΔE
and ΔT have been drawn from a normal distribution of mean 1 and 0.2, with
a variance of 0.1 and 0.02, respectively. Identical values of the gradient
correspond to the same color. ρ is the correlation coefficient. We report the
approximate average ΔT among the values contained in each shaded area.
Insets - Setting ΔT= 0.15 (top) and ΔT= 0.25 (bottom), we show that RCB
and _S

ΔEPðAÞ exhibit the same behavior as a function of ΔE, when plotted
within the same range, extending Eq. (9) beyond the small gradient regime.
The Boltzmann coefficient has been taken equal to 1 for simplicity.
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Non-trivial selection for more complex reaction-network
topologies. How do the features of a simple three-state system
extend to more complex network topologies? Here we study a
chain of connected chemical reactions in an energy landscape,
looking at the propagation of the local selection process along the
chain, eventually leading to runaway and/or localization phe-
nomena in the population of states.

We focus to the two-box scenario, which, as shown above,
recapitulates most of the dissipation-driven selection phenom-
enon while being easier to analyze, in the limit of infinitely fast
transport between the boxes. We consider a reaction network as
the one sketched in Fig. 3a, which can also diffuse between two
boxes at different temperatures as in Fig. 1. We can distinguish
two different classes of three-state subsystems, with the faster
reaction either on the right branch (henceforth indicated as R,
encircled by an orange dashed line in Fig. 3a), analogously to the
three-state system depicted in Fig. 1a, or on the left (L, encircled
by a blue dashed line in Fig. 3a). All lower energy states have
the same energy, while the high energy state in each subsystem
is characterized by a different energy ΔEi, and two different

barriers ΔϵðiÞslow and ΔϵðiÞfast, with Δϵi ¼ ΔϵðiÞslow � ΔϵðiÞfast, mimicking
the presence of a non-trivial underlying energy landscape.

We have already computed RCB in Eq. (4), in the limit of
infinitely fast diffusion. It quantifies the ratio between the
population of two adjacent states, the fast over the slow one. It
is possible to see from the Master Equation for the whole system

in Fig. 3a, that the same relation holds between any two adjacent
states in each subsystem. Since, we want to compute the
population of each single species along the chain, we use B as
our reference state. The ratio between PCk

and PB is:

RCkB
¼ RC1B

Yk
l¼2

RClCl�1
ð17Þ

If there are nðLÞk subsystems belonging to the class L, and nðRÞk ¼
k� nðLÞk subsystems to the class R, then Eq. (17) becomes:

RCkB
¼

YnðRÞ
i¼1

RðRÞ
i ðΔEi;Δϵ

ðiÞ
slow;Δϵ

ðiÞ
fastÞ

YnðLÞ
i¼1

RðLÞ
i ðΔEi;Δϵ

ðiÞ
slow;Δϵ

ðiÞ
fastÞ

ð18Þ
with both RðRÞ

i and RðLÞ
i given by Eq. (4).

To simulate a generic chain of chemical reactions, we assign
each subsystem to class L with probability p, and to class R with

probability q= 1− p. We then draw ΔEi, Δϵ
ðiÞ
slow and ΔϵðiÞfast from

three different distributions, P(ΔE) and P(Δϵslow) and P(Δϵfast),
respectively (details in the caption of Fig. 3). As we can see from
Fig. 3b, even in the simple case in which p= q= 1/2, and both
distributions are uniform, a localization phenomenon in the
population of the states can spontaneously arise, where the
favorability of an individual state does not depend only on its
fast/slow status with respect to the adjacent reactions, but
depends instead on the full path of reactions connecting it to the
reference state, and hence on the full energy landscape. If all the
fast reactions are on the same side of each three-state subsystem
(all reactions of type R or of type L), the population of states Ck

can become exponentially different from the one of B, as
highlighted in the inset of Fig. 3b.

Also in this case, the selection for the most probable states is
determined by dissipation. The argument outlined for the simple
three-state system can be easily generalized in the case of
infinitely fast transport between the boxes: RCkB

simply
corresponds to the product of all the transition rates directed
from B to Ck belonging to the path connecting the two, divided by
the same product in the opposite direction. As a consequence, the
states that will eventually be the most populated ones (with
respect to a reference state B) are those whose connecting path to
B have the fastest dissipation. In the Note 1, we study a tree-like
topology, showing that the kinetic properties of the path
connecting lower and higher energy states become relevant to
determine steady selection under non iso-thermal conditions (see
Fig. S4). However, when the topology is further complicated,
several distinct paths can connect the same pair of states, and all
the transition rates will eventually contribute to determine a
ranking for steady-state populations. In this case the determina-
tion of the fastest dissipating states becomes difficult, and we
leave for future works the development of an efficient technique
to tackle this problem.

