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Abstract
Efficient devices for light harvesting and photon sensing are fundamental building blocks of basic
energy science and many essential technologies. Recent efforts have turned to biomimicry to
design the next generation of light-capturing devices, partially fueled by an appreciation of the
fantastic efficiency of the initial stages of natural photosynthetic systems at capturing photons. In
such systems extended excitonic states are thought to play a fundamental functional role, inducing
cooperative coherent effects, such as superabsorption of light and supertransfer of
photoexcitations. Inspired by this observation, we design an artificial light-harvesting and
photodetection device that maximally harnesses cooperative effects to enhance efficiency. The
design relies on separating absorption and transfer processes (energetically and spatially) in order
to overcome the fundamental obstacle to exploiting cooperative effects to enhance light capture:
the enhanced emission processes that accompany superabsorption. This engineered separation of
processes greatly improves the efficiency and the scalability of the system.

Since the discovery of coherent features in natural light-harvesting complexes [1–8] and subsequent
studies of the functional role of these features, there has been great interest in engineering biomimetic
devices for photon sensing or light harvesting, able to exploit coherent quantum features [9–11] even in
ambient conditions. Natural light-harvesting complexes are composed of organic chromophores, each
characterized by a dipole moment that determines its coupling to the electromagnetic field (EMF) and its
interaction with neighboring systems. Once light is absorbed, the induced photoexcitation is transmitted to
another molecular aggregate, called the reaction center (RC), where charge separation occurs, which drives
subsequent steps in the photosynthesis chain. The main quantum coherent effects that are thought to
contribute to the high efficiency of natural photosynthetic complexes are induced by the delocalization of
the excitation over many molecules [12–21]. Such delocalized excitonic states can have an enhanced dipole
strength that strongly couples them to the EMF. Thus, these states are able to absorb light at a rate much
larger than the single-molecule absorption rate. Indeed, the absorption rate of a single delocalized excitonic
state can increase linearly with the number of molecules over which the excitation is delocalized. On the
other hand, the states that absorb light efficiently also exhibit enhanced emission rates (termed
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superradiance) since the process is time reversible. The time-reversal character of absorption/emission
processes is one of the main reasons for the Shockley–Queisser efficiency limit for photocell devices [22].

Several recent proposals have aimed to suppress re-emission in systems composed of few molecules.
Specifically, it has been discussed how coherent effects can suppress re-emission leaving absorption intact
for a molecular dimer [23–25], and a mechanism for suppressing re-emission, exploiting bright and dark
states and fast thermal relaxation, has been devised for two [9, 26] and three coupled molecules [27].
Moreover, in reference [11] it is shown how to maximize cooperative absorption and engineer
super-absorbing many-atom structures that avoid superradiance by controlling the structure of a collection
of atoms/molecules and engineering their vibrational environment to achieve delicately tuned thermal
transition rates. The above results suggest that one can in principle exploit cooperative effects to enhance
light capture and transfer by designing engineered structures that avoid detrimental effects such as
superradiance.

In this work we propose a molecular architecture that is able to suppress re-emission, while leaving
absorption intact. The general idea of our device is based on engineering a super-absorbing state at high
energy. Once the excitation is absorbed, it is transferred to the low-energy states by thermal relaxation,
which, being much faster then re-emission, prevents radiative losses. The low-energy states transfer the
excitation to the central core absorber with reduced radiative losses due to the fact that their dipole strength
is smaller than the high-energy absorbing state.

Specifically, our light-harvesting device is composed of a ring of N molecules surrounding a central core
absorber, similar to photosynthetic complexes found in purple bacteria. The molecular arrangement is
engineered so that we have three bright excitonic states with orthogonal dipole moments, one at high
energy and two at low energy. Only the low-energy states are coupled to the central core absorber. By
changing the orientation of the molecular dipoles, we can control the brightness of these states. If we make
the high-energy state the brightest, absorption mainly occurs through it. That state is not directly coupled
to the central core absorber, but fast thermal relaxation funnels the excitation towards the low-energy states.
The brightness of these cannot be zero if we want to exploit the radiative coupling with the central core
absorber to transfer and trap the excitation. Nevertheless, to minimize re-emission, it is convenient to keep
the low-energy brightness rather small. Balancing these two requirements, one can find optimal parameter
ranges in which transfer is maximized.

The efficiency of our proposed architecture is analyzed as a function of the ring radius, which
determines the number of molecules needed to keep a given density, and the orientation of the molecules in
the ring. Related work providing theoretical insight into the role of fold symmetry in promoting efficient
energy transfer in LH2 can be found in [28]. Since our proposed architecture suppresses radiative
recombination, the advantages of our design are present only if radiative recombination is the main cause of
efficiency losses. For instance, for very large trapping rates at the RC, radiative losses become negligible.
Note that the mechanism proposed here extends the design of reference [9] for two molecules to a device
composed of an arbitrary number of molecules. Moreover, while the transfer mechanism in reference [9]
was not radiative, here we consider that the coupling to the central core absorber is radiative in nature, as it
happens in natural photosynthetic systems.

Our model device can be tuned to mimic natural light-harvesting systems, and we compare the
performance of the optimized device to that of a model of a natural system, under weak laser excitation and
a realistic model for natural sunlight. The efficiency of our device, in the optimal size range N ≈ 50, is
found to be more than two orders of magnitude larger than that of a single absorber and enhanced by a
factor larger than N. In the same regime, as we will show below, the efficiency of models mimicking natural
systems is enhanced only by a factor equal to the number of absorbers. We also show that, under natural
sunlight excitation, the decoupling mechanism of our model leads to an improvement in the efficiency of
about five times with respect to a non-decoupled configuration.

