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Abstract: Ancient human remains have the potential to explain a great deal about the prehistory of
humankind. Due to recent technological and bioinformatics advances, their study, at the palaeoge-
nomic level, can provide important information about population dynamics, culture changes, and
the lifestyles of our ancestors. In this study, mitochondrial and nuclear genome data obtained from
human bone remains associated with the Neolithic Globular Amphorae culture, which were recov-
ered in the Megalithic barrow of Kierzkowo (Poland), were reanalysed to gain insight into the social
organisation and use of the archaeological site and to provide information at the individual level.
We were able to successfully estimate the minimum number of individuals, sex, kin relationships,
and phenotypic traits of the buried individuals, despite the low level of preservation of the bone
samples and the intricate taphonomic conditions. In addition, the evaluation of damage patterns
allowed us to highlight the presence of “intruders”—that is, of more recent skeletal remains that
did not belong to the original burial. Due to its characteristics, the study of the Kierzkowo barrow
represented a challenge for the reconstruction of the biological profile of the human community who
exploited it and an excellent example of the contribution that ancient genomic analysis can provide
to archaeological reconstruction.

Keywords: ancient DNA; palaeogenomics; Neolithic; multiple burial; kinship; phenotypic traits

1. Introduction

Over the years, the study of ancient DNA study has proven valuable and essential for
tracing migrations of historic and prehistoric individuals and groups. Advances in the se-
quencing and analysis of the genomes of both modern and ancient peoples have facilitated
a number of breakthroughs in the understanding of human evolutionary history [1]. In this
context, the archaeological excavations and retrieval of skeletal human remains represent a
unique opportunity to study a population history and shed light on cultural changes and
the lifestyles of our ancestors.

Archaeological excavations in the Żnin district (northwestern Poland), led by Professor
Tadeusz Wiślański from the Institute of History and Material Culture of the Polish Academy
of Sciences in Poznań, uncovered a Megalithic barrow tomb associated with the Globular
Amphora culture (GAC); it contained the remains of several individuals. Through the
integration of archaeological, anthropological, and molecular (mtDNA and nuDNA) data,
and theories about the development of the GAC, our previous results [2,3] add nuance to
the model of Late Neolithic gene flow from the Pontic steppes into Central Europe, showing
that the eastern affinities of the GAC in the archaeological record reflect cultural influences
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rather than movements of people. During the study, archaeogenomic research permitted
us to obtain information on past population dynamics, whereas biological traits (such as
phenotypic traits) of each individual and relationships within the group in the burial site
have not been investigated due to the fact that samples with presumed kinship relations
were removed from our previous studies. However, beyond population genetics purposes,
as recently proposed, for instance, by [4–7], obtaining more information on the individuals
(such as sex estimation and phenotype descriptions of physical appearance and functional
traits), and investigating the relationships among them could be important—in general
and in particular for the Megalithic barrow of Kierzkowo—for better understanding the
social structure and funerary rituals of ancient cultures and preserving and enhancing a
specific archaeological site. In fact, the molecular characterisation of human remains can
represent an important information source to describe past populations, also for educa-
tional purposes: genomic data can be integrated in archaeological and anthropological
reconstruction in order to reach a wider public in contexts devoted to science and culture
communication, such as museum exhibitions, archaeological parks, and documentaries.

Methods based solely on archaeological and anthropological assessments can some-
times be limited in establishing biological kinship and providing data on biological traits,
above all, in contexts such as this Megalithic barrow tomb, in which, over time, anthropic
action and post-depositional natural events had a strong impact on the ease of data analysis
and interpretation.

Therefore, we decided, here, to reanalyse the molecular data of GAC from our previous
studies, attempting to recover information, such as sex, phenotypic, and functional traits to
provide individual characterisation, concentrating our attention, in particular, on closely
related individuals (previously eliminated from the analysis) and their relations, with
archaeological context, to obtain more information useful to reconstruct GAC funerary
rituals and social organisation. The complexity of this archaeological site, characterised by
a secondary multiple burial of fragmented and mixed human remains belonging to several
individuals, represented a challenge for the reconstruction of the biological profile of this
community and an excellent example of the contribution that aDNA analysis can provide
to archaeological reconstruction. In this context, a molecular investigation turns out to be
fundamental to integrate and confirm anthropological and archaeological data/hypotheses,
and suggests further insight.

2. Materials and Methods
2.1. The Archaeological Site of Kierzkowo

The archaeological site of Kierzkowo is located in the Żnin district (Kuyavian-Pomeranian
voivodeship, northwestern Poland, Figure 1) on top of a hill on the shore of Kierzkowski
Lake. Pottery fragments belonging to characteristic decorated globular vessels [8–11], and
a radiocarbon date on animal bone found in the site confirmed its attribution to the GAC
period (4270 ± 40 BP calibrated to 2896 ± 19 cal BCE) [12].

The original barrow embankment was about 35 m long, 16–18 m wide, and 2 to 4 m
high, overgrown by trees and bushes (Figure 1A). After removing the earth embankment,
a stone structure approximately 22 m long, W–E, and 3 to 6 m wide, N–S, was revealed
(Figure 1B). In the western part of this Megalithic tomb, there was a chamber about 10 m
long, about 1.5 m wide, and of the same depth. The chamber was built of stone slabs with
a height of about 1 m and a thickness of 0.5 to 0.8 m. Inside, a large boulder divided the
chamber into two unequal parts. On the south side, a corridor lined with stones led to the
chamber [11,13,14] (Figure 1C).
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Figure 1. Geographic location and details of the site. Location of Kierzkowo site (Poland). (A) Megalithic barrow in
Kierzkowo. (B) Megalithic barrow after removing the earth embankment. (C) Detail of the barrow: burial chamber.
(D) Cluster of human Neolithic bones within the chamber. (A–D): photographed by Professor T. Wiślański; (A,D): fragments
of photographs, adapted with permission from book [11]; (B,C): from the Archives of the Institute of Archaeology and
Ethnology of the Polish Academy of Sciences.

