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a b s t r a c t

A large number of studies have highlighted the importance of gut microbiome composition in shaping fat
deposition in mammals. Several studies have also highlighted how host genome controls the abundance
of certain species that make up the gut microbiota. We propose a systematic approach to infer how the
host genome can control the gut microbiome, which in turn contributes to the host phenotype determi-
nation. We implemented a mediation test that can be applied to measured and latent dependent vari-
ables to describe fat deposition in swine (Sus scrofa). In this study, we identify several host genomic
features having a microbiome-mediated effects on fat deposition. This demonstrates how the host gen-
ome can affect the phenotypic trait by inducing a change in gut microbiome composition that leads to
a change in the phenotype. Host genomic variants identified through our analysis are different than
the ones detected in a traditional genome-wide association study. In addition, the use of latent dependent
variables allows for the discovery of additional host genomic features that do not show a significant effect
on the measured variables. Microbiome-mediated host genomic effects can help understand the genetic
determination of fat deposition. Since their contribution to the overall genetic variance is usually not
included in association studies, they can contribute to filling the missing heritability gap and provide fur-
ther insights into the host genome – gut microbiome interplay. Further studies should focus on the porta-
bility of these effects to other populations as well as their preservation when pro-/pre-/anti-biotics are
used (i.e. remediation).

! 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

A vast body of literature exists in both plants and livestock on
discovering genomic (G) variants with a significant effect on a vari-
ety of phenotypes (P) of interest.

Recently, an increasing number of studies have started focusing
on the impact of the gut microbiome (M) on phenotypic perfor-
mance [54,53,17], where gut microbiome is expressed as the rela-
tive abundance of microbial features such as genes, taxa and
biological function, etc.

In some of these studies, an additional step in which G variants
are tested for their association with M features is presented
[9,64,10]. In all these studies though, the interdependence between
host genomic makeup and microbial composition is ignored. A
more systematic approach to investigating the role of the host gen-
ome’s role and its microbial makeup is necessary to disentangle the
complex interplay between these two components.

https://doi.org/10.1016/j.csbj.2020.12.038
2001-0370/! 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: SNP, Single Nucleotide Polymorphism marker; OUT, Operational
Taxonomic Units; SEM, Structural equation model; G, host genomic features,
represented in this study by SNP; M, gut microbiome features, represented in this
study by OUT; P, Phenotype recorded on the host; P, Latent variable built on the P
variables; BF1, Backfat depth measured in vivo at the age of 118.1±1.16 d; BF2,
Backfat depth measured in vivo at the age of 145.9±1.53 d; BF3, Backfat depth
measured in vivo at the age of 174.3±1.43 d; BF4, Backfat depth measured in vivo at
the age of 196.6±8.03 d; BFt, Backfat measured post mortem (after slaughter at
196.6±8.03 d); BEL, Weight of the belly cut; FATg, Latent variable built on BF1, BF2,
and BF3; FATt, Latent variable built on BF4, BFt, and BEL; Mod1, Model 1, used to
estimate the total effect of G on P. Reported in Fig. 1a; Mod2, Model 2, used to
estimate the effect of M on P. Reported in Fig. 1b; Mod3, Model 3, used to estimate
the effect of G on M. Reported in Fig. S1; Mod4, Model 4, used to estimate the direct
and mediated effects of G on P. Reported in Fig. 1c; Mod1L, Model 1L, used to
estimate the total effect of G on; Mod2L, Model 2L, used to estimate the effect of M
on; Mod4L, Model 4, used to estimate the direct and mediated effects of G on.
Reported in Fig. 1d; S2a, S2b, S3a, S3b, S3c, Gut microbiome OUT selected used as
mediator variables. See Table 2.
⇑ Corresponding author at: 120 W Broughton Dr. 27695-7621, Raleigh, NC, USA.
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In the context of a genome-wide association study (GWAS), the
effect of a given G feature on a P of interest is tested for its magni-
tude and significance. Other genetic and environmental effects are
included in the (usually linear) model used to perform the associ-
ation in order to adjust for effects that could be present due to the
characteristics of the experimental design. An acyclic graph repre-
sentation of a generic model used in GWAS (Mod1) is reported in
Fig. 1a, where cp g is the total effect of G on P. Other effects are
usually included in the model to control for other design factor
effects. These can be genetic gp or environmental ep. Likewise,
microbiome-wide association studies (MWAS) are performed to
identify associations between M and P. A graphical representation
of a generic MWAS model (Mod2) is reported in Fig. 1b, where M is
the measured microbial feature and bp m is the effect of M on P.
Again, gp and ep effects can be fit to account for other factor effects.
Lastly, a GWAS study can be performed using M as the dependent
variable of interest. In this case the generic model (Mod3) is as
reported in Fig. S1, where am g is the effect of the G variant on
the M feature abundance measured in each individual. Again, fac-
tor design effects can be fitted in the model as they exert an effect
on M. These could, again, be genetic gm or environmental em.

In GWAS studies, the term association is emphasized in the
acronym though the regression coefficient cp g is normally the
quantity of interest, representing the effect of G on P. The term ef-
fect carries a causal meaning, which is often neglected in the inter-
pretation of GWAS studies. However, in this study we will refer to
the estimated regression coefficients as effects, implying causality.
Thus, we will refer to cp g as the extent to which P changes by
changing G of 1 unit [55]. We consider the G ? P path in Mod1
(Fig. 1a) as single and direct and we disregard what governs the
path at the biological level. In reality, a unit change in G could
result in a c change in P through a number of different biological
paths. The total effect cp g will then express the sum of all paths
contributions to the overall effect. Let’s assume that there is a p
number of paths through which G affects P, with p-1 paths having
null effect and one path having a non-null effect. The cp g will, in
this case, amount to the effect of the only non-null path, since all
the null paths won’t impact the sum.

In the case of multiple paths with non-null effects but of oppo-
site signs, the resulting cp g effect will still be the sum of all paths.
In this case, cp g could potentially amount to zero if two or more
non-null paths are of similar magnitude but opposite sign. When
performing a GWAS analysis, this would result in failing to identify
G features that affect P through multiple paths.

A potential solution to this problem is offered by mediation
analysis [20,35] where an intermediate variable is used as media-
tor between G and P. Such a variable would show an effect on P
but, importantly, it would also be affected by G. Variables describ-
ing gut microbiome composition have been found to contribute to
the determination of the phenotype while being affected by the
host genome [48,5]. Therefore, gut microbiome features could be
used as a mediator variable for the G? P path, potentially enabling
the identification of G features that could elicit a null total effect
but a non-null mediated effect. A mediation model which jointly
estimates the direct path G ? P but also the M-mediated path
G ? M ? P is represented in Fig. 1c. Note that the bp m and cp g

coefficients have now become b0p m and c0p g , because of their
simultaneous estimation in the model. The b0p m coefficient
describes the effect of M on P while holding G constant (as opposed
to b) while c0p g elicits the impact of G on P while holding M con-
stant. For notation convenience, the am g coefficient has become
a0m g , although there are no differences in the parameter interpre-
tation. A mediation analysis allows the peeling at least one of the
paths hidden in the G ? P total effect, several G variants could

be identified as having a M-mediated effect on P, variants that
would be missed in the case of a simple GWAS. In fact, the lack
of association between G and P and the null effect of G on P
(cp g) do not imply that the G ? M ? P path has null magnitude.
Since cp g is the result of multiple paths and these could sum to
zero, a single path does not necessarily equal to zero in magnitude.

