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Abstract

A crucial step in data analysis is to formulate the most appropriate model
for reliable inference or prediction. Both optimization and machine learning
assist the modeler towards this task.

Whenever the inference is the focus, a linear regression model represents a
suitable tool for an initial understanding of the reality that the model aims to
describe. An automatic and objective procedure to select the predictors of the
regression model is fundamental to achieve this target. On this matter, as a first
contribution, we propose an algorithm, based on Mixed Integer Optimization
(MIO), for best subset selection problem in Gaussian linear regression scenario.
The algorithm, with simplemodifications, is also suitable for the order selection
problem in Gaussian ARMA models. The proposed approach has the advan-
tage of considering both model selection as well as parameter estimation as a
single optimization problem. The core of the algorithm is based on a two-step
Gauss-Seidel decomposition scheme which favors the computational efficiency
of the procedure. The performed experiments show that the algorithm is fast
and reliable although not guaranteed to deliver the optimal solution.

As a second contribution, we consider the maximum likelihood estimation
problemof causal and invertibleGaussianARMAmodels of a given order (p, q).
We highlight the convenience of fitting these models directly in the space of
partial autocorrelations (autoregressive component) and in the space of par-
tial moving average coefficients (moving average component) without having
to exploit the additional Jones reparametrization. In our method, causality and
invertibility constraints are handled by formulating the estimation problem as
a bound constrained optimization problem. Our approach is compared to the
classical estimation method based on the Jones reparametrization which leads
to an unconstrained formulation of the problem. The convenience of our ap-
proach is assessed by the results of several computational experiments which
reveal a significant reduction of fitting times and an improvement in terms of
numerical stability. We also propose a regularization term in the model and we
show how this addition improves the out of sample quality of the fitted model.

As a final contribution, the problem of forecasting univariate temporal data
is considered. When the purpose of the model is prediction, combining fore-
casting models is a well known successful strategy leading to an improvement
of the accuracy of prediction. Usually, knowledge of experts is needed to com-
bine forecastingmodels in an appropriate way. However, especially in real-time
applications, the need of automatic procedures, which replace the knowledge of
experts, is evident. By learning from past forecasting episodes, a meta learning
model can be properly trained to learn the combination task. On this matter, we
introduce two meta-learning systems which recommend a weighting schema
for the combination of forecasting models based on time series features. We fo-
cus on sparse convex combinations. Zero weighted forecasting models do not
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contribute to the computation of the final forecast and their fit can be avoided.
Therefore, the more the degree of sparsity increases, the more the computa-
tional time for producing final forecasts decreases. The methodology is tested
on the M4 competition dataset. Obtained results highlight that it is possible to
reduce significantly the number of models in the combination without affecting
the quality of prediction.
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Chapter 1

Introduction

Optimization plays an important role inmany branches of science but one of itsmain
applications is statistical model fitting. Traditionally, the model selection phase is
separated from the estimation phase: the modeler, thanks to the knowledge of con-
text, detects a set of candidate models and, after their estimation, chooses the best
one. Anyway, the estimation of a single candidate model requires caution. The as-
sociated optimization problem can hide pitfalls (e.g., non convexities and numerical
instabilities).
More recently, research focused on the development of advanced optimization al-
gorithms able to perform selection and fitting simultaneously. The employment
of these algorithms makes the model building process as objective as possible and
remedies the lack of context knowledge by the modeler who is not able to formulate
a model.
Even machine learning can be supportive to the modeler in automating the model
building process: given the experience of multiple learning episodes, a trained ma-
chine learning system can identify and recommend models or their combinations
that achieve potentially best performance. More precisely, this subfield of machine
learning is known as meta-learning.

This dissertation dealswith three relevant statistical problems related to both op-
timization and machine learning. It is shown as optimization and machine learning
can really assist themodel building process (see Figure 1.1) as long as the knowledge
and task of the modeler, necessary to select and fit a final model 1, vary.

Indeed, three different scenarios are considered:

• The modeler does not know the model structure. The task of the modeler is
both to detect the subset of relevant predictors to formulate the model as well

1Following (Ding et al., 2018), the termmodel denotes a class of hypothetical probability distribu-
tions, formulated in order to approximate the Data Generator Process (DGP), which is the unknown
but true distribution.

3



4 Introduction

as to estimate its parameters.

• The modeler has already identified the model structure. Therefore, only a fit-
ting problem remains to be solved in order to estimate the parameters of the
model.

• The modeler considers appropriate to follow a model averaging strategy since
there is not enough information in the observed data to infer a single model.
Consequently, the modeler has to set up a suitable model averaging strategy,
especially if his interest is to use the model for predictive purposes.

Each of these scenarios corresponds to each of the problems considered in the dis-
sertation.

Model Building Process

DGP

DATA

MODELER

STATISTICAL
MODEL

Figure 1.1: The modeler disposes of a dataset coming from a un unknown Data
Generating Process (DGP). The aim of the modeler is to detect and fit a final model
in order to approximate the DGP.

Best subset selection in linear regression is the first considered problem. It con-
sists of finding the subset of predictors that produces the best fit in terms of squared
error: there is need of both fitting and selection. A sparse linear model increases
the degree of interpretability and reduces the risk of overfitting which impacts neg-
atively on the predictive performance of the model. Furthermore, sparsity is also
necessary due to the multicollinearity issue which invalidates the statistical infer-
ence process. In Chapter 2, the best subset selection problem is tackled by means of
the Alternate Minimization algorithm (Di Gangi et al., 2019). Alternate Minimiza-
tion is then generalized to the area of time series analysis, dealing with the problem
of order selection of Auto RegressiveMovingAverage (ARMA)models. In this latter
case, Alternate Minimization works like a preliminary estimation algorithm: the re-
turnedARMAmodel needs to be refined by amaximum likelihood step having fixed
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the model structure identified by the Algorithm. The carried out experiments high-
light that the AlternateMinimization algorithm is fast and reliable in both these two
scenarios and, although not guaranteed to deliver the globally optimal solutions, it
generates very good solutions in low computational time.

Again in the context of time series, the problem of exact maximum likelihood
estimation of ARMA models is investigated in Chapter 3. Now the modeler, af-
ter having found the model structure, has still to estimate the model’s parameters.
However, this estimation problem suffers from twomain complications: (i) the eval-
uation of the likelihood is expensive, (ii) the causality and invertibility constraints,
respectively for the autoregressive (AR) andmoving average (MA) parameters, need
to be carefully managed. By means of an extensive computational study, we high-
light that a bound constrained formulation of the exactmaximum likelihood estima-
tion problem of causal and invertible ARMA is convenient in terms of fitting quality
as well as computational time w.r.t. the state of the art methodology.

Finally, the last contribution is about forecasting. It is well known that combining
forecastingmethods is a successful andwidespread strategy, leading to an improve-
ment of forecast accuracy. The issue of model selection is especially prominent in
time series analysis. In fact, forecasting problems possess small and finite history of
points to formulate strict hypotheses about the DGP. In this regard, any combination
strategy protects against the risk of selecting a wrong model.
Traditionally, in the literature three different schemes of combining forecasts can be
found: (i) simple combinations approaches as simple average, median and trimmed
mean (Clemen, 1989; Stock and Watson, 2004; Jose and Winkler, 2008), (ii) regres-
sion based approaches (Bates and Granger, 1969; Granger and Ramanathan, 1984;
Diebold and Shin, 2019), (iii) meta-learning based approaches (Arinze et al., 1997;
Prudêncio and Ludermir, 2004; Kück et al., 2016; Talagala et al., 2018; Montero-
Manso et al., 2020; Ma and Fildes, 2021; Li et al., 2020).
With the development of novel machine learning models and technologies, espe-
cially the meta-learning approaches are spreading in the forecasting context. In-
deed, the more recent meta-learning systems (Montero-Manso et al., 2020; Li et al.,
2020; Kang et al., 2021; Ma and Fildes, 2021) are trained to combine in a suitable
manner the forecasting methods. In particular, these meta-learners are able to rec-
ommend the weights of each method in the combination. However, in any case, the
forecast combination strategy has the drawback to be time consuming. In Chapter 4,
we introduce two meta-learning systems, Sparse Robust Forecast Averaging (SRFA)
and Sparse Flexible Forecast Averaging (SFFA), which provide sparse convex combi-
nation of forecasting methods. Sparse combinations allows forecasting methods to
be selected and weighted at the same time. There is no need to fit the zero weighted
forecastingmodels and therefore it is evident the computational savings of the strat-
egy and its reliability in real time applications.
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The rest of the Chapter thoroughly introduces and contextualizes the three fol-
lowing chapters.

1.1 Best Subset Selection in Gaussian Linear
Regression models with Extension to Gaussian
ARMAmodels

Given a set of N observations {xi, yi}N
i=1, we assume the following stochastic linear

relationship:

Yi =
P

∑
j=1

β jxij + c + εi εi ∼N(0, σ2), (1.1)

with Independent and Identically Distributed (I.I.D) Gaussian error terms εi. xi =

(xi1, . . . , xiP) ∈ RP represents the predictor vector of the i-th observation, while
the scalar yi is the response variable of the i-th observation. Regression parameters
β = (β1, . . . , βP) describe the relationship between each predictor and the response.
The variance parameter σ2 of the error terms quantifies the average degree to which
the responses differ from their conditional expectations due to the absence of some
predictors or measurement errors of the response variables.

The classical formulation of best subset selection problem does not involve any
probabilistic assumption of the response variable:

min
β,c

1
2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

s.t ||β||0 ≤ k,

(1.2)

where ||β||0 = |{j | β j 6= 0}|, the so-called `0 norm 2 of parameters β ∈ RP×1, is
constrained to not exceed the subset size k. Since the knowledge of k is required in
(1.2), this formulation is known as the cardinality constrained version of best subset
selection problem. Problem (1.2) isNP-hard (Natarajan, 1995) and it has beenwidely
dismissed as being intractable by the statistical community (Bertsimas et al., 2016).
The Lagrangian version of Problem (1.2) is:

min
β,c

1
2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

+ λ||β||0, (1.3)

2The usage of term norm is wrong to refer to the function ||.||0. In fact, ||.||0 does not satisfy all
the properties which characterize a norm function (Boyd et al., 2004).
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where λ > 0 is a regularization parameter which encourages sparse linear regres-
sion models but does not guarantee a sparse solution.

To overcome the computational burden associated to both the constrained (1.2)
and unconstrained formulations (1.3), many approximating procedures have been
proposed in the literature. Forward selection and Backward elimination algorithms
represent two intuitive but greedy strategies to identify subset of predictors, see
(Friedman et al., 2001). However, the Lasso estimator (Tibshirani, 1996) is certainly
the most popular approximating method for best subset selection problem. The
Lasso formulation is based on the following convex programming problem:

min
β,c

1
2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

s.t ||β||1 ≤ t,

(1.4)

where the parameter t > 0 assesses the degree of sparsity of the solution. Crucial is
the presence of the convex function ||.||1, called `1 norm, which sums the absolute
values of the elements of parameters β. Lasso tends to produce sparse regression
models by the shrinkage of parameters towards zero induced by the occurrence of
||.||1. Sparsity of Lasso estimator is not guaranteed but for geometric reasons inher-
ent to `1 norm, it is very likely that some of the elements of β are set exactly equal
to zero. In particular, let β̂ols = (β̂ols

1 , . . . , β̂ols
P ) the full least squares estimates and

let tols = ||β̂ols||1. Values of t < tols will cause shrinkage of the solutions towards 0,
and some coefficients may be exactly equal to 0. For example, if t = tols

2 , the effect
will be roughly similar to finding the best subset of size P

2 .
Lagrangian version of Lasso is:

min
β,c

1
2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

+ λ||β||1. (1.5)

Computational efficiency and scalability to practical sized problems are the two
main appealing properties of Lasso estimator which have enhanced its popularity.
However, its shortcomings are also well known in literature. Lasso suffers of esti-
mation bias, tending to give biased estimates for large regression parameters (Fan
and Li, 2001). On this matter, to correct this bias, a smoothly clipped absolute de-
viation (SCAD) penalty function, instead of ||.||1 in (1.5), is introduced in (Fan and
Li, 2001). Furthermore, in (Zhao and Yu, 2006), it is shown that Lasso achieves con-
sistent selection of predictors in a narrow range of problems where the technical
irrepresentable conditions hold. Again, selecting optimal λ for prediction gives incon-
sistent predictor selection results (Meinshausen and Bühlmann, 2006). To overcome
these issues, in (Zou, 2006) Adaptive Lasso is proposed. This method replaces the
`1 norm Lasso penalty by a re-weighted version. The key idea is that the value of
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parameter λ is tuned individually for each predictor based on a previous fitted re-
gression model. Both SCAD and Adaptive Lasso enjoy the Oracle properties (Fan
and Li, 2001; Zou, 2006), i.e. consistency in selecting the true subset of predictors
and asymptotic normality in estimation.

Penalized likelihood approaches (Fan and Lv, 2010) represent the natural gener-
alization of penalized least squares methods (1.2), (1.3), (1.4), (1.5). Now, we assume
that the observed data {xi, yi}N

i=1 are generated according to (1.1). The formulation
of penalized likelihood maximization problem for best subset selection in Gaussian
linear regression is:

max
β,c,σ2

l(β, c, σ2)− λ||β||0, (1.6)

where the term l(β, c, σ2) is the log-likelihood function of the Gaussian linear re-
gression model. In this case, the log-likelihood term provides a measure of fit of the
model, while the `0 norm encourages parsimonious models exactly as in (1.3). The
optimization of known information criteria as the AIC (Akaike Information Crite-
rion) (Akaike, 1974), BIC (Bayesian Information Criterion) (Schwarz, 1978) or HQIC
(Hannan Quinn Information Criterion) (Hannan and Quinn, 1979) represents a spe-
cific instance of Problem (1.6).

The proposed Alternate Minimization algorithm (Di Gangi et al., 2019) is con-
ceived to minimize the AIC, BIC or HQIC information criteria of Gaussian linear
regression models and also Gaussian ARMA models. The problem is addressed
through a formulation based on mixed integer optimization for handling the `0

norm.

1.2 Improved Maximum Likelihood Estimation of
ARMAModels

The process {Yt, t ∈ Z} is a Gaussian zero mean ARMA process of order (p, q) if
the following linear stochastic difference equation holds:

Yt − φ1Yt−1 − · · · − φpYt−p = θ1εt−1 + · · ·+ θqεt−q + εt, εt ∼ WN (0, σ2). (1.7)

In Equation 1.7, φ = (φ1, . . . , φp), which refer to the AR part, relate current ob-
servations to past observations, while θ = (θ1, . . . , θq), which are the parameters
of the MA part, encode the dependence of current observations to previous error
terms. The error terms εt in 1.7 are modeled as a Gaussian white noise process, i.e.
εt ∼ WN (0, σ2).

Every ARMA model admits also a representation as a state space model which
is in the form of a linear system of two sets of linear stochastic equations (Hamilton,
1994). This representation is quite general and flexible as it allows the handling of
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many time series analysis problems, such as prediction, signal extraction, decom-
position, parameter estimation and interpolation, within a single framework.

A Gaussian ARMA(p, q) time series yN = {yt}N
t=1 , which is a single finite re-

alization of such a stochastic process, has a zero mean Gaussian joint distribution:

YN ∼N
(
0, ΓN(φ, θ, σ2)

)
. (1.8)

In the ARMA(p, q) case, the covariance ΓN(φ, θ, σ2) = E(YNYT
N) is expressible in

terms of a finite number of unknown parameters (Brockwell et al., 1991). Therefore,
from (1.8), the Gaussian ARMA log-likelihood function l(φ, θ, σ2) referring to an
observed time series yN is:

l(φ, θ, σ2) = −N
2

log(2π)− 1
2

log
(

det(ΓN)
)
− 1

2
yT

NΓ−1
N yN (1.9)

Calculation of (1.9) requires the inversion of the ΓN matrix and the computation of
its determinant that may be complicated when N is large. Kalman filter algorithm
(Kalman, 1960), which works for any state space model, is also useful for efficient
evaluation of the ARMA log-likelihood function (1.9). The algorithm avoids the di-
rect computation of Γ−1

N and det(ΓN) by employing the prediction error decomposi-
tion of the likelihood function. By means of this decomposition, the log-likelihood
l(φ, θ, σ2) becomes:

l(φ, θ, σ2) =
N

∑
t=1

log
(

ft|t−1(yt|It−1)
)

, (1.10)

with conditional Gaussian terms

ft|t−1(yt|It−1) = −
1
2

log(2π)− log(σet)−
1
2
(yt − yt|t−1)

2

σ2
et

.

ft|t−1(.) is the density of yt conditional on the past information up to time t − 1,
i.e. It−1 = {y1, . . . , yt−1} , with yt|t−1 = E[Yt|It−1] (Conditional expectation) and
σ2

et
= Var(Yt|It−1) = Var(Yt− yt|t−1|It−1) (Prediction Error Variance). The building

blocks of the decomposition are the forecast errors yt − yt|t−1 and their variances
σ2

et
. Kalman filter provides a recursive and efficient computation of these quantities.

Typically, in terms of software implementation, a compiled subroutine evaluates the
value of the likelihood for a given set of parameters. Note also that the gradient of
the log-likelihood function is usually approximated by numerical difference, requir-
ing the evaluation of l(φ, θ, σ2) many times (Kitagawa, 2020).

One of the main applications of ARMA models is forecasting. Usually in the
forecasting context, ARMA parameters are constrained to satisfy the causality and
invertibility conditions (Brockwell et al., 1991). These conditions, which determine
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the feasibility space of the ARMA(p, q) structural parameters, i.e. (φ, θ) ∈ Sp × Sq,
can be stated in terms of the absolute values of the roots of the autoregressive Φ(z)
and moving-average Θ(z) polynomials:

Sp = {φ ∈ Rp | Φ(z) 6= 0 ∀ z ∈ C s.t. |z| ≤ 1} (1.11)
Sq = {θ ∈ Rq | Θ(z) 6= 0 ∀ z ∈ C s.t. |z| ≤ 1}, (1.12)

where Φ(z) and Θ(z) are defined as

Φ(z) = 1− φ1z− . . .− φpzp (1.13)
Θ(z) = 1 + θ1z + . . . + θqzq. (1.14)

The geometry of the space Sp × Sq is thoroughly described in (Piccolo, 1982; Shlien,
1985; Picinbono and Benidir, 1986; Combettes and Trussell, 1992).

According to the proposed fittingmethod, causality and invertibility are handled
by reformulating the ARMA fitting problem as a bound constrained optimization
problem. In our implementation, evaluation of the likelihood `(φ, θ, σ2) is still per-
formed by means of a Kalman filter algorithm.

1.3 Sparse Convex Combinations of Forecasting
Models By Meta Learning

Let fi, i = 1, . . . , L, be the L forecasts to be combined. The forecast combination can
be written as

fcomb =
L

∑
i=1

wi fi (1.15)

The forecast combination approach typically uses a linear combination of forecasts
obtained from different models for the same time series. In the meta-learning con-
text the aim is to learn a weighting function

h(.) : T →W,

whichmaps a time series yN ∈ T into an appropriate set of combinationweightsw =

{wi}L
i=1. Usually, convex combinations of forecast methods are employed, i.e. W is

the probability simplex. Note that the choice of convex combinations of forecasting
models, though it is the most intuitive, is not the only possible, see for example
(Granger and Ramanathan, 1984; Radchenko et al., 2020).

However, the learning problem, for how it has been introduced, is ill-posed. Each
time series is simply a sequence of data points representing the temporal evolution
of a given phenomenon. This original representation does not emphasize the na-
ture of data, e.g. the presence of trend and seasonality, the degree of noise and
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non-linearity or any other measurable characteristic of a time series. Moreover, it is
well known that these characteristics affect the performance of forecasting methods
(Reid, 1972).

Therefore, in order to properly defining the learning problem, there is a need to
introduce a feature extraction function

f e(.) : T → X,

which returns a new representation x ∈ X of the series as a set of its meaningful
and measurable characteristic, i.e. the time series feature representation.

Hence, the whole problem consists in choosing both f e(.) and a novel weighting
function h̃ (.) which maps time series features into weights of combination:

T
f e(.)→ X

h̃(.)→ W

f e(.) : T → X (feature extractor)
h̃(.) : X →W (weighting function)

In the literature twodifferentways of extracting time series features can be found:
(i) manual approaches of feature extraction (Wang et al., 2009; Widodo and Budi,
2013; Talagala et al., 2018; Montero-Manso et al., 2020; Kang et al., 2021), (ii) auto-
matic approaches in which features are learned automatically from data by appro-
priate neural networks architectures (Li et al., 2020; Ma and Fildes, 2021).

