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Predicting Growth and Carcass 
Traits in Swine Using Microbiome 
Data and Machine Learning 
Algorithms
Christian Maltecca1, Duc Lu1, Constantino Schillebeeckx2, Nathan P. McNulty  2, 
Clint Schwab3, Caleb Shull3 & Francesco Tiezzi1

In this paper, we evaluated the power of microbiome measures taken at three time points over the 
growth test period (weaning, 15 and 22 weeks) to foretell growth and carcass traits in 1039 individuals 
of a line of crossbred pigs. We measured prediction accuracy as the correlation between actual and 
predicted phenotypes in a five-fold cross-validation setting. Phenotypic traits measured included 
live weight measures and carcass composition obtained during the trial as well as at slaughter. We 
employed a null model excluding microbiome information as a baseline to assess the increase in 
prediction accuracy stemming from the inclusion of operational taxonomic units (OTU) as predictors. 
We further contrasted performance of models from the Bayesian alphabet (Bayesian Lasso) as well 
machine learning approaches (Random Forest and Gradient Boosting) and semi-parametric kernel 
models (Reproducing Kernel Hilbert space). In most cases, prediction accuracy increased significantly 
with the inclusion of microbiome data. Accuracy was more substantial with the inclusion of microbiome 
information taken at weeks 15 and 22, with values ranging from approximately 0.30 for loin traits to 
more than 0.50 for back fat. Conversely, microbiome composition at weaning resulted in most cases in 
marginal gains of prediction accuracy, suggesting that later measures might be more useful to include 
in predictive models. Model choice affected predictions marginally with no clear winner for any model/
trait/time point. We, therefore, suggest average prediction across models as a robust strategy in fitting 
microbiome information. In conclusion, microbiome composition can effectively be used as a predictor 
of growth and composition traits, particularly for fatness traits. The inclusion of OTU predictors 
could potentially be used to promote fast growth of individuals while limiting fat accumulation. Early 
microbiome measures might not be good predictors of growth and OTU information might be best 
collected at later life stages. Future research should focus on the inclusion of both microbiome as well 
as host genome information in predictions, as well as the interaction between the two. Furthermore, 
the influence of the microbiome on feed efficiency as well as carcass and meat quality should be 
investigated.

The efficiency of producing saleable meat products is primarily determined by costs associated with feed and by 
the amount of and quality of lean meat produced1,2. Utilizing feed resources more efficiently has become a defi-
nite challenge that faces the livestock industry. Recent efforts have been devoted to identifying and exploiting the 
genomic variability of individual pigs in increasing feed efficiency3–5. Despite its success, this approach presents 
logistical as well as technical limitations related to obtaining accurate individual feed intake records6 as well as 
defining and using different feed efficiency measures7. Perhaps most importantly, a continued effort concentrat-
ing only on the pig variability for efficiency would inevitably lead to diminished marginal gains, incurring in 
concomitant losses of overall fitness and genetic diversity over time8,9. The amount and type of bacteria present 
in the gut of individuals represent a key part of all mammalian organisms10. The makeup of the microbiome 
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represents a vast pool of genomic diversity that contributes to physiology and health11. Particularly, the intestinal 
microbiome directly affects the degradation of carbohydrates, provides short-chain fatty acids, mitigates and 
alter the effect of potentially toxic compounds and produces essential vitamins12. The impact of environmental 
factors, such as nutrition13,14 stressors, and challenges associated with weaning15,16 and management17,18 have 
been characterized in pigs. Nonetheless, the composition and function of a healthy microbial ecosystem have not 
been qualitatively and quantitatively defined and used as a tool to maximize animal health and performance19. 
Particularly, microbiome composition has yet to be studied at large scales, including large sampling conducted 
through several stages of production20. Within this paper, we assessed the power of microbiome predictions based 
on fecal samples, to foresee growth and carcass composition in a population of healthy crossbred pigs. In doing so, 
we employed machinery typical of host genomic predictions, including models of the Bayesian alphabet as well as 
semi-parametric and machine learning algorithms.

Results
Within this work we evaluated the effectiveness of longitudinal microbiome data to inform prediction of 
growth and carcass composition in swine. For this purpose, we employed and contrasted models that have been 
proven successful in the genomic selection arena in order to provide the blueprint for the future routine inclu-
sion of microbiome information in selection programs. We evaluated the performance of the proposed mod-
els in a cross-validation setting. We further tested the overall experimental design with a mixed model based 
post-analysis.

Microbiome composition over time. The distribution of taxonomic abundances for the three time points 
measured (weaning, 15 weeks, and 22 weeks) in the current population has been described in detail recently by 
Lu and colleagues19. Since the objective of the current paper was not to provide the ecological landscape of the 
population measured, the reader is referred to that paper for more details. Briefly, at the three different stages of 
pig development, there were 14, 21, 29, 54, 106, and 202 identified phyla, classes, orders, families, genera, and 
species, respectively. For the three sampling points, 95.79–97.80% of the OTUs were classified into six phyla: 
Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Spirochaetes, and Actinobacteria. Bacteria that were in 
the phylum Firmicutes represented the majority of the total population followed by Bacteroidetes. To evaluate 
the ability of the microbiome to predict phenotypic measures, we conducted a preliminary analysis to investigate 
how different sampling times affected fecal microbiome composition. To do so, we fitted a random forest model 
similar to the one employed for growth and carcass traits (see Methods), with the only difference that in this 
case the model was used to classify each observation into one of the three sampling times. We report the results 
of the five-fold classification in Fig. 1, which depicts the normalized classification confusion matrix at weaning, 
15 weeks and 22 weeks. Individual time measurements constituted three distinct microbial populations. The 
accuracy of classification was in all cases extremely high (>95%). The misclassification rate was marginally higher 
for 15 wk and 22 wk (~3%). This result is in line with a report by Lu and colleagues19 which identified two distinct 
microbial enterotypes at weaning but less distinct clustering at later time points. Additional information can be 

Figure 1. Normalized classification confusion matrix of microbiome composition at three time points. 
Wean = Weaning, 15wk = 15 weeks, 22wk = 22 weeks. Confusion matrix obtained with an RF model from a 
five-fold cross-validation.
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found in supplemental material, where abundance over time (Supplementary Fig. 1), principal coordinate anal-
ysis (Supplementary Fig. 2) and significant log fold changes of families at different time points (Supplementary 
Fig. 3) are reported.