Examples of such phenomenon are reported in behavioral and
marketing research. For instance, Pollack et al. [39] examined the
relationship between economic stress and entrepreneur’s inten-
tions to withdraw from business. While the total effect of eco-
nomic stress on withdrawing intentions was not significant, the
path mediated by depressed affect showed a significant estimate.
Similarly, Kampfer et al. [22] found that the packaging of food
and beverages affected the willingness of consumers to purchase
and consume, but this effect was mediated by the flavor intensity
and evaluation of the product. In both cases, the study of the total
effect alone (similarly to Mod1 in this study) could not have iden-
tified the mediated effects, estimable only through the use of medi-
ator variables. In the field of biology, Díez-Fernández et al. [11]
found that body mass index mediated the effect of muscular fitness
on several cardiometabolic risk variables in children and Bliuc et al.
[8] showed that a reduction in the rate of bone loss mediated the
effect of nitrogen bisphosphonates on patient mortality. It is worth
noting that the non-mediated effect was still present in these stud-
ies, but the mediation analysis helped in elucidating the dynamics
of the total effect.

In all the models outlined above, it was implicit that the vari-
ables G, M and P were directly measured. In reality, the same mod-
els could be applied to latent, non-measured variables through
Structural Equation Models (SEM) which can combine mediation
analysis with latent variable analysis [43,18]. The measured P is
in this case replaced with a latent variable P, which is built on a
number of measured variables partially correlated among them
[38]. Let’s for example consider a number of G features that exert
a significant cp g effect on two measured variables (as in Mod4).
The c effect of G on P (cP g) would imply an effect on the latent
variable. In addition, several G features could show a significant
cP g but not significant cp g on the P components, because the
latent variable can express a layer of information that lies within
the measured variables but that cannot be extracted by any of
them individually, typically because of limitations in measuring a
phenotype.

The example could also apply to a G ? M ? P path analysis,
where M is mediator variable exerting an effect on the latent vari-
able P. A potential implementation for the model (Mod4L)
described above is depicted in Fig. 1d, where P is represented in
a circle since it expresses a latent, non-measured variable con-
structed on the measured phenotypes P1, P2 and P3. The SEM
allows us to test for the M!mediated effect of G on the latent
variable.

A mediation analysis implies a causal process, which has to be
hypothesized a priori and then tested on the data available data.
MWAS results are usually not causally interpretable, although
the need to move from association to causality has been empha-
sized by several authors [50,48] along with the need to understand
the role of the host organism in shaping the microbiome-
phenotype link.

Swine (Sus scrofa) is a relevant species to study fat deposition
patterns when they depend on the host genomic background
[44] or the composition of the gut microbiome composition [24]
together with the impact of host genomic variants on gut micro-
biome composition itself [10,5]. Datasets of significant size can
be easily generated using Sus scrofa as a model organism, kept
either under experimental or commercial conditions. In this case,
our group and its partners have generated a vast dataset, which
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contains several measures of fat deposition together with charac-
terization of host genomic background and gut (fecal) microbiome
composition.

The objectives of this study were to 1) to provide a framework
for the implementation of a microbiome-mediated search of host
genomic features with effect on phenotypes of interest; 2) search
for host genomic variants that affect fat deposition through the
modification of the gut microbiome and 3) to search for host geno-
mic variants exerting a microbiome-mediated effect using latent
variables constructed on multiple measures of fat deposition in
swine.

2. Materials and methods

2.1. Data

Data used in this study came from an existing database and par-
tial results of the research have been previously published [5].
Information was collected on a total of 1265 individuals of swine
(Sus scrofa) raised under commercial conditions by The Maschhoffs
LLC. (Carlyle, IL, USA). For each individual, several performance
measures were collected, both in vivo and post mortem. Fecal
microbiome samples were obtained at different time points during
the trial. A total of 1,183 records with complete host genomic, host
phenotypic and fecal microbiome information were available for
subsequent analyses.

2.1.1. Host phenotypic data
The phenotypic traits used in this study have already been

described in other studies by our group [28,30,5]. In this study
we focused on a set of traits that describe fat deposition in pigs
from 4 to 7 months of life. The age span was constrained by the
set up that commercial pork farms operate and encompasses pig
development from weaning to puberty, which has its onset at
around 5–8 months of life under commercial conditions [46,36].

Briefly, phenotypes analyzed (P) included measures of backfat
depth taken in vivo at the age of 118.1 ± 1.16 d (BF1); 145.9 ± 1.
53 d (BF2) and 174.3 ± 1.43 days (BF3) of life, together with the
day before slaughter which occurred at 196.6 ± 8.03 days (BF4).
Measurements were taken on the right side of the pig’s back in
the area corresponding to the 10th rib. These measures were col-
lected using an ultrasound equipment (Biotronics Inc., Ames, IA,
USA) at the facility where the animals were raised. An additional
measure of backfat (BFt) was taken post mortem using a Fat-O-
Meater system (Frontmatec A/S, Kolding, DK), again at the site of
the 10th rib. Carcasses were then dissected into commercial cuts,
each of which was weighted. We used the weight of the belly cut
(BEL) for its high fat content [14,26], which makes it suitable as
an indicator of fat deposition.

The descriptive statistics as well as Pearson correlations among
the selected phenotypic measures are reported in Table 1.

2.1.2. Host genomic data
All individuals were genotyped with the PorcineSNP60 v2 Bead-

Chip (Illumina, Inc., San Diego, CA). Quality control of the markers
was performed by removing single nucleotide polymorphisms
(SNP) with a call rate of less than 0.99, minor allele frequency of
less than 0.05 and deviation for Hardy-Weinberg equilibrium (P
smaller than 0.001). After quality control the number of SNP
remaining for further analyses was 40,542, distributed on the 18
autosomes. Genotypes were coded as the number of copies of the
minor allele, i.e. 0 for AA, 1 for Aa or aA and 2 for aa, where a is
the minor allele and A is the major allele. The SNP will hereinafter
be referred to as host genomic features (G).

2.1.3. Fecal microbiome data
Rectal swabs were obtained on all individuals at the ages of 18.

6 ± 1.09 d (S1), 118.2 ± 1.18 (S2) and 174.3 ± 1.43 (S3). Fecal sam-
ples were subjected to 16S rDNA amplicon sequencing as previ-
ously described by Maltecca et al. [30]. This analysis was
performed by Matatu Inc. (St. Louis, MO, USA). A total of 3001 oper-
ational taxonomic units (OTU) were generated. Counts were rar-
efied to 10,000 per sample. OTUs were removed if showing less
than 1200 counts overall or showing a zero count in more than
80% of the samples. On the remaining variables, zero-value impu-
tation was performed using the function cmultrepl from package
‘‘Zcompositions” [37] and center-log transformation was per-
formed using the function clr from package ‘‘compositions” [56],
both implemented in the R software [41]. The microbiome vari-
ables generated will be referred to as microbial features hereinafter
(M).

