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Abstract: In the literature of marriage, divorce choices are usually assumed to not affect the distribu-
tion of types in the pool of singles. The scope of the present paper is to overcome this assumption.
We analyse divorce choices when separation decision influences the distribution of singles and, thus,
their expected quality. We consider a three-period model where heterogeneous individuals may
unilaterally experience divorce and return to the marriage market. The choices of individuals are
based on the change in the distribution of singles and the cost of waiting and divorcing, taking into
consideration the individual’s eligibility in the marriage market. There are two main findings: Firstly,
positive assortative matching dissolves with divorce for some intermediate types. Therefore, the
endogenous positive assortative matching that usually emerges in models with nontransferable utility
is weakened when matches can dissolve. Secondly, the existence of ranges where divorce emerges
among individuals with positive assortative matching implies the existence of two disconnected
classes of types. If matchings in the first period were to occur between individuals of different classes,
such matches would be dissolved later.

Keywords: non-stationary distribution; divorce cost; waiting cost

JEL Classification: J12; C78

1. Introduction

The study of decision making is a highly diverse and interdisciplinary domain, includ-
ing psychology, mathematics (in particular, game theory), economics and, more generally,
the entire fields of social and behavioural sciences [1–4]. This paper examines divorce
and the search for a partner: This is a prototypical example of search-and-matching be-
haviours, a topic mainly investigated in economic literature and usually neglected by
psychology [5,6]. Generally speaking, search-and-matching behaviours refer to situations
where an individual is looking for some forms of long-term status (searching for a partner,
searching for a job and so on). Achieving this state is connected to the availability and the
quality of the possible matches. Here, we will focus on divorce choice. The theoretical
analysis is then followed by an empirical test of some predictions of the model. Finally,
implications for psychology, generalisation to other domains and the role of legislation in
divorce decisions are discussed.

This paper analyses divorce choice when marital choices influence the population of
singles. In the economic literature, divorce has been treated extensively [7–14] by using
very different perspectives (refer to the Related Literature section for details). In particular,
the analysis of search and matching in marriage markets and the steady state requires that
the number of divorces must equate to the flow creation of matches for every type [14]. This
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condition ensures that the distribution of singles remains constant over time. This approach
sets aside the fact that the distribution of singles affects marriage and divorce decisions.

For instance, imagine that high-type individuals, if matched together, marry without
any delay. Their behaviour could quicken their marriages compared to other individuals
of lower types, and with higher exit rates, they number relatively fewer in the pool of
unmatched singles. The composition of singles will then change, and individuals in a
couple will use this information, in turn, to evaluate whether to stay in their marriage
or not.

Thus, the analysis of divorce choice requires departing from the steady-state analysis:
endogenous divorce decisions depend on the quality of potential partners, which in turn
depends on which individuals marry and leave the marriage market. Hence, the changes
in the distribution of singles affect divorce decisions. The relevance of taking into account
these factors is testified by the vast amount of empirical evidence focused on the influence
of the context in cognitive processing and, in particular, decision making [15–18].

In this paper, we try to fill this gap in research. We analyse divorce choice when the
distribution of singles is non-stationary. We take into account a three-period game where
individuals are uniformly distributed in one characteristic, equally evaluated by all, called
“quality”. In the first period, each individual randomly meets one potential partner, and
they both decide whether to marry or not. If a marriage does not occur, the random match is
repeated in the second period with the same rules. Conversely, an individual who married
in the first period may divorce the partner in the second period and re-enter the marriage
market during the same period. Divorce entails an explicit cost. In the last period, there is
again a random matching for singles, but now couples cannot divorce. Individuals adopt
threshold strategies by comparing the met person (for marriage decisions) or the spouse
(for divorce decisions) with the expected quality of singles. Marriage and divorce choices
modify the distribution of singles and, thus, their expected quality in the marriage market.

We investigate the existence of “divorce” equilibria where divorcing is sufficiently
cheap and everyone can afford it. Of course, when the divorce cost is too high, no one will
undergo divorce. Otherwise, the interconnection between divorce costs and the implicit
cost of waiting for future partners determines the features of the divorce equilibria. If
divorce costs are low, “rational divorce”occurs: This happens when, in the first period,
individuals accept a non-optimal partner to avoid loneliness but are already planning a
future divorce. Conversely, a high cost of waiting decreases the discounted value of future
matches. More specifically, if the cost of waiting is high, then there is a stronger incentive in
agreeing to match whatever potential partner is met after divorce. A risk of “downgrading”
appears: a high-quality person who divorced the partner may end up with a partner that
is worse than the divorced one. In the case of a very high waiting cost, divorce does not
emerge due to avoiding the risk of downgrading. Divorce occurs with a certain degree of
asymmetry among spouses’ types or between some symmetric, medium-type spouses.

The paper then considers two equilibria where divorce is affordable only for one class
of individuals. Intuitively, this reduces the frequency of divorce. A numerical analysis
of existence shows that each of the three admissible equilibrium configurations is unique
in its region of existence. A robust finding on all equilibria configurations includes the
existence of two disconnected classes of types: a highest class and an intermediate class.
Permanent marriages arise only upon meeting within one’s class. If matchings were to
occur with individuals from different classes, divorce would occur at a later stage.

The analysis is then extended by considering the entry of a younger generation
in the second period in a simplified model with two periods. In line with empirical
evidence [19,20], the presence of younger singles increases the probability of divorce. Next,
we test our theoretical results by using a simple empirical test, where evidence on divorce
seems consistent with our theoretical results. We then discuss how our theoretical results
can be linked to the debate in the field of psychology, to other social contexts and to the
evolution of divorce legislation over the past few decades.
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Our contribution is aimed at increasing the theoretical understanding of divorce
decisions and how these decisions affect the marriage market. In models where divorce
is admissible and free of charge, individuals have an incentive in choosing the potential
partner they meet given an implicit cost of waiting. Naturally, a non-optimal partner can
be discarded if there is a good chance of finding a better partner in the future [21,22]. The
introduction of an explicit divorce cost changes the person’s behaviour: an individual
agrees to marry either if he/she likes the potential partner or if the benefit of staying with
the partner will offset future divorce costs.

The remainder of the paper is organised as follows. The next section briefly sum-
marises some related literature. Section 3 introduces the theoretical model, while Section 4
outlines baseline results. Section 5 introduces the entry of younger singles, and Section 6
proposes a simple correlation to find some consistency in our results on divorce patterns.
Section 7 discusses our findings with respect to psychology, to other possible applications
and to divorce legislation, while Section 8 provides our conclusions. Figure 1 summarises
the roadmap of this paper.

Figure 1. Roadmap of this paper.

2. Related Literature

The following brief synthesis of related literature refers to the four strands of eco-
nomics literature: the literature on non-stationary dynamics, the literature on matching
with nontransferable utility, the literature on divorce and the literature on optimal stopping.

Non-stationary dynamics. Models with non-stationary dynamic are rare due to their
limited analytical tractability. Smith [23] pioneered this approach: He investigated a
matching model where non-steady state dynamics are driven by temporary matches that
occur because of an implicit cost of waiting. Shimer and Smith [24] evaluated whether
search and matching efficiency requires non-stationarity. Damiano et al. [25] examined non-
stationary dynamics and sorting efficiency in a two-period matching model. If individuals
incur participation costs and the space of types is sufficiently large, the market unravels as
almost all individuals rush to participate in the first period and match whatever potential
partner they meet.

In this line of research, the latest development results from a study conducted by
Bonneton and Sandmann [26]. They analysed non-stationary dynamics with heterogeneous
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agents and non-transferable utility. They observed that higher-type individuals are less
risk averse. They also prove the existence of non-stationary equilibria.

The present paper is linked to the discrete-time, three-period version of Smith [23]. In
Smith [23], divorcing does not entail an explicit divorce cost, but it makes an individual lose
his or her turn in the marriage market. Thus, divorce occurs for low types, since the implicit
cost of losing one turn is very high for high types because they are “eligible” (i.e., they are
a good catch). Compared to Smith [23], a divorced person re-enters the marriage market in
the same period; that is, divorcing does not cause the person to lose any turns. In addition,
divorcing entails a cost that increases with an individual’s type. Unlike Smith [23], divorce
is more appealing for medium-high types. This happens even if the total cost of divorce
is higher for higher types, since the cost of divorce remains relatively higher for low and
ineligible types.

Matching models with non-transferable utility. There are many relevant contributions
to this literature [27–33]. A typical result in these studies is “block segregation”: During
equilibrium, positive assortative matching emerges where an interval of individuals of the
highest type matches only with each other, and the next highest match occurs only with
each other and so forth. By adopting a general payoff function, Smith [32] finds that block
segregation emerges with any multiplicatively separable payoff function. The author finds
a set of conditions under which block segregation disappears.

Similarly to these models where divorce is banned, we find a block segregation result
adjusted by the divorce option. The main difference is the fact that, in those settings, the
distribution of singles is stationary. In our model, the reservation payoff in a certain period
depends on the expected quality of singles in the next period, which changes over time
according to marriage and divorce decisions.

Goldmanis et al. [22] extended Smith’s paper [32] by allowing individuals to keep
looking for better partners while they are married. Unlike the present analysis, they analyse
the system in a steady-state, thus assuming stationary distribution of singles and no divorce
costs. Steady-state occurs by assuming that agents adopt the strategy to accept everyone
when single and to undergo a divorce when a better partner is found. In the present paper,
the presence of divorce costs prevents the strategy to accept any potential partner as optimal.

Divorce. In the recent years, divorce has been analysed in relation to household labour
supply [10], the choice between marriage and cohabitation [11] and investment in marriage-
specific capital, such as buying a house, having children, dividing home versus market
work [12,13] and the access to broadband and cell phones [34]. For a thorough review of the
developments of the literature of marriage markets and divorce, refer to Chiappori [35].