Usually, the modeler chooses in advance how to extract time series features and
the learning problem is substantiated in estimating h̃(.). In order to estimate h̃(.),
the modeler needs to collect a set of past forecasting episodes with the associated
performances of methods and characteristics of time series (meta-data). Training
a learning model on meta-data, i.e. a meta-learner, the modeler can finally infer an
appropriate weighting function h̃(.)which can then be employed to recommend the
weights of combination on new time series to be forecast.

Both the proposed SRFA and SFFAmethods face the forecasting problem just as a
meta-learning problem. These meta-learners are distinguished by the way the func-
tion h̃(.), which recommends sparse combinations, is inferred from past forecasting
episodes.





Chapter 2

Best Subset Selection in Gaussian
Linear Regression models with
Extension to Gaussian ARMAmodels

We employ the AIC (Akaike, 1974), BIC (Schwarz, 1978) or HQIC (Hannan and
Quinn, 1979) information criteria to solve best subset selection problem in Gaus-
sian linear regression. The use of information criteria as a tool for model selection,
assumes the willingness of a parsimonious linear regression model, in the sense
that not all the P predictors in Equation (1.1) are really relevant in explaining the
response variable 1. Using these criteria, the modeler has the important advantage
that the number of predictors to be selected is implicitly determined by the criterion
without having to specify in advance this number. Hence, the modeler has only to
choose the right criterion based on the purpose of the model.

As mentioned in Section 1.1, the optimization of information criteria represents
a specific instance of the general penalized likelihood maximization problem (1.6).
A penalized likelihoodmaximization approach (1.6), with the presence of a `0 norm
regularization term, promotes parsimonious regressionmodels by encouraging sparse
estimates of β. Optimization of (1.6) requires the handling of the `0 term.

Recent approaches (Bertsimas et al., 2016;Miyashiro andTakano, 2015a,b;Gómez
and Prokopyev, 2018) for best subset selection problem have started to propose
formulations based on mixed integer optimization to handle the `0 norm. How-
ever, these formulations, as our experiment also highlight, have the drawback of
being computationally expensive. On the contrary, Alternate Minimization Algo-
rithmmanages the presence of the `0 norm by sequentially solvingMIQP problems,
i.e. models with quadratic objective, linear constraints and both continuous as well
as discrete variables, whose solution can be found in low computational times by
Gurobi (Gurobi Optimization LLC, 2018). In particular, the core of the Algorithm

1Full model view interpretation of regression parameters, see (Berk et al., 2013).
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is based on a two-step Gauss-Seidel decomposition scheme, where at each iteration
the first step involves the update of the regression parameters β by solving a MIQP
problem and the second step is about the closed form update of the variance param-
eter σ2.

We start the Chapter with a review in Section 2.1 of the AIC, BIC and HQIC
information criteria. A sketch derivation of both the AIC and BIC criteria, which
are heavily used in practice, is also given in Appendix A. A description of the most
known relatedworks is reported in Section 2.2. AlternateMinimization is presented
in Section 2.3 and its convergence analysis in Section 2.4. The three variants of Alter-
nateMinimization for its adaption to Gaussian ARMAmodels are treated in Section
2.5. Finally, Sections 2.6 and 2.7 report results of computational experiments, respec-
tively about linear regression and time series scenarios.

2.1 AIC, BIC and HQIC information criteria
AIC, BIC and HQIC information criteria refer to model selection methods that are
based on log-likelihood function l(θ) and applicable to parametric model-based
problems. These criteria are conceived to find a proper model for data under in-
vestigation providing a measure of information that strikes a balance between the
goodness of fit and parsimonious specification of the model.

AIC

The AIC criterion is based on Kullback–Leibler (KL) divergence 2 (Kullback and
Leibler, 1951) which is a general tool to measure the distance between two statistical
models or in general to compare two probability distributions. In particular, Akaike
found a relationship between themaximum likelihood estimator andKL divergence
which led to the definition of the following criterion:

AIC = −2l(θ̂) + 2k = −2l(θ̂) + 2||θ̂||0, (2.1)

where k is the dimension of the fittedmodel, which can be computed as the `0 norm
of the maximum likelihood estimate θ̂ (Fan and Lv, 2010). The AIC provides an
estimate, only asymptotically valid, of the expected, relative distance between the
fittedmodel and the unknown truemechanism that generated the data. Comparing
a set of candidatemodels, the onewith smallest AIC is considered closer to the truth
than the others. Note that the presence of the factor 2 in the AIC definition (2.1) is
only for historical reasons.

2Also note as Kullback–Leibler information or relative entropy.
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BIC
The BIC criterion is derived as an asymptotic approximation of the posterior prob-
ability of the Bayesian posterior probability of a candidate model (Neath and Ca-
vanaugh, 2012). Its derivation follows Bayesian arguments although its computa-
tion only requires the computation of maximum likelihood estimator. BIC criterion
is defined as follows:

BIC = −2l(θ̂) + k ln(N) = −2l(θ̂) + ln(N)||θ̂||0, (2.2)

where N is the sample size. The BIC criterion, interpreted as a penalized-likelihood,
weighs down model complexity more heavily than the AIC criterion. Model selec-
tion based on BIC is advantageous in the sense that BIC has the property of consis-
tency (Neath and Cavanaugh, 2012). Suppose that the DGP is of finite dimension,
and that this model is represented in the candidate collection. A consistent crite-
rion will asymptotically select, with probability one, the candidate model having
the correct structure.

HQIC
The HQIC (Hannan and Quinn, 1979), is defined as

HQIC = −2l(θ̂) + 2(||θ̂||0) log(log N). (2.3)

This criterion provides a consistent estimator of the order of an autoregressivemodel
(Konishi and Kitagawa, 2008; Broersen, 2006). HQIC is mainly suited for the autore-
gression setting and seems to have little use in practice (Burnham and Anderson,
2002).

2.2 Related Works
As reported in Section 1.1, approximating approaches, mainly represented by the
Lasso estimator (Tibshirani, 1996) with its extensions (see, for example (Fan and Li,
2001; Zou, 2006)) and greedy approaches as the Forward selection and Backward
elimination algorithms have been proposed in the literature to solve best subset se-
lection problem. Always in this context, Least Angle Regression (LARS) Algorithm
(Efron et al., 2004) is also worth mentioning. In fact, a simple modification of the
LARS algorithm implements the Lasso while a different one leads to an efficient
version of the Forward selection heuristic.

More recently, formulations based on mixed integer models have been intro-
duced to solve best subset selection problem (Bertsimas and Shioda, 2009; Konno
and Yamamoto, 2009; Miyashiro and Takano, 2015a,b; Bertsimas and King, 2015;
Bertsimas et al., 2016; Gómez and Prokopyev, 2018).
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When the cardinality parameter k is given, Problem (1.2) can be formulated as
a MIQP problem (Bertsimas et al., 2016). In fact, by introducing binary indicator
variables z ∈ {0, 1}P s.t zi = 0 only if βi = 0, Problem (1.2) is equivalent to:

min
β, c, z

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

,

eTz ≤ k,

−Mz ≤ β ≤ Mz,

z ∈ {0, 1}P, β ∈ RP,

(2.4)

where e is the vector of P elements all equal to 1 and M is a sufficiently large constant.
However, the formulation (2.4), although simple and easy to be implemented, stands
on the knowledge of k that is not always available.

Non-cardinality constrained formulations of subset selection problem are based
on the minimization of information criteria. The negative double log-likelihood of
a linear regression model is

−2`(β, c, σ2) = N log(σ2) + N log(2π) +
1
σ2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

.

Therefore, for the above reported information criteria (AIC, BIC and HQIC), we
can use the following general notation:

−2`(β, c, σ2) + α(‖β‖0 + 2),

where α depends on the chosen information criterion. By removing the constant
terms from the objective function, we can consider the following optimization prob-
lem:

min
β, c, σ2

N log(σ2) +
1
σ2

N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

+ α(‖β‖0). (2.5)

By first order conditions, we can easily derive the maximum likelihood estimator of
the variance parameter σ2, i.e.

σ̂2 =
R(β, c)

N
,

being R(β, c) = ∑N
i=1(yi − c−∑P

j=1 β jxij)
2. Substituting in (2.5), we get the follow-

ing problem:

min
β, c

N log
(

R(β, c)
N

)
+ N + α‖β‖0. (2.6)
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Problem (2.6) can also be reformulated as the followingMixed-Integer SecondOrder
Cone Programming (MISOCP) problem (Miyashiro and Takano, 2015a):

min
f

f (2.7a)

s.t.
N

∑
i=1

ε2
i ≤ f ·

P

∑
j=0

(
wj · exp

(
−αj

N

))
(2.7b)

P

∑
j=0

(j · wj) =
P

∑
j=1

zj (2.7c)

P

∑
j=0

wj = 1 (2.7d)

−Mzj ≤ β j ≤ Mzj j = 1, . . . P (2.7e)
β ∈ RP, c ∈ R, ε ∈ RN, f ∈ R+, w ∈ {0, 1}P+1, z ∈ {0, 1}P (2.7f)

This mixed-integer model is elegant, but in fact, as our experiments in Section 2.6
highlight, cannot be solved so efficiently. In particular, as shown in Table 2.2, this
method is in practice much slower not only w.r.t. the stepwise heuristics, but also
with respect to the approach of solving problem (2.4) once for each value of size k.

AMixed-Integer Fractional formulation (MIFO) has also been proposed (Gómez
and Prokopyev, 2018):

min
β, c, s

∑N
i=1

(
yi − c−∑P

j=1 β jxij

)2

s
(2.8a)

s.t. s ≤
P

∑
i=0

g(i)wi (2.8b)

P

∑
i=0

i · wi =
P

∑
i=1

zi (2.8c)

P

∑
i=0

wi = 1 (2.8d)

−Mz ≤ β ≤ Mz (2.8e)
z ∈ {0, 1}P, w ∈ {0, 1}P+1, β ∈ RP, s ≥ 0, (2.8f)

where s is an additional variable and g(x) = exp(−αx/N). Problem (2.8) can be
tackled exploiting the efficient MIQO solvers. In particular, the parametrized prob-
lems

d(t) = min
β, c, s

R(β, c)− ts (2.9a)

s.t. (2.8b) – (2.8f) (2.9b)
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are considered. If d(t?) = 0, then t? is the optimal value of (2.8). The original
problem is thus solved finding a root of the equation d(t) = 0 by using Newton
method. The whole procedure thus reduces to solving a sequence of problems of
the form (2.9), which can be proved to terminate at most after the P + 1-th problem.

2.3 Alternate Minimization Algorithm
Let us consider optimization problems of a slightly more general form w.r.t. (2.5):

min
β,c,σ

N log(σ2) +
1
σ2 R(β, c) + g(β)

s.t. σ > 0, c ∈ R

β ∈ RP,

(2.10)

where g : RP → S, being S a discrete set with finite cardinality, and R : RP ×R →
(ε,+∞) a quadratic convex function.

We propose a new method to solve such type of problems. Note that problem
(2.5) is indeed an instance of (2.10), where

g(β) = α‖β‖0, R(β, c) =
N

∑
i=1

(
yi − c−

P

∑
j=1

β jxij

)2

.

Fixing β̄, c̄, we get the convex, univariate problem

min
σ>0

N log(σ2) +
R(β̄, c̄)

σ2 ,

whose closed form solution, if R(β̄, c̄) > 0, is immediately found to be

σ̄2 =
R(β̄, c̄)

N
. (2.11)

Note that this relation has to hold at every optimal solution β̄, c̄, σ̄ of problem (2.10),
so we might equivalently reformulate the problem in a concentrated form as

min
β,c

N log
(

R(β, c)
N

)
+ g(β) + N, (2.12)

similarly as in (2.6).
However, differently from e.g. theMISOCP (Miyashiro and Takano, 2015a) or the

MIFO (Gómez and Prokopyev, 2018) formulations, we do not employ the concen-
trated formulation (2.12). On the contrary, we propose a two blocks Gauss-Seidel
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type solving scheme (Bertsekas, 2016) for formulation (2.10). The proposed ap-
proach is able to produce amuchmore efficientmethod. The procedure is described
by Algorithm 1.

Algorithm 1 Alternate Minimization (AM)
Input: β0, c0, σ0, k = 0
1: let g(β−1) = NaN
2: while g(βk) 6= g(βk−1) do
3: set

βk+1, ck+1 = arg min
β, c

R(β, c)
σk

2 + g(β)

4: set
σ2

k+1 = arg min
σ2>0

N log(σ2) +
R(βk+1, ck+1)

σ2 =
R(βk+1, ck+1)

N

5: set k = k + 1
6: end while
7: return βk, ck, σk

The major computational effort required by Algorithm 1 is in the solution of the
optimization problem defined at step 3 of the procedure.

At first glance, dealingwith such subproblemsmay seemparticularly hard, since
the algorithm requires the global optimum and the objective function is discontin-
uous. However, problem

min
β, c

R(β, c)
σk

2 + g(β) (2.13)

can be equivalently reformulated as a mixed-integer convex quadratic problem; in
particular it is equivalent to:

min
β, c

R(β, c) + Λσ2
k (2.14a)

s.t. Λ = g(β) (2.14b)
Λ ∈ S, (2.14c)
β ∈ RP, c ∈ R, (2.14d)

where, based on the structure of g, the constraint (2.14b) can be turned into a lin-
ear constraint by introducing auxiliary binary and integer variables and linear con-
straints. For example, if g(β) = α‖β‖0, as in the case of linear regression, we can
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substitute constraints (2.14b)-(2.14c) with the following set of constraints:

δi ∈ {0, 1} ∀ i = 1, . . . , P (2.15a)
−Mδi ≤ βi ≤ Mδi ∀ i = 1, . . . , P (2.15b)

Λ = α
P

∑
i=1

δi. (2.15c)

If M is a large enough positive constant, the value of variable Λ, appearing in the
objective function, will be equal to the number of non-zero components of β: indeed,
if βi 6= 0, then δi will have to assume the value 1 in order to satisfy constraint (2.15a),
while if βi = 0, then δi, which may assume both values 0 and 1, will be 0, since it
brings to a lower objective value.

Problem (2.14) with constraints of the type (2.15a)-(2.15c) is usually solved sig-
nificantly faster than, e.g., the MISOCP problem (2.7) that directly tackles Problem
(2.12) (Miyashiro and Takano, 2015a). Indeed, solving a sequence of problems of the
form of (2.14) proved to be more efficient than solving (2.7), as we will show in Sec-
tion 2.6. In fact, Problem (2.14) is similar, in terms of complexity, to Problem (2.4),
which is solved P times through enumeration. On the other hand, even though we
will briefly proof that Algorithm 1 also solves, in the worst case, P times problem
(2.14), it in fact usually stops after much less than P iterations.

2.4 Convergence Analysis
The following Proposition characterizes the properties of Algorithm 1. In order to
simplify the notation throughout the analysis, we will ignore, with no loss of gen-
erality, the intercept term c. Before going on with the analysis, we also make an
assumption, which is reasonable in practical implementations, about Algorithm 1:

Assumption 1. Step 3 of Algorithm 1 is performed in such a way that if R(βk+1)/σ2
k +

g(βk+1) = R(βk)/σ2
k + g(βk) then βk+1 = βk.

The above assumption substantially says that the current point is updated only
if the new point is strictly better than the previous one in terms of objective value.
For the sake of notation simplicity, let also f (β) = N log(R(β)/N) + g(β). Now, we
can finally turn to the convergence analysis.

Proposition 1. Consider Algorithm 1, under Assumption 1. Then, the following properties
hold:

(a) For each iteration k, either g(βk) = g(βk−1), i.e. the algorithm terminates, or g(βk) 6=
g(βh) for all h < k.

(b) The algorithm terminates in at most |S| iterations, returning a solution (β̄, σ̄).
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(c) Let k̄ be the index of the last iteration. Then f (β̄) ≤ f (β) for all β ∈ {β | ∃ k ∈
{1, . . . , k̄} s.t. g(βk) = g(β)}.

(d) If k̄ = |S|+ 1, then the returned solution β̄ is optimal.

(e) Let β? be an optimal solution of problem (2.12), i.e., the pair β?, σ? =
√

R(β?)/N is
optimal for problem (2.10). Then, the following bound holds:

0 ≤ f (β̄)− f (β?) ≤ −N log(1− η2 exp(θ − 1)), (2.16)

where θ ∈ (0, 1) and η = (g(β̄)− g(β?))/N.

Proof. We prove one property at a time.

(a) Since both step 3 and step 4 require to compute global minima of subproblems,
the sequence of objective values { f (βk)} is monotone non-increasing.

By the instructions of the algorithm,

βk+1 = arg min
β

R(β)

σ2
k

+ g(β),

so it also holds

βk+1 = arg min
β : g(β)=g(βk+1)

R(β)

σ2
k

+ g(β) = arg min
β : g(β)=g(βk+1)

R(β). (2.17)

Therefore, if g(βh) = g(βk) for two indexes h and k, R(βk) = R(βh) and thus
f (βk) = f (βh). Now, let k > h and assume g(βk) = g(βh). Since the sequence
of objective values is non-increasing, we have

f (βk) ≤ f (β`) ≤ f (βh) = f (βk)

for all k > ` ≥ h, where the last equality comes from the previous considera-
tions. Thus, we have

f (β`) = f (βk)

for all k > ` ≥ h.

Since the objective value has not decreased from iteration h to k, from Assump-
tion 1 it has to be β` = βh for all k > ` ≥ h.

But then, g(β`) = g(βh) for all k > ` ≥ h, which is only possible if ` = h = k− 1,
since g(βh+1) = g(βh) triggers the stopping criterion.

Therefore, for all h < k, we have either h = k − 1 with g(βk) = g(βk−1) or
g(βk) 6= g(βh).
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(b) Since g can have at most |S| possible different values and, from (a), at each itera-
tion the algorithm either finds a solution with an unseen value of g or maintains
the previous solution, no later than at the beginning of the |S|+ 1-th iteration
the stopping criterion gets satisfied.

(c) From the non-increasing property of { f (βk)}, f (βk̄) ≤ f (βk) for all k. Moreover,
recalling that, for all k, (2.17) holds, it has to be

βk = arg min
β : g(β)=g(βk)

f (β) = N log
(

R(β)

N

)
+ g(β).

Thus we can conclude that

βk̄ = arg min
β : ∃ h∈{1,...,k̄} : g(β)=g(βh)

f (β).

(d) This property directly descends from (a), (b) and (c).

(e) Since β? is the optimal solution, we have

β? = arg min
β

N log
(

R(β)

N

)
+ g(β), (2.18)

while, by the instructions of the algorithm, we know that the returned solution
(β̄, σ̄) satisfies

σ̄2 =
R(β̄)

N
, (2.19)

β̄ = arg min
β

N
R(β)

R(β̄)
+ g(β). (2.20)

From (2.18), we have

N log
(

R(β?)

N

)
+ g(β?) ≤ N log

(
R(β̄)

N

)
+ g(β̄),

while (2.20) implies

N + g(β̄) ≤ N
R(β?)

R(β̄)
+ g(β?).

Now, let r = R(β?)/R(β̄) and ∆ = g(β̄)− g(β?). We can rewrite the previous
inequalities in a more compact way:

N + ∆ ≤ Nr ⇐⇒ r ≥ 1 + ∆/N (2.21)
N log(r) ≤ ∆ ⇐⇒ r ≤ exp(∆/N) (2.22)
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Let us recall Taylor’s theorem:

s(y) = s(x)+ s′(x)(y− x)+ s′′(ξ)(y− x)2, ξ = x+ θ(y− x) for some θ ∈ (0, 1),

and let η = ∆/N. Setting s(η) = exp(η) and x = 0, we can write exp(η) =

1 + η + η2 exp(θη), for some θ ∈ (0, 1). Rearranging we get

1 + η = exp(η)− η2 exp(θη).

Combining inequalities (2.21) and (2.22) with the last equality, we obtain the
following bounds for r:

exp(η)− η2 exp(θη) ≤ r ≤ exp(η).

Now, let us consider the gap, in terms of objective value, between the returned
solution β̄ and the optimal solution β?; we have

0 ≤ f (β̄)− f (β?) = N log(1/r) + ∆

= ∆− N log(r)

≤ ∆− N log(exp(η)− η2 exp(θη))

= ∆− N log(exp(η)(1− η2 exp(η(θ − 1))))

= ∆− N log(exp(η))− N log(1− η2 exp(θ − 1))

= ∆− N(∆/N)− N log(1− η2 exp(θ − 1))

= −N log(1− η2 exp(θ − 1)),

i.e., we have obtained the bound of property (e).