2.2. Statistical analysis

2.2.1. Transforming cross-classified effects into linear covariates
Since models had to be tailored to the SEM framework and the

use of cross-classified effects is discouraged given the large num-
ber of solutions that need to be computed, cross-classified effects
were transformed to linear covariates. This was carried out in
two steps. First, a model was fitted for each phenotypic trait using
the following specifications:

Pp ¼ CGþ Dþ Sþ bþ e ð1Þ

where Pp is the phenotypic record for the pth trait (centered to mean
equal 0 and standard deviation equal to 1), CG is the fixed cross-
classified effect of the contemporary group (batch of individuals
of the same gender entering the same trial in the same week, 12
levels); D is the fixed covariate on the genetic line of the dam of
the individual (coded as 1 vs 2); S is the fixed cross-classified effect
of the sire of the individual (28 levels); b is the random effect of the
batch of individuals (physical pen) where the individuals were
allotted (331 levels); e is the random residual. The choice to fit a
CG effect on 12 levels that included the interaction between the

Table 1
Descriptive statistics and Pearson correlations for the phenotypic traits used (N = 1,183).

Trait1 Metric2 Mean SD Pearson correlations

BF1 BF2 BF3 BF4 BFt

BF1 cm 1.25 0.28 .
BF2 cm 1.69 0.42 0.744 .
BF3 cm 2.00 0.54 0.654 0.813 .
BF4 cm 2.36 0.61 0.598 0.744 0.882 .
BFt cm 2.35 0.49 0.523 0.637 0.776 0.817 .
BEL kg 18.30 2.78 0.431 0.450 0.503 0.554 0.453

1BF1, BF2, BF3 and BF4: measures of subcutaneous fat depth taken in vivo at the age of 118.1 ± 1.16 d; 145.9 ± 1.53 d, 174.3 ± 1.43 d and 196.6 ± 8.03 d, respectively. BFt:
measure of subcutaneous fat depth taken post mortem. BEL: weight of belly cut taken post mortem.
2Cm: centimeters. Kg: kilograms.
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batch and sex effects was due to previous analyses that showed an
impact of such interaction. The number of records for each class
(~90 records per class) is sufficient to estimate the effect over the
12 classes, providing more granularity in the correction.

In the second step, incidence matrices and vectors of solutions
were used to define new explanatory variables as follows:

CGbp ¼ Xcgbcgp þ Zpubp ð2Þ

Srp ¼ Xsbsp ð3Þ

where CGbp is the newly defined variable, which summarizes infor-
mation about contemporary group and batch effects for the pth trait;
Xcg is the incidence matrix for the contemporary group effect; bcgp is
the vector of solutions for the contemporary group effect for the pth

trait; Zp is the incidence matrix for the batch effect; ubp is the vector
of solutions for the batch effect for the pth trait; Srp is the newly
defined variable for the sire of the individual for the pth trait; Xs is
the incidence matrix for the sire effect; bsp is the vector of solutions
for the sire effect for the pth trait.

The same process was applied using M as the dependent vari-
able and generating the variables CGbm and Srm for each of the
mth M.

For further use, all the four newly generated variables were cen-
tered to show mean equal to 0 and standard deviation equal to 1.

2.2.2. Genome-wide association study (Mod1)
The first analysis consisted of selecting the G features that were

significantly associated with the phenotypic traits of interest
(model Mod1, Fig. 1a). Once the variables CGbp and Srp were
defined, model Mod1 was fitted as:

Pp ¼ cp gGg þ b1gpCGpp þ b2gpDþ b3gpSrp þ ep ð4Þ

where Pp, CGpp, D, Srp and ep were as defined above; cp g was the
fixed effect of the gth G on the pth P; b1gp, b2gp and b3gp are the regres-
sion coefficients for the three effects when regressing the pth pheno-
typic trait on the gth selected host genomic feature.

2.2.3. Microbiome-wide association study (Mod2)
The second analysis consisted of selecting the M that were sig-

nificantly associated with the phenotypic traits of interest (Mod2).
The model was specified as:

Pp ¼ bp mMm þ b1mpCGpp þ b2mpDþ b3mpSrp þ ep ð5Þ

where Pp, CGpp, D, Srpand ep are defined as above; bp m is the effect
of the mth microbial feature on the pth phenotypic trait (as in
Fig. 1b); Mm is the mth selected microbial feature; b1mp, b2mp and
b3mp are the regression coefficients on the effects of contemporary
group (combined with batch), dam line and sire as generated when
regressing the pth phenotypic trait on the mth selected microbial
feature.

2.2.4. Mediation path analysis (Mod4)
Model Mod4 (Fig. 1c) was used to test for the mediated path of

G on P trough M [39,20]. The estimation of the coefficients was
performed simultaneously using the following specifications:

Mm ¼ a0m gGg þ b1gmCGbm þ b2gmDþ b3gmSrm þ em

Pp ¼ b0p mMm þ c0p gGg þ b
1gmp

CGbp þ b2gmpDþ b3gmpSrp þ ep

8
<

:

ð6Þ

where Pp is the pth P, Mm is the mth M, a0m g is the effect of the gth G
on themth M, b0p m is the effect of themth M on the pth P, c0p g is the
effect of the gth G on the pth P; b1gm, b2gm and b3gm are the regression
coefficients for the three effects on the mth M; b1gmp, b2gmp and b3gmp

are the regression coefficients for the three effects on the pth P; D,
CGbp, Srp, CGbm and Srm are as defined above; ep and em are the resid-
ual errors for the pth P and mth M, respectively. This model allows to
estimate the effect of G on both M and P. While estimating such
effects the other effects are simultaneously estimated, in this case,
the effects of CG, dam line and pen for their effect on both M and P.

2.2.5. Mediation analysis in the structural equation model (Mod4L)
Measured variables contain information that is limited by the

equipment and time of recording as well as the inability of the
measuring technology to describe the whole biological process that
is manifested in the phenotype. A SEM can be used to test the
mediation throughM on latent variables, providing further insights
on the mediation paths provided that the latent variables built on
correlated variables recover more information than the sum of the
information contained in the measured variables. Model Mod4L
(Fig. 1d) was implemented for this purpose.

We defined a first latent variable (FATg) describing the (back)
fat deposition over the life of the individual using the variables
BF1, BF2 and BF3. A second latent variable (FATt) was defined
using the measured variables BF4, BFt and BEL. This second vari-
able aimed at describing the fat deposition at the end of the trial,
merging information measured on the back of the body by two dif-
ferent instruments (BF4 and BFt) to the weight of the cut with the
largest fat content (BEL). The Pearson correlations among the six
variables are reported in Table 1. While being taken at approxi-
mately the same time, the mechanical assessment of fat depth
(BFt) showed a reduced variability as compared to the ultrasound
measure (BF4) and a non-complete overlap (correlation less than
unity). This could be due to the impact of slaughter or an actual
lack of precision of the mechanical instrument. Regardless, the dif-
ference between the measures warrants the necessity of using
latent variable.