Within the chamber, Neolithic human bones gathered into two large clusters and a
smaller one (at metres 3 and 4 and 5, Figure 1D). Some bones were also located under
the large stone dividing the chamber, and much fewer bones were found outside of the
chamber. In the two large bone gatherings, remains were stratified into seven layers,
while in other locations, bones were in superficial layers. In many instances, human
bones were mixed with animal bones with signs of dismemberment [11]. The presence
of domesticated animal remains testify that animal husbandry was the dominant form of
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economy. Individuals buried in Kierzkowo, indeed, being people of the GAC, belonged
to the set of agriculture-based economies with a dominance of pastoralism. They were
nomadic people with unstable settlement patterns. The megalithic tombs may have been
important central points or boundaries of the territory used by the travelling human
group [8,15–17]. Consumption of milk and animal meat is attested by the analysis of lipid
residues in ceramic vessels from the barrow. Carbon (δ13C) and nitrogen (δ15N) isotopes
were used to reconstruct the diet of the individuals from Kierzkowo. The δ15N values in
bone collagen were slightly higher in adult men than in adult women. This could indicate
a slightly better access of men to valuable animal products, but this differentiation is very
small and requires further research [11].

Most of the human remains found in Kierzkowo were highly fragmented and mixed,
without anatomical order, placed in the barrow as secondary interment (Figures 1D and 2).
Altogether, 428 fragments of various parts of the skeleton were recovered, 94.2% of them
from the burial chamber. These fragments were studied for taphonomy and morphological
traits. Type of bone, skeletal area, side of the body, size of a fragment, and its robustness
surface markings were taken into account. Furthermore, the degree of bone deterioration,
traces of plant roots and eventual activity of invertebrates, bone colour and its alterations,
types of breaks and soil in which they were preserved were also considered. Wherever pos-
sible, sex and age at the death of individuals were estimated. Preliminary descriptions and
anthropological analyses were made many years ago [18]. At present, all bone fragments
were inspected again and revisions of diagnoses (such as estimations of sex and age) were
performed using newer diagnostic methods.

Figure 2. Fragments of bones of two individuals partly arranged in anatomical order. Bone fragments were tentatively
attributed to individuals considering sex and age estimations, side, size, robustness, surface relief, colour, and state of
preservation. Photo by Dr Andrzej Długoński.
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Evaluating sex and age estimations, the origin from the left or right side of the
skeleton, the number of paired bones in the skeleton, size, robustness, surface relief, and
also colour and state of preservation, bone fragments were assembled into individual
skeletons (Figure 2). It needs to be stressed that the application of only morphological
criteria does not produce complete certainty about bone allocation to the same individual.
The Ockham’s razor principle was used for allocating bone fragments to individuals in
order to not multiply numbers of individuals beyond the necessary minimum. Finally, we
estimated that in the barrow there were at least 27 persons buried [11]. Both sexes and ages
ranging from newborns to elders were represented.

2.2. The Analysed Samples

Seventeen bone remains from Kierzkowo were chosen for genetic analysis as they
were attributed to the same number of putative different individuals (Table 1).

The primary reports of the molecular data obtained from these samples were pre-
viously published by [2,3], where population genetics methods were applied to these
and other samples to investigate population dynamics during the Neolithic period in
Europe. Complete or almost complete mtDNA consensus sequences were available in
GenBank with accession numbers MF114211-MF114224. Sequence alignments of nuclear
DNA (nuDNA) reads in BAM (Binary Sequence Alignment/Map) format were retrieved for
eight individuals from the European Nucleotide Archive (ENA) under accession numbers
ERS2040835-ERS2040840, ERS2040844, and ERS2040845.

In this paper, both mtDNA and nuDNA data were object to a new kind of analysis
with a specific focus on the single community buried in the Kierzkowo site.

2.3. Mitochondrial Haplotype and Haplogroup Analysis

The available mtDNA consensus sequences were reanalysed to estimate haplogroups
and phylogenetic relationships between haplotypes.

Different from our previous study [3], HaploGrep 2.0 [19] was used for haplogroup
assignment based on PhyloTree Build 17 [20]. Polymorphisms according to the revised
Cambridge reference sequence (rCRS) were annotated and showed in a graphical phyloge-
netic tree obtained by HaploGrep 2.0.

Misincorporation rates at read termini and average fragment length were calculated
by MapDamage2.0 [21] to describe the damage pattern of the mtDNA molecules. Modern
human contamination at mitochondrial level was estimated by ContamMix [22]. Default
parameters were used for these analyses.

2.4. Sex Identification

Sex identification of all samples for which nuDNA data were available was performed
using the guidelines suggested by Skoglund et al. [23] (v0.4). A python script was ap-
plied to the read alignments in BAM format to infer the molecular sex by comparing the
number of alignments to the Y chromosome to the total number of alignments to X- and
Y-chromosomes.