Within economics, divorce is commonly explained by using three arguments. The
first is that divorce is a result of an unexpected matching shock. A second argument
is the imperfect information about the true type of the other individual and learning
upon matching. These two arguments are often examined together or as alternative
explanations [36]. The third argument for divorce is that a temporary but not optimal
match is more convenient than being alone: Individuals may marry a partner even if he or
she is not satisfactory in order to not be alone [21,37]. Our model is somewhat linked to the
last explanation: temporary matches are more convenient than being alone, but we bind
this choice by adding an explicit cost of divorce.

In Chiappori and Weiss [21], divorce was examined in a general equilibrium model
with a homogeneous population: In the first period, everyone marries regardless of the
quality of the match. Divorced individuals always remarry if they meet a new partner,
and there is no divorce cost. Instead, we assume the population to be heterogeneous, and
a further choice on remarriage is permitted. More recently, Bolletta and Merlino [38]
analysed marriage formation in a setting where divorce occurs with exogenous probability.
In their model, individuals might meet potential spouses directly or through their friends,
and in this case socialisation matters for determining marriage outcomes.
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In the frameworks described so far, divorce has been modelled exogenously. Our
framework differs from these studies mainly because it assumes divorce as an endogenous
choice that affects the distribution of singles.

On this point, there exists a line of research that established the existence of a sorting
externality on both partnership [27] and separation strategies [28]: the matching and
divorcing strategies of individuals affect the endogenous distribution of types in the pool of
unmatched singles. In particular, Burdett and Coles [28] consider a model with continuous
time, two types of individuals, which consist of one good and one bad companion, and
either zero or very large separation costs. The present paper extends this research by
considering a continuum of types rather than two and discrete rather than continuous time
and focuses on the differences in divorce costs: as it will be clear shortly, we assume that
divorce costs are proportional to an individual’s type.

Optimal stopping. From a mathematical perspective, our paper can be linked with the
literature on optimal stopping, which is when the decision maker chooses a moment to stop
and obtains benefits by taking into account uncertainty about possible future outcomes [39].
The applications of such models are numerous, including an optimal job search (two-sided),
selling and buying assets, purchasing long-term assets such as apartments, cars, etc. [40,41].
In our model, the decision maker is assumed to be rational when making decisions in
optimal stopping problems and when choosing the strategies to marry or to divorce by
comparing his/her utilities under different scenarios.

3. The model
3.1. A Three-Periods Game with Random Match

The model extends the three-periods model by Smith [23] by adding, together with
the waiting cost, the explicit divorce cost. An acronym list is reported in Table 1. There
are two populations of the same size: one of individual’s i and one of partner’s p. Each
population is a continuum with types θ that are equally distributed uniformly in [0, 1] and
living in three periods. In every period, each individual i (he) is randomly matched with
one potential partner or “pretender” p (she) with only one random draw. In the following
analysis, we will maintain the point of view of individual i, but the problem of a pretender
is symmetric. Either party can refuse the match in the first two periods, while in the third
period the match is compulsory: The interpretation is that older individuals prefer to spend
the last years of their life with someone, whoever they will be, rather than being alone.
If both an individual and a pretender agree to match, the couple obtains a flow utility of
2θiθp, where θi is the individual’s type and θp is the partner’s type. If at least one refuses
the match, each obtains zero flow utility. Spouses equally share the flow utility such that
the individual i’s flow utility defined as follows per period:

ui(θi, θpt) = θiθpt, (1)

where θpt is the type of pretender met in period t ∈ {1, 2, 3}. Given that everyone benefits
from a larger θ, the type represents an individual’s feature that is ranked in the same way by
everyone. Thus, each individual prefers to be matched with a partner of type θ′pt = θ′ rather
than with a partner of type θ′′pt = θ′′ as long as θ′ > θ′′. Thus, a type may represent, for
example, an individual’s education, income, health status or, more generally, his “quality”.
What is noteworty is that since the utility function is multiplicatively separable, a person’s
parameter does not affect preferences, and all individuals share the same decision criterion.

In the flow utility (Equation (1)), we do not consider a hypothetical idiosyncratic
benefit that may represent, for instance, “love” or some subjective preferences. A method
to consider this aspect is by adding a second, additive component of flow utility and by
assuming that it is IID among individuals with zero mean. If implemented along these
lines, this feature would not influence the individuals’ decisions and may be omitted for
the sake of simplicity.
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Moreover, we assume that individual types are constant over time. Actually, this may
be the case if a type is determined by the level of education, as marriage usually occurs
after schooling. Education may also predict, on average, future levels of income.

Figure 2 shows the timing of the game, together with the total utility according to
matching outcomes. We begin from the case in which the individual rejects his pretender
in T = 1. In this case, he proceed to the marriage market in T = 2. Accepting the marriage
in T = 2 implies remaining married forever, while rejecting a marriage in T = 2 results in a
random match with mandatory acceptance in T = 3.

Consider next the more complex situation where an individual accepts the match in
T = 1. After agreeing to marry, the individual may divorce the partner in T = 2 at a cost
cθi, with c ∈ (0, 1), and return to the marriage market during the same period. This is
another difference compared to Smith [23] in which divorcees must wait one period before
re-entering the marriage market. Since we are assuming that any time period is quite long
considering a loving life of three periods, our assumption seems natural.

Table 1. Acronym list.

Subscripts

i Individual (he)
p Partner (she)

t ∈{1, 2, 3} Time periods
d “Cheap” divorce
e “Expensive” and “highly expensive” divorce

Parameters and payoffs

θ ∈[0, 1] Continuum of individual/partner types
T ∈{1, 2, 3} Time periods

c ∈(0, 1) Divorce cost parameter
δ∈(0, 1) Per-period discount rate

ui
(
θi, θpt

)
= θiθpt Individual i’s flow utility at time t if matched with partner p

cθi Divorce cost of individual i

Thresholds

θ̂ Expected quality of singles in T = 3
θ̃ Expected quality of singles in T = 2

θ̃2T Expected quality of singles in the two-period model without new generation
θ̃over Expected quality of singles in the two-period model with new generation
Φ1 Divorce threshold given by the expected quality of singles in T = 2
Φ2 Divorce threshold given by the expected quality of singles in T = 3
Φ3 Inactive divorce threshold
Φ4 Divorce threshold for the existence of the expensive divorce configuration

Notation in Figures 2, 3, 9 and A1–A3

m Individual/partner who marries in T = 1 for life;
r Individual/partner who rejects her/his potential partner in T = 1
d Individual/partner who divorces her/his spouse in T = 2

The assumption that the cost of divorce increases with respect to individual type is
particularly fitting when the interpretation type focuses on “income”: Individuals differing
in income pay substantially different costs of divorce. Note that divorce is possible only
in T = 2. Once the divorced individual has met his new pretender, he may then agree
or not to the new match. Finally, we assume that divorced individuals do not know the
new pretender met in T = 2 when they decide to divorce their spouses (i.e., no “affairs”
are allowed).
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Figure 2. Timing and total utilities.

In his marriage and divorce decisions, an individual i takes into account the following
two factors:

1. The pretender/spouse’s type θpt: each individual would like to increase the partner’s
quality as much as possible;

2. His type θi: an individual type determines his “eligibility” in the future, that is, the
chances of being chosen in the marriage market. For example, if the individual is of
low quality, then he knows that high-quality pretenders will refuse him. Thus, he is
likely not to divorce his partner even if he prefers a better one.

These two points will be discussed more in detail below. We assume that individuals
adopt threshold strategies: When they are singles and must choose whether or not to marry,
they observe the discounted expected payoff provided by future singles and compare it
with the payoff provided by their pretender. Let the per-period discount rate be δ < 1. In
this context, we may interpret δ as an inverse measure of the cost of waiting: If δ is low,
it is more likely that a pretender met today is of higher quality than the expected quality
of singles in the next period. When they are married and must choose whether or not to
proceed with divorce (in T = 2), they observe the expected quality of singles in the same
period net of the divorce cost. In both cases, they take into account their future eligibility by
comparing their quality with the discounted expected quality of singles in the next period.
Notice that the analysis of a three-period game is necessary in order to precisely take into
account the role of eligibility in the divorce choice. If the game lasted two periods and
the mandatory match was at T = 2 instead and still permits ending the relationship that
began in T = 1, then the divorce choice would only be based on the quality of the partner
compared to the average quality in the market (a two-period framework is considered in
Section 5).

We solve the game by backward induction, starting from Period 2 since no choice is
allowed in Period 3.

3.2. Period 2

In T = 2, single and divorced individuals choose whether or not to accept their match
based on the expected quality of singles in T = 3, denoted as θ̂ ( singles in T = 3 either (i)
rejected/were rejected by their pretenders both in T = 1 and T = 2 or (ii) married in T = 1,
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divorced in T = 2 and rejected/were rejected by the pretenders met in T = 2). In particular,
they compare the payoff obtained by the pretender met in T = 2, θp2, with the payoff obtained
by the expected partner in T = 3: A partner met in T = 2 is accepted ifthe interpretation
of the type is “income”: Individuals differing in income pay substantially different costs of
divorce. Note that divorce is possible only in T = 2. Once the divorced individual has met
his new pretender, then he may agree or disagree with the new match. Finally, we assume
that divorced individuals do not know the new pretender met in T = 2 when they decide to
divorce their spouses (i.e., no “affairs” are allowed).

θiθp2(1 + δ) > θiδθ̂ ⇔ θp2 >
δθ̂

1 + δ
. (2)

Hence, δθ̂
1+δ is the threshold strategy for the second period.

Conversely, individuals are married in T = 2 if they are accepted by their pretenders
in T = 1, θp1. Their divorce choice depends on the comparison between the spouse
met in T = 1 and the expectation of partners in the marriage market. If θp1 does not
yield a sufficiently high payoff compared to the expectations, an individual is “unhappy”.
Moreover, divorce depends on the chance to be accepted in T = 2 to which we refer
as “eligibility”.

3.2.1. Unhappiness

At the beginning of T = 2, married individuals observe the expected quality of singles
in T = 2. The expectation is denoted by θ̃, and by using this an individual can compare
the expected benefit obtained by divorcing with the expected benefit obtained by staying
married. In particular, they undergo divorce if the following is the case.