Cross-validation highlights a significant effect of microbiome for growth and carcass predic-
tion. We first evaluated the power of microbiome data in predicting several growth parameters in a healthy 
population of crossbred sires originating from the mating of 28 founding sires’ families. For this purpose we 
considered: weights, back fat, loin area and depth traits measured at 14 and 22 weeks of a growth trial as well as 
daily gain measures for the same period. These were coupled with fecal microbiome information obtained for the 
same individuals at weaning as well as week 15 and 22 of the trial. Each trait was analyzed independently using 
a cross-validation scheme, in which some samples’ phenotypes and OTUs were employed to train the statistical 
models, and the remainder were used to validate the predictions. We considered three classes of models in the 
analyses: one model from the Bayesian alphabet family, Bayesian Lasso (BL)21; two machine learning approaches, 
Random Forest (RF)22 and Gradient Boosting Machine (GBM)23; and one semi-parametric method, Reproducing 
Kernel Hilbert Space (RKHS)24. We chose these models as representative of the most widely used methods for 
genomic prediction in livestock and crops. We have done this to emphasize the similarity of the analyses proposed 
in the current work to genomic selection approaches, both in scope and methodology, as well as to provide a base-
line to expand upon, with the inclusion of genomic information in future comparisons.

Figs 2, 3 and 4 report the accuracies of prediction for each trait, fecal microbiome time point, and method 
combination. Microbiome contribution to prediction was measured as deviation from a null model which 
included only the effects of sex, sire, weight at weaning, and replicate. It should be noted that the null model 
was fitted in all cases within each of the algorithms proposed. For ease of comparison, null models performance 
is represented as the average of null models across methods. Inclusion of OTU abundances in the prediction 
models increased accuracies in most instances with respect to the null model. Nonetheless, the amount varied 
according to the microbiome time point. In general, the inclusion of microbiome composition at weaning had 
low predictive power for daily gain traits as well as carcass measures obtained at week 15 and 22 (Fig. 2). For daily 
gain traits (panel A), the inclusion of microbiome information increased accuracies of prediction by ~3%, yet in 
all cases, 90% CI of the prediction (panel C) overlapped between the null and the biom models, for all algorithms 
employed. Daily gain in later stages of the trial was better predicted than early growth, regardless of the inclu-
sion of microbiome information. Similar trends were observed for carcass traits measured at weeks 14 and 22, 
with predictions ranging from ~15% for loin depth (panels B, C), to ~40% for back fat, for both null and OTU 
models. Conversely, microbiome composition at week 15 substantially increased accuracy in the test sets (Fig. 3). 
The amount was dependent on the trait/time combination. In general, and as expected, microbiome composi-
tion increased prediction accuracies more for traits measured concomitantly with the microbiome sampling. For 
daily gain traits (panel A) the inclusion of microbiome information increased the accuracy of prediction of early 
growth from ~20% for the null model for daily gain from birth to week 14 and from weaning to week 14 to ~40 
and 45% for the same two traits. Similarly, for all traits measured at week 14 (panel B), microbiome information 
boosted prediction accuracy significantly, with gains of ~0.20 for weight and back fat and ~0.05 and 0.10 for loin 
depth and area, respectively. Similar trends were seen for week 22 traits, albeit with smaller increases and with 
overlapping 90% CI (panel D) for several of the traits, with the exception of weight. Figure 4 depicts results of 
cross-validation predictions for microbiome measured at week 22. It should be noted that given the temporal 
succession of sampling, combinations of phenotypes measured at week 14 and microbiome at week 22 should be 
interpreted with caution due to the temporal succession of the measures. Again, for most traits microbiome infor-
mation increased prediction accuracy. Yet, for most trait/model combinations the increase was not significant. 
Specifically, and focusing on week 22 traits, only weight and back fat benefited from including OTU with gains 
of ~0.08 for back fat and ~0.05 for weight. Interestingly, including OTU abundances did not increase accuracy of 
prediction for later daily gains traits (from week 14 to week 22 and from week 14 to market).