Note that the upper bound at point (e) of Proposition 1 is often very close to 0.
Consider for example the case of linear regression, where g(β) = α‖β‖0. The bound
becomes

f (β̄)− f (β?) ≤ −N log
(

1− α2(‖β̄‖0 − ‖β?‖0)
2

N2 exp(θ − 1)
)

;

the bound goes to zero when α(‖β̄‖0 − ‖β?‖0)/N goes to zero. Therefore:

• the gap is zero if ‖β̄‖0 = ‖β?‖0;

• if α = 0, there is no penalty on the model complexity; β̄ then minimizes R(β)

and is trivially the global optimum;
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• if the absolute value of α(‖β̄‖0 − ‖β?‖0)/N is small, the optimality gap is
bounded by a small quantity; moreover, note that

∣∣‖β̄‖0 − ‖β?‖0
∣∣ ≤ P; in

most applications P � N and for the information criteria we have consid-
ered it holds that α = o(N), so we are typically guaranteed to obtain, at least,
a nearly-optimal solution.

Note that optimality of the returned solution β̄ cannot be guaranteed. In fact, we
can show by a numerical counter-example that, in unfortunate cases, Algorithm 1
may stop at suboptimal solutions:

Example 1. Consider the best subset selection problem for linear regression, using AIC
penalization, for the model

Y = Xβ,

where

Y =

 10
10
10

 X =

 10 0.1
0.1 10
1 1


and β ∈ R2 (no intercept term c). The AIC measure for the model as a function of β is given,
up to constants, by

f (β) = 3 log

(
‖Y− Xβ‖2

2
3

)
+ 2‖β‖0.

The optimal parameters β? for this problem are

β? =

[
1.0673
1.0673

]
,

with f (β?) = 13.74. However, if we run Algorithm 1 setting σ0 = 178.0219/3 = 59.34,
it stops at the end of the second iteration returning the first solution found:

β̄ =

[
1.0989

0

]
,

having value f (β̄) = 14.25 > f (β?).
Indeed, let β0, β1 = β̄ and β2 = β? the solutions with L0 norm respectively equal to 0,

1 and 2 minimizing R(β) = ‖Y − Xβ‖2
2. We have R(β0) = 300, R(β1) = 178.022 and

R(β2) = 63.08. With σ0 = 59.34, the objective values of these solutions in the problem at
step 3 of Algorithm 1 are respectively 5.056, 5 and 5.063: β1 is therefore optimal; but then,
the value of σ1 is set to R(β1/3) = 59.34, i.e. it does not change w.r.t. σ0; thus, the first
iteration is exactly repeated and at the end of it the stopping condition gets true, with the
algorithm returning β1 = β̄.

It is interesting to note that the gap in terms of objective value is not so narrow in this
case. However, this simple example does not match with the typical real-world problems
where P� N.
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2.5 Alternate Minimization for Gaussian ARMA(p, q)
Models

In this Section, we properly modify the Alternate Minimization Algorithm to iden-
tify and estimate ARMA(p, q) models (see Section 1.2). The identification of these
models is substantiated in selecting the pair (p, q) of ARMA orders, which mea-
sure the extent of temporal dependence of the autoregressive and moving average
components.

As pointed out in (Broersen, 2006), ARMA order selection is a challenging task
with a greater difficulty than pure AR or MA order selection. In fact, in both the
latter cases, the order selection problem is equivalent to selection in a hierarchically
nested class of candidate models, where each higher order model contains all pa-
rameters of lower order models. Conversely, in ARMA models there may be more
than two models with the same complexity and this increases the difficulty of se-
lection. The number of candidate ARMA(p, q) models, with p ≤ L and q ≤ L, is
L2.

An exhaustive penalized likelihood approach over all possible orders (p, q) is
proper when L ≤ 3. In fact, the maximum likelihood estimation of many different
ARMA models can be cumbersome especially when the length of the time series is
more than 150 observations (Hyndman et al., 2008). On this matter, the state of the
art approaches, are conceived to keep to a minimum themaximum likelihood steps,
seeking to avoid the estimation of the most unlikely models.

In the following, we briefly review the two main methodologies to select ARMA
models.

Box and Jenkins The Box and Jenkins procedure (Brockwell et al., 1991; Box et al.,
2015) has represented for years the state of the art concerning the ARMA or-
der selection problem. This methodology separates the order selection phase,
based on the visual inspection of both the sample autocorrelation function
(ACF) and the sample partial autocorrelation function (PACF) plots, from the
next fitting phase. Bymatching both the sample autocorrelation plots with the
theoretical autocorrelation plots, the modeler subjectively detects a small set
of candidate models. ARMA models, which belong to this set, are estimated.
The selectedmodel is the one whichminimizes a previous chosen information
criterion, as the AIC, BIC or HQIC, among the candidate models. Eventually,
the procedure ends with a diagnostic phase to validate the selected model.

Hyndman-Khandakar Search The algorithm of Hyndman-Khandakar (Hyndman
et al., 2008) implements an heuristic strategy to traverse theARMAorder space
efficiently. Once again, information criteria act as metric for order selection. In
the first step of the procedure, a low order ARMA(p, q)model, among a set of
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four candidate ARMA(p, q), is identified and denoted as the current model.
At the second step, a new set of models, close to the current, is obtained by
considering small variations of the orders of the current model. Whenever a
model with lower information criterion value is found, it becomes the new
current model and the procedure is repeated. The process finishes when we
cannot find a model close to the current model with lower information crite-
rion value. The function auto.arima() from the R package forecast (Hyndman
et al., 2008) implements this heuristic, considering for selection also the Auto
Regressive Integrated Moving Average (ARIMA) models and Seasonal Auto
Regressive Integrated Moving Average (SARIMA) models (Brockwell et al.,
1991; Hamilton, 1994; Box et al., 2015).

Especially with the increase of the upper bounds (P, Q) of the orders, both these
procedures have obvious complications. In fact, it becomes almost impossible for
the Box and Jenkins procedure, like any other subjective model selection strategy,
to select an ARMA model when the order space has a lot of candidates. Similarly,
the Hyndman-Khandakar searchmay require several steps of maximum likelihood,
hence becoming computationally non efficient.

Based on the latter considerations, the employment of Alternate Minimization
in this scenario is motivated by the need of an automatic and efficient tool to detect
ARMA models. However, in such scenario, as anticipated in Chapter 1, Alternate
Minimization works as a preliminary estimation algorithm, returning a final fitted
ARMA(p, q)model that needs to be refined by a final maximum likelihood step. We
adapt Alternate Minimization to the ARMA case as follows.

We consider, as a useful approximating model for a zero mean stationary time
series {yt}N

t=1, the following Gaussian ARMA linear regression model:

Yt = φ1Yt−1 + · · ·+ φPYt−P + θ1ε̂t−1 + · · ·+ θQε̂t−Q + εt, εt ∼N(0, σ2) , (2.23)

where the error terms have been previously estimated as in the first step of the Han-
nan Rissanen methodology (Hannan and Rissanen, 1982) 3.

Now, the Gaussian log-likelihood `(φ, θ, σ2) of ARMA linear regression model
(2.23) is:

`(φ, θ, σ2) = − (N −m−Q)

2
log(2π)− (N −m−Q)

2
log(σ2)− 1

2σ2 SSR(φ, θ),
(2.24)

with SSR(φ, θ) = ∑N
t=m+1+Q(yt − φ1yt−1 − · · · − φPyt−P − θ1ε̂t−1 − · · · − θQε̂t−Q)

2

representing the sum of squares loss function. The general optimization problem to
3Errors terms are estimated as residuals of a high-order preliminary AR(m) model with m >

max(P, Q)
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be solved is the following:

min
φ,θ,σ2

−2`(φ, θ, σ2) + α(||φ||0 + ||θ||0), (2.25)

where α > 0 is a generic regularization term. Here again, by the choice of specific
values of α, we can perform the direct minimization of known information, which
are commonly employed for order selection in time series, see (Stoica and Selen,
2004) for a nice review on this topic.

To properly identify the orders (p, q) within a framework based on mixed inte-
ger optimization, we consider the hierarchical sparsity constraints for the autore-
gressive parameters φ = (φ1, . . . , φl, . . . , φP) and moving average parameters θ =

(θ1, . . . , θl, . . . , θQ) (Liu and Tajbakhsh, 2020):

if φl = 0 then φl∗ = 0 ∀ l < l∗ ⇐⇒ if φl∗ 6= 0 then φl 6= 0 ∀ l < l∗ (2.26)
if θl = 0 then θl∗ = 0 ∀ l < l∗ ⇐⇒ if θl∗ 6= 0 then θl 6= 0 ∀ l < l∗. (2.27)

As a consequence of these latter constraints, penalty terms on the model complexity
are proportional to the sum of orders of the model.

At a given iteration k of the algorithm, fixing the variance parameter σ2 = σ2
k ,

the first sub-problem is the following:

min
φ,θ

SSR(φ, θ)

σ2
k

+ g(φ, θ) (2.28)

s.t.: φ ∈ RP, θ ∈ RQ, (2.29)
φ satisfies 2.26, θ satisfies 2.27, (2.30)
g(φ, θ) = α(||φ||0 + ||θ||0). (2.31)

With the introduction of P+Q binary variables (δ1, . . . , δP, ν1, . . . , νQ), Problem (2.28)
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can be reformulated as a mixed-integer convex quadratic problem:

min
φ,θ

SSR(φ, θ) + σ2
k (α

P

∑
i=1

δi + α
Q

∑
j=1

νj) (2.32)

s.t.: δi ∈ {0, 1} ∀i = 1, . . . , P (2.33)
νj ∈ {0, 1} ∀j = 1, . . . , Q (2.34)

P

∑
i=1

δi ≥ 1,
Q

∑
j=1

νj ≥ 1 (2.35)

m

∑
i=1

δi ≥ mδm ∀m = 1, . . . , P (2.36)

n

∑
j=1

νj ≥ nνn ∀n = 1, . . . , Q (2.37)

−Mδi ≤ φi ≤ Mδi ∀i = 1, . . . , P (2.38)
−Mνj ≤ θj ≤ Mνj ∀j = 1, . . . , Q (2.39)

Especially when the ARMAmodel is employed in forecasting, its parameters are
usually constrained in the causal-invertible space, i.e. (φ, θ) ∈ Sp × Sq (see Section
1.2). We manage these constraints by exploiting the parametrization of the ARMA
parameters (φ, θ) in terms of partial autocorrelations, also known as reflection coeffi-
cients. Levinson recursion Υ(·)maps reflection coefficients into ARMA parameters
(φ, θ) (see Section 3.2). Through Υ(·), the feasible sets Sp or Sq, can be approximated
within any degree of accuracy by the following closed sets (Combettes and Trussell,
1992):

S̄p = Υ(K̄p) with K̄p = [δ− 1, 1− δ]p (2.40)
S̄q = Υ(K̄q) with K̄q = [δ− 1, 1− δ]q (2.41)

Let (φ(k), θ(k)) ∈ RP × RQ be the solution returned by the algorithm at a given
iteration k and indicate with (φ̂(k), θ̂(k)) ∈ Rp ×Rq the first p non zero elements of
φ(k) and the first q non zero elements of θ(k). Feasibility is obtained by computing
the projection of φ̂(k) (for the moving average is analogous) onto the closed feasible
set S̄p. The projection problem is approached in the reflection coefficients space
(Combettes and Trussell, 1992):

min
kp∈K̄p

Φ(kp) =
(

Υ(kp)− φ̂(k)
)T (

Υ(kp)− φ̂(k)
)

(2.42)

Note that due to the potential non convexity of S̄p, the projection may not be unique
and there is the possibility of convergence to localminima. However, the lack of con-
vergence to a global optimum of Problem 2.42 is a rare eventuality (Combettes and
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Trussell, 1992). Furthermore, since finding an exact projection by means of a global
optimization algorithm could be expensive for a preliminary estimation algorithm,
Problem 2.42 is solved by L-BFGS-B to handle box constraints. Observe that L-BFGS-
B is a local optimization algorithmand the projection is not certified. Wedefine three
different variants of the algorithm (see algorithms 2, 3, 4). According to the first vari-
ant, the projection step (2.42) is performed at the end of each iteration; conversely,
the second variant computes the projection when the iterations of the algorithm
have finished. This variant is conceived to promote the computational efficiency.
For these two variants, the whole procedure terminates with an exact maximum
likelihood step, starting the optimization from the solution (φ̂(k), θ̂(k)) provided by
the algorithm. Finally, the third variant exactly matches the second variant but it
performs maximum likelihood estimation of ARMA models belonging to a neigh-
borhood A of the returned ARMA(p, q), i.e. A = {(p, q), (p− 1, q), (p + 1, q), (q−
1, p), (q + 1, p)} (Local Search Variant). The final returned model is the one which
minimizes the chosen information criterion among all the models in A.
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Algorithm 2 Alternate Minimization (First Variant)
Input: {yt}N

t=1, P, Q, φ0, θ0, σ0, k = 0
1: fit a high-order AR(m) to {yt}N

t=1
2: compute residuals {ε̂t}N

t=m+1 from the fitted AR(m)

3: let g(φ−1, θ−1) = NaN
4: while g(φk, θk) 6= g(φk−1, θk−1) do
5: set

φk+1, θk+1 = arg min
φ, θ

SSR(φ, θ)

σk
2 + g(φ, θ)

6: set

φ̂k+1
pro =


φ̂k+1, if φ̂k+1 ∈ Sp

arg min
kp∈K̄p

(
Υ(kp)− φ̂k+1)T (

Υ(kp)− φ̂k+1) , otherwise

7: set

θ̂k+1
pro =


θ̂k+1, if θ̂k+1 ∈ Sq

arg min
kq∈K̄q

(
Υ(kq)− θ̂k+1)T (

Υ(kq)− θ̂k+1) , otherwise

8: set

σ2
k+1 =

SSR(φk+1
pro , θk+1

pro )

(n−m−Q)

9: set k = k + 1
10: end while
11: set p = ||φk

pro||0, q = ||θk
pro||0

12: fit by exact maximum likelihood an ARMA(p.q) model to {yt}N
t=1

13: return φk, θk, σk
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Algorithm 3 Alternate Minimization (Second Variant)
Input: {yt}N

t=1, P, Q, φ0, θ0, σ0, k = 0
1: fit a high-order AR(m) to {yt}N

t=1
2: compute residuals {ε̂t}N

t=m+1 from the fitted AR(m)

3: let g(φ−1, θ−1) = NaN
4: while g(φk, θk) 6= g(φk−1, θk−1) do
5: set

φk+1, θk+1 = arg min
φ,θ

SSR(φ, θ)

σ2
k

+ g(φ.θ)

6: set
σ2

k+1 =
SSR(φk+1, θk+1)

(n−m−Q)

7: set k = k + 1
8: end while
9: set

φ̂k+1
pro =


φ̂k+1, if φ̂k+1 ∈ Sp

arg min
kp∈K̄p

(
Υ(kp)− φ̂k+1)T (

Υ(kp)− φ̂k+1) , otherwise

10: set

θ̂k+1
pro =


θ̂k+1, if θ̂k+1 ∈ Sq

arg min
kq∈K̄q

(
Υ(kq)− θ̂k+1)T (

Υ(kq)− θ̂k+1) , otherwise

11: set p = ||φk
pro||0, q = ||θk

pro||0
12: fit by exact maximum likelihood an ARMA(p.q) model to {yt}n

t=1
13: return φk, θk, σk
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Algorithm 4 Alternate Minimization (Third Variant)
Input: {yt}N

t=1, P, Q, φ0, θ0, σ0, k = 0
1: fit a high-order AR(m) to {yt}N

t=1
2: compute residuals {ε̂t}N

t=m+1 from the fitted AR(m)

3: let g(φ−1, θ−1) = NaN
4: while g(φk, θk) 6= g(φk−1, θk−1) do
5: set

φk+1, θk+1 = arg min
φ,θ

SSR(φ, θ)

σ2
k

+ g(φ.θ)

6: set
σ2

k+1 =
SSR(φk+1, θk+1)

(n−m−Q)

7: set k = k + 1
8: end while
9: set

φ̂k+1
pro =


φ̂k+1, if φ̂k+1 ∈ Sp

arg min
kp∈K̄p

(
Υ(kp)− φ̂k+1)T (

Υ(kp)− φ̂k+1) , otherwise

10: set

θ̂k+1
pro =


θ̂k+1, if θ̂k+1 ∈ Sq

arg min
kq∈K̄q

(
Υ(kq)− θ̂k+1)T (

Υ(kq)− θ̂k+1) , otherwise

11: set p = ||φk
pro||0, q = ||θk

pro||0
12: define A = {(p, q), (p− 1, q), (p + 1, q), (q− 1, p), (q + 1, p)}
13: fit by exact maximum likelihood all the feasible ARMA models with orders

(p∗, q∗) ∈ A
14: return φk, θk, σk from the best fitted model

2.6 Experiments: Gaussian Linear Regression

Concerning Gaussian linear regression, similarly as in previous works on the topic
(Miyashiro and Takano, 2015a; Kimura andWaki, 2018), our benchmark is made up
of eight datasets from the UCI Machine Learning Repository (Dua and Graff, 2017).
Table 2.1 synthetically describes these datasets, showing the number N of points
and the number P of variables. The Solar Flare instance has three target variables
(C, M and X) and therefore three instances of the problem have been prepared.
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Dataset N P
Housing 506 13
Servo 167 19
Auto MPG 392 25
Solar Flare C 1066 27
Solar Flare M 1066 27
Solar Flare X 1066 27
Breast Cancer Wisconsin 194 33
Forest Fires 517 63
Automobile 159 65
Communities and Crime 1993 102

Table 2.1: List of datasets for experiments on subset selection for linear regression.

As for the Forest Fires dataset, interaction terms between x and y spatial coordi-
nates have been created. For each dataset, we performed the one-hot encoding of the
categorical variables and we normalized the other ones to zero mean and unit stan-
dard deviation, in order to prevent numerical issues. Moreover, data points with
missing variables haves been removed.

Minimization of AIC, BIC and HQIC for the 10 problems has been carried out.
With all the consideredmethods in the experiments, Gurobi 8.1.0 (Gurobi Optimiza-
tion LLC, 2018) was employed as the quadratic programming solver for MINLP
problems and subproblems. Indeed, all of the subproblems we are solving are
MIQP. Although still complex in general, these models can be successfully solved
in the convex case through general purpose solvers like Gurobi if the dimension
is not excessively large. In order to enhance the efficiency of Gurobi, continuous
variables were constrained to belong to the interval [−103, 103]. Being the datasets
normalized, this in practice does not represent a restriction to the model. In order to
prevent numerical problems with integer variables, we set the integer precision pa-
rameter to 10−9, which is the most accurate possible value with Gurobi. The value
of M for bigM-type constraints was set to 104.

All experimentswere performed on amachinewithUbuntu Server 16.04 LTSOS,
Intel Xeon E5-2430 v2 @ 2.50GHz CPU and 16GB RAM. Every run of each algorithm
was performed on a single CPU core, in order to make time measurements fair, and
a time limit of 10 000 seconds was set.

In the following, we will make use of performance profiles (Dolan and Moré,
2002) for comparing the performance of different algorithms on a set of benchmark
problems. We recall that, in performance profiles, each curve represents the cumu-
lative fraction of problems the corresponding solver could solve in a time which
is at most a factor of τ worse than the best performing one. Separate analyses are
performed for each different information criterion.
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We compared several solvers on the subset selection for linear regression prob-
lems generated from datasets in Table 2.1. We considered Alternate Minimization
algorithm (Algorithm 1), the step-wise heuristic with Forward selection and Back-
ward elimination strategies, the exhaustive approach, the MISOCP model (2.7), the
Newton’s method to solve problem 2.9 (MIFO-Newton) and finally the method of
solving the MIQP model (2.4) for all possible values of k.

Alternate Minimization, MIFO-Newton and the iterated MIQP algorithms em-
ploymixed-integer solvers (Gurobi) as subroutines. With the largest problems (those
generated from Automobile and Communities and Crime datasets) we had to set
an inner time limit of 1 200 seconds for each iteration, since otherwise Gurobi never
stops, failing at certificating the optimality of the current solution of the subproblem.
This slight modification clearly spoils the theoretical properties of the algorithms,
but in practice leads to good performance both in terms of runtime and quality of
the solutions.