θiθp1(1 + δ) < θi

[
θ̃(1 + δ)− c

]
⇔ θp1 < θ̃ − c

1 + δ
≡ Φ1. (3)

Note that expectation θ̃ takes into account divorce decisions: a married individual
foresees that certain individuals divorce in T = 2 (assuming “myopic” individuals would
yield qualitatively similar results). Moreover, even if assuming that they do not make a
match in T = 2, they may prefer to proceed with divorce if the expected discounted type in
T = 3 is sufficiently large and particularly if the following is satisfied.

θiθp1(1 + δ) < θi

(
θ̂δ− c

)
⇔ θp1 <

δθ̂

1 + δ
− c

1 + δ
≡ Φ2. (4)

3.2.2. Eligibility

The unhappiness condition also depends on an individual’s “eligibility” in the mar-
riage market. Individual i is considered “eligible” if accepting him in T = 2 yields a higher
payoff than waiting for the mandatory match in T = 3.

θp2θi(1 + δ) ≥ θp2 δθ̂ ⇔ θi ≥
δθ̂

1 + δ
. (5)

If an individual is eligible, his condition of unhappiness is (3) or (4) since he expects to
be accepted in the T = 2 match. In this case, unhappiness occurs if the following is the case.

θp1 < max{Φ1, Φ2}. (6)

Conversely, a non-eligible individual
(

θi <
δθ̂

1+δ

)
will not be accepted in T = 2.

Nevertheless, he may find it convenient to divorce his partner, lose the T = 2 payoff and
obtain a match in T = 3. This occurs if condition (4) holds.
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3.3. Period 1

In the first period, an individual chooses whether to marry or reject the match. The
decision depends on two elements: the expectations on choices in T = 2 and the divorce cost.

3.3.1. Expectations on the Future

The choice in the first period depends on whether an individual, if married, expects
to stay married with the partner she meets today or to divorce him and, if single, expects
to match in T = 2 or T = 3. This expectation depends on an individual’s unhappiness
and eligibility as determined in the previous section. In particular, an individual must
compare the payoff of rejecting the match with the payoff of marrying for life or marrying
and divorcing. The latter depends on whether θp1 is larger or smaller than Φ1 or Φ2
according to the situation (see the section above). Therefore, an individual’s eligibility
and partner’s quality determine different subgames in T = 2; thus, we need to define the
optimal behaviour in the first period for each of them.

3.3.2. Divorce Option

The second element that determines the individual’s choice in the first period is
whether the discounted divorce cost is lower than the current payoff of marrying the
pretender in T = 1, θp1 > δc. This point deserves some discussion.

An individual may accept a pretender even if she makes him unhappy (θp1 < max{Φ1, Φ2})
if her quality is not lower than the discounted divorce cost, θp1 ≥ δc, since the cost of divorce is
offset by the payoff provided from the partner’s type. This strategy can be defined as “rational
divorce”: if θp1 ∈ (δc, max{Φ1, Φ2}), an individual can marry a pretender even if planning a
future divorce. At the limit, for c = 0, it is optimal to marry the pretender in T = 1 in order to
obtain the payoff in T = 1 and also because it is costless to divorce her in the second period to
find someone better.

The consequence of the divorce option is that, in T = 1, an individual decides to marry
by comparing the pretender’s θp1 with δc instead of θ̃. Hence, the expected discounted
quality is not relevant in T = 1 because divorce is sufficiently cheap such that the individual
can leave the pretender in the next period and obtain a net benefit θp1 − δc > 0. Therefore,
only θ̃ plays a role in determining the divorce decision in T = 2.

4. Results
4.1. Cheap Divorce

In this section, we outline the baseline results. To begin with, we show the conditions
under which divorce is sufficiently cheap to be considered as a possible option for all
individuals. For the sake of naming it, we name this equilibrium configuration “cheap
divorce”. The results change based on whether an individual is eligible or not: It depends
on whether individual type θi is lower or higher than δθ̂

1+δ . The divorce conditions can be
summarised as follows.

Proposition 1. Suppose θi >
δθ̂

1+δ . Then, for c <
max{(1+δ)θ̃,δθ̂}

1+δ+δ2 , the eligible individual i may

choose divorce. Suppose θi < δθ̂
1+δ . Then, for c < δθ̂

1+δ+δ2 , the non-eligible individual i may
choose divorce.

Proof. Refer to Appendix A.

Proposition 1 implies that, in an equilibrium where divorce occurs, the following
relation holds: min{Φ1, Φ2} > δc. We first outline the equilibrium behaviour of eligible
individuals.

Proposition 2. Suppose θi >
δθ̂

1+δ . Then, an eligible individual performs the following:

• Marries for life in T = 1 if θp1 > max{Φ1, Φ2};
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• Divorces in T = 2 if θp1 ∈ (δc, max{Φ1, Φ2});
• Rejects the match in T = 1 if θp1 < δc.

Proof. See Appendix A.

Next, the following proposition shows the equilibrium behaviour of non-eligible
individuals.

Proposition 3. Suppose θi <
δθ̂

1+δ . Then, a non-eligible individual performs the following:

• Marries for life in T = 1 if θp1 > Φ2;
• Divorces in T = 2 if θp1 ∈ (δc, Φ2);
• Rejects the match in T = 1 if θp1 < δc.

Proof. Refer to Appendix A.

Having determined the divorce conditions and equilibrium behaviour, we are in a
position to outline the features of an equilibrium where all individual types can afford
divorce. The following proposition shows the relationship between θ̃ and θ̂.

Proposition 4. A “cheap” divorce equilibrium is characterised by
(

θ̃d, θ̂d

)
, where δθ̂

1+δ < Φ1

(
θ̃d

)
.

Proof. Refer to Appendix B.

Appendix C provides a formal derivation of
(

θ̃d, θ̂d

)
. Proposition 4 implies δθ̂

1+δ < θ̃:
The average quality of singles falls over time, since higher types marry at a faster rate.
In addition, together with Proposition 1, it allows inferring the admissible equilibrium
configuration in the baseline case where everyone can afford to proceed with divorce.

Remark 1. Propositions 1 and 4 imply that a cheap divorce equilibrium occurs for
Φ1 > δθ̂

1+δ > Φ2 > δc.

Figure 3 shows the marriage choices in T = 1 and the divorce choice in T = 2. In
every region, each couple letter represents the behaviour of agents i and p1, with the first
letter indicating the partner’s behaviour and the second letter indicating the individual’s
behaviour. Marriage takes place in T = 1 and lasts for the entire game if both letters are m
(married in T = 1 for life), while r indicates that one agent rejected the person they met
in T = 1. Thus, for example, an individual i of type θi ∈

(
Φ2, δθ̂

1+δ

)
agrees to marry a

pretender of type θp ∈
(

Φ2, δθ̂
1+δ

)
and his feelings are reciprocated (letters mm) but divorces

type θp1 ∈ (δc, Φ2), who instead would be happy to stay married with him (letters md) and
refuses type θp1 < δc (letters mr). The areas where a divorce takes place are those where
either both spouses (dd) or only one (dm or md) would like to proceed with divorce.

The straight lines separate the regions in which different outcomes occur. Note that this
is a “block segregation” result, which is typical of matching models with non-transferable
utility [27–31,40]. In equilibrium, positive assortative matching emerges as only similar
individuals marry each other: Individuals agree to marry only with potential partners of
the same “block”. Compared to the standard block segregation result, agents from the
block rr remain single in T = 1, while agents from blocks dd divorce their partner in T = 2.



Mathematics 2021, 9, 3059 11 of 33

Figure 3. “Cheap divorce” equilibrium configuration—both eligible and non-eligible individuals
may divorce.

4.2. Expensive Divorce

In the analysis conducted so far, we have outlined the conditions under which divorce
is affordable for everyone. This solution does not necessarily apply. There is little evidence
on divorce costs: the Huffington Post (2013) suggests that a divorce may cost, on average,
between USD 15,000 and USD 20,000 (https://www.huffpost.com/entry/how-much-does-
the-average_b_3360433?guccounter=1, access on 1 November 2021). In this model, an
increase in c results in an increase in δc and a decrease in Φ1 and Φ2. In particular, divorce
is not an affordable option if the conditions outlined in Proposition 1 do not hold anymore.

Two configurations emerge, according to the following definitions (see Appendix C
for a formal derivation). Notice that the value of

(
θ̃e, θ̂e

)
is the same in both configurations

(refer to Appendix C); what differs are the conditions under which one configuration holds.
For convenience, use the following denotation:

Φ4 ≡
δ2θ̂

1 + δ + δ2 ,

in which its derivation can be found in Appendix A (Proof of Proposition 2).

Definition 1. “Expensive” and “highly expensive” divorce equilibria are defined by
(

θ̃e, θ̂e

)
,

where the former exists for δc ∈
(

Φ4, δθ̂
1+δ

)
, and the latter exists for δc > δθ̂

1+δ .

The expensive or the highly expensive divorce equilibria occur when the “divorce option”
condition does not hold for non-eligible individuals. Hence, they would rather reject their
pretender in T = 1 than divorce her, because divorce is too expensive. As a consequence, Φ2
is not a relevant threshold anymore: In period 1, they either reject the pretender or marry
her with the idea of staying married. In particular, they reject the pretender in T = 1 if the
following is the case. (

1 + δ + δ2
)

θp1 < δ2θ̂ ⇔ θp1 < Φ4. (7)

Conversely, the behaviour of eligible individuals remains the same as in the baseline model.

https://www.huffpost.com/entry/how-much-does-the-average_b_3360433?guccounter=1
https://www.huffpost.com/entry/how-much-does-the-average_b_3360433?guccounter=1
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Proposition 5. Suppose δc > Φ2. Then, a non-eligible individual performs the following:

• Marries for life in T = 1 if θp1 > Φ4;
• Rejects the match in T = 1 if θp1 < Φ4.

Figure 4 shows the two configurations. These may be relevant particularly when the
cost of divorce is hardly bearable for some social groups.