The results presented are in line with what has been observed in other studies. He and colleagues25 found that 
swine gut microbiome had a moderate effect on fat with microbiome explaining from 1.5% to 2.73% phenotypic 
variance for average back fat and abdominal fat weight, respectively. Similarly, Fang and colleagues26 found 119 
OTUs associated with intramuscular fat in growing pigs. Furthermore, McCormack et al.27 identified several gut 
microbes potentially associated with porcine feed efficiency and Yang and colleagues28 identified two potential 
enterotypes in Duroc pigs associated with residual feed intake. Data on daily gain and weight is more sparse 
yet, for example, Ramayo et al.29 identified clusters of piglets based on OTU abundance, significantly associated 
with body weight at 60 d and average daily gain. It is worth noting that in most cases these studies focused on 
either the identification of ecological populations of bacteria or the identification of specific OTUs associated 
with a particular phenotype. To the best of our knowledge, this is the first attempt to rigorously characterize the 
overall predictive ability of the microbiome for growth and carcass traits in swine, and livestock in general. In 
our analysis in most cases the inclusion of microbiome composition data boosted prediction accuracy beyond 
what expected by the identification of few important taxonomical units, not dissimilarly from what observed in 
genomic predictions in several livestock species30, suggesting a more complex interconnection between different 
OTUs and microbiome compositions than highlighted in previous studies. Furthermore, a growing body of liter-
ature exists pointing to a rich interplay between the pig and its metagenome19,31. This represents both a challenge 
and an opportunity to incorporate microbiome information in selection programs effectively. The microbiome 
could potentially be considered an entirely environmental source of variation but also one at least partially under 
the direct control of the host. The methods employed in the current analysis would prove extremely flexible in 
integrating the full spectrum of variability generated by the availability of microbiome and host genomic data. 
Some of these approaches could be applied directly following GxE examples in both plants and livestock32,33.
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Model choice partially influences prediction accuracy, with results depending on the time-trait 
combination. We investigated the effectiveness of different model classes to incorporate microbiome infor-
mation for the prediction of growth and carcass phenotypes in pigs. We chose models ranging from completely, 
to semi, to non-parametric to recognize and possibly capture the complex interdependent structure of OTUs 
compositions. The models were tested independently for each trait time point combination. We evaluated the per-
formance by comparing models including microbiome composition to a baseline model including only general 
design factors (see Methods). Bayesian Lasso is one model of the “Bayesian Alphabet”34 family, that has gained 
popularity in genomic selection due to its ability to effectively handle large p small n problems in genomic pre-
diction as well as providing a framework for feature selection. BL was proposed by Xu et al.21 and de los Campos 
et al.21. We chose it as one of the most robust and popular choices in the parametric class of models. Reproducing 
Kernel Hilbert Space is a particularly flexible class of semi-parametric models that have been proposed to fit com-
plex multidimensional data. They have recently gained popularity in livestock and crop breeding thanks to the 
work of Gianola and colleagues35 and of de los Campos et al.36. Models of this class rely on the choice of an appro-
priate kernel that is then employed in models of form not dissimilar from the mixed models commonly employed 
in breeding settings. Random Forest is an ensemble method fitting decision trees on various sub-samples of the 
dataset37. Random forest models are generally robust to over-fitting and can capture complex interaction struc-
tures in the data38. Gradient Boosting is an alternative ensemble method23 aimed at combining predictors, in this 
case in a sequential manner, by forming committees of predictors with higher predictive ability than single ones. 

Figure 2. Accuracy of prediction for microbiome composition at Weaning. Panel (A) Accuracy for daily 
gain traits, Panel (B) Accuracy for Week 14 traits, Panel (C) Accuracy for Week 22 traits, Panel (D) 90% 
confidence interval for model/trait combinations. Confusion matrix obtained with a RF model from a 
five-fold cross-validation. BL = Bayesian Lasso, RF = Random Forest, GBM = Gradient Boosting Machine, 
RKHS = Reproducing Kernel Hilbert Space. ADGBto14 = Average Daily Gain Birth to week14, 
ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily Gain week14 to week22, 
ADG14toMKT = Average Daily Gain week 14 to Market, Week14Wt = weight at week14, Week14BF = backfat 
at week14, Week14LD = loin depth at week14, Week14LEA = loin eye area at week14, Week22Wt = weight at 
week22, Week22BF = backfat at week22, Week22LD = loin depth at week22, Week22LEA = loin eye area at 
week22. Red outlines indicate prediction significantly different from null model.
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Panel D of Figs 3, 4 and 5 portrays point estimates and 90% CI for each model-trait combination. In the vast 
majority of cases, the choice of model was a wash. In our analysis we weren’t able to identify a clear winner, and 
for the most part models’ CIs largely overlapped. Reproducing Kernel Hilbert Space models emerged as the most 
stable approach across scenarios in terms of ranking and magnitude of the CI, followed by Bayesian Lasso and 
Random Forest,while Gradient Boosting showed the largest variation in performance across trait times. At wean-
ing gradient boosting models in some cases performed worse than the null model. This is unsurprising though, as 
in most cases microbiome data at weaning contributed little to the learning of the models. Our results are similar 
to what has been observed for the prediction of complex traits with genomic information in both plants39 and 
in livestock40,41, where different classes of models performed similarly over a wide variety of conditions so that 
in most cases the choice of model is somewhat more dependent on population and data structure than that the 
underlying biological signal. It is important to note that while for DNA polymorphism- informed predictions 
marker information is somewhat, (loosely speaking) a fixed parameter, OTU composition can be much more 
variable across both individuals and experimental settings, due to variability in sampling procedures, environ-
mental conditions, as well as the bioinformatic machinery employed in obtaining taxonomical units. While we 
do recognize that some of this variability cannot be effectively managed through statistical modeling, we also 
believe that some of these models might be more flexible in handling such sources of variation. This should be the 
subject of further investigation, and it is beyond the scope of the current paper. Within this work and in recogni-
tion of this complexity, we attempted to overcome some of these limitations by obtaining prediction accuracies 

Figure 3. Accuracy of prediction for microbiome composition at Week 15. Panel (A) Accuracy for daily 
gain traits, Panel (B) Accuracy for Week 14 traits, Panel (C) Accuracy for Week 22 traits, Panel (D) 90% 
confidence interval for model/trait combinations. Confusion matrix obtained with a RF model from a 
five-fold cross-validation. BL = Bayesian Lasso, RF = Random Forest, GBM = Gradient Boosting Machine, 
RKHS = Reproducing Kernel Hilbert Space. ADGBto14 = Average Daily Gain Birth to week14, 
ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily Gain week14 to week22, 
ADG14toMKT = Average Daily Gain week14 to Market, Week14Wt = weight at week14, Week14BF = backfat 
at week14, Week14LD = loin depth at week14, Week14LEA = loin eye area at week14, Week22Wt = weight at 
week22, Week22BF = backfat at week22, Week22LD = loin depth at week22, Week22LEA = loin eye area at 
week22. Red outlines indicate prediction significantly different from null model.



6SCIENTIFIC REPORTS |          (2019) 9:6574  | https://doi.org/10.1038/s41598-019-43031-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

averaged across models. Results from this analysis were obtained by pooling information across replicate and 
methods and are presented in Fig. 6. Results in this case are presented with two competing models, a null model 
(obtained again pooling null fit across methods) and a microbiome model (biom) obtained by averaging the 
performance of each trait/method combination. Results for the most part recapitulate what is presented in the 
previous section. In some cases, differences between null and microbiome model have shrunk (e.g. for week 
22 back fat). Mean Squared Errors (MSE) for the competing trait/model combinations are reported in Table 1. 
Results recapitulate for the most part the ones for accuracy with MSE generally lower for the models including 
microbiome information, particularly for wk15 and wk22 and models perfomance that varied with trait/time-
point. Differences in most cases, though, were more nuanced compared to the null model and in some cases (e.g. 
Week14Wt and Week22Wt), microbiome models did not perform significantly better in terms of MSE compared 
to the null models. Thus, results for some comparisons should be interpreted with caution, and further studies 
with a larger sample size should be performed.