Selection under time-periodic variations of temperature.
Another common method to maintain a system out-of-
equilibrium is to periodically vary some external parameters,
allowing it to reach a time-periodic non-equilibrium state24,25.
We imagine to have the three-state system detailed above, cou-
pled to a reservoir whose temperature is varied periodically in
time, with a period τ:

TðtÞ ¼ Tm þ ητðtÞΔT; ð19Þ
with ητðtÞ ¼ 0 and ητðtÞητðt0Þ ¼ δðt � t0Þ, where the overline
indicates the temporal average over one period. In analogy with

Fig. 3 Selection of states in a chain of three-state subsystems in a
thermal gradient. a Chain of three concatenated three-state chemical
networks, each similar to the one in Fig. 1a. The orange circle indicates a
subsystem belonging to the class R, with the fast transition on the right
branch, while the blue circle indicates a subsystem whose fast transition is
on the left branch (class L). b RCkB ¼ PðCkÞ=PðBÞ as a function of the states
Ck. The selection of states does not depend only on their transitions being
fast or slow with respect to the neighboring reactions, but on all rates of the
network. Here kB= 1, T= 0.7, ΔT= 0.2, ΔEk ~ U([1, 10]), Δϵ

ðiÞ
slow � Uð½3;6�Þ

and ΔϵðiÞfast � Uð½2; 3�Þ, where U is the uniform distribution. Each subsystem
belongs to class L with probability p= 0.5, and to class R with probability
1− p. Inset—RCkB

as a function of the species Ck for the same parameters as
in the main panel, but p= 0.75. The predominance of subsystems
belonging to the class R leads to a directional exponential growth.
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Eqs. (11) and (12), the time-dependent transition rates satisfy:

kA!BðtÞ ¼ eðEA�EBÞ=kBTðtÞkB!AðtÞ
kA!CðtÞ ¼ eðEA�ECÞ=kBTðtÞkC!AðtÞ
kB!AðtÞ ¼ e�Δϵ=kBTðtÞkC!AðtÞ:

ð20Þ

The inverse period τ−1 plays the same role as the diffusion rate d
in the system in Fig. 1a. It favors cycles of constant absorption
and dissipation of energy, hence igniting a chemical selection
among species. The latter is defined as the ratio between temporal
averaged probabilities. Hence, in the limit of infinitely fast driv-
ing, we have an equation similar to Eq. (4).

lim
τ!0

RCB ¼ PðCÞ
PðBÞ ¼

kB!A kA!C

kC!A kA!B

ð21Þ

For small values of the gradient ΔT, by means of a perturbative
analysis, we solve the system order by order, as for the case of a
continuous gradient. The zeroth-order in ΔT corresponds to the
equilibrium solution. Remarkably, even in this case the first-order
correction vanishes and, up to the second order in ΔT, we have:

RCB ¼ 1þ ΔEΔT2

T4
m

Δϵ ð22Þ

Its expression in terms of time-averaged entropy production is

RCB ¼ 1þ
_SðtÞ
ΔE

1
PeqðAÞ

Δϵ

e�ΔϵB=Tm þ e�ΔϵC=T
ð23Þ

Equations (22) and (23) are analogous to Eqs. (5) and (9), and
notably they are valid in the fast driving regime. We highlight the
analogy between temporal cycles and diffusive cycles of the pre-
vious setting: they both force the system to explore different
temperatures. In the Supplementary Methods we present the
detailed derivation of these results.

Emergence of thermophoresis-like behavior. So far, we have
assumed that all the species move between the boxes (or diffuse in
space) at the same rate, and as a consequence the probability to be
in each box, summed over the different states, is always equal to
1/2 (or uniform in continuous space). Although relaxing this
hypothesis does not significantly change the overall picture of
dissipation-driven selection, a novel phenomenon appears, that
we are compelled to report for its potential implications: we find
that, even in the simple two-box scenario, there is an accumu-
lation of the population in one of the boxes. The description of
this effect is surprisingly similar to thermophoresis, which refers
to the accumulation of molecules on either the cold or warm side
in presence of a thermal gradient. Mathematically, at stationarity,
thermophoresis is usually described through a diffusive
equation26,27:

∇c ¼ �STc∇T; ð24Þ
where c is the concentration of particles, and ST is the so-called
Soret coefficient, which can be positive or negative. Even if
extensively described through effective equations, a microscopic
understanding of this behavior is still lacking28–30. The present
approach might serve as a complementary perspective for this
intriguing phenomenon.