Figure 4. Equilibrium configurations where the divorce option condition does not hold for some individuals.
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4.3. Assortative Matching and Disconnected Equilibria

There are two main findings that are robust to all equilibrium configurations. The
first regards the implications of endogenous divorce on positive assortative matching. In
equilibrium, positive assortative matching emerges when only similar individuals marry
each other: individuals agree to marry only with potential partners of the same “block”.

However, block segregation is a pathological result for two reasons: First, it yields a
equilibrium with discontinuity in a model where types are heterogeneous in a continuum,
and (ii) it does not match empirical regularities [32]. While block segregation is a popular
finding of the matching literature under non-transferable utility, Smith [32] has shown that
block segregation occurs when mutliplicatively separable payoff functions are assumed,
and this is because individuals with equal match offerings make identical decisions.

In our framework, positive assortative matching dissolves with divorce for some
intermediate types: in Figures 3 and 4, agents from block rr remain single in T = 1, while
agents from block dd divorce their partner in T = 2. In addition, the fact that the average
quality of singles decreases over time implies that the “block” of positive assortative
matching becomes larger in T = 2. This, in turn, implies that types who marry in T = 2 are
more asymmetric than in T = 1. Therefore, the endogenous positive assortative matching
that usually emerges in models with nontransferable utility is weakened when matches
can dissolve.

The second finding, related to the first, is that the existence of ranges where divorce
occurs among individuals with positive assortative matching entails the existence of two
disconnected classes of types: a highest class and an intermediate class. Only upon meeting
within one’s class do permanent marriages arise. If, during the first period, matchings
were to occur with individuals that do not belong to the same class, such a match would be
dissolved with divorce at a later stage.

4.4. Existence of Divorce Equilibria

In this section, we analyse the conditions for the existence of divorce equilibria.
Existence requires the ranking of each equilibrium configuration to hold. Following
Remark 1 and Definition 1, the range of existence is where the rank of each divorce type
applies for the following:

• Cheap divorce,
(

θ̃d, θ̂d

)
with Φ1

(
θ̃d

)
> δθ̂d

1+δ > Φ2

(
θ̂d

)
> δc;

• Expensive divorce,
(

θ̃e, θ̂e

)
with Φ1

(
θ̃e

)
> δθ̂e

1+δ > δc > Φ4

(
θ̂e

)
;

• Highly expensive divorce,
(

θ̃e, θ̂e

)
with Φ1

(
θ̃e

)
> δc > δθ̂e

1+δ > Φ4

(
θ̂e

)
.

Unfortunately, it is not possible to determine the existence of divorce equilibria an-
alytically. We can, however, evaluate the existence for some values of (δ, c). To fix ideas,
we consider the following values of δ: 0.001, 0.25, 0.5, 0.75 and 0.99. Figure 5 shows the
existence conditions of the baseline results with respect to c, while Figures 6 and 7 show
the existence conditions of expensive and highly expensive divorce equilibria. The grey,
dotted, thick, dashed and black lines are Φ1, δθ̂

1+δ , Φ2, δc and Φ4, respectively.
The results in Figures 5–7 are summarised in Table 2. Some remarks can be drawn

from the analysis of existence. In the baseline case, divorce does not emerge when the
cost of waiting is very high (very low δ). Indeed, the risk of divorcing and ending up,
in T = 2, with a partner that is worse than the divorced one is very high. If δ is low,
there is a stronger incentive in agreeing to match a partner in T = 2; hence, this risk of
“downgrading” increases with lower δ.

Each equilibrium configuration is unique in its range of existence. Consistent with
the assumptions, a highly expensive divorce equilibrium emerges when the divorce cost is
the highest cost admissible, followed by the expensive divorce equilibrium and the cheap
divorce equilibrium.
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Figure 5. Existence of baseline equilibrium.

Finally, we may discuss the more subtle case where the asymmetry of types occurs
between women and men. Suppose that the cost of divorce is for some reason higher
for women than men. For example, divorced women used to be socially stigmatised in
past societies; in the marriage choice, men appoint a higher value to beauty compared to
women [42] such that a loss in attractiveness due to ageing is relatively more harmful for
women. We can model this asymmetry as an extra cost that women have to pay in event
of a divorce. Although tractability prevents us from eliciting analytical results, we may
still propose some reasonable hypotheses. First, equilibria with differing divorce type may
emerge between women and men. For example, equilibria may occur where divorce is
expensive or highly expensive for women but not for men.

Table 2. Existence conditions.

δ Cheap Expensive High Exp

0.01 / c . 0.1 0.1 . c . 0.25
0.25 0.006 . c . 0.03 0.03 . c . 0.098 0.098 . c . 0.26
0.5 0.01 . c . 0.045 0.045 . 0.09 0.09 . c . 0.252

0.75 0.01 . c . 0.051 0.051 . c . 0.087 0.087 . c . 0.239
0.99 0.01 . c . 0.056 0.056 . c . 0.08 0.08 . c . 0.22
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Figure 6. Existence of of expensive and highly expensive equilibria: δ = 0.01, δ = 0.25 and δ = 0.5.

Figure 7. Existence of of expensive and highly expensive equilibria: δ = 0.75 and δ = 0.99.

5. Younger Singles

A possible critique of the analysis so far is that it does not take into account the inter-
action among partners of different age. In fact, evidence shows that men tend to remarry
younger partners [19,20], suggesting that the presence of younger singles should increase
the probability of divorce. In this section, we try to capture this effect by considering the
entry of a younger generation in the marriage market.
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This variation requires simplifying the setting by restricting the analysis on a two-
periods model. Nothing changes in the first period. In the second period, divorce may still
occur, but single and divorced individuals are now randomly matched with mandatory
acceptance, and the game ends. Compared to the three-periods model, the following effects
are observed:

• Individuals only choose to reject/marry in T = 1 and to proceed with divorce in
T = 2 if previously married;

• Eligibility in T = 2 does not play any role.

We denote the expected quality of singles in T = 2 as θ̃2T . The following proposition
provides a new condition for a divorce equilibrium.

Proposition 6. For c < θ̃2T
1+δ , an individual may choose to proceed with divorce.

Proof. In order for a divorce to occur, two conditions need to take place.

(1 + δ)θp1 < θp1 + δ
(

θ̃2T − c
)
⇔ θp1 <

(
θ̃2T − c

)
, unhappiness (8)

θp1 + δ
(

θ̃2T − c
)
> δθ̃2T ⇔ θp1 > δc, divorce option (9)

This range exists for the following.

δc < θ̃2T − c⇔ c <
θ̃2T

1 + δ
. (10)

Given Proposition 6, we are able to determine the individuals’ behaviour.

Proposition 7. Suppose c < θ̃2T
1+δ . An individual performs the following:

• Marries for life in T = 1 if θp1 > θ̃2T − c,

• Divorces in T = 2 if θp1 ∈
(

δc, θ̃2T − c
)

• Rejects the match in T = 1 if θp1 < δc.

In this simplified scenario, we compare this case, where only one generation is present
in the marriage market, with the case where, at T = 2, a new generation enters the market
in which its members are on their first period of life. The focus of the problem is only the
generation at time T = 2 (the “old” one), whose members take into account the presence of
younger singles in their divorce choice. This exercise will allow us to determine the effects
of the presence of the younger generation on the features of the divorce equilibrium and in
particular if, as the evidence suggests, the presence of younger singles increases the chance
of divorce.

The new timing is depicted in Figure 8. Consider first the benchmark case without
younger singles: the expected quality of singles in T = 2 (refer to Appendix D for details)
amounts to the following:

θ̃2T =
3−
√

5 + 4c + 4c2

2
. (11)

Next, consider the presence of the younger generation in the marriage market: since
these individuals just entered the marriage market, the quality of a pretender, given uniform
distribution over [0, 1], is 1

2 . In addition, to keep things as most neutral as possible, we
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assume that the probability of meeting one pretender of each generation is 1
2 . It follows

that the expected quality of singles in T = 2 is defined as follows:

θ̃over ≡
1
2

θ̃2T +
1
2

1
2

. (12)

When comparing the two configurations, it is important to remember that, ceteris
paribus, a higher expectation of the quality of singles implies a higher probability that
divorce will occur. This effect is natural as a higher quality of singles provides an incentive
to break up the current marriage. Thus, the presence of younger singles increases the
probability of divorce if and only if θ̃2T − θ̃over < 0. This inequality always holds since the
following is the case.

θ̃2T −
(

1
2

θ̃2T +
1
4

)
< 0⇔ (13)

3−
√

5 + 4c + 4c2 − 1 < 0⇔ (14)

(1 + 2c)2 > 0. (15)

Thus, Proposition 8 follows.

Proposition 8. Suppose c < θ̃2T
1+δ . The presence of a younger generation entering the marriage

market entails an increase in the probability of divorce.

The result of Proposition 8 is consistent with the empirical evidence that the presence
of younger singles increases the probability of divorce. In the model, this result emerges
because the average quality of the new generation is higher, because high-quality indi-
viduals who are matched to each other in T = 1 decrease the average quality of the older
generation and tend to stay married in T = 2.

Figure 8. Timing and total utilities in a 2-periods game with one younger generation entering the market.

6. Empirical Validation

In this section, we motivate the empirical relevance of our theoretical analysis by
using a simple exercise. In particular, we determine which couples divorce according
to spouses’ characteristics. To perform this examination, we use data from the Marital
Instability Over the Life Course study [43]. This dataset is a 20-year panel survey of a
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nationally representative sample of married individuals in the United States. The aim of the
original study was to investigate which variables may affect divorce. By using telephone
interviews, beginning in 1980, researchers have interviewed a sample of 2034 heterosexual
married persons younger than 55 years of age. Respondents were then re-interviewed five
other times (1983, 1988, 1992, 1997 and 2000) if available.

We have initially considered three possible spouse features: years of schooling, income
and self-rated health status. The second and the last measures were discarded because in a
large proportion of couples, only one partner was working, showing significant asymmetry
in terms of income, and responses to health status were negligible. Thus, we focused on
years of schooling.