2.5. Y-Chromosome Haplogroup Determination

Y-chromosome haplogroup inference was attempted for male Neolithic samples using
the software Yleaf v2.2 [24], which accepted read alignments in BAM format as input files.
The prediction, performed with a minimum number of reads for each base (-r) set to 2 and
a minimum quality for each read (-q) set to 30, was based on over 41,000 markers present in
the International Society of Genetic Genealogy (ISOGG) Y-DNA Haplogroup Tree defining
5353 haplogroups [24].
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2.6. Kinship Prediction

We first genotyped our read alignments in BAM format, after trimming 3 bases at read
ends, by using bamUtil “trimBam” function (v1.0.14) [25], and SAMtools [26] “mpileup”
function (v1.7), followed by pileupCaller from sequenceTools (v1.4.0.5, https://github.
com/stschiff/sequenceTools, accessed on 1 August 2020) by randomly calling one allele
per position considering the human genome as pseudo-haploid genome. Base alignment
quality computation was disabled (-B) and minimum base (-q) and mapping quality (-Q)
were set to 30 in the mpileup process, as recommended by the authors. We used GRCh37
as reference genome assembly and called the SNPs according to the 1240K panel [27–29].
Genotypes were obtained in Eigenstrat output format, subsequently converted in plink
format using EIGENSOFT convertf (v7.2.1, https://github.com/DReichLab/EIG, accessed
on 1 August 2020) and plink [30] (v1.9). Finally, kinship prediction was performed by
READ [31], whose approach can successfully infer up to second degree relationships
even with 0.1× shotgun coverage per genome for pairs of individuals. The analysis was
carried out with default parameters, using the median across all pairwise differences
for normalization.

In addition to READ, we also applied NgsRelate [32] (v2) to infer relatedness using
genotype likelihoods instead of called genotypes. In this fashion, we compared kinship
predictions obtained by two different approaches, useful for uncertain classifications due to
low coverage. ANGSD [33] (v0.933) was used to calculate genotype likelihoods while doing
SNP calling from the mapped reads with the GATK model [34], after trimming 3 bases from
both read ends and requiring minimum base and mapping quality scores = 30. NgsRelate
was run using European population allele frequencies, previously collected from the
1000 Genomes Project, phase 3 [35]. The tool calculated 11 summary statistics, including the
coefficient of kinship theta [36], the KING-robust kinship statistics by Manichaikul et al. [37],
and the “R0” and “R1” ratios described in Waples et al. [38], based on a two-dimensional
site-frequency spectrum (2D-SFS) approach.

2.7. Analysis of Phenotypically Informative Markers

Variant calling of 41 SNPs from the HIrisPlex-S panel [39] related to eye, hair, and skin
pigmentation was performed using two different approaches, allowing to get both pseudo-
haploid and diploid calls on the same targeted sites. To the first aim, SAMtools mpileup
and pileupCaller were used as described in the Section 2.6, while diploid calling was
enabled by ATLAS [40] maximum likelihood genotype caller (task = call method = MLE) by
specifying post-mortem damage and recalibration input files. These latter were previously
obtained by ATLAS (“PMD” and “recal” functions, respectively) considering only bases
with a minimum quality = 20 and using highly conserved positions among species defined
by high GERP scores [41] as a training set to infer the recalibration parameters applied to
our data. ATLAS allowed retrieving potential heterozygous variations, which could not
be detected by the pseudo-haploid calling. We used the HIrisPlex-S [39,42–44] online web
tool to predict eye, hair, and skin colour from DNA genotypes called by ATLAS. Moreover,
7 additional SNPs in EDAR, MCM6, ABO, and RHCE genes were also detected, being
phenotypically informative markers. Annotations for each SNP identified in our samples
were retrieved from SNPedia [45].

https://github.com/stschiff/sequenceTools
https://github.com/stschiff/sequenceTools
https://github.com/DReichLab/EIG
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Table 1. The analysed specimens and summary of the results. Sample ID corresponds to the code attributed to the bone remains during the anthropological study, while Lab code
corresponds to the laboratory label assigned during genotyping of nuclear genome. Note that Lab code is the same for sample 7.1 and 8.4, because the mitochondrial (mtDNA) and nuclear
DNA (nuDNA) profiles indicated they belong to the same individual. Anatomical element, sex, and age determination obtained through anthropological methods [11,18] are indicated.
Descriptive results for mtDNA and nuDNA analyses are reported. Direct radiocarbon dates are indicated where available. Samples 6.2, 6.3, 7.5, 8.8, and 8.9 were discarded from further
analyses because of their low coverage or recent radiocarbon dating.

Sample
ID

Lab Code
nuDNA

Anatomical
Element

Anthropological
Sex and Age
Estimation

mtDNA Molecules
Average Length/
% CtoT at 5′ End

mtDNA
Haplogroup

mtDNA
Contamination

Estimate (C.I.) %

SNPs Hit on
Autosomes

Y-Chromosome
Haplogroup

Molecular
Sex

Estimation

Conventional
Radiocarbon

Age

Calibrated
Radiocarbon Result

(95% Probability)

3.1 I2301 Left ulna Male
(50–X years) 67.6 bp/32 H1 6.56 (11.8–2.62) - - - - -

3.4 I2403 Left femur Male 63.8 bp/33 U5b2b1a1 0.08 (1.62–0.01) 154,174 I2a1b1 Male 4120 ± 30 BP
(β-430,712)

Cal BC 2780 to 2575
(Cal BP 4730 to 4525)

5.1 I2433 Tooth/
mandible

Female
(50–60 years) 61.5 bp/39 H28a 3.89 (5.21–2.86) 528,330 - Female - -

5.3b I2434 Right
femur

Female
(20–30 years) 65.2 bp/32 U5b1d1a 1.31 (2.27–0.71) 112,399 - Female - -

6.1 I2435 Femur

Female
(20 years or

more, closer to
20 years)

59.8 bp/30 H28a 0.00 (0.001–0.00) 16,888 NA Male - -

6.2 - Right ulna Female
over 25 67.0 bp/11 J1c2 0.39 (0.58–0.01) 406,352 - - -

Historical, based on
the association with

8.8 and 8.9

6.3 - Mandible Female 61.2 bp/- - - - - - - -

7.1 I2407 Maxilla
Juvenile
(about

14 years)
61.0 bp/38 H28a 2.30 (2.62–2.04) 36,339 NA Male - -

7.5 - Right
humerus

Juvenile
(14–19 years) 54.3 bp/- - - - - - - -

7.6 I2440 Right
humerus

Male?
(20–50 years) 66.3 bp/23 H1b 0.61 (1.13–0.29) 189,493 I2 Male - -

8.1 I2801 Right
femur

Child
(2–3 years) 56.9 bp/40 H1b 0.80 (0.89–0.67) - - - - -
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Table 1. Cont.