Post-analysis of the results. We attempted to evaluate the overall influence of all factors in the design on 
predictive performance with a post-analysis of the cross-validation study. To do so we employed a standard LMM 
approach (see Methods) and obtained least square mean estimates and contrasts for all variables in the analysis. 
Namely we fitted the effect of the inclusion of microbiome information, the algorithm used for the analysis, the 
time point at which the fecal microbiome was sampled, the trait analyzed and all the pairwise interactions. The 

Figure 4. Accuracy of prediction for microbiome composition at Week 22. Panel (A) Accuracy for daily 
gain traits, Panel (B) Accuracy for Week 14 traits, Panel (C) Accuracy for Week 22 traits, Panel (D) 90% 
confidence interval for model/trait combinations. Confusion matrix obtained with a RF model from a 
five-fold cross-validation. BL = Bayesian Lasso, RF = Random Forest, GBM = Gradient Boosting Machine, 
RKHS = Reproducing Kernel Hilbert Space. ADGBto14 = Average Daily Gain Birth to week14, 
ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily Gain week14 to week22, 
ADG14toMKT = Average Daily Gain week14 to Market, Week14Wt = weight at week14, Week14BF = backfat 
at week14, Week14LD = loin depth at week14, Week14LEA = loin eye area at week14, Week22Wt = weight at 
week22, Week22BF = backfat at week22, Week22LD = loin depth at week22, Week22LEA = loin eye area at 
week22. Red outlines indicate prediction significantly different from null model.
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response variable was in this case the accuracy of prediction in the cross-validation experiment. Results of this 
investigation are reported in Table 2 and Fig. 7. Table 2 reports the Type III ANOVA of the overall experimental 
design. All factors and their interactions were highly significant with the exception of the interaction between 
Algorithm and Trait. The interaction between algorithm and time point was also just below the < .P 0 05 signifi-
cance threshold. Figure 7 depicts the least square means of the significant main effects and their interactions. The 
inclusion of microbiome data (averaged over all other factors) increased the prediction ability of models 
by approximately 4% over the null model (0.321 vs. 0.281). Of the models considered, and as seen in the previous 
sections, GBM was the one with the lowest predictive ability (0.26) while RKHS was the one with the highest 
predictive power (0.32), although nearly identical to Bayesian Lasso and Random Forest algorithms. Microbiome 
information collected at week 15 had the highest predictive power (0.335) compared to weaning which had the 
lowest Differences between the first and the two latter were ~5% and ~4%, respectively. Daily gain traits and back 
fat traits were the best predicted, while loin traits, both area and depth, had the lowest accuracies. The Interaction 
between different models and the inclusion of microbiome data shows once again that RKHS models performed 
best regardless of the presence of microbiome data. Interestingly both Random Forest and Gradient Boosting 
were the algorithms that gained the most from the inclusion of OTU information, with improvements versus the 
null model of ~5% in both cases. Similar trends were observed for the time point-algorithm interaction. Finally, 
the interaction of microbiome information with time points highlight how, in our data, microbiome information 
collected at week 15 largely outperforms (~10%) all other time point (as well as null models). To the best of our 
knowledge, this is the first attempt to formally assess microbiome predictions in livestock. Comparable models 
have been used with human microbiome data to predict disease42, and with soil microbiome data to predict crop 
yield43. In both cases, the use of microbiome data improved predictive power, but given the vast diversity of both 
scope and measures, it is difficult to draw a direct comparison.

Discussion
In general, our cross-validation highlighted good predictive power, however results varied considerably depend-
ing on the time points and traits considered. From our study it appears that sampling time might be a crucial 
factor in integrating microbiome information in predictive models for growth. Our data suggest that samples 
measured in the middle of the growth trial would provide the highest amount of information. Conversely early 
measures of microbiome composition might not be as informative. This is somewhat in contrast with recent 
studies28,29 that have found different enterotypes related to growth traits at earlier stages. In our experience, and as  
highlighted by Lu et al.19, clustering of individuals at early time points could be the results of piglet adjusting more 
or less rapidly to the change in diet that normally happens at weaning. We believe this should be investigated 
further. Within this paper we considered the study of each time point as separate and independent. This is a sim-
plification that us allowed to build an easy cross-validation experiment to test different variables. Nonetheless, the 
use of longitudinal models in the future would provide a much more powerful way to investigate the importance 

Figure 5. Model Average accuracy of prediction for microbiome composition at Weaning week 14 and 
week 22. Null = Average of null models. Biom = Average of Microbiome models. ADGBto14 = Average Daily 
Gain Birth to week14, ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily 
Gain week14 to week22, ADG14toMKT = Average Daily Gain week14 to Market, Week14Wt = weight at 
week14, Week14BF = backfat at week14, Week14LD = loin depth at week14, Week14LEA = loin eye area at 
week14, Week22Wt = weight at week22, Week22BF = backfat at week22, Week22LD = loin depth at week22, 
Week22LEA = loin eye area at week22. Red outlines indicate prediction significantly different from null model.