For years after 1980, we excluded an observation if the individual did not divorce and
did not change the years of schooling acquired in the period, since the observation after 1980
would be only a repetition of the same couple in the first interview. However, we maintained
observations after 1980 if the divorce occurred, or if one of the spouses acquired further
education. Indeed, the new level of education changes the spouse’s characteristic; thus, it is
considered a new observation compared to observation of the same couple in 1980.

In Figure 9, we scatter the years of schooling of respondents and spouses by marking
differently whether the couple divorced (thick red cross) or not (black dot). Divorce
occurred in the presence of asymmetry among the spouses’ years of education or in the
case of symmetry if spouses acquired a medium range of years of schooling.

Figure 9. Divorce choice according to spouses’ education: red cross = divorced couple; back dot= married couple.

The evidence in Figure 9 seems consistent with the cheap divorce configuration
outlined in Figure 3, where spouse types are represented by years of schooling. In particular,
divorced couples in the data have medium/symmetric or asymmetric levels of education.
Unfortunately, the dataset does not provide any information on rejections, which limits the
comparison with the theory.



Mathematics 2021, 9, 3059 19 of 33

7. Discussion
7.1. Relevance for Psychology

As stated in Section 1, there is strong psychological evidence of the contextual effects
on cognitive processing and, in particular, decision making [15–18]. With regard to search
and matching behaviours, social psychology has repeatedly observed how individual
decisions affect the expected result of a certain outcome for everyone [44–46]. Compared
to classical approaches, our model includes more realistic assumptions (i.e., the influence
of marital choices on the population of singles, taking into account the quality of singles)
in the analysis of marriage markets.

Moreover, the Bayesian approach employed in our model is related to the influential
rational analysis framework in psychology [47–49]. The rational analysis approach tries to
understand the mind and its behaviour in terms of the problems of the system it solves or
overcomes and, similarly, why it performs such processes. Initially, rational analysis has
been very successful when applied to basic processes such as perception [50]. At the end of
the 1990s, Griffiths and Tenenbaum [51] showed how even high-level cognitive processes
(such as reasoning and inductive learning) can be successfully modeled and predicted
by using the Bayesian framework. This was a surprising result given the common view
that cognitive judgments are typically error-prone and insensitive priors (as testified by
the famous heuristic and bias research program by Kahneman and Tversky [52]). This
apparent contradiction is explained on the basis of which optimal criterion is taken into
account by the cognitive system. With regard to our model, individuals are “Bayesian”
(i.e., their decision are optimal according to Bayes’ rule) in the sense that they determine
the expected quality of singles conditional to the“type” of singles that are present in the
market: for instance, singles who previously refused partners, singles who divorced their
spouses, singles who were divorced by their spouses and so on. In Section 6, we have
provided preliminary empirical evidence in line with the predictions of our theoretical
analysis. Overall, our paper may represent a preliminary contribution of a rational analysis
approach with respect to searching and matching decision making.

7.2. Divorce Legislation

As discussed before, divorce decisions are strictly related with legislation. Recent
empirical evidence investigated the impact of divorce legislation on divorce rate [8,9]. Two
crucial reforms in divorce law regarded the introduction of unilateral and no-fault divorce.
These reforms have been both applied at the end of the 1960s in the United States. In
European countries, instead, they have been introduced over the 20th century and are
usually introduced separately [53].

No-fault divorce requests can be filed for incompatibility, irreconcilable differences
and irretrievable breakdown. No proof of fault is necessary, and it can be completed more
quickly than fault divorces. Moreover, no-fault divorce is less costly compared to fault
divorces [54]. Hence, in our model, the introduction of a no-fault divorce reform coincides
with lowering divorce costs c.

On the contrary, unilateral divorce does not require mutual consent and can be granted
at the request of either spouse. The right of unilateral divorce may be exercised even under
fault divorce legislation if the spouse is guilty of a grave matrimonial offense, such as
physical abuse or adultery (In this case, the applicant must exhibit proof of the fault in
court). In our model, unilateral divorce occurs for asymmetric types (outcomes dm or
md in Figure 3), which would be banned if consensual divorce was the only option in
divorce legislation. In other terms, without the unilateral divorce option, the only divorced
individuals will be those who mutually choose to proceed with divorce (outcomes dd).

A possible link between the introduction of no-fault and unilateral divorce legislation
and the increase in divorce rates has been an object of strong debate over the past decades:
Empirical analysis has shown ambiguous evidence of these reforms on divorce rates [55–60].
The general impression is that divorce liberalisation may have resulted in a short-term
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increase in divorce, but it reversed 15 years later due to changes in marriage patterns that
responded to this phenomenon [53,61].

Our theoretical results are consistent with empirical evidence in the short term; that
is, it seems helpful to represent the immediate effect of reducing divorce costs. Indeed,
the introduction of no-fault divorce legislation corresponds to the fall in c, which in turn
entails a higher probability of divorcing as the equilibrium outcome may shift from highly
expensive and expensive to cheap divorce.

7.3. Generalisation to Other Domains

In this paper, we have taken into account marriage markets [23,27,28] as a case study
of search and matching behaviours. At first hand, our approach may be generalised to
similar search and matching contexts such as the labour market. Indeed, our theoretical
analysis may be applied to hiring decisions [62]: In this case, hiring a job candidate or
accepting a job modifies the expectation about the quality of candidates in the labour
market or the quality of employers. There are several other domains where our approach
can be extended and adapted. For example, decision making with respect to individual
health and related behaviours [63–67] may require certain forms of search and matching
behaviours. In some health system, each resident is entitled to choose a general practitioner
from a pool of physicians. However, each physician may follow only a limited number of
patients, so residents must choose among the best available options in terms of general
practitioners. A similar story holds true also for the access to medical tests or treatments in
the case of several suitable options that can be ranked in terms of desirability/goodness
(and each option can be chosen only by a limited number of people). Such cases can
be ideal for finding empirical data to validate the current analysis: Given the spread of
internet-connected computer systems (via smartphones, tablets and wearable devices)
and information and communication technologies, a vast amount of information about
human behaviour (and, in particular, health-related information) is systematically stored in
databases [68–71]. Such Big Data approaches might represent a convenient tool for testing
our context-sensitive game-based model of search and matching behaviours.

8. Concluding Remarks

We have analysed a model of endogenous divorce, in a three-period framework where
the population is heterogeneous in quality, and the distribution of singles is affected by
marriage choice. We have outlined the conditions for “cheap,”“expensive,” and “highly
expensive” divorce equilibria. Each equilibrium exists, and it is unique in its parameter
region. The divorce takes place in the presence of asymmetry among the spouse types
or symmetric, medium-type spouses. We have shown that our theory is consistent with
a simple empirical exercise, and it fits the effects of the adoption of divorce reforms on
divorce choice in the short run.

We have found that, because of divorce, assortative matching disappears for some
intermediate types. Moreover, two classes of types emerged: if matchings were to occur
with individuals of different classes in the initial period, these would later be dissolved.

Some of the key assumptions of the framework deserve to be discussed. First, the
assumption of nontransferable utility. The most appreciated approach by the literature,
dating back to Becker [72], is transferable utility. Indeed, in many standard labour models
of households, the models employ a “collective model” where utility is fully transferable.
The assumption of non-tranferable utility is a polar case that disregards transfers within
the match such as, let us say, performing housework or looking after the children.

However, the assumption of non-transferable utility entails disagreements about match-
ing, which seems particularly relevant in the analysis of divorce. More generally, any time
that a possible formation of a couple or divorce is sought by one partner only, utility is
clearly not fully transferable. In addition, non-tranferable utility implies that an equal share
of the household utility is particularly fit nowadays. Indeed, since women entered the work



Mathematics 2021, 9, 3059 21 of 33

force and gained reproductive rights, the division of household duties is becoming more and
more equal.

Another key feature of the model is the assumption of random matching. This is
less restrictive than, say, assuming some similarities among individuals who match, such
as “directed search”: Individuals search for someone more is similar to them or meet
with potential partners from the same social group, at work or partners that have similar
interests in common. However, this assumption brings about some problems: The fact that
matching is random provides hope to very low types in that they could be matched with
high types in later periods of life, and this delays their matches. This might not occur in
real life: in later stages of life, people tend to deal with individuals with similar features,
jobs, social class, etc. Hence, it would be admissible to assume directed search for matches
in later periods of life, such as T = 2 and T = 3. At the same time, assuming directed search
would prevent showing the effects of positive assortative matching dissolution among
intermediate high types, which is something observed in reality.
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Appendix A

In this appendix, we include a proof of the divorce conditions (Proposition 1) as
well as the proofs of the equilibrium strategy of eligible and non-eligible individuals
(Proposition 2 and Proposition 3).

Appendix A.1. Proof of Proposition 1

Consider first θi >
δθ̂

1+δ . In order for divorce to occur, two conditions need to take place.(
1 + δ + δ2

)
θp1 < max

{
θp1 − δc + δ(1 + δ)θ̃, θp1 − δc + δ2θ̂

}
, (A1)

⇔ θp1 < max

{
θ̃,

δθ̂

1 + δ

}
− c

1 + δ
, (unhappiness) (A2)

θp − δc + δ(1 + δ)θ̃ > δ(1 + δ)θ̃ ⇔ θp > δc, (divorce option) (A3)

These two conditions may be verified if the following is the case.

max

{
θ̃,

δθ̂

1 + δ

}
− c

1 + δ
> δc, (A4)

⇔ c <
(1 + δ)max

{
θ̃, δθ̂

1+δ

}
1 + δ + δ2 . (A5)

Consider θi < δθ̂
1+δ next. In order for divorce to occur, the two conditions must

be satisfied. (
1 + δ + δ2

)
θp1 < θp1 − δc + δ2θ̂, (A6)
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⇔ θp1 <
δθ̂ − c
1 + δ

, unhappiness (A7)

θp − δc + δ2θ̂ > δ2θ̂ ⇒ θp > δc divorce option (A8)

These two conditions hold if the following is the case.