Sample
ID

Lab Code
nuDNA

Anatomical
Element

Anthropological
Sex and Age
Estimation

mtDNA Molecules
Average Length/
% CtoT at 5′ End

mtDNA
Haplogroup

mtDNA
Contamination

Estimate (C.I.) %

SNPs Hit on
Autosomes

Y-Chromosome
Haplogroup

Molecular
Sex

Estimation

Conventional
Radiocarbon

Age

Calibrated
Radiocarbon Result

(95% Probability)

8.2 I2405 Tibia Child
(7–8 years) 50.9 bp/33 W5 2.30 (5.47–0.39) 91,505 NA Male 4460 ± 30 BP

(β-430,713)

Cal BC 3335 to 3210
(Cal BP 5285 to 5160),
Cal BC 3190 to 3150

(Cal BP 5140 to 5100),
Cal BC 3140 to 3020

(Cal BP 5090 to 4970)

8.3 I2803 Right tibia Child
(14 years) 66.7 bp/38 H 0.94 (2.67–0.20) - - - - -

8.4 I2407 Left femur Child
(10–14 years) 64.2 bp/32 H28a 0.34 (1.63–0.03) 36,339 NA Male 4390 ± 30 BP

(β-430,713)
Cal BC 3095 to 2915

(Cal BP 5045 to 4865)

8.5 I2441 Left pelvis Newborn 64.0 bp/31 K1b1a1 3.86 (4.19–3.50) 510,373 I2a1b1a2b1~ Male

8.8 - Left femur Child
(infant) 63.7 bp/11 U5b2a2b1 0.50 (1.05–0.07) 298,820 - - 210 ± 30 BP

(β-430,715)

Cal AD 1645 to 1685
(Cal BP 305 to 265),

Cal AD 1735 to 1805
(Cal BP 215 to 145),
Cal AD 1930 to Post
1950 (Cal BP 20 to

Post 0)

8.9 - Right
femur

Child
(2–3 years) 62.1 bp/12 U3b3 0.22 (2.71–0.02) 419,659 - - 130 ± 30 BP

(β-430,716)

Cal AD 1670 to 1780
(Cal BP 280 to 170),
Cal AD 1800 to Post
1950 (Cal BP 150 to

Post 0)
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3. Results and Discussion
3.1. Mitochondrial Haplotype and Haplogroup Analysis

Our molecular study of the human skeletal remains from Kierzkowo first focused on
the analysis of mitochondrial DNA (mtDNA) genomes obtained through a capture enrich-
ment approach associated with next generation sequencing [3]. This strategy allowed us to
obtain 15 complete or almost complete mtDNA profiles out of 17 samples. Polymorphisms
according to rCRS are annotated in Table S1 and showed in a phylogenetic tree including
information about haplogroup attribution (Figure S1). The C > T misincorporation per-
centages at 5′ termini and average fragment length as well as estimates of modern human
contamination calculated for the mtDNA molecules are indicated in Table 1.

As expected, the reanalysis of haplogroup attributions based on a newer version of
PhyloTree and HaploGrep agrees with previously published data [3], except for some
samples now attributed to specific sub-lineages generally with a higher resolution (H28a
instead of H28, U5b2b1a1 instead of U5b2b1, U5b1d1a instead of U5b1d1, U3b3 instead
of U3b, and H1 instead of H1b for sample 3.1). Haplogroup H was the most frequently
predicted and represented more than half of the mtDNA variation in our dataset with eight
samples carrying three different lineages (H, H1 and H28a). Haplogroup U characterises
four samples, three belonging to U5 lineages and one to U3b. The remaining three samples
belong to haplogroups J, K, and W. At the haplotype level, despite some missing positions,
four samples (corresponding to sample IDs 7.1, 8.4, 6.1, and 5.1) share the same mutation
motif, which is attributed to the H28a haplogroup. This haplotype sharing could be
explained (i) by a possible maternal relationship, more or less close in time, or (ii) by
the presence of two or more samples belonging to the same individual (as shown below,
further analyses at the nuclear genome level were necessary to support one of the two
possible hypotheses).

The evaluation of damage patterns described through average fragment length and
the C > T misincorporation percentage at 5′ termini showed a certain degree of molecular
degradation for all the samples. Even if fragment length cannot be used as an antiquity
marker (degradation of the DNA to an average size lower than 100 bp occurs rapidly after
the death of the organism, probably due to autolytic processes [46,47]), the average length of
our samples was estimated to range from 50.6 to 67.7 bp, in line with degradation processes.

Moreover, a different level of cytosine deamination at read ends was observed for the
samples. Most of them showed percentages of C > T at 5′ ranging from 23% to 39% (values
compatible with the Neolithic chronology of the site [46]), while three samples (6.2, 8.8, and
8.9) were characterised by lower percentages of molecules affected by misincorporation
ranging from 11% to 12%.

As is known, opposite to fragment length, the frequency of misincorporations at
the ends of the molecules tends to increase over time and can be used to distinguish
modern from ancient DNA (aDNA) [46]. Therefore, the presence of a lower percentage
of misincorporation for samples 6.2, 8.8, and 8.9 could be a signal of possible modern
contamination of the samples or indicate that the three individuals did not belong to the
Neolithic period.

The estimates obtained by the evaluation of ContamMix [22] allowed us to exclude a
relevant contamination by modern human DNA for these samples. Referring to archae-
ological data, these three samples turned out to belong to a skeletal assemblage located
outside the principal burial chamber of the tomb.

For these reasons, as described below, further investigation was required to explain
the different damage patterns that characterise these samples.