1. The structural model

We consider a molecular complex composed of N molecules (or point absorbers) placed on a ring of radius
R with constant density d, sketched in figure 1(a). The excitation energy of each molecule, �ω0, is assumed
to be the same while their dipole moments �μn have the same modulus, μ, but possibly different
orientations, indicated by the unit vector p̂n. The properties of the system will be studied for different
system sizes, keeping the density d fixed, while varying the radius. The role of the ring structure is to absorb
the electromagnetic radiation and transfer the excitation to a central core absorber, such as the RC of
natural photosynthetic complexes, that we mimic with an additional central site, coupled to an external
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Figure 1. Dipole arrangement of the device considered in this paper and level schemes. (a) The dipoles are tangential to the ring
with a component along the z direction with alternating signs, see details in the text. Dipole disposition of the model is shown for
N = 16 and θ = π/3, see equation (1). The central dipole lies along the y axis and is parallel to the dipole of the first excited state
of the ring. (b)–(d) In the lower part a schematic representation of the excitonic eigenstates of the model is shown, for the three
kinds of absorption considered. (b) In the D-configuration the polarization of the incident light is such that the main absorbing
state is separated from the trapping state, and transfer of energy between the two states is driven by fast thermal relaxation
processes. (c) In the LH-configuration the polarization of the incident light is such that the main absorbing state coincides with
the trapping state. (d) In the sunlight configuration, absorption happens at both edges of the spectrum and fast thermalization
drives the whole absorbed excitation to the low-energy trapping state.

environment where the excitation can be irreversibly trapped. The whole system is also coupled to a thermal
bath at fixed temperature T.

The molecules lie on a ring in the xy plane with their dipole moments tangential to the circumference
and tilted by an angle ±θ with respect to the xy plane, see figure 1(a). Moreover, the vertical components
are alternated upwards and downwards, so that the normalized dipole moment orientations are

p̂n = cos θφ̂+ (−1)n sin θẑ, (1)

where φ̂ and ẑ are the unit vectors corresponding, respectively, to the azimuthal and to the vertical direction
of a cylindrical coordinate system. Due to the discrete rotational invariance of the system around the z axis,
the eigenstates and their dipoles, in the single excitation manifold (that is appropriate to describe the
weak-field limit) take the form |Eα〉 =

∑
n cn(Eα)|n〉, with cn(Eα) = 1√

N
exp(i2παn/N), and the

corresponding dipoles are �pα =
∑

n cn(Eα)p̂n, with a square modulus ranging from zero to N. Here, |n〉 is
the state where the nth molecule is excited and all the other ones are in their ground state. For any θ, the
dipole strength |�pα|2 is non-vanishing only for three excitonic states: |E2〉, |E3〉 and |EN〉, where we have
ordered the excitonic states by increasing energy. Actually, |E2〉 and |E3〉 span a degenerate subspace and,
without loss of generality, we choose them to be two orthogonal states in this subspace such that their
dipole moments are

�pE2 =

√
N

2
cos θŷ, (2a)

�pE3 =

√
N

2
cos θx̂, (2b)

with x̂ and ŷ being the unit vectors of the planar axes. The third bright eigenstate is the highest-energy
exciton, whose dipole moment is
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�pEN =
√

N sin θẑ, (2c)

perpendicular to the ring plane.
Since the emission rate from a state is proportional to |�pα|2, the states |E2,3,N〉 are also superradiant, with

an emission rate proportional to N. All the other states are subradiant with zero emission rate (dark states).
Moreover, the enhanced dipole of the high-energy state |EN〉 is orthogonal to the xy plane, and to the
dipoles of the other bright states: this guarantees the separation of excitation and transfer processes.

We add a RC to this model by an additional site |rc〉 placed at the center of the ring, with excitation
energy �ωrc, and coupled to an external environment (sink) where the excitation can be trapped at rate κ.
The RC is dipole coupled to the choromophores on the ring, and we choose the dipole moment of the RC
along the y axis, p̂rc = ŷ. We also set the energy of the RC site to be resonant with the first excited state of
the ring. As a consequence, only the state |E2〉, with dipole moment along the y direction, has a
non-vanishing coupling strength to the RC (see appendix C),

ΩC =
μ2

εrR3

√
N

2
cos θ. (3)

Since the density of dipoles on the ring d = N/(2πR) is kept constant, then ΩC scales with N as

ΩC =
μ2(2πd)3 cos θ√

2εr
N−5/2. (4)

This coupling determines the transfer between the ring and the RC.
Since the sum of the dipole strengths of all the eigenstates must be constant,

∑
α |�pα|2 = N, increasing θ

from 0 to π/2, the dipole strength of the high-energy state (|EN〉) is also increased, so that the smallest
dipole strength of the low-energy states is decreased (see equations (2a–2c)). This configuration limits
radiation losses together with ring-RC transfer. Nevertheless, as we discuss in the manuscript, the transfer is
much faster than the radiative losses below a critical ring size, thus preserving the trapping efficiency.

In order to describe this ring + RC system interacting with an EMF and with a thermal phonon
reservoir, we use a master equation (ME), see section 2. The reservoir coupling is assumed to be Markovian,
and each molecule is assumed to couple to an independent ohmic bath at the same temperature. The
parameters of the bath, see appendix E, have been chosen so that thermal relaxation among exciton states
occurs in about a picosecond at room temperature for N = 32. This is comparable with estimates for
natural photosynthetic systems reported in literature [29, 30], and it is much faster than the emission
timescales, of the order of nanoseconds.

As a measure of efficiency of our device we use the stationary current transmitted from the central site
to the sink, while the system is driven by the EMF, defined as

I = lim
t→∞

κρrc(t), (5)

where ρrc(t) is the population of the RC at time t. The current is further divided by the maximal stationary
current, Is, of the RC alone (in absence of the ring) under the same illumination conditions. In this way the
normalized current I/Is measures the increased efficiency of our network of dipoles with respect to a single
site. Since the excitation can only be trapped in the central site, a normalized current larger than unity
indicates increased effectiveness of the network of sites in absorbing and transferring the excitation.

2. Hamiltonian and master equation

In our model we choose the values of parameters to be close to realistic values found in natural complexes
such as LHI–LH2 in purple bacteria [29, 30]: squared dipole moment μ2 = 519 310 Å3 cm−1

(corresponding to μ ≈ 10 D); excitation energy of the ring sites �ω0 = 12 911 cm−1 (corresponding to a
single-site transition wavelength λ0 ≈ 775 nm); site density d = 32/(2πR0) with R0 = 5 nm.