δθ̂ − c
1 + δ

> δc⇒ c <
δθ̂

1 + δ + δ2 . (A9)

Appendix A.2. Proof of Proposition 2

If θ̃ > δθ̂
1+δ , individual i expects, after divorce, to marry in T = 2; thus, he divorces

if θp1 < Φ1. If θ̃ > δθ̂
1+δ , individual i expects, after divorce, to marry in T = 3; thus, he

divorces if θp1 < Φ2.

Returning to T = 1, if θ̃ > δθ̂
1+δ , he will choose between marrying and rejecting for

θp1 ≥ Φ1 and between divorcing and rejecting for θp1 < Φ1. If θp1 ≥ Φ1, individual i
prefers to reject the pretender in T = 1 if the following is the case:(

1 + δ + δ2
)

θp1 < δ(1 + δ)θ̃, (A10)

for the following case.

θp1 <
(1 + δ)δθ̃

1 + δ + δ2 ≡ Φ3. (A11)

Notice that the following obtains.

Φ1 > Φ3 ⇔ (A12)

θ̃ − c
1 + δ

>
(1 + δ)δθ̃

1 + δ + δ2 for c <
(1 + δ)θ̃

1 + δ + δ2 . (A13)

Therefore, whenever a divorce may occur by Proposition 1, threshold Φ3 is not binding
whenever θp1 > Φ1.

If θp1 < Φ1, individual i prefers to reject the pretender in T = 1 if the following is
the case:

θp1 − δc + δ(1 + δ)θ̃ < δ(1 + δ)θ̃, (A14)

for θp1 < δc.

If δθ̂
1+δ > θ̃ and θp1 ≥ Φ2, individual i prefers to reject the pretender in T = 1 if the

following is the case: (
1 + δ + δ2

)
θp1 < δ2θ̂, (A15)

for the following.

θp1 <
δ2θ̂

1 + δ + δ2 ≡ Φ4. (A16)

Notice that the following is obtained.

Φ2 > Φ4 ⇔ (A17)

δθ̂ − c
1 + δ

>
δ2θ̂

1 + δ + δ2 for c <
δθ̂

1 + δ + δ2 . (A18)

Hence, everytime a divorce may occur by Proposition 1, threshold Φ4 is not binding
whenever θp1 > Φ1. If θp1 < Φ2, individual i prefers to reject the pretender in T = 1 if the
following is the case.

θp1 − δc + δ2θ̂ < δ2θ̂ ⇔ θp1 > δc. (A19)
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Appendix A.3. Proof of Proposition 3

A non-eligible individual expects to be rejected in T = 2 but still might want to
divorce his partner if the expected payoff of T = 3 is sufficiently high. Following previous
comparisons, this occurs if θp1 < Φ2.

Returning to T = 1, individual i will choose between marrying and rejecting for
θp1 > Φ2 and between divorcing and rejecting for θp1 < Φ2 and for θp1 > Φ2.(

1 + δ + δ2
)

θp1 < δ2θ̂, if θp1 < Φ4. (A20)

By Proposition 1, the conditions of a divorce equilibrium imply Φ2 > Φ4. It follows
that this threshold is not binding whenever θp1 > Φ2, and individual i always chooses to
marry in this case. Consider θp1 < Φ2 next.

θp1 − δc + δ2θ̂ < δ2θ̂, if θp1 < δc. (A21)

Appendix B. Proof of Proposition 4

We prove the proposition by contradiction. Suppose instead that δθ̂
1+δ > Φ1. In order to

verify this, we need to split the proof in two parts: one where we assume that δθ̂
1+δ > θ̃ and

the other where we assume that δθ̂
1+δ ∈

(
Φ1, θ̃

)
. This procedure is necessary because, since

θ̃ and θ̂ are endogenous, their values change according to each equilibrium configuration.

Appendix B.1. Case 1: δθ̂
1+δ > θ̃

First, we need to find the values of θ̃ and θ̂ for the equilibrium configuration where
δθ̂

1+δ > θ̃. To perform this, we use the results of Propositions 2 and 3 from which we can infer
which of the individuals are single in T = 2 and T = 3, respectively. Figure A1 helps to explain
the situation. It shows the marriage choices in T = 1 and the divorce choices in T = 2. In every
region, each letter represents the behaviour of agents i and p1, with the first letter indicating
the partner’s behaviour and the second letter indicating the individual’s behaviour. Marriage
takes place in T = 1 and lasts for the entire game if both letters are m (married), r indicates that
one agent rejects the person met in T = 1 and, finally, d indicates that one divorces in T = 2.
Thus, for example, an individual i of type θi >

δθ̂
1+δ agrees to marry a potential partner of type

θp1 > δθ̂
1+δ , and he is reciprocated (letters mm) but divorces type θp1 ∈

(
δc, δθ̂

1+δ −
c

1+δ

)
, who

instead would be happy to remain married (letters md).
As a consequence, all matching combinations that did not provide an mm split in

T = 2. Remember that we are focusing only on one side, (individuals instead of pretenders);
thus, we are interested only on the proportion of single pretenders (of course, the same
applies in the other side of the market). Hence, single pretenders in T = 2 are described
as follows:

• Eligibles θp1 ∈
(

δθ̂
1+δ , 1

)
, who met individuals θi ∈

(
0, δθ̂

1+δ −
c

1+δ

)
, with probability(

1− δθ̂
1+δ

)(
δθ̂

1+δ −
c

1+δ

)
who yield an expected payoff of

δθ̂
1+δ +1

2 ;

• Non-eligibles of type θp1 ∈
(

δθ̂
1+δ −

c
1+δ , δθ̂

1+δ

)
, who met individuals θi ∈

(
0, δθ̂

1+δ −
c

1+δ

)
,

with probability c
1+δ

(
δθ̂

1+δ −
c

1+δ

)
who yield an expected payoff of

2 δθ̂
1+δ−

c
1+δ

2 ;

• non-eligibles of type θp1 ∈
(

0, δθ̂
1+δ −

c
1+δ

)
, who met individuals θi ∈ (0, 1), with

probability
(

δθ̂
1+δ −

c
1+δ

)
who yield an expected payoff of

δθ̂
1+δ−

c
1+δ

2 .
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Figure A1. Equilibrium configuration for δθ̂
1+δ > θ̃.

By using Bayes’ rule and performing simplification, the expected quality in T = 2 is
provided by the following.

θ̃ =

(
1− δθ̂

1+δ

) δθ̂
1+δ +1

2 + c
1+δ

2 δθ̂
1+δ−

c
1+δ

2 +
δθ̂

1+δ−
c

1+δ
2(

1− δθ̂
1+δ

)
+ c

1+δ + 1
. (A22)

In T = 3, single pretenders are single in T = 2 of type > δθ̂
1+δ , who met someone

of a type lower than δθ̂
1+δ or pretenders of type < δθ̂

1+δ who, necessarily, are rejected in
T = 2; thus, they move forward to T = 3 as singles with probability one. The following,
thus, results.

θ̂ =

(
1− δθ̂

1+δ

)
δθ̂

1+δ

δθ̂
1+δ +1

2 + c
1+δ

2 δθ̂
1+δ−

c
1+δ

2 +
δθ̂

1+δ−
c

1+δ
2(

1− δθ̂
1+δ

)
δθ̂

1+δ +
c

1+δ + 1
. (A23)

We are now in a position to evaluate whether θ̃ > δ
1+δ θ̂, which would produce a

contradiction. In order to ease the exposition, we temporarily define the following.

A1 =

(
1− δθ̂

1 + δ

)
δθ̂

1+δ + 1
2

; (A24)

B1 =
c

1 + δ

2 δθ̂
1+δ −

c
1+δ

2
+

δθ̂
1+δ −

c
1+δ

2
; (A25)

C1 =

(
1− δθ̂

1 + δ

)
; (A26)

D1 =
c

1 + δ
+ 1. (A27)
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In this manner, we can rewrite the following.

θ̃ =
A1 + B1

C1 + D1
and θ̂ =

δθ̂
1+δ A1 + B1

δθ̂
1+δ C1 + D1

. (A28)

We want to verify if the following is the case:

A1 + B1

C1 + D1
>

δ

1 + δ

δθ̂
1+δ A1 + B1

δθ̂
1+δ C1 + D1

. (A29)

which can be rewritten as follows.

A1 + B1

C1 + D1
>

δ

1 + δ

δθ̂A1 + (1 + δ)B1

δθ̂C1 + (1 + δ)D1
, (A30)

The above can be rearranged into the following form.

A1 + B1

C1 + D1
>

δθ̂
1+δ A1 + B1

δθ̂
δ C1 +

(1+δ)
δ D1

. (A31)

A quick glance shows that the numerator of the LHS is always higher than the
numerator of the RHS. This relationship is, thus, verified if the denominator of RHS is
higher than that of the LHS. In other words, we have the following.

C1 < θ̂C1 +
1
δ

D1 ⇔ δC1

(
1− θ̂

)
< D1. (A32)

By using the values of C1 and D1, we obtain the following.

δ
(

1− θ̂
)(

1− δθ̂

1 + δ

)
<

c
1 + δ

+ 1. (A33)

The LHS is smaller than one; thus, the sign of the inequality is always verified.
Proposition 1 ensures that this relationship is true, θ̃ > δθ̂

1+δ . However, this contradicts
the initial assumption of the equilibrium configuration.