A warm-start strategy also speeds up algorithms Alternate Minimization and
MIFO-Newton. The solution found at the k-th iteration is feasible (and likely good)
for the k + 1-th problem; using that solution as starting point at the k + 1-th itera-
tion provides some reduction in the computing time. On the other hand, the addi-
tion of redundant constraints based on normal equations, as outlined in Gómez and
Prokopyev (2018), greatly improves the performance of MISOCP model. The same
addition, on the contrary, turned out to be quite uselesswith the othermixed-integer
models.

Method # successful runs total time (sec)
AM 29/30 31299
BW Stepwise 18/30 38666
Exhaustive 17/30 267405
FW Stepwise 17/30 3530
MIFO-Newton 29/30 32759
MIQP 25/30 155295
MISOCP 22/30 172215

Table 2.2: For each considered algorithm, the number of times the optimal solu-
tion was found and the sum of runtimes is reported, out of the 30 linear regression
problems (10 datasets with AIC/BIC/HQIC). A solution is considered optimal if
the relative distance to the best overall objective value is lower than 10−3.

In Table 2.2 we show the overall performance of the algorithms. We can see that
the heuristics are fast, especially the forward selection, but often lead to suboptimal
solutions. The exhaustive search is very slow, and often exceeds the time limit, re-
turning bad solutions. The MISOCP model has a slightly better behavior, but with
similar shortcomings. Our proposed Alternate Minimization algorithm proved to
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be the best choice, as it is the second one in terms of CPU time while being the top
ranking in terms of the number of solved problems; like MIFO-Newton, it only fails
once at finding an optimal solution, but it requires a smaller time to run on all the
problems.

Figures 2.1 and 2.2 give a wider insight of results. In Figure 2.1 the performance
profiles, in terms of runtime, of the seven considered algorithms on the ten regres-
sion problems are shown. Note that we considered the runtime to be “infinite”
when the returned solution is suboptimal. We made up separate profiles for AIC
(2.1a), BIC (2.1b) and HQIC (2.1c). We can observe that the profile of AM is almost
completely dominant with respect to the others. The only comparable algorithm is
MIFO-Newton, but its performance curves are always under those of AM, except
for the final part of the HQIC scenario, where AM cannot find the optimal solution
of one problem. The curves of all other methods considered are far below that of
AM.

As for the quality of the returned solutions, we report in Figure 2.2 the cumu-
lative distribution of the relative errors, in terms of objective value, attained by the
various solvers. This plot confirms that not only AM is the fastest of the considered
algorithms, but it is also, along with MIFO-Newton, the most accurate one.
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Figure 2.1: Performance profiles of runtimes of different algorithms for subset se-
lection in 10 linear regression problems. The problems are generated from datasets
in Table 2.1. Each figure refers to one of the considered information criteria (AIC,
BIC and HQIC).
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Figure 2.2: Each curve represents the fraction of the 30 linear regression problems
for which the corresponding solver obtains a relative error less or equal than ∆rel
w.r.t. the optimal value.
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2.7 Experiments: Gaussian ARMAmodels
W.r.t. Gaussian ARMAmodels, all the three variants of the Alternate Minimization
algorithm and the heuristic search of Hyndman-Khandakar, revised just for the case
of pure ARMAmodels, have been considered for the experiments.

The experiments have been carried out on a synthetic dataset of zeromeanGaus-
sian ARMA time series. We simulated time series from nine different scenarios (see
Table 2.3), any one of which is identified by the standard deviation σ of the input
white noise generator process and the length of the simulated series. A total of one

Scenario Length σ Candidate models
I 300 0.1 25
II 1000 0.1 25
III 10000 0.1 25
IV 300 1 25
V 1000 1 25
VI 10000 1 25
VII 300 5 25
VIII 1000 5 25
IX 10000 5 25

Table 2.3: Scenarios of the experiments: each scenario is identified by the standard
deviation σ of the noise process and length of the simulated series.

hundred time series have been simulated for each scenario, where each series repre-
sents a single realization of a different Gaussian ARMA(p, q). We start the simula-
tion of each series by generating the white noise error series. Then, we set the orders
(p, q) of each generator process by uniformly sampling orders up to a maximum of
(5, 5) 4. Fixed the order, we choose the associated structural parameters (φ, θ) of
the process from a uniform distribution over the causality and invertibility region
(Jones, 1987). Finally, each series is generated recursively according to the ARMA
equations.

We assessed the algorithms both in terms of the accuracy of finding the true gen-
erator model and computational efficiency. In this case, the selection of models is
based only on the BIC criterion: in fact, in such settings, when the true generator
model belongs to the set of candidate models, the BIC criterion satisfies the consis-
tency property and surely represents an appropriate choice.

Accuracy results are reported in Table 2.4. We note that none of the methods,
involved in the experiments, prevails over the others neither varying the length of

4The choice of setting (5, 5) as the upper bounds (P, Q) of the ARMA order is coherent with the
default settings of the auto.arima() function from the R package forecast (Hyndman et al., 2008).
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(0.1,300) (0.1,1000) (0.1,10000) (1,300) (1,1000) (1,10000) (5,300) (5,1000) (5,10000)
First Variant 0.33 0.53 0.65 0.33 0.46 0.66 0.27 0.49 0.67
Second Variant 0.33 0.39 0.71 0.28 0.49 0.68 0.27 0.44 0.66
Third Variant 0.34 0.42 0.65 0.33 0.41 0.66 0.30 0.55 0.63
Heuristic 0.33 0.43 0.66 0.26 0.43 0.67 0.30 0.54 0.68

Table 2.4: Accuracy of finding the true generator ARMA(p, q) model obtained by
different algorithms. We compare all the three variants of the proposed method
and the heuristic approach of Hyndman and Khandakar. Results are reported for
each considered scenario. BIC criterion has been employed for order selection.

the series nor varying the standard deviation of the error process. We also observe
that the quality of results increase, similarly for each algorithm, with the length of
the series, pointing out the consistency property of BIC criterion.

The attention is then focused on the computational efficiency of Alternate Min-
imization. We aim to measure the computational efficiency of the mixed integer
optimization strategy, in a default setting scenario consisting of twenty-five candi-
date ARMA model. Although in such settings a enumerative maximum likelihood
approach is also feasible, we compare again with the heuristic approach of Hynd-
man and Khandakar. In Figures 2.3, 2.4, 2.5, we report the performance profiles, in
terms of run time, of the four involved algorithms for each considered scenario.

By observing Figures 2.3, 2.4, 2.5, we note that the orange, the red and green
curves, respectively referring toAlgorithms 3, 2, 4, systematically lie above the green
line which refers to the heuristic strategy. Hence, we can conclude that in a realistic
scenario, the employment of Alternate Minimization is also adequate in terms of
runtimes. Algorithm 3, which performs only a single projection step and a single
exact likelihood step, is the most efficient Alternate Minimization variant, saving
computational times. Instead, Algorithms 2, 4, although they respectively perform
a larger number of projection-maximum likelihood steps and are slower than Algo-
rithm 3, do not have higher accuracy as it is highlighted in Table 2.4.

Taking into account both the results of accuracy in Table 2.4 and the performance
profiles plots 2.3, 2.4, 2.5, we conclude that the simple MIO ARMA variant of Alter-
nateMinimization represents the best option to fit efficientlyARMAmodelswithout
any subjective identification and in a totally data-drivenmanner.
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Figure 2.3: Performances profiles of runtimes for time series of 300 observations
varying the standard deviations of the error process. The orange line refers to the
Second Variant of ourmethod. The red line refers to the First Variant of ourmethod.
The green line refers to the third variant of our method. The blue line refers to the
heuristic of Hyndman-Khandakar.
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Figure 2.4: Performances profiles of runtimes for time series of 1000 observations
varying the standard deviations of the error process. The orange line refers to the
Second Variant of ourmethod. The red line refers to the First Variant of ourmethod.
The green line refers to the third variant (Local Search Variant) of our method. The
blue line refers to the heuristic of Hyndman-Khandakar.
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Figure 2.5: Performances profiles of runtimes for time series of 10000 observations
varying the standard deviations of the error process. The orange line refers to the
Second Variant of ourmethod. The red line refers to the First Variant of ourmethod.
The green line refers to the third variant (Local Search Variant) of our method. The
blue line refers to the heuristic of Hyndman-Khandakar.
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2.8 Conclusions
We developed, theoretically analyzed and numerically experimented a decomposi-
tion approach, which rely on the solution of mixed integer quadratic programming
sub-problems, to solve the best subset selection problem in Gaussian linear regres-
sion and the order selection problem in Gaussian ARMAmodels.

The proposed methodology directly minimizes known information criteria as
the AIC, BIC and HQIC. The employment of these criteria is particularly useful,
since the modeler has not to specify in advance the number of predictors to be se-
lected and the whole methodology is as far as possible data-driven.

In the ARMA scenario, Alternate minimization is modified inducing a hierarchi-
cal sparsity structure that allows to properly identify the ARMA orders (p, q). Fur-
thermore, unlike in the linear regression case, the algorithm finishes with at least
one ARMA maximum likelihood step in order to refine the solution provided by
the algorithm.

Our experiments highlight that the approach is capable of delivering high qual-
ity solutions in very small CPU time in both the scenarios, although the optimality
of the final solution is not guaranteed.



Chapter 3

Improved Maximum Likelihood
Estimation of ARMAModels

A bound-constrained optimization model enables to avoid the employment of the
Jones reparametrization (Jones, 1980), which is the classical method to deal with the
causal and invertible conditions. The performed experiments highlight that the use
of this reparametrization, although it allows to formulate the estimation problem as
an unconstrained optimization problem, leads to higher computational times and
numerical instability. We also show how the addition of a `2-regularization term
in our formulation improves the out of sample quality of the fitted model. This
improvement is achieved thanks to an increased penalty onmodels close to the non-
causality or non-invertibility boundary.

The rest of the chapter is organized as follows. In Section 3.1 the main historical
steps ofARMAestimation problem are reported. Section 3.2 contains a reviewof the
Jones reparametrization method. In Section 3.3 the notion of closeness of structural
ARMA parameters (φ, θ) to the feasibility boundary is defined. In Section 3.4 the
bound constrained maximum likelihood estimation approach is introduced. The
carried out computational experiments, which assess the reliability of the proposed
method, are outlined in Section 3.5. Finally, we finish with conclusions in Section
3.6.

3.1 Estimation of ARMAmodels: a historical
parentheses

Since the direct evaluation of the Gaussian exact log-likelihood function (1.9) is
expensive both for storage and computational reasons, approximating procedures
have been proposed in the 1970s to estimate the ARMA parameters.

43
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Rewriting the zero mean ARMA process (1.7) as

εt = Yt − φ1Yt−1 − . . .− φpYt−p − θ1εt−1 − . . .− θqεt−q, t = 1, . . . , N,

and setting the unknown pre-sample εt and ε1, . . . , εp errors equal to 0, i.e. their un-
conditional expected value, parameters (φ, θ) are estimated byminimizing∑N

t=p+1 ε2
t .

This estimation procedure is known as Conditional Least Squares (CLS) method
(Dent and Min, 1978).

Alternatively, it is possible to employ the backcastingmethod of Box and Jenkins
to obtain the estimates of the pre-sample errors and observations (Box et al., 2015).
Once these quantities are obtained, Unconditional Least Square (ULS) estimates of
parameters (φ, θ) are found byminimizing ∑N

t=−L ε2
t , for some large L. In (Newbold,

1974) it is pointed out that the approximation of the exact likelihood byULSmethod
can have difficulties when the series of available data is relatively short and when
a root of either the autoregressive (1.11) or moving-average polynomials (1.12) lies
close to the unit circle.

Newbold (1974) derived the ARMA exact likelihood using a generalization of
the approach used by Box and Jenkins for pure moving average processes. Ansley
(1979) computes the exact likelihood by transforming the process to obtain a band
covariancematrixwhose Cholesky decomposition can be readily computed. Finally,
in the late 1970’s, the theoretical and especially computational advantages of com-
puting the exact likelihood by means of the Kalman Filter have been pointed out
in (Harvey and Phillips, 1979). Kalman Filter based methods are considered the
most efficient in terms of the number of operations involved to compute the likeli-
hood (Mauricio, 2002). To date, Kalman Filtering represents the state-of-the-art of
the methods employed to compute the exact likelihood for any given choice of the
parameters (φ, θ).

To run the the Kalman filter recursions, the ARMA process needs to be cast into
the state space form. There is not a unique way to represent an ARMA process in
this form. Common ARMA state space representations are the ones reported in
(Harvey, 1990; Hamilton, 1994; Akaike, 1998).

3.2 Jones reparametrization
When causality and invertibility conditions hold, parameters φ = (φ1, . . . , φp) and
θ = (θ1, . . . , θq) are constrained to belong to the set Sp × Sq corresponding to the
polynomial operator root conditions (1.11), (1.12).
Sk is easily identified for k ≤ 2, but for k > 2 its form becomes complicated and for
k > 4 Equations (1.11), (1.12) cannot be solved analytically (Marriott, 1995). To cir-
cumvent the problem of dealingwith conditions (1.11) and (1.12) (Barndorff-Nielsen
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and Schou, 1973) reparametrize φ = (φ1, . . . , φp) in terms of the partial autocorrela-
tions ρ = (ρ1, . . . , ρp) by means of the one-to-one continously differentiable Levin-
son mapping Υ(·):

φ
(k)
k = ρk, k = 1, . . . , p,

φ
(k)
i = φ

(k−1)
i − ρkφ

(k−1)
k−i , i = 1, . . . , k− 1.

(3.1)

In (3.1), causality is simply obtained by ρk ∈ (−1, 1) ∀k = 1, . . . , p. (Jones, 1980)
introduces an additional mapping J : Rp → (−1, 1)p, which allows to formulate the
original problem as an unconstrained optimization problem introducing variables
uk, k = 1, . . . , p:

ρk =
1− exp (−uk)

1 + exp (−uk)
, k = 1, . . . , p. (3.2)

Similar transformations can also be employed for the moving average parameters
θ = (θ1, . . . , θq) in order to guarantee the invertibility condition. By writing the
moving average polynomial (1.14) for the negative vector of MA parameters, −θ,
we get

Θ(z) = 1− (−θ1)z− . . .− (−θq)zq, (3.3)

and the following can be deduced:

θ
(k)
k = bk, k = 1, . . . , q,

θ
(k)
i = θ

(k−1)
i + bkθ

(k−1)
k−i , i = 1, . . . , k− 1,

(3.4)

where the variables bk ∈ (−1, 1) ∀k = 1, . . . , q. Jones reparametrization for the
moving average part is equivalent to (3.2):

bk =
1− exp (−wk)

1 + exp (−wk)
, k = 1, . . . , q. (3.5)

In (Jones, 1980), the variables bk are called partial moving average coefficients. The
optimization of the exact log-likelihood in the causal and invertible feasible space
is now carried out with respect to the variables u = (u1, . . . , up) ∈ Rp and w =

(w1, . . . , wq) ∈ Rq.
Note that φ = Υ(ρ), while θ = −Υ(b). In fact, for any u and w, the evalua-

tion of the exact likelihood function in a causal and invertible feasible point can be
computed by means of the transformations (3.1), (3.2), (3.4), (3.5), and the Kalman
recursions. Inverse Jones transformations are easily found by solving (3.2), (3.5) re-
spectively for uk, k = 1, . . . , p and wk, k = 1, . . . , q. On the other hand, Monahan
(1984) derives the expression of the inverse transformation Υ−1(·) of (3.1) which
equivalently can be extended for the moving average part (3.4).
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3.3 Closeness to the Feasiblity Boundary
In this Section, the notion of closeness of a feasible point (φ, θ) ∈ Sp × Sq to the set
∂Sp × ∂Sq, i.e. the boundary of the invertibility and causality regions, is formalized.
This will be useful later in the chapter, when investigating the relation between the
closeness to the boundary and the numerical stability during the optimization of
the Gaussian ARMA exact log-likelihood function.

It is partially documented 1 that log-likelihood evaluation by Kalman filter may
fail when a point (φ, θ) is close to the causality boundary. Furthermore, it is well
known that closeness to the non-invertible region is problematic due to the presence
of the so-called pile-up effect (Kang, 1975; Sargan and Bhargava, 1983; Kim andKim,
2013). Indeed, when the true parameter of an MA(1) process is close to unity, the
model can be estimated to be non-invertible with a unit root even when the true
process is invertible, with a considerably high probability in a finite sample. Ansley
and Newbold (1980) confirm the presence of such effect in ARMAmodels too.

Inspired by the method of Zhang and McLeod (2006) for testing the presence of
a parameter estimate on the boundary of an MA(q) model, the closeness of a point
(φ, θ) to the boundary of the invertible and the causal-stationary regions is defined
exploiting the parametrization of an ARMA(p, q) in terms of ρ and b:

(φ, θ) = (Υ(ρ),−Υ(b)) ,

(φ, θ) ∈ Sp × Sq ⇐⇒ (ρ, b) ∈ (−1, 1)p × (−1, 1)q.

Υ(·) is not one-to-one on the hypercube boundary (Barndorff-Nielsen and Schou,
1973). However, as elegantly shown in (Zhang and McLeod, 2006), Υ(·) maps the
boundary of (−1, 1)p onto ∂Sp. SinceΥ(·) is a continuously differentiable function in
[−1, 1]p, the closeness of an estimate φ ∈ Sp to the non-causal-stationary boundary
∂Sp can be defined respectively in terms of the partial autocorrelations ρ. The same
reasoning holds for the moving average part.

As reported in (Zhang and McLeod, 2006), φ ∈ ∂Sp if and only if ‖ρ‖∞ = 1 and
similarly θ ∈ ∂Sq if and only if ‖b‖∞ = 1. Now, by fixing a threshold parameter
τ > 0, closeness of (φ, θ) = (Υ(ρ),−Υ(b)) ∈ Sp × Sq to the boundary ∂Sp × ∂Sq is
defined by the following:

(i) (φ, θ) ∈ Sp × Sq is close to ∂Sp if and only if 1− ‖ρ‖∞ < τ;

(ii) (φ, θ) ∈ Sp × Sq is close to ∂Sq if and only if 1− ‖b‖∞ < τ;

(iii) (φ, θ) ∈ Sp × Sq is close to both ∂Sp and ∂Sq if and only if 1− ‖ρ‖∞ < τ and
1− ‖b‖∞ < τ.

1see, e.g., https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/
KalmanLike

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/KalmanLike
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/KalmanLike
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A point (φ, θ) ∈ Sp × Sq which does not satisfy any of the above conditions i, ii, iii
is defined as a strictly feasible point of Sp × Sq.

3.4 The Proposed Approach
It is proposed to fit causal and invertible ARMA(p, q)models by solving the follow-
ing bound constrained optimization problem:

max
ρ,b,σ2

`
(

Υ(ρ),−Υ(b), σ2
)

s.t. ρ ∈ [−1 + ε, 1− ε]p , b ∈ [−1 + ε, 1− ε]q , σ ∈ R+.
(3.6)

Optimizing w.r.t. the partial autocorrelation and the partial moving average co-
efficients avoids the use of the Jones reparametrization (3.2), (3.5). Note that this
formulation cuts off a small part of the feasible space Sp × Sq. However, as high-
lighted by thorough numerical experiments that we will describe in the following
Section, our formulation provides some nice advantages:

• it allows to save a significant amount of running time, as there is no more
the need to compute equations (3.2) and (3.5) p and q times respectively, each
time the log-likelihood has to be computed during the optimization process
(note that every gradient computation by finite differences requires 2(p + q)
objective evaluations);

• it allows to avoid solutions too close to the feasibility boundary that typically
lead to numerical errors.

A Tikhonov regularization term is also included in the objective function of Prob-
lem (3.6):

max
ρ,b,σ2

`
(

Υ(ρ),−Υ(b), σ2
)
− λ(||ρ||22 + ||b||22)

s.t. ρ ∈ [−1 + ε, 1− ε]p , b ∈ [−1 + ε, 1− ε]q , σ ∈ R+.
(3.7)

In the following, it is experimentally shown that this term not only discourages so-
lutions close to the feasibility boundary, but it also improves the predictive ability
of ARMA models.

3.5 Computational Experiments
In what follows the approximation parameter ε is set to 10−2; the closeness param-
eter in i, ii, iii is fixed to τ = 2ε, so that it is still possible for models (3.6) and (3.7) to
produce points that are close to the border of the original feasible set.
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All the experiments have been performed on a dataset of synthetically gener-
ated time series. We simulated a total of 2250 time series of different length l ∈
{100, 1000, 10000} from ARMA (p, q) Gaussian processes up to a maximum order
(p, q) of (5, 5) and standard deviation σ ∈ {0.01, 0.1, 1}.