The dynamics of our model is described by the following ME, written in a rotating frame with respect to
the driving field mode frequency ω [31–34]:

dρ

dt
= − i

�
[HS, ρ] + Lfl[ρ] + Lrc[ρ] +RT[ρ]. (6)

Here, the Hamiltonian HS = H0 +Δ+ HEM captures the evolution of the system in the weak-field limit,
where no more than one excitation is induced in the system. Specifically, H0 =

∑N
n=1�(ω0 − ω)|n〉〈n|+

�(ωrc − ω)|rc〉〈rc| represents the site energies of the ring chromophores and RC, and Δ represents the
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Coulomb coupling between chromophores. Here we assume that the ring chromophores are distant from
each other and from the RC, so that each molecule can be approximated as a point dipole. Explicitly, the
matrix elements of the coupling Δ are

〈n|Δ|m〉 ≈ μ2

εrr3
nm

[
p̂n · p̂m − 3

(
p̂n · r̂nm

) (
p̂m · r̂nm

)]
(1 − δn,m),

〈rc|Δ|n〉 ≈ μ2

εrR3
p̂rc · p̂n.

(7)

Here r̂nm :=�rnm/rnm is the unit vector joining the nth and the mth sites, and p̂n := �μn/μ is the normalized
dipole moment of the nth site. The dielectric constant is εr = 1, which is a good approximation for
molecules surrounded by air. In principle, the nearest-neighbor coupling in the ring should be computed
without using the point dipole–point dipole approximation, because the distance between the
chromophores is comparable to the molecular size. Nevertheless, this is a detail which does not qualitatively
change our results. For instance, the nearest-neighbor dipolar couplings used in this manuscript range
between ≈500 − 1200 cm−1, which is comparable to the ≈400 − 800 cm−1 couplings estimated from
detailed electronic calculations in reference [29]. On the other hand, the coupling with the central core
absorber can be safely assumed to be a point dipole–point dipole coupling (as it has been done also in
references [29, 30]) since the molecules in the ring are far apart from the central core absorber. The
expressions in equation (7) are valid in the small volume limit, where the wavelength of the optical
transition is larger than the system size (λ0 	 R), which is the regime where natural light-harvesting
complexes operate. The full expressions, without this approximation can be found in appendix A.

The term HEM in the Hamiltonian describes the coupling between molecules and the continuous-wave
(CW) driving laser and it is given by

HEM =
�ΩR

2

∑
q

(p̂q · ε̂)e−i�k·�rq |0〉〈q|+ h.c., (8)

where ΩR = μE0/� is the Rabi frequency, E0 is the amplitude of the electric field, ε̂ is a unit vector which
specifies the laser polarization,�k is the wave vector of the laser field, |q〉 represents the system sites (either
the ring sites |n〉 or the reaction center |rc〉) and�rq is the position of the qth site. |0〉 is the ground state of

all molecules in the system. In our calculations we always choose |�k| ≈ 2π/λ0 and since we are in the small
volume limit, we can approximate the matrix elements of equation (8) as

〈0|HEM|Eα〉 ≈
�ΩR

2
(�pα · �ε). (9)

We have confirmed the validity of this approximation for our ring system, as long as R/λ0 < 0.1, see
appendix B.

Now we return to the other terms in the ME, equation (6): Lfl and Lrc are Lindblad dissipators derived
under the Born–Markov and secular approximations [35] and they describe, respectively, fluorescence
emission of the molecules and transfer to the RC, while RT is a non-secular Redfield dissipator [35]
modelling thermal relaxation and decoherence in the presence of a thermal bath. The dissipators read
explicitly

Lfl[ρ] =
∑
m,n

Γmn

[
anρa†m − 1

2

{
a†man, ρ

}]
(10)

Lrc[ρ] = κ

[
arcρa†rc −

1

2

{
a†rcarc, ρ

}]
(11)

RT [ρ] =
∑
ω,ω′

∑
n

γ(p)(ω)

2

[
An(ω)ρA†

n(ω′) + An(ω′)ρA†
n(ω) − A†

n(ω′)An(ω)ρ− ρA†
n(ω)An(ω′)

]
, (12)

where the sums over m, n run over all the system sites (ring sites or RC), an = |0〉〈n| (here, 〈n| can be a ring
site or the RC), arc = |0〉〈rc|, and Γmn ≈ γp̂n · p̂m in the small volume limit (R � λ0), with �γ = 4

3μ
2k3

0/εr.
Here, k0 :=ω0nr/c, where c is the speed of light and nr the refractive index. For the realistic parameters
chosen here, the decay width of a single molecule is �γ = 3.7 × 10−4 cm−1. We also set nr = 1, which is a
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good approximation when the system is surrounded by air9. Again, for a discussion about the regime
beyond the small volume limit see appendix B. Finally, RT describes dissipation due to the coupling of each
molecule to an ohmic bath, where

γ(p)(ω) =
2π

�
[J(ω)(1 + nBE(ω)) + J(−ω)nBE(−ω)] (13)

are the thermal rates, depending on the spectral density J(ω) and on the Bose distribution nBE(ω) of the
phonons which form the bath and

An(ω) =
∑

Eα−Eβ=�ω

c∗n(Eα)cn(Eβ)|Eβ〉〈Eα|. (14)

More details about RT can be found in appendix E.
Note that, for the coupling to the thermal bath, we use the non-secular Redfield dissipator RT instead of

the commonly used Lindblad dissipator since we found that, in our model, the secular approximation is not
valid and produces unphysical results, a well-known issue in molecular excitonic transfer [36]. Specifically,
when the coupling ΩC is very small, see equation (4), the secular approximation incorrectly predicts that the
transfer rate between the ring and the RC becomes independent of ΩC, while the Redfield dissipator RT

correctly predicts that the transfer rate tends to zero with ΩC. Although the Redfield ME is known to
produce negative populations in the intermediate-to-strong system–bath coupling (see reference [9] and
references therein), we checked that all the steady-state populations are positive within the parameter range
that we analyzed. On the other hand, the secular approximation is valid for modeling fluorescence decay
and decay to the RC, and thus we can keep the Lfl and Lrc dissipators in their Lindblad form, see
equations (10) and (11).

Our model has been derived under the single-excitation approximation. This is a good approximation of
a realistic situation only if the excited state population is much smaller than unity, which is true for our
choice of the parameters (see appendix G for more details).