3.2. Analysis of Nuclear Genome Data

Nuclear genome data were obtained through a target enrichment approach based on
using 1240 K informative SNPs as a target [2]. The population genetics analysis showed the
three individuals characterised by lower misincorporation percentages as diverging from
the overall genetic variability associated with the other samples from Kierzkowo, providing
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further clues about a possible different provenance of these samples [2]. Radiocarbon
dating was, therefore, applied to some of the bones (both with lower and higher values of
misincorporation percentages) in order to directly check their chronology. Dating results
confirmed the bones from the tomb chamber as belonging to the Globular Amphorae
culture (GAC) period: 2870–2575 cal BCE (β-430,712, sample 3.4), 3260–3095 cal BCE
(β-430,713, sample 8.2), and 3015 cal BCE (β-430,714, sample 8.4) [2]. Results obtained for
the bones found outside the burial chamber proved, instead, that 6.2, 8.8, and 8.9 samples
represented a recent intrusive burial (8.8 and 8.9 dated to 210 ± 30 BP and 130 ± 30 BP,
respectively, β-430,716 and β-430,715 [2]) of an adult woman and two children (one infant
and a 2–3 year-old child), who were not maternally related, according to the mtDNA
profiles. As a result, archaeologists suggested that they may have been people who—for
some reason—could not be buried in the “consecrated ground” or that they were victims of
one of the epidemics that ravaged these lands, such as the plague in the early 18th century
or the cholera epidemic in the 19th century. In fact, at some distance from Kierzkowo, a
mass grave of the victims of the pestilence from the mid-19th century was discovered. In
addition, several victims of the cholera epidemic were also buried in the 19th century in
the megalithic tomb of the GAC in Złotowo, 10 km from Kierzkowo [11].

If data obtained from the study of mtDNA genomes first provided important informa-
tion about possible relations among samples and their chronology, only with the analysis
of nuclear DNA (nuDNA) data was it possible to clarify the clues arising from the mtDNA
analysis and to obtain thorough attributions at the individual level. Nuclear genome
analysis, indeed, allowed us to clarify the relationships among the four samples sharing the
same mitochondrial H28a haplotype. By evaluating the mitochondrial and nuclear DNA
data, it was possible to provide a proper estimate of the minimum number of individuals
(MNI), which otherwise would not have been allowed due to the complex taphonomic
situation of bone remains in the burial.

In addition, the comparison of the obtained nuDNA genotypes allowed us to identify
and verify that samples 7.1 and 8.4 belonged to the same individual and aid the anthropo-
logical study in the correct site reconstruction since the two samples (a maxillary and femur
fragment) had been previously tentatively attributed to different individuals because of
surface appearance and state of preservation.

3.2.1. Sex Identification

Nuclear genome data were obtained for eight individuals, of which six were identified
as male and two as female (Table 2). The comparison of genetic and anthropological
data highlighted a perfect match of results for all samples analysed, except sample 6.1 for
which the genetic determination gave a result different from the anthropological estimation.
Furthermore, it generally allowed us to obtain a determination in case of absence of
diagnostic morphological markers, i.e., for highly fragmented remains and infant and
juvenile individuals. As a result, genetic sex determination allowed us to improve the
attributions previously made through the anthropological approach. Even in this case, the
fragmentation and preservation level of skeletal material, as well as the presence of infant
and juvenile individuals, represented a strong limit for proper sex determination via the
anthropological approach.

3.2.2. Y-Chromosome Haplogroup Determination

Three out of six male individuals yielded enough valid markers to allow a haplogroup
determination with the approach used by Y-leaf 2.2 [24]. All three samples (3.4, 7.6, 8.5)
belonged to haplogroup I2, with different levels of definition at the sub-haplogroup level
(Table 3). As expected, the more valid markers were available per sample, the deeper
attribution at the sub-haplogroup level was possible. Due to the limited number of shared
covered positions between samples and their low coverage, it was not possible to perform
a detailed comparison between individuals at the haplotype level. For this reason, we have
been able to highlight the presence of the same haplogroup in more individuals but not go
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deeper into the estimate of haplotype sharing and possible kin relationships based on this
uniparental marker.

Table 2. Sex reconstruction for the Neolithic bones. Nseq: total number of sequences; NchrY + NchrX: total number of
alignments to both sex chromosomes; NchrY: number of alignments to the Y chromosome; R_y: ratio between NchrY and
NchrY + NchrX; SE: R_y standard error; 95% CI: 95% confidence interval for R_y.