Specifically, for a given combination of length, order and standard deviation, we
generated 10 time series, each one representing a finite realization of a particular
ARMA process with its structural autoregressive and moving average parameters
(φ, θ). Each pair (φ, θ) is selected according to the methodology described in (Jones,
1987). This methodology allows to choose (φ, θ) from a uniform distribution over
the feasible set Sp × Sq.

Firstly, the interest lies in establishing the differences between solving problem
(3.6) and the unconstrained one, based on Jones reparametrization, both from the
standpoints of computational times and numerical stability. To this aim, a multi-
start strategy has been employed: for each time series, the fitting process is repeated
30 times from different randomly chosen starting points. These starting points are
again obtained by uniform sampling over the feasible region. For a fair comparison,
the two considered methods share the sets of starting points.

Secondly, the predictive performance of ARMA models close to the boundary
are investigated. As usual, the performance is evaluated on a test set, after fitting
on training data. Our test set for each time series is given by the last three obser-
vations (short term forecasting scenario). Similarly as above, the process of model
estimation and computation of forecasts is repeated 30 times in amulti-start fashion.
Note that, here, ARMAmodels have been fitted only by means of the classical Jones
methodology. Indeed, the aim is to characterize both the forecasting performance
of ARMA models close to the border and how frequently they are obtained in the
standard setting.

The last experiment assesses the impact of the `2 regularization term in the short
term forecasting scenario. For each time series of our dataset, a single starting point
to initialize the optimization is selected. The fitting procedure is then repeated for
different values of the regularization hyperparameter λ in Equation 3.7.

All the experiments were performed on amachinewith Ubuntu Server 20.04 LTS
OS, Intel Xeon E5-2430 v2 @ 2.50GHz CPU and 32GB RAM.

Fitting Procedure Runtimes
Our method provides a significant reduction of the computational time required to
fit a time series with respect to the unconstrained fitting method of Jones. The time
saving is estimated to be about 24% in relative terms.

This result is supported by the nonparametricWilcoxon signed-ranks test (Wilcoxon,
1992; Demšar, 2006). We considered as fitting time for a time series the average run-
time of successful runs (i.e., with no numerical error) of our multi-start procedure.
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Results of theWilcoxon signed-ranks test are reported in Tables 3.1a and 3.1b. These
results point out that the median of the differences of fitting times between the two
methods can be assumed to be positive, i.e., the constrainedmethodhas significantly
lower fitting times, considering a significance level α = 0.05.

Test statistic P-value
-34.3807 < 1e−5

(a) Two sided Wilcoxon signed-rank test

Test statistic P-value
34.3807 < 1e−5

(b) One sided Wilcoxon signed-rank test

Table 3.1: Null hypothesis for the two sided Wilcoxon signed-rank test: the median
of the differences of the computational times tJones− tour is zero. Null hypothesis for
the one sided Wilcoxon signed-rank test: the median of the differences of computa-
tional times tJones− tour is negative.

Numerical Instability
Our fittingmethod prevents numerical issues during the optimization process of the
ARMA exact likelihood function, thereby ensuring a higher level of computational
stability.

Method Arithmetic issues Kalman Filter errors
Our 0 0.06
Jones reparametrization 2.65 0.22

Table 3.2: Occurrence of numerical instability issues per 1000 runs

The employment of the Jones reparametrization, where exponential operators
are present, leads to a non-negligible probability of arithmetic issues, which almost
always are divisions by zero and in rare cases overflows. Ourmethod does not suffer
at all from these issues.

The most critical errors, that completely undermine the fitting process, come
from the Kalman Filter recursions. In general, it is well known that numerical insta-
bility often occurs in Kalman Filtering (Tusell et al., 2011), especially related to the
computation of the state covariance matrix.

Experiments show that the closeness of a point (φ, θ) to the feasibility boundary
is related to numerical instability within the Kalman Filter recursions. In particular,
we observed a total of 19 LinAlgError errors (15 by the classical method, 4 by using
ourmodel (3.6)) because of a convergence failure of the SVDnumerical computation.

In Tables 3.3a and 3.3b a detailed description of these errors is reported. The error
may be due to the evaluation of the log-likelihood in that point or the computation
in the same point of the gradient, since it is approximated by finite differences.
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Model Length σ Starting point Error point Ground truth point
ARMA(2, 1) 100 0.01 strictly feasible (iii) strictly feasible
ARMA(2, 1) 10000 0.01 strictly feasible (iii) (i)
ARMA(2, 1) 10000 0.01 (i) (ii) strictly feasible
ARMA(2, 1) 100 0.1 strictly feasible (iii) strictly feasible
ARMA(2, 1) 100 0.1 (ii) (i) strictly feasible
ARMA(2, 1) 100 0.1 strictly feasible (i) strictly feasible
ARMA(2, 1) 1000 0.1 strictly feasible (iii) strictly feasible
ARMA(2, 1) 10000 0.1 strictly feasible (iii) strictly feasible
ARMA(2, 1) 10000 0.1 strictly feasible (iii) strictly feasible
ARMA(2, 1) 100 1 (i) (iii) strictly feasible
ARMA(2, 1) 1000 1 strictly feasible (iii) strictly feasible
ARMA(2, 1) 10000 1 strictly feasible (iii) strictly feasible
ARMA(2, 3) 10000 1 (ii) (iii) strictly feasible
ARMA(3, 2) 100 0.01 strictly feasible (iii) strictly feasible
ARMA(5, 1) 10000 1 strictly feasible (i) strictly feasible

(a) Numerical errors in Kalman filtering when using Jones reparametrization

Model Length σ Starting point Error point Ground truth point
ARMA(4, 2) 10000 1 strictly feasible (iii) strictly feasible
ARMA(4, 4) 1000 0.1 strictly feasible (iii) (ii)
ARMA(5, 5) 100 0.1 strictly feasible (ii) strictly feasible
ARMA(5, 5) 1000 0.1 strictly feasible strictly feasible strictly feasible

(b) Numerical errors in Kalman filtering when using model (3.6)

Table 3.3: The first three columns contain information about the ARMAprocess that
generated the tested series and the series itself (orders p and q, series length, stan-
dard deviation of the white noise generator process). The fourth and fifth columns
provide details about the optimization run: the starting point and the point where
the error has been generated are characterized in terms of closeness to the feasibility
boundary, according to the metrics introduced in Section 3.3. The last column pro-
vides the same information associated with the parameters of the model employed
to generate the series.

Two patterns are clear from Tables 3.3a and 3.3b. Firstly, the classical method
by Jones fails 4 times more frequently than ours. This means that the proposed
reformulation protects from the occurrence of most numerical errors. Secondly, re-
gardless of the type of parametrization employed, it is evident that these numerical
errors are related to points close the boundary ∂Sp× ∂Sq of the feasible set. Further-
more, by observing the first column of both tables, it seems that most errors inside
the unconstrained framework happen even when fitting low order models.
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Forecasting with Almost-Border Models
As reported above, again a multi-start approach has been employed to assess the
predictive performance of close to the border ARMAmodels. For this analysis, time
series having at least one strictly feasible solution and at least a solution that meets
one of the conditions i, ii, iii have been picked. In doing so, a total of 614 time series
with such features have been identified.

When multiple strictly feasible solutions are available, the best one, according
to the exact log-likelihood value, have been considered. The same is done when
multiple solutions close to the border are obtained for a single time series. Multi-
step ahead predictions are then computed with the two selected models for each
time-series.

Differences in predictive performance of these two distinct ARMA models are
again investigated by means of the Wilcoxon signed-ranks test. Mean Absolute
Scaled Error (MASE) (Hyndman and Koehler, 2006) has been used to measure the
accuracy of forecasts. Indeed, the MASE can be used to compare forecast methods
on a single series and, being scale-free, to compare forecast accuracy across series
(Hyndman et al., 2006).

In the experiments, MASE at a given forecast horizon h is computed as

MASE(h) = 1
h

∑h
t=N+1 |yt − ŷt|

1
N−1 ∑N

t=2 |yt − yt−1|
. (3.8)

Single absolute scaled errors for each different forecast horizon h are also re-
ported:

ScaledError(h) = |yN+h − ŷN+h|
1

n−1 ∑N
t=2 |yt − yt−1|

. (3.9)

Error Test statistic P-value
MASE(3) -4.23197 2.31e−5
ScaledError(1) -1.49874 0.13394
ScaledError(2) -1.67521 0.09389
ScaledError(3) -4.35523 1.33e−5

Table 3.4: Results from the two-sided Wilcoxon test at different horizons. Null
hypothesis: the median of the differences of the MASE errors, MASEborder −
MASEstrictly feasible, is zero.

Results are reported in Tables 3.4 and 3.5. The observed P-value in the last row
of Table 3.4 evidences that significant differences exist in forecast accuracy between
strictly feasible ARMA(p, q) models and close-to-the-border ARMA(p, q) models.
The significant differences involve only the MASE(3) error and the absolute scaled
error at horizon h = 3: in both cases the associated P-values are strictly lower than
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Error Test statistic P-value
MASE(3) 4.23197 1.16e−5
ScaledError(1) 1.49874 0.06697
ScaledError(2) 1.67521 0.04695
ScaledError(3) 4.35523 < 1e−5

Table 3.5: Results from the one-sided Wilcoxon test at different horizons. Null
hypothesis: the median of the differences of the MASE errors, MASEborder −
MASEstrictly feasible, is negative.

the default significance level α = 0.05. Furthermore, for these two metrics the one-
sided test confirms that ARMA models close to the feasibility boundary perform
poorer in terms of the predictive ability than the strictly feasible ARMAmodels.

Considering instead the remaining error metrics, results in Table 3.4 indicate
that at forecast horizon h = 1 non-substantial difference exists in forecast accuracy
between the two types of ARMA models. Differences in predictive ability become
more evident as the forecast horizon grows. From Table 3.4 it is observed that at
horizon 2, only assuming a significance level α = 0.1, it is possible to deduce a sta-
tistically significant difference between the two ARMA models in forecasting per-
formances.

The main conclusion of this experiment is that ARMA models close to the fea-
sibility boundary perform poorer in terms of the predictive ability than the strictly
feasibleARMAmodels. The practicalmeaning of this result is that caution is needed
with close to the border ARMAmodels when forecasting is required. This is one of
the motivations to modify the proposed fitting model (3.6) by adding to the objec-
tive an `2 penalty term as in (3.7). The effects of this modification are discussed in
detail in the next section.

Forecasting with Regularized ARMAmodels

The next and final experiment investigates the effect of the addition of an `2 regu-
larization term from a forecasting accuracy perspective. Different values of the reg-
ularization hyperparameter λ in Equation (3.7) give rise to different ARMA(p, q)
models with diverse forecasting performances.

For each time series, all different models are fitted starting the optimization at
the same initial point. ARMAmodels are, in practice, fitted by iterative optimization
algorithms that start at preliminary estimates obtained, for example, with the well-
knownHannan and Rissanen (HR) method (Hannan and Rissanen, 1982). Precisely
this setting has been considered to carry out the experiment.

Friedman test (Friedman, 1937, 1940; Demšar, 2006) has been employed to catch
the differences between the methods. The test ranks the fitting methods for each
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time series separately, the best performing method (lowest error) getting the rank of
1, the second best rank 2 and so on. The null-hypothesis, states that all the fitting
methods are equivalent and so their ranks should be equal. Table 3.6 reports the
average of ranks over all the time series in our dataset, w.r.t. the metrics of interest
(3.8) and (3.9).

We observe from Table 3.6 that for the MASE(3) and the absolute scaled error at
horizon h = 3 the averages of ranks go down until a value of the hyperparameter
λ = 8. For the other two errors the trend of the averages of the ranks seems quite
stationary: this pattern is confirmed by the results of Friedman test as it is shown in
Table 3.7.

Error Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16
MASE(3) 4.228 4.201 4.056 3.947 3.882 3.825 3.862
ScaledError(1) 4.022 3.996 4.018 3.999 3.972 3.968 4.025
ScaledError(2) 4.082 4.095 4.01 3.972 3.958 3.935 3.948
ScaledError(3) 4.220 4.226 4.081 3.980 3.885 3.798 3.809

Table 3.6: Average of ranks between different ARMAmodels performance w.r.t. dif-
ferent error metrics.

Error Test statistic P-value
MASE(3) 78.06724 < 1e−5
ScaledError(1) 1.57091 0.95465
ScaledError(2) 12.13886 0.05894
ScaledError(3) 94.93939 < 1e−5

Table 3.7: Results of Friedman test for the difference in forecasting performance of
various ARMAmodels w.r.t. different error metrics.

Friedman test, whose results are reported in Table 3.7, suggests that the fore-
casting performance of the considered fitting models statistically differ (assuming a
significance level of α = 0.1) for all the errors except for the absolute scaled forecast-
ing error at horizon h = 1.

Therefore, based on these results, post-hoc analysis is performedw.r.t. theMASE(3),
the absolute scaled forecasting error at horizon h = 3 and h = 2 (although the P-
value in the latter case is not negligible).

Post-hoc analysis is performed by means of the Nemenyi test (Nemenyi, 1962;
Demšar, 2006). Critical differences between two generic methods are assessed in
terms of the differences between the averages of the ranks. Results of the Nemenyi
test are reported in Tables 3.8, 3.9 and 3.10.
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Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16
Jones 1.00000 0.90000 0.10395 0.00100 0.00100 0.00100 0.00100
λ = 0 0.90000 1.00000 0.26546 0.00154 0.00100 0.00100 0.00100
λ = 1 0.10395 0.26546 1.00000 0.60537 0.10031 0.00630 0.04196
λ = 2 0.00100 0.00154 0.60537 1.00000 0.90000 0.48698 0.82448
λ = 4 0.00100 0.00100 0.10031 0.90000 1.00000 0.90000 0.90000
λ = 8 0.00100 0.00100 0.00630 0.48698 0.90000 1.00000 0.90000
λ = 16 0.00100 0.00100 0.04196 0.82448 0.90000 0.90000 1.00000

Table 3.8: Post-hoc analysis of the performance forecasting: pairwise comparison of
the MASE(3) error.

Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16
Jones 1.00000 0.90000 0.90000 0.60131 0.46951 0.25145 0.37172
λ = 0 0.90000 1.00000 0.82448 0.48264 0.34176 0.16502 0.25839
λ = 1 0.90000 0.82448 1.00000 0.90000 0.90000 0.90000 0.90000
λ = 2 0.60131 0.48264 0.90000 1.00000 0.90000 0.90000 0.90000
λ = 4 0.46951 0.34176 0.90000 0.90000 1.00000 0.90000 0.90000
λ = 8 0.25145 0.16502 0.90000 0.90000 0.90000 1.00000 0.90000
λ = 16 0.37172 0.25839 0.90000 0.90000 0.90000 0.90000 1.00000

Table 3.9: Post-hoc analysis of the performance forecasting: pairwise comparison of
the absolute scaled error at horizon h = 2.

Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16
Jones 1.00000 0.90000 0.31753 0.00357 0.00100 0.00100 0.00100
λ = 0 0.90000 1.00000 0.27263 0.00259 0.00100 0.00100 0.00100
λ = 1 0.31753 0.27263 1.00000 0.67435 0.03709 0.00100 0.00100
λ = 2 0.00357 0.00259 0.67435 1.00000 0.73116 0.07136 0.11154
λ = 4 0.00100 0.00100 0.03709 0.73116 1.00000 0.80825 0.90000
λ = 8 0.00100 0.00100 0.00100 0.07136 0.80825 1.00000 0.90000
λ = 16 0.00100 0.00100 0.00100 0.11154 0.90000 0.90000 1.00000

Table 3.10: Post-hoc analysis of the performance forecasting: pairwise comparison
of the absolute scaled error at horizon h = 3.

Regarding the absolute scaled error at horizon h = 2, results from the Nemenyi
test indicate no significant differences between the fitting methods in terms of the
forecasting performances. All the P-values reported in Table 3.9 are greater than 0.1.

On the other end, results about absolute scaled error at horizon h = 3 and the
MASE(3) are equivalent. By observing both Table 3.8 and Table 3.10, no significant
difference is found between the two non-regularized methods. Furthermore, no
significant differences in forecasting performance have been identified between both
the non-regularized methods and the regularized one with λ = 1.
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Instead, stronger regularization leads to significantly better forecasts w.r.t. the
non-regularized methods. Forecasting performance, as mentioned above, starts to
deteriorate as the regularization hyperparameter grows to λ = 16. In summary, the
constrained fittingmethodwith regularization leads to causal and invertible ARMA
models with better short term predictive ability than the non-regularized ones.

3.6 Conclusions
Fitting causal and invertible ARMAmodels by constrained optimization in the par-
tial autocorrelation and partialmoving-average coefficients space has several advan-
tages w.r.t. the classical unconstrained approach based on the Jones reparametriza-
tion. First of all, the proposed approach leads to a significant reduction of the fit-
ting times. Moreover, almost-border solutions are often avoided. Such solutions, as
further experiments highlight, are bad both because they lead to numerical errors
during the optimization of the ARMA exact log-likelihood and because they do not
perform well at forecasting.

Based on these results `2-regularization is suggested to discourage almost-border
solutions. As non parametric statistical tests assess, `2-regularization also improves
the short term forecasting performances of causal and invertible ARMAmodels.





Chapter 4

Sparse Convex Combinations of
Forecasting Models By Meta Learning

As anticipated in Chapter 1, we introduce SRFA (Sparse Robust Forecast Averag-
ing) and SFFA (Sparse Flexible Forecast Averaging) meta-learners. Both the meta-
learners are trained to recommend, based on time series features, sparse convex
combinations of forecasting methods. Sparse combinations are motivated as the
right compromise between the computational savings of the strategy, which does
not require the fitting of the zero-weighted methods, and the advantages that any
combination strategy provides in terms of predictive accuracy (Atiya, 2020).

The idea of combining only a subset of the available forecasting methods is a
successful and popular strategy (Jose and Winkler, 2008; Diebold and Shin, 2019;
Lichtendahl Jr andWinkler, 2020) but non in the context ofmeta-learning in support
of time series forecasting.

The proposedmethodology is tested on the recentM4 competitiondataset (Makri-
dakis et al., 2020), which is now retained as the benchmark dataset in the community
of forecasting, by evaluating both the degree of sparsity and the predictive perfor-
mance obtained by SRFA and SFFA.

Based on the predictions of SRFA, we also developed an analysis, which focuses
on understanding the relationship between the exclusion of a forecasting method
and the features of the series. This analysis deepens the content of the obtained
results in terms of intepretability (Molnar, 2020).

The remainder of the chapter is structured as follows. Section 4.1 contains a
review of the meta-learning methods in time series forecasting. Following (Atiya,
2020), in Section 4.2 we analyze the effects of the combination strategy on the bias
and the variance of the forecast. A summary of data and a description of both the
employed forecastingmethods and time series features are given in Section 4.3. Sec-
tion 4.4 outlines the proposed methodology. Section 4.5 describes the implementa-
tion of the methodology w.r.t. the M4 competition time series dataset. Experiments
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and results are discussed in Section 4.6. Finally, conclusions are reported in Section
4.7.

4.1 Forecasting by Meta-Learning: related works
The plan of using time series features to select an appropriate forecasting model has
been pursued since the 1990’s and is still actual and enhanced by the development
of flexible machine learning models acting as meta-learners.

In (Arinze et al., 1997), a completely automatic system, precursor of the more
recent approaches, is firstly proposed. Training time series, each represented by a
set of six features, are employed to create an induction tree able to recommend the
most appropriate forecasting method or a combination of methods.

Prudêncio and Ludermir (2004) are the first to talk about meta-learning in the
context of automatic model selection for time series. First, they proposed a decision
tree to select between two forecasting methods based on six features of the time
series. Then, they adapted the NOEMON approach (Kalousis and Theoharis, 1999)
to rank and select three forecasting models.

Later, Lemke and Gabrys (2010) highlight how a ranking approach of combining
fourmethods outperforms othermeta-learning approaches and also improves upon
the best individual method.

More recently, meta-learner systems based both on decision trees (Talagala et al.,
2018; Montero-Manso et al., 2020) and neural networks (Kück et al., 2016; Li et al.,
2020; Ma and Fildes, 2021) are spreading out. Neural networks can automate the
process of feature extraction which becomes learnable from the series. Especially
Convolution Neural Network (CNN) can discover and extract the suitable internal
structure to generate deep features of the input time series automatically by using
convolution and pooling operations (Zhao et al., 2017).