3. Illumination conditions

We consider three types of EMF states illuminating the device. Firstly, under what we call the
D-configuration (figure 1(b), more details in figure 2(a)), we consider a coherent, CW monochromatic
polarized field as it was done in reference [23]. The polarization axis is chosen to be aligned with ẑ, which
means that it couples to the highest-energy excitonic state in the device, see equations (2a–2c). Second,
under what we call the LH-configuration (figure 1(c), more details in figure 2(b)), we consider a coherent,
CW monochromatic field polarized in the ŷ direction and incoming perpendicular to the ring. Such a field
only excites the low-energy ring eigenstate |E2〉. As one can see from figure 2(b), absorbing and transfer
states coincide in this set-up, and such model is a good representative of some natural light-harvesting
complexes (see appendix D). Finally, under what we call the sunlight configuration (figure 1(d)), we model
illumination by natural sunlight, which is isotropic, unpolarized, incoherent and broad-band. This is
modeled well as black-body radiation at 6000 K [37, 38]. Specifically, in the sunlight configuration the
Hamiltonian term HEM is not present, while we include two additional Lindblad dissipators for absorption
and stimulated emission induced by sunlight,

Lsun[ρ] =
∑
mn

fSnSΓmn

[
a†nρam − 1

2

{
ama†n, ρ

}]
+
∑
mn

fSnSΓmn

[
anρa†m − 1

2

{
a†man, ρ

}]
, (15)

where nS ≈ 0.04 is the Bose occupation of the Sun photons at the excitation energy �ω0 and at the Sun
temperature (6000 K) and fS = 5.4 × 10−6 accounts for the Sun-to-Earth distance [39]. Specifically, under
sunlight illumination each eigenstate acquires absorption and stimulated emission rates, Bα = fSnSγ|�pEα |2,
with fS representing the solid angle of the Sun as seen on Earth,

fS =
πr2

S

4πR2
ES

= 5.4 × 10−6, (16)

with rS being the radius of the Sun and RES the Sun-to-Earth distance. Finally, the rates are proportional to
the squared magnitude of the eigenstate dipole strength, so that only the states |E2,3,N〉 have a non-vanishing

9 This value of γ corresponds to a fluorescence time τ fl = 14 ns and differs from the excitation lifetime ∼ 1 ns found in literature [12],
because here γ represents only the radiative decay processes and non-radiative decay is neglected. In the case of pure water, one should
set nr = 1.33 and εr = n2

r = 1.77, thus obtaining γ = 4.9 × 10−4 cm−1 and τ fl = 11 ns. For a proteic environment, instead, it is usually
set εr = 2.3 [17] which, keeping the refractive index of water, gives the same γ obtained in air.
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Figure 2. Main energy levels of our device and three-level model. (a) and (b) Schematic representation of a many-level system
subjected to an external laser field with absorption rate TL, emission rates γα, trapping rate κ, coupling ΩC to the central site and
thermal relaxation. Panel (a) shows illumination under the D-configuration, while panel (b) represents illumination under the
LH-configuration. In both (a) and (b), the most important states are: the ground state, |0〉; the excitonic (dark) state having the
lowest energy, |E1〉; the lower ring eigenstate, |E2〉, having dipole strength�pE2 =

√
N/2 cos θŷ and coupled to the RC; the RC

state |rc〉, with dipole �prc = ŷ and coupling ΩC = (μ2/R3)
√

N/2 cos θ with |E2〉; the ring eigenstate |E3〉, whose dipole strength
is �pE3 =

√
N/2 cos θx̂, and is decoupled from the RC; and the highest-energy ring eigenstate, |EN〉, whose dipole strength is

�pEN =
√

N sin θẑ. The radiative decay rates of the states depend on the dipole strength of the excitonic states and are given by
γα = γ|�pα|2. The absorption rates for the D-configuration (a) and LH-configuration (b) depend on the laser frequency, its
intensity and polarization, see equation (19). (c) Effective three-level model. Schematic representation of the effective three-level
model which is able to capture the main properties of the many-level system, see equations (17a)–(17c).

sunlight absorption rate. The intensity of natural sunlight is 1365 W m−2, and we consider the same
intensity also in the D-configuration and the LH-configuration. In those configurations the light
intensity is encoded in the Rabi frequency, ΩR = μE0/�. By imposing the intensity of the CW laser to be
E2

0/(4π) = 1365 W m−2 (using Gaussian units), we determine the corresponding value of E0 and, from
that, the Rabi frequency, which is ΩR = 4.68γ (in units of the single-molecule radiative decay rate,
γ ≈ 0.07 ns−1). We keep this value of ΩR fixed in all the manuscript.

4. Effective three-level model

Here we show that the dynamics of the complex structure described above, under all the illumination
conditions considered, can be mapped to the dynamics of an effective three-level incoherent model with the
relevant quantum effects encoded in few parameters. The three-level model is described by the zero-
excitation state |0〉, a single-excitation state |e〉 for the whole ring, and a single-excitation state |rc〉 for the
RC, see figure 2(c). The excitation pumped by the EMF into the ring is quickly funneled to the low energy
states by thermal relaxation. Therefore, we determine the rates between |0〉, |e〉 and |rc〉 assuming that the
ring is always at thermal equilibrium with the phononic reservoir. Under this assumption
(see appendix I), the emission rate from |e〉 to |0〉 is the thermal average of the ring eigenstate emission

rates, 〈γ〉 =
∑

α
e−Eα/(kBT)

Z γα, while the transfer rate from the ring to the RC is also a thermal average,

〈TRC〉 =
∑

α
e−Eα/(kBT)

Z TRC
α , involving the transfer rates TRC

α between each α eigenstate and the RC, that are
proportional to the squared coupling between |α〉 and |rc〉. Note that the 〈TRC〉 rate is equivalent to the
well-known multi-chromophoric Förster resonance energy transfer (MC-FRET) [21, 40] or generalized
Förster theory [41] rate, as we show in detail in appendix I. In our specific case, due to the ring symmetry,
only the |E2〉 eigenstate has a nonvanishing transfer rate, TRC

2 = τ−1
RC (32/N)5 cos2 θ, where τRC = 3.9 ps is

the transfer time between the ring and the RC at θ = 0 and N = 32 (more details in appendix I), while
TRC
α = 0 for all α = 2. On the other hand, the absorption rate is the sum of all the absorption rates,

BTOT =
∑

α Bα (where the absorption rates, Bα ∝ |�pα|2, have different expressions whether the excitation is
induced by a CW laser or by sunlight, see appendix I), and the transfer rate from the RC to the ring is also
the sum of all the transfer rates, TRC

TOT =
∑

αTRC
α . Finally, the stimulated emission rate is again a thermal

average, 〈B〉 =
∑

α
e−Eα/(kBT)