Sample ID Nseqs NchrY + NchrX NchrY R_y SE 95% CI Assignment

3.4 690,382 18,622 5780 0.3104 0.0034 0.3037–0.317 XY

5.1 2,074,197 74,852 334 0.0045 0.0002 0.004–0.0049 XX

5.3 267,061 9152 59 0.0064 0.0008 0.0048–0.0081 XX

6.1 37,173 979 284 0.2901 0.0145 0.2617–0.3185 XY

7.1/8.4 19,211 522 155 0.2969 0.02 0.2577–0.3361 XY

7.6 382,899 10,099 3389 0.3356 0.0047 0.3264–0.3448 XY

8.2 195,536 5291 1663 0.3143 0.0064 0.3018–0.3268 XY

8.5 1,783,600 48,164 14,351 0.298 0.0021 0.2939–0.302 XY

3.2.3. Kinship Analysis

Kinship predictions by READ software [31] allowed us to identify the couples 6.1–7.6,
7.1/8.4–5.1, and 5.1–6.1 as possible parent–offspring or full-siblings, while 7.1/8.4–6.1 and
7.1/8.4–7.6 were classified as second-degree relatives (grandparent–grandchild, avuncular
or half-siblings). However, the standard error of the average proportion of non-matching
alleles (P0 values) calculated by READ [31] expressed very high uncertainty of the classifica-
tion for the couple 7.1/8.4–6.1 (Figure 3), probably due to a reduced number of comparable
genomic positions. To a lesser extent, the categorisation of most couples showed uncer-
tainty, frequently spanning more than one class; thus, only the first-degree relationships
involving sample 5.1 may be considered unambiguously predicted (Figure 3). We also per-
formed a genotype likelihood-based analysis of kinship using NgsRelate [32] to compare
kinship predictions obtained using different approaches (see Methods). Both methods led
to quite similar outcomes and the full results are shown in Supplementary Table S2. First
degree relationships involving 6.1 were confirmed and further distinguished using the
R0 ratios described in Waples et al. [38] into parent–offspring or sibling relationships [38],
resulting in a family unit composed of 5.1 as mother, 7.6 as father and 6.1 as son. A maternal
relationship between mother and son was also confirmed by the same mtDNA profile
belonging to haplogroup H28a. Theta values suggested a first degree of kinship for the
couple 7.1/8.4–6.1; however, the prediction remained unreliable since only 189 genomic
sites were considered in the analysis. A first-degree relationship was also estimated for the
couple 7.1/8.4–7.6, differing from the READ prediction (second-degree). Low coverage,
low degree of preservation of aDNA in these samples and possible inbreeding leading to
a discrepancy from expected values of identity-by-descent (IBD), as shown for samples
7.1/8.4 and 6.1 (Table S2), could explain the difficulties in inferring kinship. Individual
7.1/8.4 could be, indeed, brother or uncle of 6.1, as well as brother of 5.1 as indicated
also by mtDNA analysis; furthermore, he could be involved in a possible second-degree
relationship with 7.6. Both biological and methodological reasons could complicate pedi-
grees, e.g., the previous generation showing some degree of relatedness or inaccurate
population allele frequencies due to population structure in the data. The different kinship
degree predicted by the two software programs could be explained by another possible
reconstruction where individual 7.1/8.4 could be the half-brother of 6.1, (both sons of 5.1)
with a possible kinship relation between their fathers.
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Table 3. Y-chromosome haplogroup determination. Hg: final haplogroup predicted using ISOGG nomenclature. Hg_Marker: final haplogroup predicted using marker nomenclature.
Total_Reads: total number of reads. Valid_Markers: number of markers used for the haplogroups prediction. QC_score: overall quality score that is the factor of the three scores QC-1, QC-2,
and QC-3; QC-1: score that indicates whether the predicted haplogroup follows the expected backbone of the haplogroup tree structure; QC-2: score that indicates whether equivalent
markers to the final haplogroup prediction were found in the ancestral state; QC-3: score that indicates whether the predicted haplogroup follows the expected within haplogroup
tree structure.

Sample ID/Lab Code Hg Hg _Marker Total_Reads Valid_Markers QC-Score QC-1 QC-2 QC-3

3.4 I2a1b1
I-FGC3552/etc*

(xY10631,Y33740,Y7225, A11214,
Y5728,Y11154,Y16445,Y5224,Y6098)

527,527 526 1.0 1.0 1.0 1.0

6.1 NA NA 41,862 11 0 0 0 0
7.1/8.4 NA NA 21,520 7 0 0 0 0

7.6 I2
I-CTS8444*

(xPF4049,Y22356,Y24165,Y7822,
Y5728,S17264,Y68424,Z45444)

307,275 274 1.0 1.0 1.0 1.0

8.2 NA NA 175,789 48 0 0 0 0
8.5 I2a1b1a2b1~ I-FGC3587*(xFGC3570) 1,056,530 2025 1.0 1.0 1.0 1.0
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Figure 3. Kinship predictions by READ and NgsRelate software. (A) The average proportion of non-matching alleles (P0
values) with two standard errors calculated by READ is shown for each pair of samples. The solid horizontal line indicates the
median value used for normalization. Dashed lines show the cut-offs calculated by READ to classify individuals as identical
twins (MZ), first-degree, or second-degree related. The grey areas around dashed lines indicate 95% confidence intervals for the
cut-offs. (B) Theta values for each pair of samples were calculated by NgsRelate. Dashed lines define ranges of expected theta
values for each kinship category. We considered predictions of kinship by NgsRelate up to the third degree.
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Additional second-degree relationships could be inferred from the theta values in-
volving 5.3 and 8.2 (although they were not confirmed by READ), as well as potential
third-degree relationships for nine couples of samples. Moreover, the relationship for
all the remaining pairs seemed to be more distant than that of third-degree, but it could
be overestimated by NgsRelate, as shown for the old version of the tool [48]; thus, we
considered these couples as unrelated. The KING statistic is frequently the most discor-
dant among all the estimated predictors: it probably underestimates kinships, as already
demonstrated [49].

As a result of kinship analysis, we were able to construct a reasonable possible pedigree
tree including all four abovementioned samples by admitting the absence of some members
of a hypothetical extended family among the remains (Figure 4), with the nuclear family
composed of 5.1 (mother), 7.6 (father), and 6.1 (son), and considering 7.1/8.4–6.1 as half-
siblings and 7.1/8.4–7.6 as nephew/uncle.

Figure 4. Pedigree reconstructed for the Kierzkowo family. A possible pedigree was inferred from genome-wide estimates
of pairwise identity-by-descent (IBD). The nuclear family in the grey area was confirmed by both READ and NgsRelate
tools. For each individual, age (yo: years old) estimated through morphological analysis is indicated. Y chromosome
(YHg) haplogroup is described where available. Mitochondrial haplogroups (mtHg) are highlighted in different colours.
Mitochondrial haplotype sharing supports the estimates of kinship relations between mother and sons based on genomic
data (see Figure S1 and Table S1). The pedigree was plotted using the kinship2 R package [50].
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In an attempt to combine molecular with anthropological data, information about
age classes estimated through morphological analysis could help to discriminate between
different hypotheses about kinship relations, but we have to consider the uncertainty of
the age estimates due to high fragmentation and degradation of skeletal remains and the
possibility that individuals could have been dead and buried in different epochs.