In (Talagala et al., 2018) a Random Forest, employed as a meta-learner, is used
to pick the best forecasting method, from a pool of candidate forecasting methods,
based on a set of manual selected time series features. This framework is known
as FFORMS (Feature-Based FORecast Model Selection) and it is considered the pre-
cursor of the FFORMA (Feature-Based FORecast Model Averaging) methodology
(Montero-Manso et al., 2020). In FFORMA, a XGBoost (Chen and Guestrin, 2016)
model is trained to obtain non zero and sum one weights for each of nine well
known forecasting methods based on a set of fourty-two manually extracted time-
series features. FFORMA performed very well in the M4 forecasting combination
(Makridakis et al., 2020) finishing in second place.

In (Kück et al., 2016), a single-hidden-layer Multilayer Perceptron is trained to
select the best of four exponential smoothing models. Error based features and sta-
tistical tests are employed for the selection of the forecasting models.
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Differently from the other mentioned approaches, in (Ma and Fildes, 2021) time
series features are automatically extracted by the employment of a CNN and then
linked with a set of weights which are used to combine the forecasting methods.
Similarly, in (Li et al., 2020), time series features are learned by CNN from the re-
currence plots of time series. These features are then mapped into weights of fore-
casting methods by minimizing the same weighted average loss function used in
FFORMA.

Finally in (Kang et al., 2021), a novel approach of extracting time series features,
named Forecast with Forecasts, is proposed. Pairwise diversity measures, computed
from the forecasts of methods to be combined, are used as time series features.
Through meta-learning, these features are then used to fit combination of forecast-
ing models. In fact, the diversity of methods in a combination improves the predic-
tive accuracy of the final forecast as we show in the next section.

4.2 Why does forecast combination work well?
Let y = (y1, . . . , yH) be the time series values for the horizon H to be forecast. Fol-
lowing the derivation of (Atiya, 2020), we consider the bias-variance decomposition
of theMean Squared Error (MSE) in predicting y bymeans of a generic convex com-
bination fcomb of forecasts f1, . . . , fL, with weights w = {wi}L

i=1:

fcomb =
L

∑
i=1

wi fi

s.t. w ∈W = {w : wi ≥ 0 ,
L

∑
i=1

wi = 1} (probability simplex)
(4.1)

The Bias B of fcomb is the weighted average of the individual bias Bi of forecasts fi:

B = E( fcomb)−E(y) =

=
L

∑
i=1

wiE( fi)−E(y) =

=
L

∑
i=1

wiBi,

(4.2)

where the expectation is over the variations of the error terms of the DGP. For ex-
ample, a structural break of the DGP can lead to bias of the individual forecasts.
However, in (Tjøstheim and Paulsen, 1983), it is pointed out that rarely the biases
of the individual forecasts share the same direction. This means that the strategy
of combining forecasts is favourable in terms of bias reduction allowing individual
bias cancellations.
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Now, we consider the variance V of the combination fcomb. Let σ2
i be the indi-

vidual forecast variance and ρij the correlation coefficient of forecast i and j. The
variance V of f is:

V = E ( fcomb −E( fcomb))
2

=

(
L

∑
i=1

wiσi

)2

− 2
L

∑
i=1

L

∑
j=i+1

wiwj(1− ρij)σiσj.
(4.3)

By the RMS-arithmetic weighted mean inequality, we have:

L

∑
i=1

wiσi ≤

√√√√ L

∑
i=1

wiσ
2
i , (4.4)

which implies the following upper bound of the variance V:

V ≤
L

∑
i=1

wiσ
2
i − 2

L

∑
i=1

L

∑
j=i+1

wiwj(1− ρij)σiσj. (4.5)

Since the second term in (4.5) is positive, it is possible to observe that many positive
terms are subtracted from the first term (average variance), indicating that the vari-
ance of the forecast combination tends to decrease substantially. The extent of the
decrease depends on the correlation coefficients ρij among the forecasting methods:
if the correlation coefficients are smaller, the decrease in variance becomes larger.
This means that diversity improves the performance of the forecast combination.

Now, we focus on sparse convex forecast combinations:

fcomb =
L

∑
i=1

wi fi

s.t. w ∈ ∂W (boundary of probability simplex)
(4.6)

As reported in (Atiya, 2020), it is likely that the correlation coefficients of the base
forecastingmodels are typically larger than 0.5. Assuming values of correlations co-
efficients approaching 1, the upper bound (4.5) of the forecast combination variance
approximates the weighted average of individual variances:

L

∑
i=1

wiσ
2
i − 2

L

∑
i=1

L

∑
j=i+1

wiwj(1− ρij)σiσj ≈
L

∑
i=1

wiσ
2
i . (4.7)

In such scenario, where some forecasting models are redundant, it is evident that
an appropriate sparse weighting can reduce the variability of the resulting forecast.
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4.3 Forecasting Methods, Data, Feature Set and Error
Metrics

Our pool of methods is reported in Table 4.1. These are well known forecasting al-
gorithms, used in recent related studies (Montero-Manso et al., 2020; Kang et al.,
2021; Li et al., 2020). All the methods are implemented in the R forecast package
(Hyndman et al., 2008).

Forecasting Method R implementation
Automated ARIMA model auto.arima()
Automated exponential smoothing state space model ets()
Feed-forward neural network with autoregressive (AR) inputs nnetar()
TBATS model tbats()
Seasonal and trend decomposition using Loess with AR seasonally adjusted series. stlm(modelfunction = ar)
Random walk with drift rwf(drift = TRUE)
Theta method thetaf()
Naive method naive()
Seasonal naive method snaive()

Table 4.1: Methods used for forecast combination.

We provide an overview of each forecasting method employed for the proposed
SRFA and SFFA meta-learners. We also dwell into the main details of the R imple-
mentation.

• auto.arima() returns best ARIMA model or SARIMA model according to
the value of a chosen information criterion. Best model is found by means
of a heuristic search (algorithm of Hyndman-Khandakar in (Hyndman et al.,
2008)) over the potential ARIMA and SARIMAmodels. For further details, see
Section 2.5.

• ets() returns a model belonging to the class of exponential smoothing state
space models. These models are specified by a set of stochastic equations de-
scribing the underlying components of the series, i.e. the level, trend and sea-
sonality. This class of models include known forecasting algorithms, as the
Simple Exponential Smoothing (Brown, 1959), Holt’s Linear Method (Holt,
2004), Damped TrendMethod (Gardner Jr andMcKenzie, 1985), Holt-Winters’
Trend and SeasonalityMethod (Holt, 2004;Winters, 1960) and their main vari-
ations, reformulating them as state space models (Hyndman et al., 2002). This
reformulation allows easy calculation of the likelihood and model selection
criteria. ets() implements an automatic forecasting procedure which picks
the best model based on a full enumerative strategy.

• nnetar() implements the only machine learning forecasting algorithm in our
pool. This function fits a feed-forward neural networks with a single hidden
layer and lagged inputs for forecasting, i.e a nonlinear autoregressive model.
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The optimal number of input lags and the number of nodes in the hidden
layer are selected according to the AIC criterion as reported in (Hyndman and
Athanasopoulos, 2018).

• tbats() function is conceived to model both high-frequency seasonal time
series, which often exhibit multiple seasonal patterns, and seasonal time se-
ries with non integer-valued period. On this matter, tbats() provides the R
implementation of the Trigonometric Box-Cox Arma-errors Trend Seasonal-
ity (TBATS) model (De Livera et al., 2011), which belongs to the class of state
space models. TBATS model employs a trigonometric representation of each
seasonal components based on Fourier series. This trigonometric representa-
tion accommodates also non-integer seasonality. Since the TBATS model has
several parameters to be estimated, its estimation can be computationally chal-
lenging.

• stlm(modelfunction = ar) computes the required forecast in a sequentialway.
First, the function uses the STL decomposition (Robert et al., 1990) to decom-
pose the input time series into its trend, seasonal and residual components.
Then, an autoregressive model is fitted to the seasonally adjusted time series.
By means of the fitted model, final forecasts are computed by summing up
the autoregressive forecasts and the corresponding estimated seasonal com-
ponents.

• rwf(drift = TRUE) returns forecasts for a random walk with drift model ap-
plied to the input time series. The presence of the drift term allows the fore-
casts to increase or decrease over time. Drift is estimated as the average be-
tween consecutive observations seen in historical data.

• thetaf() is the R implementation of Theta forecastingmethod (Assimakopou-
los and Nikolopoulos, 2000). Theta method is based on the concept of modi-
fying the local curvatures of the time series. The initial time series, eventually
deseasonalised if any seasonality is detected, is decomposed into a set of two
new time series, called Theta-lines, each corresponding to a particular value
of the theta coefficient. The first time series describes the input time series
through a linear trend in order to boost the long term behavior of the origi-
nal series. The second time series has its second differences exactly twice the
original time series, hence magnifying its short term behavior. The first time
series is then extrapolated in the usual way for a linear trend, while the sec-
ond is extrapolated via simple exponential smoothing. Final forecast is them
calculated as the average of these two new forecasts.
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• naive() returns forecasts simply equal to the value of the last observation.
This method works remarkably well for many economic and financial time
series (Hyndman and Athanasopoulos, 2018).

• snaive() sets each forecast equal to the last observed value from the same
season of the year.

M4 dataset consists of a set of 100,000 time series from different domains and
frequency, including high-frequencydata (weekly, daily andhourly) alongwith low-
frequency data (yearly, quarterly and monthly).

Frequency Micro Industry Macro Finance Demographic Other Total
Yearly 6538 3716 3903 6519 1088 1236 23000
Quarterly 6020 4637 5315 5305 1858 865 24000
Monthly 10975 10017 10016 10987 5728 277 48000
Weekly 112 6 41 164 24 12 359
Daily 1476 422 127 1559 10 633 4227
Hourly 0 0 0 0 0 414 414
Total 25121 18798 19402 24534 8708 3437 100000

Table 4.2: Number of M4 series per data frequency and domain

Yearly time series have been managed separately. A different meta-learner has
been trained independently for yearly time series using both a restricted number of
time series features and forecast methods w.r.t. the non-yearly time series. Since
the aim is to reduce at most the number of methods in the forecast combination,
tbats(), stlm(modelfunction = ar) and snaive() methods have been excluded
for yearly time series. In fact, these methods are conceived to deal with high fre-
quency data or seasonal patterns.

The same set of 42 features of the FFORMAmeta-learner (Montero-Manso et al.,
2020), has been employed to represent all the time series except the yearly ones. This
set of features includes trend, seasonality, linearity, curvature, and correlation fea-
tures calculated bymeans of the Rpackage tsfeatures (Hyndman et al., 2019). Con-
versely, a restricted number of features has been employed to represent yearly time
series: only the 36 features for non seasonal data as reported in (Montero-Manso
et al., 2020) were used.

We evaluate the accuracy of forecasts, employing both the symmetricmean abso-
lute percentage error (sMAPE) (Makridakis, 1993) and the seasonal Mean Absolute
Scaled Error (MASE) (Hyndman and Koehler, 2006):

sMAPE =
2
h

N+h

∑
t=N+1

|yt − ŷt|
|yt|+ |ŷt|

∗ 100% (4.8)

MASE =
1
h

∑n+h
t=N+1 |yt − ŷt|

1
N−m ∑N

t=m+1 |yt − yt−m|
, (4.9)
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where ŷt is the forecast produced over up to horizon h, m is the time interval between
successive observations considered by the organizers for each data frequency, i.e. 12
for monthly, 4 for quarterly, 24 for hourly and 1 for yearly, weekly and daily data, as
stated in (Makridakis et al., 2020).

4.4 Inducing Sparsity of Forecast Combination
Forecast combinations are obtained with the aid of a deep neural network, properly
trained as ameta-learner for the purpose of gaining knowledge about the identifica-
tion of sparse averaging strategies which can lead to an improvement of predictive
performances. More in detail, the proposed SRFA and SFFA meta-learners differ in
the way this knowledge is acquired from the performances of forecasting methods
on previous prediction problems.

SRFA is trained to learn the mapping which links the features of a time series to
the most promising subset of methods in terms of forecast accuracy. The learning
process of this meta-learner happens in a fully supervised way, by solving a amulti-
label classification problem (Zhang and Zhou, 2006; Nam et al., 2014; Yu et al., 2014)
on a dataset Dsrfa = {(xi, vi)}N

i=1 of meta-examples which consist of pairs (xi, vi)

of time series feature representations xi and multi-hot encoding vector vi
1 of the

best performing methods for that series. At inference time, when the prediction is
required on a new time series, the forecast is computed as the simple average of
forecasts obtained from methods that SRFA identifies as well performing on that
series: this is actually equivalent to the prediction obtained from a sparse convex
combination of all available methods in which all the methods are zero weighted
except the ones identified by SRFA that receive the same weight. Note that this
strategy does not take in account the different contributions of the methods in the
computation of the final forecast (sparse robust strategy).

SFFA is directly trained to combine forecasts of different methods. In particu-
lar, this meta-learner aims to learn the mapping which links the features of a time
series to a sparse set of L weights, each multiplying a specific forecast of the com-
bination. In training phase, the meta-data for SFFA are represented by a dataset
Dsffa = {(xi, Fi, yi)}N

i=1 of examples, where Fi = ( f (i)1 , . . . , f (i)L ) is the forecast matrix
of the base forecasting methods, whose columns contain the forecasts of base meth-
ods, computed over a given horizon h, to predict the corresponding ground true
values yi = (y(i)n+1, . . . , y(i)n+h)

T. Both Fi and yi enter in the computation of the train-
ing loss whose aim is to calibrate the ability of the meta-learner to create proper
forecast combinations. Given a new time series to be predicted, the trained SFFA

1Each element v(l)i of the vector vi is equal to 1 if the l-th forecasting method performs well,
according to some pre-defined criterion, on the i-th time series, otherwise is set to 0.



4.4 Inducing Sparsity of Forecast Combination 65

transforms the feature representation of this series into a sparse set of combination
weights. Sparsity of the weights, is obtained by means of the Sparsemax activation
function (Martins and Astudillo, 2016), which transforms the output of the network
into a sparse set of weights. The use of this activation function allows a non uni-
form weighting of the active (non zero weighted) forecasts to be combined (sparse
flexible strategy).

The two meta-learners partially share a common neural network architecture,
i.e. a Multi-Layer-Perceptron (MLP), composed of one input layer, two hidden lay-
ers and one output layer, as shown in Figure 4.1, but are different for the way the
output of the network is managed as will be clarified in the following. We highlight
that this simple structure has been chosen to guarantee the fastest possible infer-
ence. In fact, in a real time scenario, especially for very long time series, the process
of feature extraction, which determines the input signal to the network, can be com-
putationally expensive and for this reason this simple architecture can compensate
for the time-consuming due to feature extraction.
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Figure 4.1: Neural network architecture of SRFA and SFFA: the network outputs the
un-normalized vector z(x, θ) ∈ RL for a generic time series feature representation
x. In the present case, since there are 9 base forecasting methods, L is equal to 9.

In both cases, the network takes as input the extracted time series features x ∈ X
and returns a set of un-normalized weights z(x, θ) ∈ RL whose dimension matches
the number of base forecasting methods. The information flow passes through two
hidden layers before reaching the final output layer. Both the first and the second
hidden layers linearly transform the input from the previous layers and then they
utilize a Relu 6 activation function (Howard et al., 2017) to increase robustness and to
mitigate the problem of vanishing gradient. This last non-linearity is followed by a
dropout regularizer with rate (0.1) to attenuate the overfitting. Finally, the resulting
signal is linearly processed by the output layer which returns z(x, θ).
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Inwhat follows, wemore formally introduce SRFA and SFFA and get insight into
the differences between them.

Multi-label Classification (SRFA)
Let V = {0, 1}L be the L-dimensional binary indicator vector space of subsets of the
label set Y which is the output domain of possible forecasting methods as reported
in Table 4.1. Given a training set Dsrfa = {(xi, vi)| xi ∈ X , vi ∈ V}N

i=1 of examples
(meta-data), the aim of SRFA is to learn the mapping function m(.):

m(.) : X → {0, 1}L,

which maps a time series representation x ∈ X into a binary indicator vector v ∈ V
of a subset of forecasting methods that performs well for that series.

Training labels vi are obtained as follows. Firstly, for each training series, the
forecasting performances of base methods are evaluated by means of the MASE
metric. Two cases are then considered: (i) for time series in which all the forecasting
methods perform well (MASE < 1) or all bad (MASE ≥ 1), the first three methods,
according to the ranking of MASE, are regarded as best methods and marked with
a 1 while the others with a 0 (ii) for the other time series, we labelled with a 1 only
the methods with MASE < 1 and the others with a 0.

The employment of a single multi-output neural network, as the one in Figure
4.1, is an intuitive and effective approach to solve multi-label classification tasks
(Zhang and Zhou, 2006; Nam et al., 2014; He and Xia, 2018). In the present case,
multiple sigmoid functions σ(.) are used as activation functions of each output neu-
ron, to predict the probability that a forecasting method is relevant, in terms of its
performance, for the input time series. An additional threshold function converts
each predicted probability to a 0-1 binary label.

Network is fit by minimizing the Binary Cross Entropy (BCE) loss function L(θ)
w.r.t. the weights of the network θ:

L(θ) = − 1
N

N

∑
i=1

L

∑
l=1

BCE
(

v(l)i , v̂(l)(θ, xi)
)

, (4.10)

where v(l)i is the binary label for the l-th forecasting method of the i-th training time
series, while v̂(l)(θ, xi) = σ

(
z(l)(θ, xi)

)
is the related predicted conditional proba-

bility, computed by means the sigmoid activation function which operates over the
l-th unnormalized output neuron z(l)(θ, xi) of the network.

The weighting function h̃(.) works on the binary predictions of the neural net-
work by assigning the same weight (equal to the inverse of the number of predicted
methods) to each of the survived methods and zero to the remaining methods.
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Minimum Loss of Combined Forecasts (SFFA)
In this case, given a training setDsffa = {(xi, Fi, yi)}N

i=1 of examples (meta-data), the
network is directly trained to learn a sparse weighting function h̃(.):

h̃() : X →W,

which returns a sparse set of weights based on time series features. The Sparsemax
activation function in the output layer returns the projection w(x, θ) of the vector
z(x, θ) onto the probability simplex W:

sparsemax
(
z(x, θ)

)
= arg min

w∈W
||w− z(x, θ)||2.

This projection is likely to hit the boundary of W, in which case w(x, θ) becomes
sparse.

As shown in Figure 4.2, forecasts and ground truth observations enter directly
as input to the network for the computation of the loss.

Input layer
Hidden layers

Sparsemax
Activation X

Multiply

Forecasts

Loss

Ground true
Feature extractor

Figure 4.2: SFFAmeta-Learnerwith Sparsemax final activation function. Sparsemax
transforms the network processed signal into a sparse set of weights, each referring
to a forecasting method of the combination.

Network is fit by minimizing the following scaled squared loss L(θ) w.r.t. the
weights of the network θ:

L(θ) =
1
N

N

∑
i=1

MSE
(

Fiw(xi, θ), yi
)

MSE
(

Fiw, yi
) , (4.11)

where Fi is the input forecastmatrix for the i-th training time series. Each l-columnof
Fi contains the forecast obtained by the l- method in order to predict the ground true
observations yi. The numerator of Equation 4.11 is the Mean Squared Error (MSE),
related to the i-th training time series, of the forecast combination with weights
w(xi, θ) predicted by the network. The denominator is the Mean Squared Error

(MSE) of the simple average forecast combination, i.e. w =
(

1
L , . . . , 1

L

)T
, for the

i-th training time series.
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4.5 Implementation

In what follows, the way SRFA and SFFA meta-learners have been implemented
with the M4 competition data is in detail described.

Each available time series of theM4dataset occurs alreadydivided into a training
(historical data) and a testing period (future data). Time series observations, corre-
sponding to the testing period, have been exclusively used to evaluate the forecasts
computed by means of the trained meta-learners. In training phase, the only infor-
mation known about the testing period is represented by the length of the period,
which is equal to the number of required multi-step-ahead forecasts: forecast hori-
zons for yearly, quarterly, monthly, weekly, daily and hourly time series are set up
by the organizers of the competition equal to 6, 8, 18, 13, 14, 48 (Makridakis et al.,
2020).