Z Bα. The RC also can absorb the incoming radiation with an absorption rate
BRC, that accounts also for stimulated emission, while its emission rate is γ. This approach yields the
following rate equations for the populations of the three levels,

dP0(t)

dt
= − (BTOT + BRC) P0(t) + 〈B〉 Pe(t) + 〈γ〉 Pe(t) + (κ+ γ) Prc(t), (17a)

dPe(t)

dt
= BTOTP0(t) − 〈B〉 Pe(t) − 〈γ〉 Pe(t) + TRC

TOTPrc(t) −
〈

TRC
〉

Pe(t), (17b)
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dPrc(t)

dt
= −TRC

TOTPrc(t) +
〈

TRC
〉

Pe(t) − (κ+ γ) Prc(t) + BRCP0(t). (17c)

Solving for the steady state of these equations (details in appendix I), we obtain an approximation to the
steady-state transmitted current,

I3 =
κ (BTOT + BRC)

BTOT + γ + κ+ 2BRC +
(
BTOT + BRC + 〈B〉+ 〈γ〉

) TRC
TOT+BTOT

BRC+γ+κ
BTOT+BRC

〈TRC〉+BRC
〈B〉+〈γ〉

BTOT+BRC

. (18)

The validity and effectiveness of this three-level model is discussed in the next section, see also reference
[39]. Note that the effective three-level model presented in equations (17a)–(17c) is able to describe the
whole system, composed by the ring and the central core absorber, under both the pumping from a light
source (laser or sunlight) and thermal relaxation. Our effective three-level model is based on the
assumption of fast thermal relaxation, incoherent pumping and incoherent transfer between the ring and
the core absorber. Specifically the coupling between the ring, assumed at thermal equilibrium, and the
central core absorber is described with an approach equivalent to the generalized Förster theory, see
appendix I. Finally note that in literature three-level models describing exciton transport have been widely
used [20, 38, 42–44]. In particular our approach is similar to the one used in reference [38] where the
pumping of sunlight on a dimer system has been considered.

5. Results

5.1. Super-absorption in the low-fluence regime
First we demonstrate that the molecular device developed above is capable of exploiting cooperative effects
to enhance the absorption from a weak-intensity EMF. For any θ > 0 and N, only three ring eigenstates
have a non zero dipole strength: two in the low-energy region (|E2〉 and |E3〉) and one with the highest
energy (|EN〉). Concerning the low-energy states, |E2〉 has a polarization along y while |E3〉 along x. In
contrast, the high-energy state has a polarization along the z-axis. Thus for an EMF polarized in the z
direction (D-configuration) the absorbing and the transferring states are separated: only the highest-energy
state |EN〉 is coupled to the EMF, while only the low-energy state |E2〉 can transfer the excitation to the RC.

At high (e.g. room) temperature the pumping rate for this system under CW laser excitation can be
described semi-classically by the Förster rates [43]

TL =
(ΩR�pabs · ε̂)2ΓT

2
[
Γ2

T + (ω − ωabs)2
] , (19)

where (ω − ωabs) is the detuning frequency of the laser with respect to the absorption frequency and �pabs is
the dipole strength of the absorbing state. ΓT is the dephasing rate of the coherences between the absorbing
state and the ground state. We compute ΓT analytically in appendix F, and show that it depends only
on the density of states of the system and on the parameters of the bath. Critically, ΓT is independent of N
and very weakly dependent on θ. Thus TL ∝ |�pabs|2 ∝ N. This demonstrates what we call superabsorption:
the absorption is concentrated in a very specific system eigenstate characterized by a giant dipole, and the
absorption rate grows proportionally to the system size. Note that our definition of superabsorption refers
to the low-fluence regime, which is the focus of this manuscript. Under high fluence, cooperative
absorption is instead characterized by a super-linear absorption rate, as it has been shown in reference [11].

5.2. Scalability and efficiency
Now we demonstrate that superabsorption can work in concert with the engineered supertransfer from ring
to RC, to result in a photocurrent that scales with the system size.

Here we analyze the efficiency of our device under a laser field polarized along the z direction and under
the action of a thermal bath at room temperature. In particular we will analyze the dependence of the
current on the laser frequency and of the peak current Ī (maximal current obtained at the optimal laser
frequency) as a function of the system size. Next, we compare the efficiency of the D-configuration with an
alternative illumination condition, the LH-configuration, where the absorbing and the transferring states
coincide, thus mimicking natural light-harvesting complexes more closely. Finally, we evaluate our device in
the sunlight configuration, which is a realistic model of illumination by natural sunlight. At the same time,
we show that the results of the full N-level system can be captured by the simpler three-level system
introduced in the previous section.

Figure 3 shows the dependence of the photocurrent on the CW laser frequency both for the
D-configuration (figure 3(a), where the field is assumed polarized in the z direction) and for the
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Figure 3. Validity of the three-level model. (a) and (b) Transmitted normalized current I/Is vs laser frequency under the
D-configuration (θ = 0.475π) on panel (a), and LH-configuration (θ = 0) on panel (b), at room temperature (T = 300 K).
Different values of N have been considered, varying the radius of the ring to keep the density fixed. Is is the maximal stationary
current of a single site in the same conditions. The energies of the absorbing eigenstates are shown as vertical dashed lines in
panels (a) and (b): the high-energy state EN (D-configuration) and the first-excited state E2 (LH-configuration). Symbols
represent the current I, see equation (5), obtained from the ME, see equation (6), while the solid curve is the three-level
approximation I3 (3L), see equation (18). (c)–(e) Transmitted normalized current at the peak laser frequency Ī/Is

(corresponding to the absorbing states, see dashed lines in panels (a) and (b)) vs θ for D-configuration (c), LH-configuration
(d), and sunlight configuration (e). The dashed line in panel (c) represents θ = 0.475π, which is optimal for the D-configuration
at N = 64 and close to optimal for N = 16, 32, see figure. In panels (c) and (d) Ī3 (lines) is the current at the peak laser frequency
obtained from the three-level solution, see equation (18). In panel (e), there is no laser frequency in the sunlight configuration,
so Ī coincides with I and Ī3 coincides with I3. Shaded areas in panels (c)–(e) represent variations in Ī3 produced by ±20%
variations in τRC. Parameters for all panels: κ = 10γ, ΩR = 4.68γ (laser intensity: 1365 W m−2, same as natural sunlight),
τRC = 3.9 ps (for three-level model).