Appendix B.2. Case 2: δθ̂
1+δ ∈

(
θ̃ − c

1+δ , θ̃
)

Again, we need first to find the values of θ̃ and θ̂ for the equilibrium configuration
where δθ̂

1+δ ∈
(

θ̃ − c
1+δ , θ̃

)
. To perform this, we use the results of Propositions 2 and 3, from

which we can infer which of the individuals are single in T = 2 and T = 3, respectively.
Figure A2 shows the equilibrium configuration: single pretenders in T = 2 are defined

as follows:

• Eligibles θp1 ∈
(

δθ̂
1+δ , 1

)
who met individuals θi ∈

(
0, θ̃ − c

1+δ

)
, with probability(

1− δθ̂
1+δ

)(
θ̃ − c

1+δ

)
who yield an expected payoff of

δθ̂
1+δ +1

2 ;

• Non-eligibles of type θp1 ∈
(

θ̃ − c
1+δ , δθ̂

1+δ

)
who met individuals θi ∈

(
0, δθ̂

1+δ −
c

1+δ

)
,

with probability
(

δθ̂
1+δ − θ̃ + c

1+δ

)(
δθ̂

1+δ −
c

1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +

δθ̂
1+δ

2 ;

• Non-eligibles of type θp1 ∈
(

δθ̂
1+δ −

c
1+δ , θ̃ − c

1+δ

)
who met individuals

θi ∈
(

0, δθ̂
1+δ −

c
1+δ

)
, with probability

(
θ̃ − δθ̂

1+δ

)(
δθ̂

1+δ −
c

1+δ

)
or individuals θi ∈
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(
δθ̂

1+δ , 1
)

with probability
(

θ̃ − δθ̂
1+δ

)(
1− δθ̂

1+δ

)
who yield an expected payoff of

θ̃+ δθ̂
1+δ−2 c

1+δ
2 ;

• Non-eligibles of type θp1 ∈
(

0, δθ̂
1+δ −

c
1+δ

)
who met individuals θi ∈ (0, 1) with

probability
(

δθ̂
1+δ −

c
1+δ

)
who yield an expected payoff of

δθ̂
1+δ−

c
1+δ

2 .

By Bayes’ rule, the expected quality in T = 2 is provided by the following.

θ̃ =

(
1− δθ̂

1+δ

)
(θ̃− c

1+δ )
δθ̂

1+δ
+1

2 +
(

δθ̂
1+δ−θ̃+ c

1+δ

)(
δθ̂

1+δ−
c

1+δ

) θ̃− c
1+δ

+ δθ̂
1+δ

2(
1− δθ̂

1+δ

)
(θ̃− c

1+δ )+
(

δθ̂
1+δ−θ̃+ c

1+δ

)(
δθ̂

1+δ−
c

1+δ

)
+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )+
(

δθ̂
1+δ−

c
1+δ

)+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )
θ̃+ δθ̂

1+δ
−2 c

1+δ
2 +

(
δθ̂

1+δ−
c

1+δ

) δθ̂
1+δ
− c

1+δ
2(

1− δθ̂
1+δ

)
(θ̃− c

1+δ )+
(

δθ̂
1+δ−θ̃+ c

1+δ

)(
δθ̂

1+δ−
c

1+δ

)
+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )+
(

δθ̂
1+δ−

c
1+δ

) .

(A34)

Figure A2. Equilibrium configuration for δθ̂
1+δ ∈

(
Φ1, θ̃

)
.

In T = 3, a single pretender is single in T = 2 of type > δθ̂
1+δ and has met someone

of a type lower than δθ̂
1+δ or pretenders of type θp < δθ̂

1+δ who, necessarily, are rejected in
T = 2; thus, they move forward to T = 3 as singles with a probability of one. The following
is obtained.

θ̂ =

(
1− δθ̂

1+δ

)
(θ̃− c

1+δ )
δθ̂

1+δ

δθ̂
1+δ

+1
2 +

(
δθ̂

1+δ−θ̃+ c
1+δ

)(
δθ̂

1+δ−
c

1+δ

) θ̃− c
1+δ

+ δθ̂
1+δ

2(
1− δθ̂

1+δ

)
(θ̃− c

1+δ )
δθ̂

1+δ +
(

δθ̂
1+δ−θ̃+ c

1+δ

)(
δθ̂

1+δ−
c

1+δ

)
+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )+
(

δθ̂
1+δ−

c
1+δ

)+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )
θ̃+ δθ̂

1+δ
−2 c

1+δ
2 +

(
δθ̂

1+δ−
c

1+δ

) δθ̂
1+δ
− c

1+δ
2(

1− δθ̂
1+δ

)
(θ̃− c

1+δ )
δθ̂

1+δ +
(

δθ̂
1+δ−θ̃+ c

1+δ

)(
δθ̂

1+δ−
c

1+δ

)
+
(

θ̃− δθ̂
1+δ

)
(1− c

1+δ )+
(

δθ̂
1+δ−

c
1+δ

) .

(A35)

We want to show that this equilibrium configuration does not exist. To ease the
exposition, we temporarily call the following.
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A2 =

(
1− δθ̂

1 + δ

)(
θ̃ − c

1 + δ

) δθ̂
1+δ + 1

2
; (A36)

B2 =

(
δθ̂

1 + δ
− θ̃ +

c
1 + δ

)(
δθ̂

1 + δ
− c

1 + δ

)
θ̃ − c

1+δ + δθ̂
1+δ

2
+

(
θ̃ − δθ̂

1 + δ

)(
1− c

1 + δ

)
θ̃ + δθ̂

1+δ − 2 c
1+δ

2

+

(
δθ̂

1 + δ
− c

1 + δ

)
δθ̂

1+δ −
c

1+δ

2
; (A37)

C2 =

(
1− δθ̂

1 + δ

)(
θ̃ − c

1 + δ

)
; (A38)

D2 =

(
δθ̂

1 + δ
− θ̃ +

c
1 + δ

)(
δθ̂

1 + δ
− c

1 + δ

)
+

(
θ̃ − δθ̂

1 + δ

)(
1− c

1 + δ

)
+

(
δθ̂

1 + δ
− c

1 + δ

)
. (A39)

First, we need to prove that θ̃ > θ̂:

A2 + B2

C2 + D2
>

δθ̂
1+δ A2 + B2

δθ̂
1+δ C2 + D2

, (A40)

which can be rewritten as follows.

δθ̂
1+δ C2 + D2

C2 + D2
>

δθ̂
1+δ A2 + B2

A2 + B2
, (A41)

The following can be obtained. D2
C2+D2

= 1− C2
C2+D2

and B2
A2+B2

= 1− A2
A2+B2

,

δθ̂
1+δ C2

C2 + D2
+ 1− C2

C2 + D2
>

δθ̂
1+δ A2

A2 + B2
+ 1− A2

A2 + B2
. (A42)

After some manipulation, we obtain the following:

A2

C2
>

B2

D2
, (A43)

where A2
C2

=
δθ̂

1+δ +1
2 , while defining the following.

d1 =

(
δθ̂

1 + δ
− θ̃ +

c
1 + δ

)(
δθ̂

1 + δ
− c

1 + δ

)
, (A44)

d2 =

(
θ̃ − δθ̂

1 + δ

)(
1− c

1 + δ

)
, (A45)

d3 =

(
δθ̂

1 + δ
− c

1 + δ

)
, (A46)

Thus, the following can be written.

B2

D2
=

d1
θ̃− c

1+δ +
δθ̂

1+δ
2 + d2

θ̃+ δθ̂
1+δ−2 c

1+δ
2 + d3

δθ̂
1+δ−

c
1+δ

2
d1 + d2 + d3

. (A47)
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If
δθ̂

1+δ +1
2 is greater than each payoff (

θ̃− c
1+δ +

δθ̂
1+δ

2 ,
θ̃+ δθ̂

1+δ−2 c
1+δ

2 and
δθ̂

1+δ−
c

1+δ
2 , which should

be true), then it is greater than a linear combination of these payoffs; thus, A2
C2

> B2
D2

.

δθ̂
1+δ + 1

2
>

θ̃ − c
1+δ +

δθ̂
1+δ

2
⇔ 1 > θ̃ − c

1 + δ
, (A48)

δθ̂
1+δ + 1

2
>

θ̃ + δθ̂
1+δ − 2 c

1+δ

2
⇔ 1 > θ̃ − 2

c
1 + δ

, (A49)

δθ̂
1+δ + 1

2
>

δθ̂
1+δ −

c
1+δ

2
⇔ 1 > − c

1 + δ
. (A50)

Therefore, A2
C2

> B2
D2

, which proves that θ̃ > θ̂.

We are now in a position to evaluate whether θ̃ − c
1+δ > δ

1+δ θ̂, which would produce
a contradiction. This inequality can be rewritten as follows:

A2 + B2

C2 + D2
− c

1 + δ
>

δ

1 + δ

δθ̂
1+δ A2 + B2

δθ̂
1+δ C2 + D2

, (A51)

which can be rearranged as the following.

A2 + B2

C2 + D2
− δ

1 + δ

δθ̂
1+δ A2 + B2

δθ̂
1+δ C2 + D2

>
c

1 + δ
. (A52)

Since θ̂ < θ̃, a sufficient condition is defined as follows:

A2 + B2

C2 + D2
− δ

1 + δ

A2 + B2

C2 + D2
>

c
1 + δ

(A53)

A2 + B2

C2 + D2

1
1 + δ

>
c

1 + δ
⇔ θ̃ > c, (A54)

which is true by Proposition 1.

Appendix C. Equilibrium Characterisation

In this appendix, we characterise the cheap, the expensive and the highly expensive
divorce equilibria.

Appendix C.1. Cheap Divorce

The cheap divorce configuration requires the following rank of the thresholds: Φ1 >
δθ̂

1+δ > Φ2 > δc. Single pretenders in T = 2 are defined as follows:

• Eligibles of type θp1 ∈
(

θ̃ − c
1+δ , 1

)
who met individuals θi ∈

(
0, θ̃ − c

1+δ

)
, with

probability
(

1− θ̃ + c
1+δ

)(
θ̃ − c

1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +1
2 ;

• Eligibles of type θp1 ∈
(

δθ̂
1+δ , θ̃ − c

1+δ

)
who met individuals θi ∈ (0, 1), with probabil-

ity
(

θ̃ − c
1+δ −

δθ̂
1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +

δθ̂
1+δ

2 ;

• Non-eligibles of type θp1 ∈
(

δθ̂
1+δ −

c
1+δ , δθ̂

1+δ

)
who met individuals of type

θi ∈
(

0, δθ̂
1+δ −

c
1+δ

)
or θi ∈

(
δθ̂

1+δ , 1
)

with probability c
1+δ

(
1− c

1+δ

)
who yield an

expected payoff of
2 δθ̂

1+δ−
c

1+δ
2 ;
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• Non-eligibles of type θp1 ∈
(

0, δθ̂
1+δ −

c
1+δ

)
who met individuals θi ∈ (0, 1) with

probability δθ̂
1+δ −

c
1+δ who yield an expected payoff of

δθ̂
1+δ−

c
1+δ

2 .