8SCIENTIFIC REPORTS |          (2019) 9:6574  | https://doi.org/10.1038/s41598-019-43031-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

of changes in microbiome composition, and how these changes impact growth efficiency in livestock. To this 
point, some of the deep learning models developed in the context of prediction of longitudinal data44 should 
allow for a much better understanding of the complex interplay between changes in microbiome composition 
and phenotype outcome. Nonetheless, a much larger number of individuals as well as deeper sampling would be 
needed to reach the necessary data granularity to make these approaches appealing. In our studies both growth 
traits and fatness traits achieved good predictive power. Furthermore, the current study was conducted within 
a single crossbred population. For the effective exploitation of microbiome variability in pigs a larger number of 
populations/breeds should be investigated, given the large variability in OTU composition in swine45. Within this 
work we have established a framework that could later be expanded to include not only microbiome information 
but also host genomic data46, to better characterize and possibly manage the environment as well as to account 
for the complex relationships between host and guest variability. Microbiome composition can be effectively used 
as a predictor of growth and composition traits, particularly for fatness traits. Inclusion of OTU predictors could 
potentially be used to promote fast growth of individuals while limiting fat accumulation. Early microbiome 
measures might not be good predictors of growth and OTU information might be best collected at later life stages. 
It should be noted that within the current paper we have included microbial composition as a whole predictor, 
and we did not attempt to identify a significant OTU subset to reduce the space of the predictors. We believe that 
this approach would result in more robust and portable results especially for selection purposes. Nonetheless 
more information on individual OTUs significantly associated with each combination of time/trait is reported in 
supplemental material (Supplementary Table 1)

Methods
Animals. The pigs used in this study were grown in a commercial setting operated by The Maschhoffs LLC 
(Carlyle, IL, USA). Animal use approval was therefore not needed for the data collection. Offspring for the cur-
rent study originated from twenty-eight purebred Duroc sires, from a Duroc population under selection for lean 
growth, mated to Large White × Landrace or Landrace × Large White sows. The resulting offspring were weaned 

Figure 6. Least Square Means and SE for main effects and interactions for the post-analysis of the experimental 
design. Timepoint = 3 levels (Weaning, 15 weeks, 22 weeks), Algorithm = 4 levels (Bayesian Lasso, Reproducing 
Kernel Hilbert Space, Random Forest, Gradient Boosting Machine) Trait = 12 levels (“ADGBto14”, 
“ADGWto14”, “ADG14to22”, “ADG14toMKT”, “Week14Wt”, “Week14BF”, “Week14LD”, “Week14LEA”, 
“Week22Wt”, “Week22BF”, “Week22LD”, “Week22LEA”), Biom = 2 levels (null, microbiome). All elements with 
(:) represent pairwise interactions.
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Method Trait
MSE 
(Wean)

SD 
(Wean)

MSE 
(14 wk)

SD 
(15 wk)

MSE 
(22 wk)

SD 
(22 wk)

Null

ADGBto14

0.032 0.002 0.032 0.002 0.032 0.002
BL 0.032 0.002 0.028 0.002 0.031 0.002
RKHS 0.031 0.003 0.027 0.001 0.031 0.002
RF 0.031 0.002 0.029 0.003 0.032 0.001
GBM 0.034 0.001 0.029 0.002 0.035 0.003
Null

ADGWto14

0.044 0.003 0.044 0.002 0.044 0.002
BL 0.044 0.004 0.041 0.005 0.043 0.005
RKHS 0.042 0.003 0.035 0.003 0.042 0.002
RF 0.040 0.003 0.038 0.004 0.042 0.003
GBM 0.048 0.004 0.037 0.001 0.047 0.001
Null

ADG14to22

0.096 0.006 0.096 0.006 0.097 0.005
BL 0.091 0.008 0.097 0.008 0.092 0.007
RKHS 0.096 0.007 0.091 0.008 0.090 0.009
RF 0.096 0.004 0.091 0.005 0.095 0.007
GBM 0.108 0.007 0.107 0.008 0.097 0.007
Null

ADG14toMKT

0.068 0.006 0.068 0.001 0.066 0.002
BL 0.066 0.008 0.067 0.001 0.060 0.002
RKHS 0.068 0.005 0.068 0.002 0.061 0.002
RF 0.064 0.006 0.067 0.002 0.066 0.005
GBM 0.079 0.007 0.071 0.006 0.061 0.003
Null

Week14Wt

492.4 29.12 492.3 48.37 493.7 36.75
BL 490.3 38.01 402.9 22.97 461.2 37.40
RKHS 471.1 19.83 381.6 32.58 467.3 38.03
RF 458.7 43.82 417.2 40.81 471.6 19.54
GBM 509.6 15.21 426.6 34.53 522.6 33.57
Null

Week14BF

0.011 0.000 0.012 0.000 0.012 0.001
BL 0.011 0.001 0.011 0.001 0.012 0.001
RKHS 0.011 0.001 0.010 0.001 0.011 0.001
RF 0.011 0.001 0.010 0.001 0.011 0.001
GBM 0.013 0.001 0.010 0.001 0.012 0.001
Null

Week14LD

0.037 0.002 0.036 0.003 0.035 0.001
BL 0.038 0.004 0.037 0.002 0.034 0.002
RKHS 0.036 0.001 0.034 0.001 0.035 0.002
RF 0.035 0.003 0.034 0.001 0.034 0.002
GBM 0.041 0.002 0.037 0.002 0.039 0.002
Null

Week14LEA

0.501 0.047 0.495 0.013 0.489 0.037
BL 0.475 0.017 0.482 0.035 0.446 0.023
RKHS 0.48 0.025 0.429 0.018 0.479 0.024
RF 0.484 0.035 0.467 0.043 0.461 0.022
GBM 0.573 0.014 0.459 0.037 0.585 0.028
Null

Week22Wt

840.59 72.62 841.57 76.63 849.17 42.45
BL 794.52 67.09 771.92 18.20 770.12 43.67
RKHS 806.89 29.13 789.51 60.79 789.23 33.99
RF 789.13 33.59 773.37 49.07 792.02 37.89
GBM 928.37 55.37 855.15 33.41 847.26 49.75
Null

Week22BF

0.037 0.003 0.038 0.001 0.038 0.002
BL 0.036 0.004 0.037 0.002 0.036 0.004
RKHS 0.036 0.002 0.035 0.003 0.036 0.002
RF 0.035 0.002 0.036 0.002 0.035 0.003
GBM 0.043 0.003 0.036 0.002 0.036 0.004
Null

Week22LD

0.043 0.005 0.042 0.002 0.042 0.002
BL 0.041 0.004 0.042 0.004 0.039 0.003
RKHS 0.040 0.005 0.038 0.004 0.041 0.005
RF 0.041 0.001 0.04 0.002 0.042 0.003
GBM 0.049 0.004 0.044 0.004 0.044 0.004