The structural equation model Mod4L was defined as:

Mm ¼ a0m gGg þ b1gmCGpm þ b2gmDþ b3gmSrm þ em

Pp ¼ b0p mMm þ c0p gGg þ b
1gmpCGpp þ b2gmpDþ b3gmpSrp þ ep

8
<

:

ð7Þ

Table 2
Summary of the microbial features (operational taxonomic units) used in the mediation analysis.

OTU Stage Genus Descriptive statistics Variance absorbed in M21

Presence Minimum Mean Median Max BF1 BF2 BF3 BF4 BFt BEL

S2a S2 Peptococcus 0.523 0 3.11 1 62 2.70 2.13 2.08 2.76 1.89 2.57
S2b S2 Peptococcus 0.793 0 5.16 4 42 6.49 5.08 3.53 2.53 2.20 2.80
S3a S3 Peptococcus 0.995 0 19.04 17 68 . . . 9.02 6.43 9.57
S3b S3 Butyricicoccus 0.903 0 5.90 4 41 . . . 2.82 2.10 1.87
S3c S3 Butyricicoccus 0.972 0 27.71 23 145 . . . 4.46 2.63 1.532

1 Percentage of phenotypic variance absorbed. BF1, BF2, BF3 and BF4: measures of subcutaneous fat depth taken in vivo at the age of 118.1±1.16 d; 145.9±1.53 d, 174.3±1.43
d and 196.6±8.03 d, respectively. BFt: measure of subcutaneous fat depth taken post mortem. BEL: weight of belly cut taken post mortem.

2 Significant after FDR correction, not significant after Bonferroni correction.
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where a0m g , Gg , Mm, b1gm, b2gm, b3gm, CGpm, D, Srm, em and ep are as
defined above; Pp is one of the two latent variables (FATg or FATt);
b0p m and c0p g are the effects of the mth M and gth G on the latent
variable Pp; b1gmp, b2gmp and b3gmp are the regression coefficients of
the latent variablePp on the three design variables; CGpp is a latent
variable built upon the CGp for each of the three phenotypic traits
that make the latent variable Pp, similarly to Srp that is built upon
the three Sr variables. The two variables (CGpp and Srp) were latent
variables used to adjust the latent variable Pp for the design effects
of contemporary group and sire, respectively. These also were
defined as latent variables were, with loadings estimated when run-
ning the model.

2.2.6. Additional models (Mod1L, Mod2L)
In order to perform a GWAS and MWAS on the latent variables

Pp, models in [4] and [5] were modified to account for the latent
variables as dependent variables. Briefly, the effects of the G fea-
tures were calculated using model Mod1L:

Pp ¼ c0p gGg þ b
1gpCGpp þ b2gpDþ b3gpSrp þ ep ð8Þ

And the effects of the M features were calculated using model
Mod2L:

Pp ¼ b0p mMmþb1mpCGpp þ b2mpDþ b3mpSrp þ ep ½9'

2.2.7. Model implementation
The model in equation 1 was implemented in the R package

lme4 [1], all the other models were implemented using the R func-
tion lavaan [45]. First, models Mod1 and Mod1L (formulas in 4 and
8) were implemented to perform a GWAS and calculate G total
effects on both measured and latent variables. The second step
implemented model Mod2 to select the M features that would
simultaneously affect the 3 measured variables that make up each
latent variable. This selection was performed under the assump-
tion that only the M features generating a strong b estimate could
produce a significant mediated effect. In practice, we considered
the M features with a Bonferroni adjusted significance (R function
p.adjust from native package ‘‘stats”, [41] of the bp m effect over
BF1, BF2 and BF3 for modeling FATg. Similar significance criteria
were applied to BF4, BFt and BEL for FATt. For each of the tested
M features, the variance absorbed by the effect was calculated as
the variance of the vector generated as bp mMm. Only the M fea-
tures that consistently absorbed more than 1% of the variance of
Pp were then considered. This special selection was carried out
for an efficient implementation of the latent variable analysis in
the structural equation model. For additional information on the
impact of the M features on the traits of interest, see Bergamaschi
et al. [6]. Following this step, the M features (Table 2) were identi-
fied. While features recorded at S2 were tested on all measured
and latent variables, features recorded at S3 were only used on
traits BF4, BFt, BEL and FATt given the incompatibility with the
causal assumption that M features sampled at S3 could affect a
phenotype measured at time S2.

With the selected M features, models Mod4 and Mod4L (formu-
las in equations 6 and 7 were selected to generate estimates of a0,
b0 and c0 coefficients for each of the 40,542 G features.

Once the mediation path model was fitted, indirect effects were
calculated as a0m g ( b0p m and a0m g ( b0P m for measured and
latent variables, respectively.

2.2.8. Determining significance
Significance of the fitted effects in models Mod1, Mod4 and M5

(namely the effects a0, b0, c0 and c) was obtained deterministically
by testing the estimated probability of the parameter to be equal
to zero. Significance of the a0 ( b0 mediation path was obtained

in a deterministic fashion via the Sobel test [49]. However, the
Sobel test relies on the assumption of normality of the sampling
distribution for the a0 ( b0 product, which is likely inappropriate
[19]. Thus, we used two independent empirical tests to evaluate
the significance of the mediation path. First, a bootstrapping proce-
dure was followed as proposed in Hayes [20] and Pollack et al. [39].
Here, N records were sampled, with replacement, for each round of
bootstrapping in order to obtain an empirical distribution of
parameter estimates around their point estimate obtained from
the whole dataset. The process was repeated for 1000 rounds.
Empirical confidence intervals at 95% probability were then calcu-
lated and significance (for P smaller than 0.05) was declared if the
value 0 did not fall within the confidence intervals, i.e. the empir-
ical distribution did not include null values. A permutation test
was specifically designed to disrupt the G! M ! P indirect path,
in favor of the G! P direct path. Elements in the M column were
shuffled to obtain estimates of a0 and b0. Once the indirect path is
broken by altering the link between and G and M and M and P,
we can assume that the estimates of a0 and b0 under permutation
do not deviate from the null hypothesis. Permutation and estima-
tion was repeated 1000 times, then empirical confidence intervals
at 95% probability were calculated on the permuted estimates and
significance was declared (for P smaller than 0.05) if the non-
permuted estimate did not fall within the confidence intervals,
i.e. the null-hypothesis distribution did not include the estimate
values from the intact data.

The two tests attempt to account for multiple path complexity
in different ways. The permutation test aims at breaking the medi-
ated path specifically, providing a null-hypothesis distribution for
the estimates of that specific path. The bootstrapping test aims at
generating a distribution of the parameter estimates given the
data.

The two tests were run for models Mod4 and Mod4L only
applied to selected G-M!P combinations. For each G-M!P run,
the ratio ða0 ( b

0
Þ=c0was calculated and only combinations for

which the value was larger than 1 were selected for empirical test-
ing. This was done to select G-M!P combinations for which the
mediated path was stronger than the direct path. Models Mod1
and Mod1L were instead tested only with bootstrapping and when
showing a P-value for the c effect below 0.01. This allowed us to
generate empirical significance values for all the coefficients.