LH-configuration (figure 3(b), with the field along y), for different system sizes at room temperature. For
the D-configuration we choose an angle θ = 0.475π that gives the optimal current for N = 64 and a
close-to-optimal current for N = 16, 32 (see dashed line in figure 3(c)). On the other hand, for the
LH-configuration we choose the optimal angle θ = 0, where the current is maximal (see figure 3(d)).

The combined effect of superabsorption (at high-energy), thermal relaxation and transfer (at low
energy) results in a peak in the transmission spectrum at the high energy of the absorbing state (that is
higher than �ω0, see vertical dashed lines in figure 3(a)) and not to that of the transferring states (that
would be lower than �ω0). Since the high-energy state is totally decoupled from the RC, the peak at its
frequency can only be explained by thermal relaxation after absorption. Note also that the height of the
peak increases with the system size due to cooperative absorption. In figure 3(a) we also show as continuous
curves the results of our analytical three-level model equation (18), which reproduces the current across the
entire frequency range.

In figure 3(b) we show the ratio between the current I and the single-site current Is (see equation (G.5))
for the LH-configuration as a function of the laser frequency at room temperature, for different system
sizes. The intensity has a peak (vertical dashed lines) when the laser frequency is resonant with the
low-energy bright eigenstates of the ring, that are resonant with the RC. It is interesting to note that even
for the LH-configuration the height of the peak increases with the system size due to cooperative
absorption. However, the peak current obtained with the LH-configuration is about three times smaller
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than with the D-configuration (compare figures 3(a) and (b)). Also for the LH-configuration, the
three-level model (equation (18)) reproduces very well the results of the full system (see continuous lines in
figure 3(b)).

Therefore, in order to understand whether the separation of the absorbing and transmitting states that
we engineered can improve the scalability of the system, we compute the peak transmitted current as a
function of θ and of the system size.

In figures 3(c)–(e) we plot the peak current Ī vs θ for different values of the system size. In each panel,
the results of the ME are compared to the effective three-level model, equation (18). Various illumination
conditions are considered. For the D-configuration (figure 3(c)), the peak current increases with θ up to a
maximum, close to π/2. This is a consequence both of the absorption rate TL increasing with θ for the
D-configuration, and of the emission rate being suppressed on increasing θ. On the other hand, for the
LH-configuration (figure 3(d)) the peak current is maximal for θ = 0 and it decreases with θ. This is a
consequence of the absorption rate decreasing with θ in the LH-configuration and of the fact that
absorption and emission are not decoupled. Then, for the sunlight configuration (figure 3(e)) the
current is enhanced by increasing θ, as a result of the suppression of emission. In all the three cases
shown, the current is enhanced on increasing N from 16 to 64. Finally, as one can see from the figure, the
three-level model (lines) gives a good approximation of the ME results (symbols) in all the ranges
considered. Small deviations for large N and for θ close to π/2 can be explained by a variation of the value
of τRC used in the three-level model, which in the figure has been kept fixed as N and θ vary. Indeed we set
τRC = 3.9 ps which has been obtained by fitting the ME for N = 32 and θ = 0. Nevertheless τRC can vary
by up to 20% as it is shown in appendix I. If we account for those variations in τRC in our calculations of
the current, we obtain a perfect agreement also for large N, see shaded areas in panels (c)–(e). Deviations
for small N, see panel (d), are due to the fact that the couplings between the ring and the RC are large and
the energy transfer is not fully incoherent as it is discussed in appendix I.

Since we are interested in the scalability of the device at large N, in the following we use the three-level
system, that is much less computationally expensive than the ME at large N. In figure 4 the normalized
maximal current Ī3/Is is shown vs θ and N at room temperature, as obtained from the effective three level
model, see equation (18) for the trapping rate κ = 10γ and for different pumping mechanisms (i.e.
D-configuration, LH-configuration and sunlight configuration). In all cases, we can see that the current
increases at first with N. Moreover, for the D-configuration the efficiency improves with increasing θ, it
reaches an optimal value for 40 < N < 80 and it ultimately decreases with N for very large ring sizes. Such
improvement with θ can also be seen for natural sunlight pumping and has been observed and commented
above in figures 3(c) and (e).

The scaling of the current with the system size can be understood as follows. For small size, N, the
excitation is cooperatively absorbed by the ring and efficiently transferred to the RC where it is trapped.
Indeed, a small ring radius implies a strong dipole coupling to the RC and, therefore, a fast transfer. So, the
trapped current for small N ultimately scales as the absorption rate, increasing with N. On the other hand,
for large sizes N, a large ring radius implies a weak coupling to the RC, that decreases as ∼|ΩC|2 ∼ 1/N5,
see equation (4). Such suppression of the transfer to the RC acts as a bottleneck for large N, so that the
trapped current decreases with N for large N in all cases. Moreover for large N the thermal population in
the superradiant state coupled to the central absorber decreases as 1/N, thus quenching the current for
large system sizes.

Moreover, in figure 4 the normalized current Ī3/Is of the LH-configuration (y-polarized) is shown as a
function of N and θ and it is compared with that of the D-configuration for the trapping rate κ = 10γ, that
is of the same order of the emission rates (〈γ〉 ≈ γ).

Finally, we also analyze the model in the sunlight configuration. In this case, the pumping is incoherent,
broad-band and isotropic. As a consequence, the total absorption rate of natural sunlight, BTOT = NγfSnS,
is proportional to N and independent of θ. Nevertheless, even in this case for κ = 10γ we see an increment
of the current on increasing θ, because the system benefits from the suppression of emission.