Metadata Generation

The datasets Dsrfa = {(xi, vi)}N
i=1 and Dsffa = {(xi, Fi, yi)}N

i=1, necessary for the
training of the two meta-learners, are determined based on the training period of
all the time series of the M4 competition according to a temporal hold-out strategy
in 4.3.

Training Test

ValidationSubset training

Figure 4.3: Temporal hold-out strategy to generate the training datasets Dsrfa =
{(xi, vi)}N

i=1 andDsffa = {(xi, Fi, yi)}N
i=1 of themeta-learners. The features xi are cal-

culated using the initial part of the training period (subset training period). Then,
for each base model, the forecasts Fi are calculated for the validation period yi. La-
bels vi of dataset Dsrfa are assigned based on the MASE error of forecasts Fi.

The initial part of the training period is employed to extract the time series fea-
tures xi, which provide the training inputs of the meta-learners. Labels vi of SRFA
meta-learner are obtained by the computation of theMASE over the validation peri-
ods as explained in Figure 4.3. Both forecasts Fi and validation period observations
yi represent itself the input data for the training of the SFFA meta-learner as shown
in Figure 4.2.
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Since each meta-learner is independently trained for yearly and non-yearly time
series, four training datasetsD(no yearly)

srfa ,D(yearly)
srfa ,D(no yearly)

sffa andD(yearly)
sffa have been

generated in total.

Training SRFA and SFFA
The learning process of the meta-learners is performed on the training datasets
D(no yearly)

srfa , D(yearly)
srfa , D(no yearly)

sffa and D(yearly)
sffa by optimizing the respective losses in

Equations (4.10) and (4.11).
ADAM optimizer (Kingma and Ba, 2014) in combination with a batch size of 32

samples has been employed to minimize our losses. A grid search strategy with
a 5 fold cross-validation mechanism has been set up to validate the optimization
hyperparameters. In particular, we considered the following hyperparameters for
every neural network optimization:

• learning rate ∈ {10−5, 10−3, 10−2}

• weight decay ∈ {0, 10−3}

• epochs ∈ {15, 50, 100}

Obtained results are reported in Table 4.3.

Meta-learner learning rate weight decay epochs
SRFA (no yearly) 10−5 10−3 50
SFFA (no yearly) 10−3 10−3 15
SRFA (yearly) 10−3 10−3 100
SFFA (yearly) 10−3 10−3 50

Table 4.3: Results of grid search for hyperparameter selection: the reported values
optimize the F1 score evaluation metric for the SRFA multi-label classifier and the
scaled MSE for the SFFA meta-learner.

4.6 Experiments
Firstly, the reliability of the proposed approach is assessed both in terms of quality
of point forecasting and achieved degree of sparsity by computing the forecasts over
the test period of the M4 competition with the support of the trained meta-learners.
Degree of sparsity is defined as the percentage reduction of the total number of fitted
models provided by ourmethodologyw.r.t. the non sparse approaches based on the
same pool of models (Montero-Manso et al., 2020; Li et al., 2020; Kang et al., 2021).
Forecasts over the test period are also computed by means of the simple average
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combination of the methods in Table 4.1. It is well known in literature that this
latter is an effective forecasting strategy 2.

Then, we focus to understand the relationship between the exclusion of a model
and the features of the series. For each forecasting model, predictions from SFFA
meta-learner (trained on all the time series of M4 dataset except the yearly ones)
have been used to assign binary exclusion labels of the algorithms. In this way, we
obtained, for each forecasting model, a dataset {(xi, v(l)i )}N

i=1, where xi is the fea-
ture representation of the i-th time series and v(l)i is the respective label of exclusion
referring to the l-th forecasting model. Since the presence of multicollinearity in
the original feature set has been detected, which is problematic when the model-
ing focus is the interpretability rather than the predictability, we reduced the set of
time series features based on the ranking of features provided by ReliefF algorithm
(Kononenko, 1994) for each dataset. ReliefF calculates a score for each time series
feature that can be used to estimate the relevance in predicting the exclusion of the
forecasting method. By selecting, according to the ranking of ReliefF, the six most
relevant features, new smaller datasets have been obtained with a degree of multi-
collinearity strongly reduced. Then, we fitted a gradient boosting classifier tomodel
the probability of exclusion of each model as a function of the selected time series
features.

Finally, for purposes of interpretation, based on the fitted gradient boosting clas-
sifiers, we report in Appendix B the partial dependence plots (Friedman, 2001) that
show the non-linear relationship between the probability of exclusion of each fore-
casting method and its three most influential features, according to the ReliefF al-
gorithm ranking.

Python has been used for these experiments. Rpy2 library provided the Python
interface to the R language. Forecasts have been computed by means of the R pack-
age forecast (Hyndman et al., 2008) while the time series features have been ex-
tracted by the tsfeatures package (Hyndman et al., 2019). Neural networks have
been implemented using PyTorch (Paszke et al., 2019). All the experimentswere per-
formed on a machine with Ubuntu Server 20.04 LTS OS, Intel(R) Core(TM) i7-6700
@ 3.40GHz CPU and 32GB RAM.

Forecast Accuracy and Degree of Sparsity
Results in Tables 4.4, 4.5, 4.6 clearly show that both the meta-learners strongly limit
the requirement of fitting all the available methods in building forecast combina-
tions. Thedegree of sparsity, obtained by SRFA, exceeds the sparsity of SFFA.Roughly,
this means that, for our pool of forecasting methods, which consists of nine meth-
ods, SRFA builds on average combinations of fivemethods while SFFA six methods.

2This fact is known as forecasting puzzle (Stock and Watson, 2004; Smith and Wallis, 2009).
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Although this considerable reduction, forecasting performances of the two meta-
learners, reported in Tables 4.4, 4.5, 4.6, are comparable with the top ten methods of
the M4 competition (Makridakis et al., 2020).

Method sMAPE MASE Decrease of fitted models
SRFA 11.221 1.135 -42.555%
SFFA 11.254 1.13 -30.101%
Simple average 11.642 1.209 0

Table 4.4: Results over Monthly, Quarterly, Weekly, Daily, Hourly time series of M4
competition

Method sMAPE MASE Decrease of fitted models
SRFA 13.602 3.085 -48.096%
SFFA 13.574 3.069 -56.716%
Simple average 14.146 3.195 0

Table 4.5: Results over Yearly time series of M4 competition

Method sMAPE MASE Decrease of fitted models
SRFA 11.769 1.584 -43.475%
SFFA 11.787 1.576 -34.521%
Simple average 12.218 1.666 0

Table 4.6: Results over all time series of M4 competition

Statistics about the importance and the frequency of exclusion of the forecast al-
gorithms are reported in Tables 4.7, 4.9, 4.8, 4.10. Importance is simply estimated as
the average of weights assigned by the meta-learner overall the time series.
Considering the non-annual time series, which represent more than 2

3 of the avail-
able time series, both themeta-learners are quite coherent regarding the importance
of methods: as expected, auto.arima(), tbats() and thetaf() are estimated as
the most important methods. In fact, these three methods are the most sophisti-
cated requiring heavier computation, especially tbats(). The only machine learn-
ing method of the pool, i.e. nnetar(), does not work well according to the assigned
importance by the meta-learners. Its failure is probably due to its tendency of over-
fitting dealing with univariate time series. The probabilities of exclusion follow es-
sentially the same pattern of the assigned importance: most important methods are
the one with lowest probability of exclusion. It is important to note in Table 4.8 that
SFFA almost never excludes tbats().

Regarding annual time series, SRFA confirms auto.arima() as the most impor-
tant and least excluded forecasting method, while nnetar() is practically never in-
cluded in the combination. By observing Tables 4.9, 4.10, it is interesting to note
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how for annual time series both the meta-learners give great importance to a simple
forecasting method as rwf(drift = TRUE). Indeed, as shown in Table 4.10, SFFA
gives even more importance to rwf(drift = TRUE) than auto.arima(). Further-
more, since for annual time series, as reported in Table 4.5, SFFA strictly outper-
forms the other forecast combination strategies, the policy of forming forecast com-
binations which include rwf(drift = TRUE) is made even corroborated.

Forecasting Method Average of Weights (SD) Exclusion Prob.
auto.arima() 0.196 (0.090) 0.043
ets() 0.185 (0.077) 0.068
nnetar() 0.039 (0.073) 0.773
tbats() 0.188 (0.081) 0.061
stlm(modelfunction = ar) 0.010 (0.040) 0.932
rwf(drift= TRUE) 0.108 (0.105) 0.411
theta() 0.177 (0.085) 0.096
naive() 0.086 (0.113) 0.528
snaive() 0.012 (0.042) 0.92

Table 4.7: Importance and probability of exclusion assigned by the SRFA meta-
learner to the forecasting methods over Monthly, Quarterly, Weekly, Daily, Hourly
time series

Forecasting Method Average of Weights (SD) Exclusion Prob.
auto.arima() 0.220 (0.139) 0.053
ets() 0.075 (0.058) 0.199
nnetar() 0.021 (0.048) 0.676
tbats() 0.226 (0.084) 0.005
stlm(modelfunction = ar) 0.089 (0.091) 0.315
rwf(drift= TRUE) 0.056 (0.077) 0.504
theta() 0.178 (0.127) 0.041
naive() 0.056 (0.068) 0.454
snaive() 0.078 (0.102) 0.461

Table 4.8: Importance and probability of exclusion assigned by the SFFA meta-
learner to the forecasting methods over Monthly, Quarterly, Weekly, Daily, Hourly
time series
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Forecasting Method Average of Weights (SD) Exclusion Prob.
auto.arima() 0.280 (0.137) 0.157
ets() 0.216 (0.155) 0.316
nnetar() 0.012 (0.058) 0.956
rwf(drift= TRUE) 0.278 (0.147) 0.19
theta() 0.135 (0.160) 0.557
naive() 0.079 (0.126) 0.71

Table 4.9: Importance and probability of exclusion assigned by the SRFA meta-
learner to the forecasting methods over Yearly time series

Forecasting Method Average of Weights (SD) Exclusion Prob.
auto.arima() 0.337 (0.324) 0.281
ets() 0.116 (0.126) 0.404
nnetar() 0.025 (0.065) 0.806
rwf(drift= TRUE) 0.432 (0.393) 0.284
theta() 0.024 (0.075) 0.831
naive() 0.066 (0.177) 0.798

Table 4.10: Importance and probability of exclusion assigned by the SFFA meta-
learner to the forecasting methods over Yearly time series

Interpreting the Exclusion of Forecasting Methods

Considering the ReliefF ranking of features in Figure 4.4, the main consideration is
about the recurrence of autocorrelation based features. For each forecastingmethod,
at least one feature, whichmeasures some type of autocorrelation, is one of the three
most relevant features.

A substantial presence of features related to the seasonal patterns of the series,
mostly in the scores referring to simple forecasting methods, is also observed in
Figure 4.4. In fact, seasonal_period and seasonal_strength time series features,
which respectivelymeasure the length of the seasonal period and its strength (Wang
et al., 2006), are relevant in predicting the exclusion of forecastingmethods as naive()
and rwf(drift=True). Furthermore, as shown in Figures B.3 and B.5 in the Ap-
pendix B, it is possible to see that for these methods, the probability of exclusion
from the combination increaseswith the increase of the values of seasonal_strength.
This result confirms our expectations since these latter methods do not consider any
seasonality of the series in their forecasts. The seasonal_strength is also the most
relevant feature in predicting the exclusion of the nnetar() forecasting method,
which is the only considered machine learning method. This time, however, it is
clear in Figure B.4 that the increase of the values of the seasonal_strength feature
leads to a drastic decrease of the probability of exclusion of nnetar(). We deem
that in time series with a strong seasonal component, nnetar(), which implements
a non-linear forecasting model, succeeds well to capture the seasonality of the time
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Figure 4.4: Ranking by ReliefF algorithm: each plot shows the three most influential
features in predicting the exclusion of a forecast method.

series.

An interesting fact is that the pair of methods auto.arima(), ets() shares the
same set of three most relevant features according to ReliefF ranking in Figure 4.4.
Furthermore, the respective partial dependence plots in Figure B.1 and in Figure
B.2 are quite similar. This is justifiable since the class of Auto Regressive Integrated
Moving Average (ARIMA) models and the class of Exponential Smoothing State
Space models, known as ETS models, partially overlap. Finally, note in Figure 4.4
that the twopairs of forecastingmethods snaive(), nnetar() and thetaf(), tbats()
share the same sets of relevant features.
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4.7 Conclusions
We introduced SRFA and SFFAmeta-learners in order to sparsely combine forecast-
ing methods based on handcrafted time series features. Weighting and selection of
the forecasting methods occur at the same time in a completely automatic manner
which replaces the human knowledge.

The performances of SRFA and SFFA are evaluated on theM4 time-series compe-
tition dataset. Accuracy of point forecasting, provided by the twometa-learners, are
remarkable according to the MASE and sMAPE error metrics. More in detail, the
obtained results are slightly worse in terms of forecast accuracy than the FFORMA
meta-learner (Montero-Manso et al., 2020), which ranked 2-th in the competition.
Furthermore, both the meta-learners succeed in reducing significantly the overall
number of fitted models in combining forecasts and in particular SRFA obtains a
higher level of sparsity than SFFA: at inference time, when prediction is required
on a new time series, SRFA rules out on average 4 out 9 forecasting methods while
SFFA 3 out 9. We deem that with such a level of sparsity the proposed approach fits
well within real time forecasting systems.

The feature extraction process of SRFA and SFFA uses the same approach of the
FFORMA meta-learner (Montero-Manso et al., 2020). For this reason, as regards
the part of feature extraction, it has to be recognised that our method is not more
efficient than FFORMA. On this matter, a-posteriori descriptive analysis has been
conduct to detect the most relevant time series features in predicting the exclusion
of a forecasting method. According to the results of this analysis, the features that
summarize the autocorrelation structure and seasonality patterns of the series, are
almost always the most important in predicting the exclusions of the methods. This
finding may be useful in future works to identify low-cardinality but meaningful
sets of time series features, whose determination requires low computational effort
and therefore a better adaption to real-time forecasting systems.





Chapter 5

Conclusions and Future
Developments

Some relevant problems in the area of statistical modeling have been covered in this
dissertation. For each of these problems, novel optimization approaches or meta-
learning systems, have been proposed to assist the modeler in the building of a final
model. The whole research has been inspired by the idea that the modeler, in a real
scenario, needs efficient and performing tools to specify a model. On this matter,
each of the proposed contributions pursues this insight.

As first contribution, we improved the state of the art by introducing the Alter-
nate Minimization algorithm for best subset selection problem in Gaussian linear
regression and order selection problem in Gaussian ARMA time series. In both of
these scenarios, the algorithm has distinguished for its computational efficiency in
providing fitted linear models in a data-driven manner. As possible development,
it could be interesting to compare Alternate Minimization with LASSO and all the
related approaches which are widely spread especially in the statistical community.

As second contribution, we proposed an efficient bound constrained formula-
tion for exact maximum likelihood estimation of causal and invertible Gaussian
ARMA(p, q) models. The carried out experiments highlight computational time
saving, better numerical stability and improvement of short term forecasting per-
formances if `2 regularization is applied. Possibly, this fitting method can refine
the ARMA(p, q) model returned by Alternate Minimization. Therefore the mod-
eler, first using Alternate Minimization for preliminary estimation and then this fit-
ting method, is able to fit ARMA(p, q)models of good quality without preliminary
knowledge.

Finally, we contributed to the forecast averaging problem. The strategy of com-
bining forecastingmethods improves the predictive performances but requires high
computational times. On this matter, two meta learning systems, i.e. SRFA and
SFFA, have been introduced. Both the meta-learners automate the averaging pro-
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cess. The fundamental intuition of these meta-learners lies in their ability of iden-
tifying, based on time series features, an appropriate subset of available forecasting
methods to be combined. This characteristic is appropriate in real time forecast-
ing problems, since the fit of the excluded methods can be avoided, thereby reduc-
ing the total computational time to obtain the combined forecast. Our experiments
highlight that both the meta-learners succeed in reducing significantly the overall
number of fitted models in combining forecasts, without affecting the predictive
performances. The reduction of computational times is also encouraged by the ar-
chitecture of the two meta-learners, i.e. a shallow neural network composed of two
hidden layers. As a future development, a systematic study that compares themeta-
learning approaches with all the other forecast averaging methods, may be of great
interest in the forecasting community. A further possible development could be
about the investigation of forecasting performances with machine learning models.
Are there any time series patterns that require the use of more sophisticated fore-
casting methods like for example recurrent neural networks?



Appendix A

Derivation of AIC and BIC

We provide a sketch derivation of the AIC and BIC information criteria. Further
details can be found in (Burnham andAnderson, 2002; Neath and Cavanaugh, 2012;
Portet, 2020).

Let us define the notation that we will use in the following:

• f is the unknown DGP

• G = {gl(x|θl) : θl ∈ Θ(kl)}L
l=1 is a set of candidate models in terms of proba-

bility density functions

• L = {Ll(θl|x) : θl ∈ Θ(kl)}L
l=1 is a set of candidate models in terms of likeli-

hood functions

• K = {kl}L
l=1 is the set of dimensions of parameter spaces referring to each

candidate model

• Π(l), l ∈ {1, . . . , L} denotes a discrete prior over the models

Derivation of AIC
For models f and g ∈ G, KL is defined as follows:

KL( f , g) =
∫

f (x) ln
(

f (x)
g(x|θ)

)
dx = C−E [ln(g(x|θ))] , (A.1)

where the expectation is clearly w.r.t. f . Ideally, the modeler should choose the
model g ∈ G by maximizing:

max
g∈G

E [ln(g(x|θ))] . (A.2)

It is not possible to solve Problem (A.2), since the model f is unknown. In a real sce-
nario, the modeler is limited to observe a sample y from f by which the parameter
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θ of a statistical model g are estimated by the maximum likelihood estimator θ̂(y).
Therefore, it makes sense to compute the expectation, always w.r.t. f , of the random
variable E

[
ln(g(x|θ̂(y)))

]
, by obtaining the Expected Relative Kullback–Leibler in-

formation (ERKL):
ERKL = E

[
E
[
ln(g(x|θ̂(y)))

] ]
, (A.3)

which is the quantity that, in a real estimation scenario, the modeler should be able
to maximize in order to select the best fitted model belonging to the set G of candi-
date models. The problem is that its computation requires again the knowledge of
f which is unknown. The key result, obtained by Akaike, is that asymptotically (for
a large sample) an unbiased estimator of the ERKL is given by:

l(θ̂|y)− k, (A.4)

where l(θ̂|y) is the log-likelihood function referring to a fitted statistical model, eval-
uated at its maximum θ̂ and k is the dimension of the model. For historical reasons,
Akaike multiplied the estimator (A.4) by –2, hence defining the AIC criterion:

AIC = −2l(θ̂|y) + 2k. (A.5)

Therefore the best model within the set G is the one with the minimum AIC value.
In this derivation is clear as maximum likelihood estimation theory is linked to KL
information theory, providing an useful tool for model selection.

Derivation of BIC
Assuming to observe a sample y of N observations from f , the posterior probability
for the l-th candidate model is given by:

P(l|y) = P(y)−1Π(l)
∫

Θ(kl)
L(θl|y)P(θl|l) dθl, (A.6)

where P(θl|l) is a prior over θl given the l-th model and P(y) is the probability of the
observed sample y which does not need for the purpose of model selection. Hence,
by discarding P(y), maximizing P(l|y) is equivalent to minimize the following:

S(l|y) = −2 ln
(
Π(l)

)
− 2 ln

( ∫
Θ(kl)

L(θl|y)P(θl|l) dθl

)
. (A.7)

By taking the secondorder approximation of the log-likelihood function l(θl|y) around
its maximum θ̂l, likelihood function in (A.7) can be approximated as:

L(θl|y) ≈ L(θ̂l|y)× exp
{
− 1

2
(θl − θ̂l)

T[NĪ(θ̂l, y)
]
(θl − θ̂l)

}
, (A.8)
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where Ī = − 1
N

∂2l(θ̂l |y)
∂θl∂θT

l
is average observed Fisher informationmatrix. It follows that

the integral in Equation (A.7) becomes:∫
Θ(kl)

L(θl|y)P(θl|l) dθl ≈

L(θ̂|y)
∫

Θ(kl)
exp

{
− 1

2
(θl − θ̂l)

T[NĪ(θ̂l, y)
]
(θl − θ̂l)

}
P(θl|l) dθl.