2.3. Comparison with previously discovered QTL in swine.

The analysis performed to discover the G variants exerting a sig-
nificant total or mediated effects gave a list of markers that were
compared to the existing Animal QTL database [21], www.ani-
malgenome.org, release 41). First, markers that fell within a con-
tiguous window of 10 SNP were grouped together. The whole Sus
scrofa QTL database was downloaded and previously discovered
QTL were merged to each of the marker windows of interest. Then,
the count for each QTL category (Exterior, Health, Meat and Carcass,
Production, Reproduction) was calculated for each of the analyses
conducted (separately for total and mediated effects).

In addition, the R package biomaRt [15,16] was used to retrieve
candidate genes overlapping with the genomic regions identified,
based on the current gene annotations from the ENSEMBL Genes
platform (Version 99; www.ensembl.org/index.html).

3. Results

3.1. Mediator variables

Table 2 reports the five M features that were used as mediator
variables in this study. Two of the chosen variables were recorded
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at S2, simultaneously to the recording of BF1, BF2 and BF3. These
variables (S2a and S2b) consisted of OTU assigned to the Genus
Peptococcus but showed a different rate of presence (frequency of
non-zero counts). S2a showed a presence of 0.523 and absorbed
2.70, 2.13 and 2.08 percent of phenotypic variance for BF1, BF2
and BF3, respectively. S2b showed a stronger presence of 0.793
and absorbed 6.49, 5.08 and 3.53 percent of total variance for the
three phenotypic traits.

The other three chosen M features belonged to samples col-
lected at S3, contemporary with the recording of BF4, BFt and
BEL. These M features were not tested on BF1, BF2 and BF3 for
an evident conflict with the causal M ? P structure with P appear-
ing before M could be recorded. The variables S3a belonged to the
same OTU as S2a and therefore to the genus Peptococcus, while S3b
and S3c belonged to the genus Butyricicoccus. S3a showed stronger
presence compared to S2a (0.995 vs 0.523) meaning that the rela-
tive abundance of this OTU increases as pigs age. S3a absorbed
9.02, 6.43 and 9.57 percent of the total variance for BF4, BFt and
BEL, respectively, being the M feature with the strongest impact
on the studied traits. S3b and S3c showed a similar presence
(0.903 and 0.972) and absorbed 2.82, 2.10 and 1.87 percent of
the total variance of BF4, BFt and BEL, while S3c absorbed the
4.46, 2.63 and 1.53 percent of the variance of the three P traits. It
should be noted that S3c did not show a significant effect on BEL
after Bonferroni correction but the effect was still significant after
FDR correction. This M feature was still chosen as a mediator for
the large percentage of variance absorbed on the three variables.

3.2. Total effect on measured and latent variables

Tables 3 and S1 show the number of G features discovered as
significant for the G ? P total effect, assuming no mediation
(model Mod1, Fig. 1).

The number of features identified as significant after bootstrap-
ping varied across the traits, ranging from 237 for BF1 to 497 for
BFt, with intermediate values of 314 for BF2, 273 for BF3, 482 for
BF4, and 265 for BEL. The latent variables identified a different
number of significant G features as compared to the measured
component traits. Fig. 2a and Table S2 report the number of G fea-
tures that were identified as significant for the latent variable and
also for the measured variables. A total of 495 features were signif-
icant for FATg (Table 3). Of these, 126 were also significant for BF1,

249 were also significant for BF2 and 119 were also significant for
BF3, whereas 203 of those features were not found to be significant
for any of the three measured P variables. A total of 358 G features
were significant for FATt (Table 3). Of these, 202 were also signifi-
cant for BF4, 216 were also significant for BF and 44 were also sig-
nificant for BEL, whereas 77 were not significant for any of the
measured P variables. At the same time, 65 features were found
significant only for BF1, 48 for BF2, 101 for BF3, 260 for BF4, 44
for BFt and 128 for BEL (Fig. 2a).

3.3. Mediation analysis for measured variables

Table 3 also reports the number of G features with a value of the
mediation ratio ða0 ( b

0
Þ=c0 larger than 1. It also shows how many

were also found to be significant for the G ? M ? P indirect medi-
ated effect after bootstrapping, assuming mediation occurs
through the M features reported on the third column. Again, the
number of discoveries varied greatly depending on the P but also
the M variables. Fewer G features were identified for S2a as com-
pared to the S2b mediators. Specifically, there were 492, 461 and
333 G features with S2b-mediated effects on BF1, BF2 and BF3,
respectively, whereas there were 225, 230 and 189 S2a-mediated
G features identified for the same traits. All the identified G fea-
tures passed both the bootstrapping and the permutation tests,
although the former appeared to be more conservative than the
latter (see Table S1 for details). There were 212, 202 and 292
S2a-mediated G features identified for BF4, BFt and BEL, respec-
tively, whereas there were 264, 299 and 308 S2b-mediated fea-
tures identified for the same traits. The M features S3a provided,
in absolute, the largest number of discoveries on the measured
variables, with 659, 526 and 747 variables for BF4, BFt and BEL,
respectively. S3b and S3c showed values similar to S2a and S2b,
with 243, 207 and 220 discoveries for S3b and 380, 292 and 176
discoveries for S3c on the same P measured variables.

Fig. 1ab. Graphical representations of the first two models used in this study.
Model M1 estimates the total effect cp g of G (host genomic features) on P (host
phenotypes). Model M2 estimates the bp m effect of M (gut microbial features) on P
(host phenotypes).

Fig. 1cd. Graphical representations of the first two models used in this study.
Model M4 estimates the direct effect c0p g that G (host genomic features) exerts on
P (host phenotypes) as well as the a0m g ( b0p m effect of G on P as mediated by M
(gut microbiome). Model M4L replaces the measures P phenotype with a latent
variable P constructed on three measured phenotypes (P1, P2, P3).
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3.4. Mediation analysis for latent variables

Results for the mediation analysis are presented in Tables 3
and S1. The number of discoveries for latent variables was sub-
stantially different that the discoveries for each of the compo-
nent measured variables. FATg was found to be affected by
464 S2b-mediated G features, while none of them passed both
the empirical tests for significance when S2a was used. Simi-

larly, only one S3b-mediated G features was found significant
for FATt and none were identified when S3a was used as a
mediator. In contrast, 238 features were found to be S2a-
mediated, 279 were S2b-mediated and 344 were S3c-mediated.
It should be noted that the permutation test appeared to be
more conservative than the bootstrapping test when few or no
G features were identified for their mediated effect on either
FATg or FATt.

Fig. 2. Venn diagram reporting the number of host genomic features that were declared significant for the empirical tests. Total effects (2a), mediated effects (2b, 2c).
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Fig. 3 reports Miami plots for the total and mediated effects of
the G features on the two latent variables (Fig. 1a for FATg,
Fig. 1b for FATt).