About the choice of the trapping rate we note that this is critical to the efficiency of our set-up. Indeed a
very large trapping rate prevents re-emission, since the excitation is quickly trapped, and thus makes less
useful the suppression of re-emission which we consider here. The trapping rate can vary a lot depending
on the specific system. In photosynthetic antenna complexes a charge separated state is created very quickly
once the excitation is absorbed in the RC (few picoseconds, corresponding to κ ≈ 104γ). On the other
hand, charge transfer in the RC is much slower and the RC is not active until the charge-separated state is
neutralized again, and this occurs on the order of 100 μs, corresponding to κ ≈ 10−4γ. In the figures
presented here an intermediate trapping rate has been considered, κ = 10γ, corresponding to a trapping
time of ≈1 ns. Even if this trapping rate is only slightly faster than the emission rate (≈10 ns), a
considerable advantage is obtained in the D-configuration. As one can see from figure 4, for the trapping
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Figure 4. Peak current vs θ and N. Normalized current at the peak laser frequency Ī3/Is obtained from the three-level model, see
equation (18). Different illumination conditions are used (see figure). For the sunlight configuration (lowest panel), Ī3 coincides
with I3, because there is no laser frequency. Parameters: κ = 10γ, ΩR = 4.68γ (laser intensity: 1365 W m−2, same as natural
sunlight), τRC = 3.9 ps, T = 300 K.

rate κ = 10γ the maximal current obtained from the D-configuration is about three times higher than the
LH-configuration. Note that our proposed design is useful only if the emission plays an important role. If,
instead, the trapping rate κ is so fast to overcome any emission process, there is no advantage in the
decoupling mechanism. Specifically, the efficiency of the D-configuration, as opposed to the
LH-configuration and to a single site, improves on decreasing the trapping rate κ, as we show in the
following.

In figure 5 we study how the efficiency of our proposed device depends on the trapping rate κ. We
analyze a broad range of reasonable values of the trapping rate: the lower bound, κ = 10−4γ ≈ (100 μs)−1,
corresponds to the reset time in purple bacteria RCs [12], while the upper bound, κ = 104γ ≈ (1 ps)−1, is
the charge separation rate in purple bacteria [12].

Specifically, in figure 5 we plot the ratio Ī3/(NIs) between the maximal steady-state current obtained
from the three-level model Ī3, equation (18), divided by N times the single-site current, Is, for N = 32 as a
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Figure 5. Dependence on the trapping rate κ and θ. Steady-state current at the peak laser frequency divided by N times the
single-site current, Ī3/(NIs), vs the trapping rate κ (divided by the monomer emission rate γ) and the angle θ, computed using
the three-level model, see equation (18), for N = 32. Each panel corresponds to a different illumination condition, as written on
the top of each panel. In panel (c), Ī3 coincides with I3, because there is no laser frequency in the sunlight configuration.
Parameters: ΩR = 4.68γ, τRC = 3.9 ps, T = 300 K.
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function of the trapping rate κ/γ and of the angle θ. Different panels represent different illumination
conditions. For the D-configuration, see figure 5(a), for any κ, the current is enhanced by increasing θ,
because the absorption is increased and at the same time the emission is suppressed. It is interesting to note
that, for any fixed θ, the current increases with κ. Indeed, for these parameters, the emission rate in our
device is of order ≈ Nγ cos2 θ ≈ γ (for N = 32, as in figure 5), and therefore a fast trapping rate κ 	 γ
allows to overcome the emission rate.

Similar comments can be applied to the sunlight configuration, see figure 5(c). Also in such case, for
fixed θ, the current increases with κ, because the fast trapping rate overcomes the emission. In the sunlight
configuration, for κ = 104γ the current becomes basically independent of θ and equal to N times the
single-site current, see also figure J1(c) and appendix J for more details.

For the LH-configuration, see figure 5(b), a similar pattern can be seen: the current increases with κ for
θ fixed. This configuration does not have a decoupling mechanism between absorption and transfer, and
therefore the LH-configuration shows the best performance under the trivial conditions: (a) optimal
absorption rate at θ = 0 and (b) maximal trapping rate (in the figure, κ = 104γ).

We also point out that, both for the D- and the LH-configuration, there is a broad range in the (κ, θ)
parameter space where the current is more than N times larger than the single-site current Is. Interestingly,
the normalized current Ī3/(NIs) in figures 5(a) and (b) can be larger than unity for the LH-configuration
only for large trapping rates, while for the D-configuration the normalized current can be larger than unity
even for small trapping rates.

5.3. Robustness to disorder
The efficiency of our proposed device will be affected by disorder, that can be due for instance to
fluctuations in the positions of the sites, in the orientations of their transition dipoles, or in the site
energies. Here we study how the efficiency of our device, measured by the peak steady-state current Ī/Is, is
affected by disorder in the dipolar orientation. We introduce the angular disorder as follows: each dipole is
given a random orientation inside a cone centered on the precise orientation of equation (1). All the cones
have the same solid angle, that can take values from 0 to 4π. The magnitude of the solid angle represents the
disorder strength: a vanishing solid angle represents no disorder, while the maximal solid angle 4π
represents completely disordered dipoles. The energy of the RC is always equal to the energy of the first
excited state of the ring without disorder and, similarly, the frequency of the CW laser is determined by the
energies of the ring at zero disorder: the CW laser is resonant to the highest-energy ring eigenstate for the
D-configuration, and it is resonant to the first-excited state of the ring for the LH-configuration.

In figure 6(a) we plot the average normalized peak steady-state current, 〈̄I〉/Is, against the strength of
angular disorder for N = 32, different illumination conditions and the corresponding optimal angles θ: for
the D- and sunlight configurations we consider the optimal angle θ = 0.475π discussed above (see
figure 3(c)), while for the LH-configuration we show the case θ = 0 (which is optimal, see figure 3(d)).
As one can see from figure 6(a), in all cases the current is suppressed by disorder. Such suppression is very
sharp for the D- and LH- configurations, and milder for the sunlight configuration. Specifically, the
efficiency of our system is robust to very high disorder for the sunlight configuration, but it is also robust
for the D-configuration. Indeed, as one can see from figure 6(a), the current for the D-configuration
remains very high for angular disorder as large as 10% of the full solid angle. On the other hand, the
LH-configuration appears less robust to disorder, and the current quickly decreases for angular disorder
larger than 1% of the full solid angle (see figure 6(a)).

Moreover, in figure 6(b) we consider the D-configuration for θ = π/2 compared to the optimal case
(θ = 0.475π). In the case θ = π/2, at zero disorder, the only ring eigenstate with non-vanishing dipole
strength is the highest-energy ring eigenstate, with polarization perpendicular to the ring plane, see
equation (2). Therefore, at zero disorder the ring is decoupled from the RC and there is no current.
However, one can see that a small amount of angular disorder is able to increase the current up to
very high values, which are comparable to the optimal configuration θ = 0.475π in absence of disorder,
see figure 6(b). The reason is that a small angular disorder slightly increases the dipole strength of the
lowest-energy states of the ring: in this way, the coupling between the ring and the RC is activated giving
rise to a current. Actually, the emission from the ring remains low, because most of the dipole strength
remains concentrated in the highest-energy state (for small disorder). These results, therefore, suggest an
alternative way to engineer our device: instead of a finely-tuned configuration with θ very close to the
optimal value 0.475π, one can use an existing ring where all the dipoles are perpendicular to the plane
(θ = π/2) and a bit of angular disorder is present. In such configuration, the emission is suppressed while it
is possible to transfer the excitation to the RC via the low-energy ring states.