Even if the obtained data did not allow a sound detailed reconstruction of the possible
pedigrees, we can suppose the presence of at least a nuclear family and of different degrees
of biological relationships between several couples of individuals buried in the Kierzkowo
barrow. Even in this case, mtDNA data provided a first indication about possible relation-
ships among individuals, but nuDNA information was necessary to discriminate between
different possible reconstructions.

3.2.4. Phenotypes

Because of low or no coverage, we were able to partially detect the selected pheno-
typically informative markers in our samples. Indeed, 32 of 41 HIrisPlex-S SNPs were not
totally covered in some samples, presumably due to DNA fragmentation and because the
remaining nine SNPs were not part of the 1240 K capture array. Generally, diploid genotyp-
ing (see Methods) called 35 out of the 48 analysed genomic positions (41 HIrisPlex-S + 7
additional markers), including three variants in a heterozygous state and 28 homozygous
alleles (either reference or variant) confirmed by pseudo-haploid calling (Table S3). Sam-
ples 5.1, 6.1, and 8.5 probably had blue eyes, as predicted by the HIrisPlex-S tool [39], and
confirmed by data reported in SNPedia 6 [45]. The same eye colour could be supposed for
3.4, 5.3, and 7.6 (SNPedia, Table S3). Hair colour was predicted for 5.1 (dark brown) and 8.5
(blonde), while 6.1 was probably light-haired. Red hair could be excluded as a phenotypic
trait in more than half of the samples (3.4, 8.2, 5.3, in addition to 5.1 and 8.5). In terms of
skin colour, pale skin was predicted for 8.5 and 5.1, which was also confirmed by SNPedia.
The absence of freckles in 8.5 and light skin colour in 5.3 can be additionally supposed.
Annotations by SNPedia are shown in Supplementary Table S3; probabilities calculated by
the HIrisPlex-S tool are reported in Table 4 and Supplementary Table S4.

We also investigated AB0 and RHD genes. Blood type 0 was inferred for 8.5, a classic
OO homozygote like the 42% of Caucasians [45], while we could just exclude type B as
the blood group for 3.4, 5.1, and 7.6, whose specific blood group could not be further
determined due to a lack of coverage of the genomic position related to rs8176719 in the
ABO gene. Similarly, Rhesus blood groups could not be properly inferred in our data since
rs676785 and rs609320 in the RHCE gene (which determine c and e antigens, respectively)
are not included in the 1240K SNPs panel. However, the RHD gene was partially covered in
all the samples. Thus, its full deletion, which is mainly associated with the Rh-phenotype
in Europeans [51], can be excluded.

Another trait we investigated is lactase persistence, since consumption of milk is
attested in Kierzkowo by the presence of milk fats in ceramic vessels found in the burial
and reconstruction of the diet through isotope analysis of human bone remains. Lactase is,
indeed, the enzyme responsible for the digestion of the milk sugar lactose. Its production
usually decreases after the weaning phase, except for some individuals who continue to
produce lactase throughout adulthood. A mutation at the SNP rs4988235 (−13,910*T) in
the MCM6 gene, supporting the lactase persistence haplotype, explains the phenotype in
European populations [52]. We were able to describe this SNP only in four individuals (5.1,
7.6, 8.2, and 8.5) from Kierzkowo. Interestingly, they all were homozygous for the ancestral
allele, suggesting they could have become lactose intolerant in adulthood, probably with
no effect on 8.5, who was a newborn. It is a common idea that lactase persistence coevolved
with the cultural adaptation of dairying. Interestingly, the date estimates for the rise in
frequency of the−13,910*T mutation (2188 and 20,650 years ago [53]) bracket archaeological
dates for the spread of domestic animals and dairying into Europe, pointing at a probably
strong positive selection linked to the cultural traits of animal domestication and adult milk
consumption [53–56]. However, aDNA studies have shown that the −13,910*T allele was
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very rare or absent in early Neolithic central Europeans, which lets us suppose that lactase
persistence and dairying coevolution began around 7500 years ago, probably among people
of the Linearbandkeramik culture between the central Balkans and central Europe [57].
According to our data, people from Kierzkowo were lactose intolerant in adulthood,
even though their culture was characterised by the importance of dairying. We have to
consider that an inter-individual variation of the amount of lactose tolerated by lactase
non-persistent people (probably as a result of variation in the composition of the gut flora)
is known and that some intolerant individuals can consume lactose-containing products
without any obvious ill effects. In particular, fermented dairy products (i.e., yoghurt or
cheese) are usually well tolerated by non-persistent individuals since they contain less
lactose [58].

3.3. Comparison between GAC Sites

A comparison of our results can be made with information available from another
burial site attributed to the GAC in Poland, for which genome analysis was performed on
human bone remains: the mass grave of Koszyce (Małopolska province) [59]. In this case,
15 individuals including men, women and children, were buried at the same time, next
and on top of each other, after a violent death. According to the genomic data, the buried
individuals belonged to a large extended family connected by several first- and second-
degree relationships. In particular, four nuclear families were represented. The presence of
unrelated females and related males would indicate a dominant form of patrilineal social
organisation. The two burial contexts are quite different (a mass grave in Koszyce and
a typical GAC burial ritual in Kierzkowo), as well as the experimental strategy applied
due to a different level of sample preservation (whole genome sequencing for Koszyce
samples and target enrichment of selected SNPs for Kierzkowo). However, similarly
genetic and reproductive relationships were probably the basis of social relationships in
GAC communities. In Kierzkowo as well as in Koszyce, the presence of different mtDNA
lineages can support the hypothesis of a community not based on the matrilocal residence
system. Unlike the Koszyce samples, the resolution of our data on the Y-chromosome did
not allow us to confirm the presence of a unique patrilineal lineage, although we cannot
exclude it either, since data for Kierzkowo show the same haplogroup for all the available
samples. In particular, Y-chromosome variability is represented in both sites only by the I2
haplogroup, indicating a low genetic diversity in the GAC population according to this
marker, which could support the hypothesis of a society based on patriarchy.