The mediator variable used is the one that allowed the largest
number of discoveries, namely S2b for FATg and S3c for FATt
(Table 3). In the plots, the upper part shows the magnitude of
the mediated effect (absolute value of the a0 ( b

0
product) while

the lower part reports the magnitude of the total effect (absolute
value of the c effect). Dots are colored in red if they passed the
empirical tests or in yellow if they were selected for the mediation
test but did not pass the empirical tests. Both plots show that the
genomic regions identified for the total or mediated effects
spanned across all chromosomes with no overlapping between
the two effects. For FATg, the mediated effect was mostly mapped
to the SSC 7 (134,388,813 bp, 91,966,976 bp, 95,549,575 bp), 2
(30,870,402 to 30,999,341 bp), 10 (66,364,425 bp), 6
(147,237,661 bp), 16 (7,358,991 bp, 9,664,975 to 9,811,863 bp,
2,931,783 bp), 5 (110,792,250 bp), 4 (12,603,508 bp), 8
(134,362,111 bp), 13 (205,628,626 to 205,687,638 bp), 17
(37,920,822 to 37,938,790 bp), while the total effect was mapped
to SSC 3 (126,974,179 bp), 5 (28,604,085 bp), 2 (59,957,369 to
60,318,677 bp), 1 (219,816,097 to 221,276,670 bp, 193,610,978
to 194,258,004 bp, 74,467,285 to 75,058,189 bp, 74,467,285 to
75,058,189 bp, 183,336,668 to 185,654,681 bp, 189,896,026 bp),
9 (8,014,440 bp), 7 (4,076,029 to 4,095,479 bp), 15
(118,809,721 bp), 13 (95,481,059 to 99,700,583 bp, 77,535,708 to
77,558,751 bp), 6 (63,310,472 to 63,895,672 bp), 18 (9,598,458
to 9,979,869 bp). Even in SSC 2 and 7, the peaks for the two effects
did not overlap. Also for FATt, genomic regions of interest could be
found on several SSC. Specifically, regions of interest for the medi-

ated effect were found on SSC 9 (26,759,246 bp), 5 (63,702,753 bp),
4 (34,924,383 to 35,367,430 bp), 12 (various markers between
47,346,977 and 47,838,946 bp), 16 (508,634 to 1,521,611 bp), 7
(65,904,152 bp, 62,228,449 to 62,443,707, 90,198,337 to
90,335,338 bp and various markers from 4,5015,518 to
45,338,962 bp and from 27,389,874 to 27,895,570 bp), 1
(33,766,865 to 34,359,698 bp), 2 (5,883,882 to 5,885,864 bp,
5,886,990 to 5,906,388 bp and 7,261,756 to 7,282,608 bp), 14
(26,641,666) and 3 (129,063,098) while the total effect was
mapped to SSC 1 (242,984,908 bp, 193,610,978 to
194,258,004 bp, 240,661,253 to 241,120,799 bp, 284,208,765 bp),
2 (59,957,369 to 60,261,433 bp, 132,702,219 bp), 5
(28,604,085 bp, 68,326,348 to 68,505,852 bp), 11 (20,953,383 bp,
68,288,395 to 68,312,256 bp), 3 (103,288,341 bp, 83,365,231 to
87,200,902 bp, 135,861,845 bp), 14 (1,000,181 bp) and 18
(9,598,458 to 9,979,869 bp). While the regions on SSC1 were differ-
ent between the two effects, in this case there was a closer proxim-
ity between the significant regions on SSC5, yet the regions were
not overlapping.

Fig. 2b and c (and Table S3) show the number of G features that
were identified as significant for the mediated effect on the latent
variables and on any of the measured variables, or none. The cases
of S2a-mediated effects on FATg and S3a/S3b-mediated effects on
FATt will not be listed due to the lack of discovery on the latent
variables. In the case of S2b-mediated discovery on FATg, 97 were
not identified onmeasured traits while 227, 116 and 132 were only
identified on BF1, BF2 and B3, respectively. In the case of S2b-
mediated discovery on FATt, 109 were not identified on measured
traits while 149, 128 and 196 were only identified on BF4, BFt and
BEL, respectively. Similar figures were found on FATt for the S2a

Table 3
Summary of results for the M1, M1L, M4 and M4L models.

Trait1 Total2 OTU3 Indirect4

Mediation Emp. Test

FATg 495 S2a 1069 0
S2b 2311 464

BF1 237 S2a 1326 225
S2b 2571 492

BF2 314 S2a 1255 230
S2b 2337 461

BF3 273 S2a 1230 189
S2b 1874 333

FATt 358 S2a 1240 238
S2b 1611 279
S3a 2971 0
S3b 1420 1
S3c 1707 344

BF4 482 S2a 1139 212
S2b 1411 264
S3a 2896 659
S3b 1470 243
S3c 1868 380

BFt 497 S2a 1136 202
S2b 1580 299
S3a 2383 526
S3b 1217 207
S3c 1607 292

BEL 265 S2a 1454 292
S2b 1679 308
S3a 3114 747
S3b 1338 220
S3c 1180 176

1 Measured (host phenotypic) or latent variables used in the analysis.
2 Number of host genomic features identified as significant for the total effect (G ? P, models M1 or M1L) using bootstrapping.
3 Gut microbial feature used as mediator for the estimation of the indirect effect (G ? M ? P, models M4 or M4L).
4 Number of host genomic features identified as significant for the indirect effect (G ? M ? P, models M4 or M4L) using the Bootstrapping and Permutation tests.
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and S3c-mediated effects, with 119 and 125 G features only iden-
tified on the latent variables, whereas 144, 92 and 221 features and
202, 117, and 92 features identified also on BF4, BFt and BEL.

3.5. Comparison with previously discovered QTL in swine

Fig. 4 shows the number of QTL reported in QTLdb [21]; www.
animalgenome.org) that were found in proximity to the G features
discovered in this study (hereinafter called ‘QTL hits’). The results
for the Total effect are equivalent to the results that can be
obtained with a traditional GWAS.

In the online database, the QTL are grouped based on the trait
category they were found in association to. These categories are
reported on the y-axis, while the number of QTL hits is reported
on the x-axis. According to the database categories, the six traits
used in this study belong to the Meat and Carcass Traits category,
here referred to as Meat.

With the exception of BF4, the largest number of hits per trait
was reached by a mediated effect on the Meat category. S2a-
mediated effects were the largest for BF3 and FATg while S2b (Pep-

tococcus) mediated effects showed the largest number of hits for
BF1, BF2, BFt, BEL and the latent variable FATt. The largest number
of hits in the Meat category was always reached by one of the
mediated effects. For BF4, the total effect showed a larger number
of hits in the Health group, followed by the S3c-mediated effect in
the same group. Yet, there was a consistent number of hits in the
Meat group, with ~100 hits from the total effect and the S3a-/
s3b-mediated effects.

4. Discussion

4.1. Mediation analysis allows the discovery of relevant host genomic
variants

This study discovered several host genomic variants that affect
fat deposition in swine involving gut microbiome as a mediator. In
the analysis implemented, the effect that the host genome exerts
on the phenotypic traits of interest is modeled as a direct effect
but also as an effect on the microbiome features, which in turn
affect the phenotypic trait of interest. While the direct effect

Fig. 3. Miami plot reporting the mediated (above) and total (below) effects (as absolute values) estimated on FATg (3a) and FATt (3b). Yellow dots represent features that
were selected for empirical test but did not result significant. Red dots represent features that resulted significant. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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assumes that a change in the host genome causes a change in the
phenotypes with no assumption on the biological path that could
lead to that change, the mediated effect assumes that the mediator
(the gut microbiome composition) is involved in the path to test.
The mediation analysis, therefore, compares a specific biological
path (the mediated effect) to a generic path (the direct effect).