(A.9)

As long as the prior P(θl|l) is flat over the neighborhood of θ̂l and the number of
observations N goes to infinity, by using the Laplace approximation method, the
integral in Equation (A.7) can be finally approximated as:∫

Θ(kl)
L(θl|y)P(θl|l) dθl ≈

L(θ̂|y)(2π

N
)(

kl
2 )|Ī(θ̂l, y)|− 1

2 .
(A.10)

We can now approximate S(l|y):

S(l|y) ≈ −2 ln
(
Π(l)

)
− 2l(θ̂l|y) + kl

[
ln(

N
2π

)
]
+ ln |Ī(θ̂l, y)|− 1

2 (A.11)

Ignoring the terms in Equation (A.11) that are bounded as the sample size grows to
infinity, BIC criterion for a generic model of dimension k is finally derived

BIC = −2l(θ̂|y) + k ln(N). (A.12)

Since BIC criterion is derived from the posterior probability distribution (A.6) over
a candidate model, it is clear that the motivation behind BIC can be seen through a
Bayesian development of the model selection problem.





Appendix B

Partial Dependence Plots

The following Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9 show, for every fore-
casting method, how the predicted probability of exclusion of a method from the
combination changes according to the changes of the most three relevant time se-
ries features of that method. We remember that the relevance of time series features
is set out by the ReliefF algorithm.
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Figure B.1: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for auto.arima method.
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Figure B.2: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for ets method.
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Figure B.3: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for naive method.
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Figure B.4: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for nnetar method.
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Figure B.5: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for rwf method.
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Figure B.6: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for snaive method.
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Figure B.7: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for stlm method.
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Figure B.8: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for tbats method.
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Figure B.9: Partial dependence plots showing top three features (according toReliefF
ranking) of time series that affect probability of exclusion for theta method.
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Publications

Journal papers

• L. Di Gangi, M. Lapucci, F. Schoen, A. Sortino, “An efficient optimization ap-
proach for best subset selection in linear regression, with application to model
selection and fitting in autoregressive time-series”, Computational Optimization
and Applications, 74(3):919-948, 2019. Candidate’s contributions: designed al-
gorithms, carried out numerical experiments.

• M. Gulino, L. Di Gangi, A. Sortino, D. Vangi, “Injury risk assessment based
on pre-crash variables: The role of closing velocity and impact eccentricity”,
Accident Analysis & Prevention, volume: 150, 2021. Candidate’s contributions:
designed algorithms, carried out numerical experiments.

• L. Di Gangi, M. Lapucci, F. Schoen, A. Sortino, “Improved Maximum Likeli-
hood Estimation of ARMA Models”, accepted at Lobachevskii Journal of Mathe-
matics. Candidate’s contributions: designed algorithms, carried out numeri-
cal experiments.

Papers under review

• L. Di Gangi, “Sparse Convex Combinations Of Forecasting Models By Meta
Learning”, Expert Systems with Applications. Candidate’s contributions: de-
signed algorithms, carried out numerical experiments.

• T. Aldinucci, E. Civitelli, L.DiGangi, A. Sestini, “Locally Explainable Random
Forest byReinforcement Learning”,Knowledge-Based Systems. Candidate’s con-
tributions: designed algorithms.
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Other
• L. Di Gangi, “Mixed Integer Optimization in ARMA models”. Candidate’s

contributions: designed algorithms, carried out numerical experiments, con-
tributed to theoretical analyses.

• T. Aldinucci, E. Civitelli, L. Di Gangi, A. Sortino, “Leaving The Decision To
The Best Trees of a Random Forest”. Candidate’s contributions: designed al-
gorithms, carried out numerical experiments, contributed to theoretical anal-
yses.



Bibliography

Akaike, H. (1974). Anew look at the statisticalmodel identification. IEEE transactions
on automatic control, 19(6):716–723.

Akaike, H. (1998). Markovian representation of stochastic processes and its applica-
tion to the analysis of autoregressive moving average processes. In Selected Papers
of Hirotugu Akaike, pages 223–247. Springer.

Ansley, C. F. (1979). An algorithm for the exact likelihood of amixed autoregressive-
moving average process. Biometrika, 66(1):59–65.

Ansley, C. F. and Newbold, P. (1980). Finite sample properties of estimators for
autoregressive moving average models. Journal of Econometrics, 13(2):159–183.

Arinze, B., Kim, S.-L., and Anandarajan, M. (1997). Combining and selecting
forecasting models using rule based induction. Computers & operations research,
24(5):423–433.

Assimakopoulos, V. andNikolopoulos, K. (2000). The thetamodel: a decomposition
approach to forecasting. International journal of forecasting, 16(4):521–530.

Atiya, A. F. (2020). Why does forecast combination work so well? International
Journal of Forecasting, 36(1):197–200.

Barndorff-Nielsen, O. and Schou, G. (1973). On the parametrization of autoregres-
sive models by partial autocorrelations. Journal of multivariate Analysis, 3(4):408–
419.

Bates, J. M. and Granger, C. W. (1969). The combination of forecasts. Journal of the
Operational Research Society, 20(4):451–468.

Berk, R., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013). Valid post-selection
inference. The Annals of Statistics, pages 802–837.

Bertsekas, D. P. (2016). Nonlinear programming. Athena Scientific.

Bertsimas, D. and King, A. (2015). Or forum—an algorithmic approach to linear
regression. Operations Research, 64(1):2–16.

95



96 BIBLIOGRAPHY

Bertsimas, D., King, A., andMazumder, R. (2016). Best subset selection via amodern
optimization lens. The annals of statistics, 44(2):813–852.

Bertsimas, D. and Shioda, R. (2009). Algorithm for cardinality-constrained quadratic
optimization. Computational Optimization and Applications, 43(1):1–22.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge
university press.

Brockwell, P. J., Davis, R. A., and Fienberg, S. E. (1991). Time series: theory andmethods:
theory and methods. Springer Science & Business Media.

Broersen, P.M. (2006). Automatic autocorrelation and spectral analysis. Springer Science
& Business Media.

Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.

Burnham, K. P. and Anderson, D. R. (2002). A practical information-theoretic approach,
volume 2. Springer New York.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785–794.

Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography.
International journal of forecasting, 5(4):559–583.

Combettes, P. L. and Trussell, H. J. (1992). Best stable and invertible approximations
for arma systems. IEEE Transactions on signal processing, 40(12):3066–3069.

De Livera, A. M., Hyndman, R. J., and Snyder, R. D. (2011). Forecasting time se-
ries with complex seasonal patterns using exponential smoothing. Journal of the
American statistical association, 106(496):1513–1527.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research, 7:1–30.

Dent, W. and Min, A.-S. (1978). A monte carlo study of autoregressive integrated
moving average processes. Journal of Econometrics, 7(1):23–55.

Di Gangi, L., Lapucci, M., Schoen, F., and Sortino, A. (2019). An efficient optimiza-
tion approach for best subset selection in linear regression, with application to
model selection and fitting in autoregressive time-series. Computational Optimiza-
tion and Applications, 74(3):919–948.



BIBLIOGRAPHY 97

Diebold, F. X. and Shin, M. (2019). Machine learning for regularized survey forecast
combination: Partially-egalitarian lasso and its derivatives. International Journal of
Forecasting, 35(4):1679–1691.

Ding, J., Tarokh, V., and Yang, Y. (2018). Model selection techniques: An overview.
IEEE Signal Processing Magazine, 35(6):16–34.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with per-
formance profiles. Mathematical programming, 91(2):201–213.

Dua, D. and Graff, C. (2017). UCI machine learning repository. University of Cal-
ifornia, Irvine, School of Information and Computer Sciences. http://archive.
ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
The Annals of statistics, 32(2):407–499.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American statistical Association, 96(456):1348–
1360.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimen-
sional feature space. Statistica Sinica, 20(1):101.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). The elements of statistical learning,
volume 1. Springer series in statistics New York.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association, 32(200):675–
701.

Friedman, M. (1940). A comparison of alternative tests of significance for the prob-
lem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92.

Gardner Jr, E. S. andMcKenzie, E. (1985). Forecasting trends in time series. Manage-
ment science, 31(10):1237–1246.

Gómez, A. and Prokopyev, O. (2018). A mixed-integer fractional optimization ap-
proach to best subset selection. Technical Report Optimization On Line, 6795,
Swanson School of Engineering, University of Pittsburgh.

Granger, C. W. and Ramanathan, R. (1984). Improved methods of combining fore-
casts. Journal of forecasting, 3(2):197–204.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


98 BIBLIOGRAPHY

Gurobi Optimization LLC (2018). Gurobi optimizer reference manual. http://www.
gurobi.com.

Hamilton, J. D. (1994). Time series analysis, volume 2. Princeton New Jersey.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autore-
gression. Journal of the Royal Statistical Society: Series B (Methodological), 41(2):190–
195.

Hannan, E. J. and Rissanen, J. (1982). Recursive estimation of mixed autoregressive-
moving average order. Biometrika, 69(1):81–94.

Harvey, A. C. (1990). Forecasting, structural time seriesmodels and the kalmanfilter.

Harvey, A. C. and Phillips, G. D. (1979). Maximum likelihood estimation of re-
gression models with autoregressive-moving average disturbances. Biometrika,
66(1):49–58.

He, H. and Xia, R. (2018). Joint binary neural network for multi-label learning with
applications to emotion classification. In CCF International Conference on Natural
Language Processing and Chinese Computing, pages 250–259. Springer.

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weightedmov-
ing averages. International journal of forecasting, 20(1):5–10.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint arXiv:1704.04861.

Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and
O’Hara-Wild, M. (2019). tsfeatures: Time series feature extraction. R package ver-
sion, 1(0).

Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice.
OTexts.

Hyndman, R. J. et al. (2006). Another look at forecast-accuracy metrics for intermit-
tent demand. Foresight: The International Journal of Applied Forecasting, 4(4):43–46.

Hyndman, R. J., Khandakar, Y., et al. (2008). Automatic time series forecasting: the
forecast package for r. Journal of statistical software, 27(3):1–22.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679–688.

http://www.gurobi.com
http://www.gurobi.com


BIBLIOGRAPHY 99

Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, S. (2002). A state space
framework for automatic forecasting using exponential smoothing methods. In-
ternational Journal of forecasting, 18(3):439–454.

Jones, M. (1987). Randomly choosing parameters from the stationarity and invert-
ibility region of autoregressive–moving average models. Journal of the Royal Sta-
tistical Society: Series C (Applied Statistics), 36(2):134–138.

Jones, R. H. (1980). Maximum likelihood fitting of arma models to time series with
missing observations. Technometrics, 22(3):389–395.

Jose, V. R. R. and Winkler, R. L. (2008). Simple robust averages of forecasts: Some
empirical results. International journal of forecasting, 24(1):163–169.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Kalousis, A. and Theoharis, T. (1999). Noemon: Design, implementation and per-
formance results of an intelligent assistant for classifier selection. Intelligent Data
Analysis, 3(5):319–337.

Kang, K. M. (1975). A comparison of estimators for moving average processes. Un-
published Paper, Australian Bureau of Statistics.

Kang, Y., Cao,W., Petropoulos, F., andLi, F. (2021). Forecastwith forecasts: Diversity
matters. European Journal of Operational Research.

Kim, C.-J. and Kim, J. (2013). Thepile-up problem’in trend-cycle decomposition of
real gdp: Classical and bayesian perspectives.

Kimura, K. and Waki, H. (2018). Minimization of Akaike’s information criterion
in linear regression analysis via mixed integer nonlinear program. Optimization
Methods and Software, 33(3):633–649.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kitagawa, G. (2020). Computation of the gradient and the hessian of the
log-likelihood of the state-space model by the kalman filter. arXiv preprint
arXiv:2011.09638.

Konishi, S. and Kitagawa, G. (2008). Information criteria and statistical modeling.
Springer Science & Business Media.

Konno, H. and Yamamoto, R. (2009). Choosing the best set of variables in regression
analysis using integer programming. Journal of Global Optimization, 44(2):273–282.



100 BIBLIOGRAPHY

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In
European conference on machine learning, pages 171–182. Springer.

Kück, M., Crone, S. F., and Freitag, M. (2016). Meta-learning with neural networks
and landmarking for forecasting model selection an empirical evaluation of dif-
ferent feature sets applied to industry data. In 2016 International Joint Conference
on Neural Networks (IJCNN), pages 1499–1506. IEEE.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86.

Lemke, C. and Gabrys, B. (2010). Meta-learning for time series forecasting and fore-
cast combination. Neurocomputing, 73(10-12):2006–2016.

Li, X., Kang, Y., and Li, F. (2020). Forecasting with time series imaging. Expert
Systems with Applications, 160:113680.

Lichtendahl Jr, K. C. andWinkler, R. L. (2020). Why do some combinations perform
better than others? International Journal of Forecasting, 36(1):142–149.

Liu, Y. and Tajbakhsh, S. D. (2020). Fitting arma time series models without identi-
fication: A proximal approach. arXiv preprint arXiv:2002.06777.

Ma, S. and Fildes, R. (2021). Retail sales forecasting with meta-learning. European
Journal of Operational Research, 288(1):111–128.

Makridakis, S. (1993). Accuracy measures: theoretical and practical concerns. Inter-
national journal of forecasting, 9(4):527–529.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020). The m4 competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting,
36(1):54–74.

Marriott, J. (1995). Bayesian analysis of arma processes: Complete sampling-based
inferences under full likelihood. Bayesian Statistics and Econometrics: Essays in
Honor of Arnold Zellner.

Martins, A. and Astudillo, R. (2016). From softmax to sparsemax: A sparse model
of attention and multi-label classification. In International Conference on Machine
Learning, pages 1614–1623. PMLR.

Mauricio, J. A. (2002). An algorithm for the exact likelihood of a stationary vector
autoregressive-moving average model. Journal of Time Series Analysis, 23(4):473–
486.



BIBLIOGRAPHY 101

Meinshausen, N. and Bühlmann, P. (2006). Variable selection and high-dimensional
graphs with the lasso. Ann Stat, 34:1436–1462.

Miyashiro, R. and Takano, Y. (2015a). Mixed integer second-order cone program-
ming formulations for variable selection in linear regression. European Journal of
Operational Research, 247(3):721–731.

Miyashiro, R. and Takano, Y. (2015b). Subset selection by Mallows’ Cp: A mixed
integer programming approach. Expert Systems with Applications, 42(1):325–331.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Monahan, J. F. (1984). A note on enforcing stationarity in autoregressive-moving
average models. Biometrika, 71(2):403–404.

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., and Talagala, T. S. (2020).
Fforma: Feature-based forecast model averaging. International Journal of Forecast-
ing, 36(1):86–92.

Nam, J., Kim, J., Mencía, E. L., Gurevych, I., and Fürnkranz, J. (2014). Large-
scale multi-label text classification—revisiting neural networks. In Joint european
conference on machine learning and knowledge discovery in databases, pages 437–452.
Springer.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM journal
on computing, 24(2):227–234.

Neath, A. A. and Cavanaugh, J. E. (2012). The bayesian information criterion: back-
ground, derivation, and applications. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 4(2):199–203.

Nemenyi, P. (1962). Distribution-free multiple comparisons. In Biometrics, vol-
ume 18, page 263. International Biometric Soc 1441 I ST, NW, SUITE 700, WASH-
INGTON, DC 20005-2210.

Newbold, P. (1974). The exact likelihood function for a mixed autoregressive-
moving average process. Biometrika, 61(3):423–426.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc.



102 BIBLIOGRAPHY

Piccolo, D. (1982). The size of the stationarity and invertibility region of an
autoregressive-moving average process. Journal of Time Series Analysis, 3(4):245–
247.

Picinbono, B. andBenidir,M. (1986). Someproperties of lattice autoregressive filters.
IEEE transactions on acoustics, speech, and signal processing, 34(2):342–349.

Portet, S. (2020). A primer onmodel selection using the akaike information criterion.
Infectious Disease Modelling, 5:111–128.

Prudêncio, R. B. and Ludermir, T. B. (2004). Meta-learning approaches to selecting
time series models. Neurocomputing, 61:121–137.

Radchenko, P., Vasnev, A. L., and Wang, W. (2020). Too similar to combine? on neg-
ative weights in forecast combination. On Negative Weights in Forecast Combination
(July 1, 2020).

Reid, D. (1972). A comparison of forecasting techniques on economic time series.
Forecasting in Action. Operational Research Society and the Society for Long Range Plan-
ning.

Robert, C., William, C., and Irma, T. (1990). Stl: A seasonal-trend decomposition
procedure based on loess. Journal of official statistics, 6(1):3–73.

Sargan, J. D. and Bhargava, A. (1983). Maximum likelihood estimation of regression
modelswith first ordermoving average errorswhen the root lies on the unit circle.
Econometrica: Journal of the Econometric Society, pages 799–820.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics,
pages 461–464.

Shlien, S. (1985). A geometric description of stable linear predictive coding digital
filters (corresp.). IEEE Transactions on information theory, 31(4):545–548.

Smith, J. and Wallis, K. F. (2009). A simple explanation of the forecast combination
puzzle. Oxford Bulletin of Economics and Statistics, 71(3):331–355.

Stock, J. H. and Watson, M. W. (2004). Combination forecasts of output growth in a
seven-country data set. Journal of forecasting, 23(6):405–430.

Stoica, P. and Selen, Y. (2004). Model-order selection: a review of information crite-
rion rules. IEEE Signal Processing Magazine, 21(4):36–47.

Talagala, T. S., Hyndman, R. J., Athanasopoulos, G., et al. (2018). Meta-learning how
to forecast time series. Monash Econometrics and Business Statistics Working Papers,
6:18.



BIBLIOGRAPHY 103

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tjøstheim, D. and Paulsen, J. (1983). Bias of some commonly-used time series esti-
mates. Biometrika, 70(2):389–399.

Tusell, F. et al. (2011). Kalman filtering in r. Journal of Statistical Software, 39(2):1–27.

Wang, X., Smith, K., and Hyndman, R. (2006). Characteristic-based clustering for
time series data. Data mining and knowledge Discovery, 13(3):335–364.

Wang, X., Smith-Miles, K., and Hyndman, R. (2009). Rule induction for forecast-
ing method selection: Meta-learning the characteristics of univariate time series.
Neurocomputing, 72(10-12):2581–2594.

Widodo, A. and Budi, I. (2013). Model selection using dimensionality reduction of
time series characteristics. In International Symposium on Forecasting, Seoul, South
Korea, pages 57–118.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs
in statistics, pages 196–202. Springer.

Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages.
Management science, 6(3):324–342.

Yu, Y., Pedrycz,W., andMiao, D. (2014). Multi-label classification by exploiting label
correlations. Expert Systems with Applications, 41(6):2989–3004.

Zhang, M.-L. and Zhou, Z.-H. (2006). Multilabel neural networks with applications
to functional genomics and text categorization. IEEE transactions on Knowledge and
Data Engineering, 18(10):1338–1351.

Zhang, Y. and McLeod, A. I. (2006). Fitting ma (q) models in the closed invertible
region. Statistics & probability letters, 76(13):1331–1334.

Zhao, B., Lu, H., Chen, S., Liu, J., and Wu, D. (2017). Convolutional neural net-
works for time series classification. Journal of Systems Engineering and Electronics,
28(1):162–169.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of
Machine Learning Research, 7:2541–2563.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
statistical association, 101(476):1418–1429.


	Contents
	Introduction
	Best Subset Selection in Gaussian Linear Regression models with Extension to Gaussian ARMA models
	Improved Maximum Likelihood Estimation of ARMA Models
	Sparse Convex Combinations of Forecasting Models By Meta Learning

	Best Subset Selection in Gaussian Linear Regression models with Extension to Gaussian ARMA models
	AIC, BIC and HQIC information criteria
	Related Works
	Alternate Minimization Algorithm
	Convergence Analysis
	Alternate Minimization for Gaussian ARMA(p,q) Models
	Experiments: Gaussian Linear Regression
	Experiments: Gaussian ARMA models
	Conclusions

	Improved Maximum Likelihood Estimation of ARMA Models
	Estimation of ARMA models: a historical parentheses
	Jones reparametrization
	Closeness to the Feasiblity Boundary
	The Proposed Approach
	Computational Experiments
	Conclusions

	Sparse Convex Combinations of Forecasting Models By Meta Learning
	Forecasting by Meta-Learning: related works
	Why does forecast combination work well?
	Forecasting Methods, Data, Feature Set and Error Metrics
	Inducing Sparsity of Forecast Combination
	Implementation
	Experiments
	Conclusions

	Conclusions and Future Developments
	Derivation of AIC and BIC
	Partial Dependence Plots
	Publications
	Bibliography