Continued
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at 18.6 days (±1.09) and subsequently moved to a nursery-finishing facility. Here individuals were grouped in 
batches of 20 pigs per pen. Pen mates were paternal half-siblings of the same gender and similar weaning weight. 
We performed six replicates of this basic experimental block, each composed of 2 pens (one pen of female and 
one pen of castrated male pigs) from each of the 28 sires. The test period began the day the pigs entered the 
nursery-finishing facility. Individuals were fed a standard pellet diet during nursery, growth, and finish periods. 
Diet formulations and their nutritional values are provided [see Additional file 1]. The pigs received a standard 
vaccination and medication routine [see Additional file 2]. End of test was reached on a pen-specific basis when 
all pigs in a pen achieved an average live weight of 136 kg. Their average age at harvest was 196.4 days (±7.86). 
We collected rectal swabs from all pigs in a pen at three time points: weaning, 15 weeks post weaning (aver-
age 118.2 ± 1.18 days, hereafter “wk15”), and 22 weeks post weaning (average 196.4 days ± 7.86 days, hereafter 
“wk22”). Four pigs were chosen randomly per pen for lean carcass growth measurements, and their rectal swabs 

Method Trait
MSE 
(Wean)

SD 
(Wean)

MSE 
(14 wk)

SD 
(15 wk)

MSE 
(22 wk)

SD 
(22 wk)

Null

Week22LEA

0.734 0.055 0.742 0.056 0.718 0.049
BL 0.711 0.026 0.735 0.035 0.668 0.033
RKHS 0.693 0.021 0.685 0.070 0.698 0.078
RF 0.717 0.031 0.706 0.062 0.719 0.041
GBM 0.833 0.047 0.781 0.078 0.785 0.069

Table 1. Mean squared error average and standard deviation for each combination of Trait/Model/
Age Category for a 5-fold cross validation. BL = Bayesian Lasso, RF = Random Forest, GBM = Gradient 
Boosting Machine, RKHS = Reproducing Kernel Hilbert Space. ADGBto14 = Average Daily Gain Birth 
to week14, ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily Gain 
week14 to week22, ADG14toMKT = Average Daily Gain week14 to Market, Week14Wt = weight at 
week14, Week14BF = backfat at week14, Week14LD = loin depth at week14, Week14LEA = loin eye area at 
week14, Week22Wt = weight at week22, Week22BF = backfat at week22, Week22LD = loin depth at week22, 
Week22LEA = loin eye area at week22.

Sum 
Sq

Mean 
Sq F value Pr (>F)

Timepoint 0.272 0.136 87.637 0.000***
Algorithm 0.270 0.090 57.937 0.000***
Trait 8.889 0.593 381.430 0.000***
Biom 0.281 0.281 180.905 0.000***
Timepoint:Algorithm 0.020 0.003 2.164 0.047*
Timepoint:Trait 0.258 0.009 5.543 0.000***
Timepoint:Biom 0.148 0.074 47.746 0.000***
Algorithm:Trait 0.083 0.002 1.186 0.208
Algorithm:Biom 0.027 0.009 5.900 0.001**
Trait:Biom 0.287 0.019 12.311 0.000***

Table 2. ANOVA table of the post-analysis of the experimental design. Timepoint = 3 levels (Weaning, 15 
weeks, 22 weeks), Algorithm = 4 levels (Bayesian Lasso, Reproducing Kernel Hilbert Space, Random Forest, 
Gradient Boosting) Trait = 12 levels (“ADGBto14”, “ADGWto14”, “ADG14to22”, “ADG14toMKT”, “Week14Wt”, 
“Week14BF”, “Week14LD”, “Week14LEA”, “Week22Wt”, “Week22BF”, “Week22LD”, “Week22LEA”), Biom = 2 
levels (null, microbiome). All rows with (:), represent pairwise interactions.

Figure 7. Overall Experimental design. BL = Bayesian Lasso, RF = Random Forest, GBM = Gradient Boosting, 
RKHS = Reproducing Kernel Hilbert Space. ADG = Average Daily Gain.
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were used for microbiome sequencing. In the end, the number of samples at weaning, week 15, and week 22 were 
1205, 1295, and 1283, respectively. There were 1039 animals with samples collected at all 3 time points. More 
details on the distribution of samples across families, time points, and sex are provided [see Additional file 3]. 
Loin depth, loin area as well as back fat thickness and weights were recorded on live animals at weeks 14 and 22 
post-weaning and at market weight. These measures will be hereafter referred to as Week14LEA, Week14LD, 
Week14BF Week14Wt and Week22LEA, Week22LD, Week22BF, Week22Wt, respectively. Likewise, average daily 
gain was measured as difference in live weight from birth to week 14 (ADGB14), from weaning to week 14 
(ADGW14) from week 14 to week 22 (ADG1422) and from week 14 to market (ADG14MKT). A summary of the 
traits employed in the current analysis is reported in Table 3.

DNA extraction and purification. Total DNA (gDNA) was extracted from each rectal swab by mechan-
ical disruption in phenol:chloroform. Briefly, 650 µL of extraction buffer (200 mM Tris; 200 mM NaCl; 20 mM 
EDTA, pH 8.0) was added to each swab stored in a 2 mL self-standing screw cap tube (Axygen, CA, USA). Tubes 
were shaken using a Mini-BeadBeater-96 (MBB-96; BioSpec, OK, USA) for 20 s to free sample material from the 
swab head. Following a brief centrifugation (10 s; 500 × g) to pull down any dislodged material, each swab head 
was removed from its tube using sterile forceps. Samples were frozen solid at −80 °C, and approximately 250 µL 
of 0.1 mm zirconia/silica beads (BioSpec) and a 3.97 mm stainless steel ball were added to the sample (while still 
frozen, to avoid splashing). Samples were allowed to thaw briefly, after which 210 µL 20% SDS and 500 µL phe-
nol:chloroform:IAA (25:24:1, pH 8.0) were added. Bead-beating was performed on the MBB-96 (4 min; room 
temperature), samples were centrifuged (3,220 × g; 4 min), and 250 µL of the aqueous phase was transferred to a 
new tube. 100 µL of this crude DNA was then further purified using a QIAquick 96 PCR purification kit (Qiagen, 
MD, USA). Purification was performed per the manufacturer’s instructions with the following minor modifi-
cations: (i) sodium acetate (3 M, pH 5.5) was added to Buffer PM to a final concentration of 185 mM to ensure 
optimal binding of genomic DNA to the silica membrane; (ii) crude DNA was combined with 4 volumes of Buffer 
PM (rather than 3 volumes); and, (iii) DNA was eluted in 100 µL Buffer EB (rather than 80 µL).