This hypothesis could find support from archaeological data: the economic base of
the GAC group from Kierzkowo was agriculture and animal husbandry. In particular, the
latter played a special role, as evidenced by the numerous skeletal remains of farm animals
and the milk fat residues retrieved in ceramic vessels found in the burial, which suggest
consumption of milk and meat. Preliminary isotope analysis on the human skeletal remains
from Kierzkowo confirms the presence of these foods in the diet and seems to indicate
better access to valuable animal products for men than for women [11]. Furthermore, most
pastoralist societies are patriarchal due to the male role in animal husbandry. A particular
role of men in GAC society is also sometimes demonstrated by the equipment of the graves,
which is differentiated by gender [8,15,60–63].
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Table 4. HIrisPlex-S annotations and probabilities. Prediction probabilities calculated by the HIrisPlex-S software are shown only for the three samples with available data. Complete
results are provided in Supplementary Table S4. In terms of eye colour, the predicted phenotype (blue) was defined by the highest p-values. In terms of hair colour, the highest p-value
approach is used in combination with a stepwise model as described in [43]. In terms of skin colour, the highest p-value approach is used in combination with the second highest
probability value [39].

Sample ID Blue
Eye

Intermediate
Eye

Brown
Eye

Blond
Hair

Brown
Hair

Red
Hair

Black
Hair

Light
Hair

Dark
Hair

Very Pale
Skin

Pale
Skin

Intermediate
Skin

Dark
Skin

Dark to
Black Skin

5.1 0.898 0.063 0.039 0.371 0.467 0.008 0.154 0.779 0.221 0.081 0.539 0.380 0.000 0.000
6.1 0.912 0.057 0.031 NA NA NA NA 0.934 0.066 NA NA NA NA NA
8.5 0.914 0.055 0.031 0.651 0.216 0.113 0.020 0.953 0.047 0.123 0.656 0.220 0.000 0.000
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4. Conclusions

Due to the (quite recent) introduction of next generation sequencing methodologies
in the aDNA field, particular emphasis has been placed on archaeobiological research
(archaeobotany, zooarchaeology, anthropology) as a way to gain insight into the environ-
mental conditions and the social organisation of past populations and provide information
at the individual level.

The study of the human bone remains found in the Kierzkowo Megalithic barrow
allowed us to add important details to the description of this Neolithic community as-
sociated with the Globular Amphorae culture, and to the reconstruction of the use of
the site through time. Indeed, the evaluation of nucleotide misincorporation patterns of
aDNA (molecular degradation) suggested the presence—confirmed through radiocarbon
C14 dating—of a recent intrusion into the burial that happened in the last century, when
the remains of a woman and two little children were deposed inside the perimeter of
the Neolithic burial. Together with the more recent remains, two female and six male
Neolithic individuals were found in the tomb and identified. Despite the taphonomic
condition of the site, characterised by a secondary deposition of fragmented and mixed
bone remains, kin relationships and phenotypic traits of the buried individuals were also
successfully estimated via aDNA analysis. Most of them were related by first-, second-,
and third-degrees of kinship, and in particular, we located a nuclear family, one of the
oldest attested by genetic data.

Considering the nuDNA data in general, the methodological approach used presented
some limitations in terms of information recovered, as results are restricted to a relatively
small and pre-selected set of genomic markers sequenced after a target enrichment. A
whole-genome sequencing with high coverage would represent, indeed, the best strategy
to obtain accurate individual profiling. However, producing whole-genome data is suitable
for samples with levels of endogenous DNA content higher than that in Kierzkowo bone
fragments (average 0.19%, with a minimum value of 0.007% and a maximum value of
0.66% for Neolithic individuals). More suitable samples than those used would have
been represented by the petrous part of the temporal bone or by teeth, but they were not
available for this study. Thus, to the best of our knowledge, the methodology chosen was
the most suitable.

In conclusion, thanks to the development of the new sequencing technology and the
choice of the best experimental strategy according to the level of preservation and the type
of sample available, this study highlighted a new opportunity for ancient genomic studies.

Despite its limitations, even a target enrichment approach originally conceived for
investigating large-scale populations’ structure and relationships can provide interesting
information at the individual level that can be exploited for a fine reconstruction of singular
archaeological contexts. Through a multidisciplinary approach that involves archaeolo-
gists, archaeobotanists, zooarchaeologists, and biological and molecular anthropologists, a
detailed bioarchaeological reconstruction of ancient communities and their members can
be supplied. From this perspective, molecular data represent an important informative
source to support biological anthropological activity, answering specific questions and
reconstructing individual profiles as well as biological and social relationships. The results
presented in this study, together with possible further genetic data obtained for other GAC
sites, can provide an important contribution that is useful for supporting archaeological and
anthropological research on the social organisation and funerary rituals that characterised
this culture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060910/s1, Table S1: Polymorphisms according to rCRS and Mitochondrial Hap-
logroup determination, Table S2: Kinship analysis by READ and NgsRelate, Table S3: Annotation
of phenotypically informative SNPs detected by ATLAS in the dataset, Table S4: Eye, hair, and skin
colour prediction according to HIrisPlex-S on SNPs detected by ATLAS, Figure S1: Phylogenetic
tree and haplogroup determination for fifteen mitogenomes from Kierzkowo. Polymorphisms are
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indicated according to rCRS reference sequence. Haplogroup assignment is based on PhyloTree Build
17. For the sake of simplicity, sample IDs were used to indicate samples.
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(In Polish)
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