By Bayes’ rule, the expected quality in T = 2 is given by the following.

θ̃ =

(
1− θ̃ + c

1+δ

)(
θ̃ − c

1+δ

)
θ̃− c

1+δ +1
2 +

(
θ̃ − c

1+δ −
δθ̂

1+δ

)
θ̃− c

1+δ +
δθ̂

1+δ

2 + c
1+δ

(
1− c

1+δ

)
2 δθ̂

1+δ−
c

1+δ

2 +
(

δθ̂
1+δ −

c
1+δ

) δθ̂
1+δ−

c
1+δ

2(
1− θ̃ + c

1+δ

)(
θ̃ − c

1+δ

)
+
(

θ̃ − c
1+δ −

δθ̂
1+δ

)
+ c

1+δ

(
1− c

1+δ

)
+
(

δθ̂
1+δ −

c
1+δ

) . (A55)

In T = 3, single pretenders are single in T = 2 and are of a type larger than δθ̂
1+δ . They

have met someone of a type lower than δθ̂
1+δ or pretenders of a type smaller than δθ̂

1+δ who,
necessarily, are rejected in T = 2; thus, they move forward to T = 3 as singles with a
probability of one. The following is a result.

θ̂ =
(1−θ̃+ c

1+δ )(θ̃− c
1+δ )

δθ̂
1+δ

θ̃− c
1+δ

+1
2 +

(
θ̃− c

1+δ−
δθ̂

1+δ

)
δθ̂

1+δ

θ̃− c
1+δ

+ δθ̂
1+δ

2

(1−θ̃+ c
1+δ )(θ̃− c

1+δ )
δθ̂

1+δ +
(

θ̃− c
1+δ−

δθ̂
1+δ

)
δθ̂

1+δ +
c

1+δ (1− c
1+δ )+

(
δθ̂

1+δ−
c

1+δ

)+
c

1+δ (1− c
1+δ )

2 δθ̂
1+δ
− c

1+δ
2 +

(
δθ̂

1+δ−
c

1+δ

) δθ̂
1+δ
− c

1+δ
2

(1−θ̃+ c
1+δ )(θ̃− c

1+δ )
δθ̂

1+δ +
(

θ̃− c
1+δ−

δθ̂
1+δ

)
δθ̂

1+δ +
c

1+δ (1− c
1+δ )+

(
δθ̂

1+δ−
c

1+δ

)
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Appendix C.1.1. Expensive Divorce: Φ2 < δc and δθ̂
1+δ ∈ (δc, Φ1).

Single pretenders in T = 2 are defined as follows:

• Eligibles of type θp1 ∈
(

θ̃ − c
1+δ , 1

)
who met individuals θi ∈

(
0, θ̃ − c

1+δ

)
, with

probability
(

1− θ̃ + c
1+δ

)(
θ̃ − c

1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +1
2 ;

• Eligibles of type θp1 ∈
(

δθ̂
1+δ , θ̃ − c

1+δ

)
who met individuals θi ∈ (0, 1), with probabil-

ity
(

θ̃ − c
1+δ −

δθ̂
1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +

δθ̂
1+δ

2 ;

• Non-eligibles of type θp1 ∈
(

δ2 θ̂
1+δ+δ2 , δθ̂

1+δ

)
who met individuals of type θi ∈ (0, Φ4)

or θi ∈
(

δθ̂
1+δ , 1

)
with probability

(
δθ̂

1+δ −
δ2 θ̂

1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 + 1− δθ̂
1+δ

)
who yield an

expected payoff of
δθ̂

1+δ +
δ2 θ̂

1+δ+δ2
2 ;

• Non-eligibles of type θp1 ∈
(

0, δ2 θ̂
1+δ+δ2

)
who met individuals θi ∈ (0, 1) with probabil-

ity δ2 θ̂
1+δ+δ2 who yield an expected payoff of

δ2 θ̂
1+δ+δ2

2 .

By Bayes’ rule, the expected quality in T = 2 is provided by the following.

θ̃ =
(1−θ̃+ c

1+δ )(θ̃− c
1+δ )

θ̃− c
1+δ

+1
2 +

(
θ̃− c

1+δ−
δθ̂

1+δ

) θ̃− c
1+δ

+ δθ̂
1+δ

2

(1−θ̃+ c
1+δ )(θ̃− c

1+δ )+
(

θ̃− c
1+δ−

δθ̂
1+δ

)
+
(

δθ̂
1+δ−

δ2 θ̂
1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

)
+ δ2 θ̂

1+δ+δ2

+

(
δθ̂

1+δ−
δ2 θ̂

1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

) δθ̂
1+δ

+ δ2 θ̂
1+δ+δ2
2 + δ2 θ̂

1+δ+δ2

δ2 θ̂
1+δ+δ2

2

(1−θ̃+ c
1+δ )(θ̃− c

1+δ )+
(

θ̃− c
1+δ−

δθ̂
1+δ

)
+
(

δθ̂
1+δ−

δ2 θ̂
1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

)
+ δ2 θ̂

1+δ+δ2

.
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In T = 3, single pretenders are single in T = 2 of type > δθ̂
1+δ . They have met someone

of type lower than δθ̂
1+δ or pretenders of type < δθ̂

1+δ who, necessarily, are rejected in T = 2;
thus, they move forward to T = 3 as singles with a probability of one.

θ̂ =
(1−θ̃− c

1+δ )(θ̃− c
1+δ )

δθ̂
1+δ

θ̃− c
1+δ

+1
2 +

(
θ̃− c

1+δ−
δθ̂

1+δ

)
δθ̂

1+δ

θ̃− c
1+δ

+ δθ̂
1+δ

2

(1−θ̃− c
1+δ )(θ̃− c

1+δ )
δθ̂

1+δ +
(

θ̃− c
1+δ−

δθ̂
1+δ

)
δθ̂

1+δ +
(

δθ̂
1+δ−

δ2 θ̂
1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

)
+ δ2 θ̂

1+δ+δ2

+

(
δθ̂

1+δ−
δ2 θ̂

1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

) δθ̂
1+δ

+ δ2 θ̂
1+δ+δ2
2 + δ2 θ̂

1+δ+δ2

δ2 θ̂
1+δ+δ2

2

(1−θ̃− c
1+δ )(θ̃− c

1+δ )
δθ̂

1+δ +
(

θ̃− c
1+δ−

δθ̂
1+δ

)
δθ̂

1+δ +
(

δθ̂
1+δ−

δ2 θ̂
1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 +1− δθ̂
1+δ

)
+ δ2 θ̂

1+δ+δ2

.
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Appendix C.1.2. Highly Expensive Divorce: Φ2 < δc and δθ̂
1+δ < δc.

Single pretenders in T = 2 are defined as follows:

• Eligibles of type θp1 ∈
(

θ̃ − c
1+δ , 1

)
who met individuals θi ∈

(
0, θ̃ − c

1+δ

)
, with

probability
(

1− θ̃ + c
1+δ

)(
θ̃ − c

1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +1
2 ;

• Eligibles of type θp1 ∈
(

δθ̂
1+δ , θ̃ − c

1+δ

)
who met individuals θi ∈ (0, 1), with probabil-

ity
(

θ̃ − c
1+δ −

δθ̂
1+δ

)
who yield an expected payoff of

θ̃− c
1+δ +

δθ̂
1+δ

2 ;

• Non-eligibles of type θp1 ∈
(

δ2 θ̂
1+δ+δ2 , δθ̂

1+δ

)
who met individuals of type θi ∈

(
0, δ2 θ̂

1+δ+δ2

)
or θi ∈

(
δθ̂

1+δ , 1
)

with probability
(

δθ̂
1+δ −

δ2 θ̂
1+δ+δ2

)(
δ2 θ̂

1+δ+δ2 + 1− δθ̂
1+δ

)
who yield an expected payoff of

δθ̂
1+δ +

δ2 θ̂
1+δ+δ2
2 ;

• Non-eligibles of type θp1 ∈
(

0, δ2 θ̂
1+δ+δ2

)
who met individuals θi ∈ (0, 1) with probabil-

ity δ2 θ̂
1+δ+δ2 who yield an expected payoff of

δ2 θ̂
1+δ+δ2

2 .

Hence, the values of
(

θ̃, θ̂
)

are the same as in the equilibrium with expensive divorce.

Appendix D

In this appendix, we determine the expected quality of singles in T = 2 in the two-
periods model. Figure A3 depicts the situation.

Single pretenders in T = 2 are defined as follows:

• Of type θp1 ∈
(

θ̃2T − c, 1
)

who met individuals θi ∈
(

0, θ̃2T − c
)

, with probability(
1− θ̃2T + c

)(
θ̃2T − c

)
who yield an expected payoff of θ̃2T−c+1

2 ;

• Of type θp1 ∈
(

0, θ̃2T − c
)

who met individuals θi ∈ (0, 1), with probability θ̃2T − c

who yield an expected payoff of θ̃2T−c
2 ;

By using Bayes’ rule and the process of simplification, the expected quality in T = 2 is
given by the following.

θ̃2T =

(
1− θ̃2T + c

)
θ̃2T−c+1

2 + θ̃2T−c
2(

1− θ̃2T + c
)
+ 1

. (A59)

By solving for θ̃2T and rearranging, we obtain the following.

θ̃2T =
3−
√

5 + 4c + 4c2

2
. (A60)
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Figure A3. Divorce equilibrium in a 2-periods setting.
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