Illumina library preparation and sequencing. Phased, bi-directional amplification of the V4 region 
(515–806) of the 16S rRNA gene was employed to generate indexed libraries for Illumina sequencing using the 
strategy described by Faith et al.47. Amplicon libraries were quantified using the Qubit dsDNA assay kit (Thermo 
Fisher Scientific Inc., MA, USA) before being pooled in equimolar ratios. These final pools were purified using 
Agencourt AMPure XP beads (Beckman Coulter) per the manufacturer’s instructions. Purified pools were sup-
plemented with 5–10% PhiX control DNA and were sequenced on an Illumina MiSeq machine as paired-end 
2x250 + 13 bp index reactions using the 600v3 kit. Un-demultiplexed FASTQ files were generated by MiSeq 
Reporter. All sequencing was performed at the DNA Sequencing Innovation Lab at the Center for Genome 
Sciences and Systems Biology at Washington University in St. Louis.

16S rRNA gene sequencing and quality control of data. Pairs of V4 16S rRNA gene sequences were 
first merged into a single sequence using FLASh v1.2.1148, with a required overlap of at least 100 and not more 
than 250 base pairs in order to provide a confident overlap. Sequences with a mean quality score below Q35 were 
then filtered out using PRINSEQ v0.20.449. Sequences were oriented in the forward direction and any primer 
sequences were matched and trimmed off; during primer matching, up to 1 mismatch was allowed. Sequences 
were subsequently de-multiplexed using QIIME v1.950. Sequences with >97% nucleotide sequence identity 
were then clustered into operational taxonomic units (hereafter “OTUs”) using QIIME with the following set-
tings: max_accepts = 50, max_rejects = 8, percent_subsample = 0.1 and --suppress_step4. A modified version 
of GreenGenes (The Greengenes Database Consortium51–53) was used as the reference database. Input sequences 
that had 10% of the reads with no hit to the reference database were then clustered de novo with UCLUST54 to 

Min Max Mean SD
ADGBto14 (kg/d) 0.26 0.81 0.57 0.08
ADGWto14 (kg/d) 0.26 0.93 0.64 0.10
ADG14to22 (kg/d) 0.20 1.40 0.86 0.16
ADG14toMKT (kg/d) 0.29 1.30 0.89 0.14
Week14Wt (kg) 31.71 98.30 68.78 9.88
Week14BF (cm) 0.58 2.29 1.25 0.28
Week14LD (cm) 2.52 5.64 4.24 0.48
Week14LEA (cm2) 12.64 41.35 28.38 4.57
Week22Wt (kg) 81.99 154.47 117.26 13.37
Week22BF (cm) 0.84 4.24 2.00 0.53
Week22LD (cm) 4.01 7.29 5.59 0.52
Week22LEA (cm2) 27.55 63.74 43.90 5.69

Table 3. Summary of phenotypes used in the study. ADGBto14 = Average Daily Gain Weaning to week14, 
ADGWto14 = Average Daily Gain Weaning to week14, ADG14to22 = Average Daily Gain week14 week22, 
ADG14toMKT = Average Daily Gain week14 to Market, Week14Wt = weight at week14, Week14BF = backfat at 
week14, Week14LD = loin depth at week14, Week14LEA = loin area at week14, Week22Wt = weight at week22, 
Week22BF = backfat at week12, Week22LD = loin depth at week22, Week22LEA = loin area at week22.
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generate new reference OTUs to which the remaining 90% of reads were assigned. The most abundant sequence 
in each cluster was used as the representative sequence for the OTU. Sparse OTUs were then filtered out by 
requiring a minimum total observation count of 1200 for an OTU to be retained, and the OTU table was rarefied 
to 10,000 counts per sample. Average Good’s coverage estimates for samples at weaning, week 15, and week 22, 
were 0.99 ± 0.002, 0.98 ± 0.002, and 0.98 ± 0.002, respectively. Finally, the Ribosomal Database Project (RDP) 
classifier (v2.4) was retrained in the manner described in Ridaura and colleagues55 with 0.8 cutoff used to assign 
taxonomy to the representative sequences. After data processing and quality control, 1755 OTUs were available 
for further analyses.

Statistical analysis. Training and testing sets. A stratified five-fold cross validation scheme was used to 
recursively randomly split data into training (~70% of observations) and prediction (~30% of observations) sets, 
maintaining equal representation of the 28 sires present in the trial. A pictorial representation of the overall 
experimental design is depicted in Fig. 2.

Models. All models models where employed in our analysis in a regression framework. For the investigation, 
each combination of method, trait and time was treated as a separate analysis and accuracy of prediction for each 
model was obtained as the average Pearson’s correlation between predicted and measured phenotypes in the test 
sets, similarly to what proposed in genome-wide prediction studies56,57. In addition Means Squared Errors and 
their standard deviations were obtained.

Bayesian Lasso. For each fold/trait/time point combination two models were fitted:
A null model (null):

µ= + +y Xb e

where: y was one of traits mentioned in the previous section, µ was a population mean, b was a vector of fixed 
effects which included: sex (2 levels), replicate (6 levels), sire (28 levels), plus the covariate of weight at weaning, e, 
was a vector of random residuals assumed σN(0, )e

2  and X was an incidence matrix relating observations to fixed 
effects.