To fix the ideas, consider the discrete-state system sketched in
Fig. 1a. We consider the ratios dB/dA and dC/dA as measures of
the unbalance of transport properties of different species. The
probability of being in box i is Pi= P(Ai)+ P(Bi)+ P(Ci). In a
discrete box scenario, Eq. (24) can be rewritten as:

ΔP ¼ P2 � P1 ¼ �ST
P1 þ P2

2

� �
ΔT ð25Þ

Since for infintely fast transport the system will end up equally
populating both boxes, we need to consider finite transport. ΔP=
P2− P1 is represented in Fig. 4 as a function of dB/dA, for two
different choices of dC/dA, and for different values of ΔT. Clearly,
in the absence of a thermal gradient there is no thermophoresis,
while a difference between T1 and T2 induces an accumulation of
particles on the warm or cold side. When the transport
coefficients are small compared to all the other transition rates
in the system, the Soret coefficient can be estimated to be equal to:

ST ¼
2� dBþdC

dA

� �
ΔE eΔE=kBTm

ð1þ 2eΔE=kBTmÞ dBþdC
dA

eΔE=kBT2 þ 1
� �

kBT
2
m

: ð26Þ

As can be seen from (26), the sign of ST depends on the values of
the transport coefficients of the different states, and it thus
inextricably links transport to the internal kinetics in chemical
space. Indeed, even a simple two-state system exhibits thermo-
phoresis, as long as the two states have different transport
coefficients (see Supplementary Note 2 and Fig. S5).

In line with the leit-motif of this work, we highlight here that
thermophoresis can again be seen as a selection process in
position, rather than in state, space. It is driven by the dissipation
of thermal energy, and the kinetic symmetry-breaking is induced
by the asymmetry of transport rates.

Discussion
Non-equilibrium conditions can trigger stabilization effects in
molecular systems31–34. In a similar fashion, here we have shown
that high energy states can be stabilized out-of-equilibrium, by
continuously dissipating energy supplied from an external source,
a temperature gradient in our case. In particular, the deviation
with respect to equilibrium directly correlates with dissipation,
which is kinetically controlled by the rates of the system. Hence,
the core ingredient is the breakdown of kinetic symmetry in the
reaction rates: while at equilibrium the energies are the only
relevant quantities, away from equilibrium the kinetics plays a
fundamental role. Here, we have proposed simple reaction net-
works that could be investigated to reveal how selection and
dissipation are intimately related. Furthermore, because of their
simplicity, these models can be analytically and numerically
solved and, importantly, are amenable of experimental validation.
As a byproduct of our study, we have presented a
thermophoresis-like behavior emerging as a spatial selection

Fig. 4 Thermophoresis as selection in space for a three-state two-box
model. Difference between the probability of being in each box, ΔP= P2−
P1, as a function of dB/dA (in log-scale), for dC= dB/5 (blue curves) and
dC= 5dB (vermilion curves). Different values of the gradient ΔT are shown.
When ΔP is positive, the particles (independently of the species)
accumulate on the cold side (blue/right box), and the Soret coefficient ST is
positive. On the contrary, the particles are more abundant in the warm side
(red/left box) for negative ΔP, corresponding to negative values of ST. In
this example, we set Tm= 0.7, ΔE= 0.1, Δϵ= 2 and, dA= 0.01. kB has been
taken equal to 1 for simplicity.
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process. This is induced, again, by kinetic symmetry-breaking, in
this case in the diffusion coefficients of different states. It is also
worth noting that the relation between selection and dissipation
stems from the thermodynamic necessity to transport heat from
the warm to the cold side of the system. In this respect, selection
becomes a necessary consequence of thermodynamics.

From a broader perspective, this work could provide a novel
framework to develop schemes aimed at explaining the sustained
abundance of otherwise only metastable molecules, which are
necessary intermediates for the spontaneous synthesis of more
complex macromolecules that, in turn, could lead to the first
replicators. In this respect, the approach here presented recently
stimulated a possible solution to the furanose conundrum14.
Hence, we are convinced that our results could represent an
important previously unreported ingredient to connect the origin
of life problem to the physical questions of what is possible in
non-equilibrium conditions35,36, and what are the basic micro-
scopic (molecular) rules governing the emergent phenomena.

Data availability
No datasets were generated or analysed during the current study.
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