Because of the nature of this study, our discussion does not deeply
focus on the results about the G and M features discoveries, but on
how mediation analysis implemented in a SEM can help recover
host genomic variance for fat deposition traits.

Several hypotheses on the biological mechanisms involved in
mediated effects are possible. For example, some G features could

Fig. 4. Plots reporting the number of host genomic features that were declared significant for the empirical tests as assigned to the different categories of QTL previously
reported in the Sus scrofa literature (www.animalgenome.org). Fat growth (4a) and fat terminal (4b) traits.
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alter the microbiota composition (G ! M), either by providing a
more or less conducive substrate for a particular group of bacteria.
That alteration could in turn result in a cascade of alterations lead-
ing to a different fat deposition pattern (G ? M). The reason why
this biological path could not be observed (and estimated) with a
traditional GWAS (G?M) is because additional mechanisms inter-

fere with the changes occurring in the mediated path. Such mech-
anisms could be normally occurring molecular processes aimed at
maintaining a similar fat deposition homeorhesis despite of the
variability in G. For example, such additional mechanism could
involve the sense of satiety and lead to a change in feeding behav-
ior, which in turn would reduce fat accumulation.

Fig. 4 (continued)
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It should be further noticed that fecal samples do not represent
the microbiota composition of the different intestinal tract. The use
of caecal samples as opposed to rectal swabs could provide a more
granular description of the intestinal microbiota composition thus
improve the model performance and the understanding of the
complex dynamics among the host and the microbiota [29].

Several phenotypic traits were used in this study to describe fat
deposition of pigs raised in commercial conditions for meat pro-
duction. These traits were grouped in order to describe fat deposi-
tion across the pig’s growth period. The first step was to select gut
microbial features that would show a consistent impact on the
three traits that would compose each group. The OTU that were
used for this purpose belong exclusively to the Peptococcus and
Butyricicoccus genera, which showed different presence and abun-
dance during the two stages of sampling yet exerted a strong
impact on the three traits of each group. These genera have already
been found to be differently abundant in pig with high and low
feed conversion ratio by Tan et al. [51]. Peptococcus was also found
to be positively associated with fat deposition in a study conducted
by our group in a separate cohort of pigs [5].

Butyricicoccus was found to be negatively correlated with a
number of clinical indicators by Zeng et al. [63] and, unsurpris-
ingly, was also discovered as a mediator of probiotic and antibiotic
administration aimed at reducing food allergies in mice [58].

The mediation analysis was compared to a traditional GWAS
(Mod1, Fig. 1), estimating the total effect that the host genomic
variants exert on the phenotype regardless of the biological path
taken. The mediation analysis allowed the discovery of a number
of features that were equal in number, if not more, than those dis-
covered for the total effect (Table 3).

While the number of significant associations that can be discov-
ered as significant in GWAS depends mostly on the size of the
experimental design and the heritability of the trait, we noted vari-
ability in the number of features identified in the mediation anal-
ysis. This variability appeared to depend on the mediator variable
used with OTU assigned to the genus Peptococcus allowing more
discoveries than the others (S2b and S3a for FATg and FATt, respec-
tively). These two mediator variables were also the ones with the
strongest and most consistent effects on the phenotypic traits
(Table 2), expressed as the b0p m effect in the MWAS model
(Mod2, Fig. 1). Since a strong mediated effect is built on the pro-
duct of the a0m g and b0p m effects, both effects being strong to
results in a significant indirect effect estimation. Therefore, we
could infer that an essential step for building a robust
microbiome-mediated host genome scan is to employ mediator
variables with a strong effect on the phenotypic trait. Mediators
that show a weak b0p m effect could still allow strong mediated
effects, but further research is needed on how to identify them in
using a time-efficient method.

4.2. SEM allows the extraction of latent information

Structural equation modeling and the use of latent variables
allow the extraction of information that cannot be recovered by
single traits. In this study, the fat deposition traits were grouped
to describe adipose tissue deposition at different stages of the
growth period and in different parts of the body at the end of the
study. In the former of the two, the use of multiple variables is
advisable because growth trajectories differ between individuals
for different management and physiological factors [32]. As with
whole-body growth, fat deposition can take different patterns. In
the latter of the two cases, multi-instrument multi-tissue mea-
sures of fat deposition were used in order to extract information
on fat deposition that goes beyond what can be observed in a sin-
gle part of the body.

When the latent variables were used as the dependent and most
endogenous variables, several host genomic variants were identi-
fied showing a mediated effect larger than the direct one. In some
cases, no G features passed the empirical significance tests
although in others novel G features were identified. For example,
the M feature S2b (Peptococcus) allowed the overall discovery of
464 features for FATg and 279 for FATt (Table 3). Of these, 97
and 109 could only be identified by the latent variables (Fig. 2b)
using model Mod4L.

4.3. Total and mediated effects are mapped to different genomic
regions

The magnitudes of the mediated G ? M ? P (above) and total
G ? P (below) effects are depicted in Fig. 3 for scenarios where
most of the G features could be identified through a mediated
effect. Mediated effects were in this case smaller, which is probably
due to the fact that two specific phenomena have to occur for the
mediated effect to be detected, while multiple paths could be
involved in the total effect.

The host genomic regions that are responsible for the total and
mediated effects were generally different. Fig. 4 reports a descrip-
tion of the concordance between the G features identified in this
study and the QTL reported for Sus scrofa [21]; www.ani-
malgenome.org). There was seldom an agreement between the
total and mediated effects for their allocation on the QTL categories
since the number of hits for the two effects was different for most
of the traits. The total effects were predominantly associated with
Health andMeat QTL. The fact that the Health category showed sev-
eral hits for the total effect could be due to the fact that the animals
used in this study were raised in commercial conditions while
most of the GWAS studies are performed in nucleus farms, which
have more stringent biosecurity controls. The relevance of Health
hits could therefore result from an immunity component embed-
ded in the traits used in this study. The mediated effects colocal-
ized with Meat QTL for most of the traits. This shows again the
difference in the biological processes that the total and mediated
effects are pointing at and, at least in this study, there was more
consistency with previous literature by looking at the mediated
than total effects. The G features that determine the P trait for
the total effects are those associated with the trait (G ? P). Con-
versely, the explicit modeling of the M!mediated path implies that
a change in the G variable leads to a change in the M variables, in
other words the genes associated with the G feature controls the
gut microbiome composition (G ? M). Once the latter is altered,
i.e. a change in the abundance of the selected M features occurs,
some physiological process leads to a change in fat deposition
(M ? P). The G features identified for the mediated effect would
primarily affect the abundance of the mediator M feature. If such
M mediator strongly impacts the fat deposition of the host, the
mediated effect will be visible. Since some of the previously iden-
tified QTL for fat deposition in regions are in proximity to the G fea-
tures identified for the mediated effect in this study, we could also
hypothesize that the previous study captured genetic variation for
the M mediator abundance, that was realized in the fat deposition
phenotypes.