A model including the microbiome (biom):

µ= + + +y Xb Wo e

where: o was a vector of OTUs effects (1755 levels), W was a matrix of centered and scaled OTUs counts and the 
remainings were as in the previous model.

We fitted the BL regression model as implemented by the R58 package BGLR59. OTU counts were fitted to the 
model with the use of a double exponential prior distribution. BGLR models double-exponential density as a 
mixture of scaled normal densities. In the first level of the hierarchy, marker effects are assigned independent 
normal densities with null mean and OTU-specific variance parameter τ σx e

2 2. The residual variance was assigned 
a scaled-inverse Chi-square prior density. BGLR provides a convenient way to choose priors shape through the 
R2 flag. R2 can roughly be interpreted as the expected variance proportion explained by the effect included in the 
model. For the residual effects default degrees of freedom of 5 were employed and an R2 of 0.60. Prior scale 
parameter where then obtained as = − +Sp Var y R dfp( ) (1 2)( 2), with Sp and dfp the scale and degrees of free-
dom, respectively. OTUs specific scale parameters, τ2 are assigned IID exponential densities with rate parameter 
λ2/2. The hyper parameter λ was in this case fixed and its value was assigned through a grid search on the full 
dataset/trait combinations (results not shown).

Random Forest. The general form of the null model employed here was (following González-Recio and 
Forni38):

∑µ= +
=

c hy y X( ; )t t
t 1

T

while the biom model was:

∑µ= + +
=

c hy y X W( ; )t t
t 1

T

Each tree h y X( ; )t  or +h y X W( ; )t  for ∈t T(1, ) was constructed from a random sample of the original data, 
and at each node a subset of features were randomly selected to create the splitting rule. Each tree was grown to 
the largest extent possible until all terminal nodes were maximally homogeneous38. The parameter ct is a shrink-
age factor averaging the trees. The quality of split in RF can be measured through different criteria. For the current 
analysis mean square error (MSE) was employed. The remaining parameters of RF models in this work were set 
as follows: i) the number of trees was set equal to 1500; ii) the number of features to consider when looking for the 
best split was equal to the root of the number of original features. The bigrf package60 of R58 was used to fit RF 
models to the data.

Gradient Boosting. The general form of the null model employed here was (again following González-Recio 
and Forni38):

∑µ ν= +
=

hy y X( ; )m
m 1

M
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while the biom model was:

∑µ ν= + +
=

hy y X W( ; )m
m 1

M

Each predictor h y X( ; )m  or +h y X W( ; )m  for ∈t M(1, ) was, in this case, applied consecutively to the residual 
from the committee formed by the previous ones, the bagging step remaining similar to what described before. 
The gbm package61 of R58 was used to fit GBM models to the data. A gaussian loss function was employed. Other 
parameters in the GBM models were set as follow: i) the number of trees was set equal to 1500; ii) the interaction 
depth was set at 3; iii) the shrinkage parameter ν was set at 0.01.

Reproducing Kernel Hilbert Space. Two RKHS models were fitted:
A null model (null):

µ= + +y Xb e

and a (biom) model of form:

µ= + + +y Xb Zu e

where Z is an incidence diagonal matrix of order (1039 × 1039) and u is a random vector of pig effects assumed 
σN M(0, )u

2 . M was the kernel matrix based on microbiome composition, and its computation was as follows:
microbiome was used at the OTU level to compute the Jensen-Shannon distance between pairs of samples, 

= ∑ + ∑= =( )D a b a b( , ) log logi
n

i
a
m i

m
i

b
m

1
2 1 1

i

i

i

i
 in which D(a, b) was the distance between samples a and b; n was 

the number of OTUs (n = 1755); ai and bi were the counts of OTUi in samples a and b, respectively; = +m a b( )i i i /262.  
The resulting square matrix (hereafter “JSD”) had zero on the diagonal, and values ranging between 0 and 1 on th 
off-diagonal. The M matrix was obtained as 1 − JSD. The RKHS regression model was implemented with the R 
package BGLR within a bayesian setting. Prior for σu

2 and σe
2 where chosen as highlighted in the previous section. 

R2 values for the the two parameters were set at 0.3 and 0.6, respectively.

Post-analysis. In order to provide a comprehensive assessment of all the factors in the design we conducted a 
post-analysis of the experiment with the use of a standard Linear Mixed Model (LMM). All combinations of rep-
licate/trait/method were pooled in a single dataset. The following LMM was then fitted

= + + + + + + + + + +y T A Tr B TA TTr TB ATr AB TATrB eijklm i j k l ij ik il jk jl ijkl ijklm

where yijklm is the accuracy of each replicate/trait/method combination; Ti is the fixed effect of the microbiome 
timepoint measurement (3 levels: wean, 15 wk, 22 wk); Aj is the fixed effect of the algorithm used (4 levels: BL, 
RKHS, RF, GBM); Trk is the fixed effect of the trait (12 levels: ADGBto14, ADGWto14, ADG14to22, 
ADG14toMKT, Week14Wt, Week14BF, Week14LD, Week14LEA, Week22Wt, Week22BF, Week22LD, 
Week22LEA); Bl is the fixed effect of the microbiome inclusion (2 levels: null, biom); TAij TTrik TBil ATrjk and ABjl 
are the pairwise interactions of the main effects; TATrBijkl is the random interaction effect of T, A, Tr and B 
assumed σN(0, )TATrB

2 ; and eijklm is the random residual effects assumed N(0, σ2). The LMM model was fitted with 
the R58 package lme463. Type III ANOVA table, least square means and contrasts were obtained with the R pack-
age lmerTest64.

Ethics approval. Phenotypic records presented in this study came from field data. Procedures for fecal sam-
ple collection adhered to the guidelines of Institutional Animal Care and Use Committee, North Carolina State 
University, and National Pork Board.

Data Availability
The data that support the findings of this study are available from MATATU but restrictions apply to the availa-
bility of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors upon reasonable request and with permission of MATATU. All scripts used 
for the analysis and manuscript preparation are available from the corresponding authors upon request.
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