Table S4 reports the genes mapped to each of the top 15 win-
dows for both the total and mediated effects on the two latent vari-
ables. Several genes identified withing the significant genomic
regions for the mediated effects point at cognitive development.
DYNLRB1 was found to be associated to neuronal survival [52],
INPP5K was found to be associated to cognitive impairment [59],
ZFHX2 was found to be associated to behavioral abnormalities
[25] and CTNND2 was found to be associated to mental retardation
and intellectual disability [31,4]. Other genes were involved at can-
cer formation and development, for example AK4 was found to be
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involved in the esophageal cancer [62], RSG6 was found to be asso-
ciated to bladder cancer [7], SLC43A2 was found to be involved in
metastatic gastric cancer [61] and RPH3AL was found to be associ-
ated to colorectal adenocarcinoma [23]. As expected, other genes
(PCK2, DOC2B) pointed at insulin regulation, diabetes and obesity
[3,42]. It should be kept in mind that these genes shape gut micro-
biome composition, before affecting fat deposition. Since a lot of
genes and QTL seem to point at regulating health (in a broad sense)
we could speculate that such regulation happens through the mod-
ification of the bacterial communities. The host genes will regulate
the intestinal environment in order to favor certain species or
fighting the insurgence of others. The bacterial species could be
beneficial preventing the insurgence of tumors and regulating
the gut-brain axis, for example.

4.4. Mediated effects as a new source of genetic variation

The G features with a significant mediated effect cannot be
found in a traditional GWAS, unless they show a significant total
effect, as would be the case in this study. This proves the value
of a mediation analysis.

Mediation analysis has been used in other studies that aimed at
estimating indirect effects that G could exert on P, even if using
other host phenotypes rather than gut microbiome as a mediator.
In a study on beef cattle performed with a different approach,
Leal-Gutiérrez et al. [27] found different genomic regions affecting
meat quality (expressed as a latent variable) either directly or
mediated by carcass quality. Similarly, again with a different
approach, Momen et al. [33] and Momen et al. [34] identified sev-
eral genomic markers with phenotype-mediated effects in chicken
and rice, respectively.

Therefore, the estimation of microbiome-mediated effects could
help discover additional genetic variance for many traits. The role
of gut microbiome has been previously proposed and as a partial
explanation for the missing heritability problem [47,13]. While
most of the authors suggest using the microbiome-generated por-
tion of phenotypic variance to the host genetic component in order
to fill the missing heritability gap, here we suggest using mediated
effects to fill such gaps. In our approach, the P phenotypic variance
generated by the G ? M ? P path can be added to the regular
G ? P generated variance (heritability). The missing heritability
gap could be filled by adding the G features involved in the medi-
ated path could be added to the overall variance absorbed by the
host genotype.

4.5. Pitfalls of the current study and future research

The current study was performed under commercial pork pro-
duction conditions, and animals were fed standard diets. It is well
known that the gut microbiome can be heavily influenced by feed-
ing different diets or using pro-/pre-/anti-biotics. For this reason,
the mediated effect should be studied in other populations or
experiments because of its specificity. For example, let’s assume
that the use of feed additives alters the gut microbiome composi-
tion, including a change in the M feature that is involved in the
mediated path. We will call such external intervention as Z ? M,
where Z is some variable measuring the additive dosage. While
the M ? P effects would not be altered and would probably be
observed on P, the G ? M could be altered due to Z ? M since
the two effects are competing. If the external intervention ‘over-
writes’ G ? M, this effect could be nullified as Z is probably
designed to totally control M. Alternatively, both effects could be
magnified if some biological interaction between G and Z occurs,
i.e. (GZ) ? M. It is important to note that such susceptibility to
external interventions could be found for the total effect as well,

although the possibility for that effect to incorporate multiple
paths makes it less prone to change under different conditions.

From a methodological standpoint, this study proposed a rela-
tively simple method to test for mediations. Models that allow
mediation through multiple variables should be studied. The dis-
covery of genomic markers associated with (or affecting a) pheno-
type of interest should be performed with methods that can fit all
markers within the same model, accounting for linkage disequilib-
rium and perhaps performing variable selection [12]. Some studies
have proposed a correction of the phenotype of interest for the
mediator [27,60] and inferences are based on comparing the host
genomic effects to a model that does not include the correction.
To use the terminology developed in this study, such models would
perform a comparison between the cp g and c0p g estimates, which
is usually referred to as the Baron and Kenny approach [2]. While
the method is correct, it doesn’t allow for the explicit estimation
of the am g and its testing simultaneously to the other effects in
the model [19].

The option to use more than one mediator variable should be
allowed to fully describe the biological processes of mediation,
especially if the proposed mediators show some degree of correla-
tions. In this regard, Preacher and Hayes [40] proposed to use a
multi-mediator model which could contrast the different paths,
but this method would require the simultaneous estimation of
multiple paths, which would in turn require large datasets. The
potential use of latent variables as mediators has also been dis-
cussed, but the method may not be suitable for high-
dimensionality data like microbiome profiles: a latent mediator
built on several microbial features would exert a stronger M ? P
effect but there could be problems with the G ? M effect. Due to
the different genetic architecture of the several M features [5],
the identification of which G feature affects which M feature is
not trivial. The estimation of G effects on a latent M variable would
imply the existence of multiple effects of G on the multiple M,
which makes computation and interpretation difficult. In this
regard, van Kesteren and Oberski [57] proposed a method for selec-
tion and regularization of the mediator variables taking into
account correlations among mediators, which seems more suitable
for the use on high-dimensional biological data.

5. Conclusions

In this study we propose a simple method to study the causal
relationships between host genome, gut microbiome and host phe-
notypes. We used a dataset that included information collected on
swine (Sus scrofa) where different measures of fat deposition
served as phenotypes of interest.

This study shows that a large number of host genomic features
affect these phenotypes through an indirect, empirically-tested,
microbiome-mediated effect on measured and latent variables. It
is possible biological that these genomic features contribute to
controlling the composition of the gut microbiome, specifically
affecting the abundance of certain taxa, which in turn can affect
the rate of fat deposition. Many genomic features don’t affect the
phenotype in a direct way and would not have been identified in
a genome-wide association study performed without the inclusion
of a microbiome mediator variable.

The example shown in this study suggests that some portion of
the genetic variance for certain traits may not be evident when
performing association studies. Considering the importance of
understating the genetic architecture of certain traits, the imple-
mentation of a mediation analysis in structural equation modeling
seems appealing. With the constant progress in generating high-
dimensional biological data, the understanding of the interplay
between the genes in the host and the genes of the microbes that
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live in the intestinal lumen is gaining more interest and this study
proposes an approach to dissecting this relationship in a causal
framework. In addition, the recovery of genetic (genomic) variance
for certain traits could help solve the so called ‘missing heritability
problem’. Future research should be aimed at studying the longitu-
dinal causal network among the different variables as well as
implementing models that allow the selection and regularization
of exogenous and mediator variables.
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