So far, we kept the energy of the RC fixed and at resonance with the first and second excited states of the
ring, in the absence of disorder. However, it is known that the spectral width is affected by disorder,
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Figure 6. Current vs angular disorder. Average steady-state current divided by the single-site current, 〈̄I〉/Is, vs angular disorder.
Each dipole has a random orientation inside a cone centered on the precise orientation of equation (1) and with a solid angle
varying from 0 (no disorder) to 4π (completely disordered dipoles). Results obtained with the ME, see equation (6). The symbols
indicate the average and the error bars indicate one standard deviation among 100 disorder realizations. In the D-configuration
and LH-configuration, the laser frequency corresponds to the peak at zero disorder. Note that the horizontal axis in panel (b) is
in logarithmic scale. Parameters: N = 32, κ = 10γ, ΩR = 4.68γ.

therefore one may ask whether putting the RC at resonance with the zero-disorder energy levels is the best
choice in the presence of disorder. Therefore, in figure 7 we show how the peak current changes as a
function of the angular disorder and of the energy of the RC. To guide the eye, in each panel we plot the
average energies of the three lowest eigenstates of the ring as a function of disorder: the lowest excitonic
state |E1〉 (black continuous line), and the first and second excited states |E2〉 and |E3〉 (black dashed lines).
Analyzing figure 7, one can see that, for the LH- and sunlight configurations, the optimal efficiency is
always obtained with the RC energy red-shifted with respect to the ring states by some thousands of cm−1.
Indeed if the RC is at resonance there is a large backward transfer to the ring states and excitation can be
lost by re-emission. If the detuning is too large, then transfer to the RC is suppressed and again re-emission
lowers the efficiency. The optimal position of the energy of the RC follows the ring ground state energy
(black continuous lines in each panel) as it is modified by disorder. As a final note we stress that in absence
of disorder the LH-configuration with optimal detuning can even be more efficient than our proposed
device configuration, compare panels (a) and (b) in figure 7. This shows that several paths are available to
suppress re-emission, and red-shifting the central core absorber energy can also be very effective in
suppressing re-emission. This mechanism has also been discussed and exploited in reference [39] by
some of the authors of this manuscript. As a final remark, let us note that exploiting thermal relaxation to
suppress re-emission requires detailed knowledge of the system–bath coupling and bath structure, while
the mechanism proposed by us in this manuscript is more direct and does not depend on the details of the
system–bath coupling to be effective.
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Figure 7. Average peak steady-state current, 〈̄I〉/Is, vs the angular disorder and the energy of the RC �ωrc (measured with
respect to the site energy �ω0). In each panel, the solid black line represents the average energy of the lowest ring eigenstate vs
disorder, while the dashed lines are the first and second excited states of the ring. The current is averaged over 100 disorder
realizations, in each panel. Results obtained from equation (5) solving the ME, see equation (6). In panels (a) and (b), the laser
frequency corresponds to the peak at zero disorder. Parameters: N = 32, κ = 10γ, ΩR = 4.68γ, T = 300 K.

6. Conclusions and perspectives

In many natural light-harvesting complexes, most of the dipole strength is concentrated in few states that
absorb light and, at the same time, transmit the excitation to an external trapping environment. The large
dipole strength of such states favour the absorption of light but it also induces losses by re-emission of the
excitation, thus limiting the efficiency of the energy transfer.

Here we propose a light-harvesting device in which the absorbing and the transferring states are
engineered to be different by structural arrangement of chromophores. We proved that our engineered
device is able to improve the efficiency of light-harvesting complexes by several orders of magnitude both
when the interaction with a polarized monochromatic field is considered and under natural sunlight. Since
the solar spectrum is broad, to use the proposed device as solar light-harvesting complex, an ensemble of
devices absorbing at different frequencies should be considered. The proposed device can also be extended
to unpolarized light by arranging the rings on a spherical shell, in a similar way to the arrangement found
in the chromophores of purple bacteria [12].

Our approach allowed us also to study the scalability of our device as the number of light-harvesting
chromophores is increased by increasing the ring radius and keeping a fixed chromophore density. We have
shown the existence of an optimal size. The reason for that is that even if increasing the ring radius
improves absorption, it also suppresses transfer towards the central core absorber. As a future development
we plan to consider different architectures to make the system scalable to larger sizes without losing
efficiency. In particular, instead of increasing the ring radius, a network of smaller rings where the excitation
is efficiently transferred between them and finally concentrated in the central core absorber should be able
to improve the efficiency of our device at larger sizes. Indeed this is precisely the architecture of several
photosynthetic natural systems [12, 29, 30]. A similar idea has been successfully employed by some of the
authors of this paper in reference [39] where a bio-inspired sunlight-pumped laser has been proposed.
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In order to realize the proposed complex molecular structure a precise control over molecular
orientation and structure is required. In this context, modern molecular synthesis and modification
techniques can easily meet these needs. Several nanostructures, including nanotubes [45], DNA proteins
[46], and viruses [47, 48] can be precisely functionalized with organic molecules using an impressive
variety of bioconjugation tools. Engineering of synthetic molecular aggregates in linear, circular, and other
geometric configurations, with nanometer separation between molecules, is commonplace. The major
challenge facing these techniques is controlling energetic and structural disorder after functionalization.
However, recent experiments demonstrating the use of functionalized DNA proteins for light harvesting
[46] constitute a proof-of-principle confirmation of the promise of such synthetic molecular engineering
techniques for light capture technologies. We also note that the effect of structural disorder could also be
exploited at our advantage. As shown above, in a perfect H-aggregate, i.e. a molecular aggregate
characterized by a single bright state above the energy of the monomer absorption peak (figure 6(b),
θ = π/2), all the dipole strength is concentrated in the highest excitonic state, and structural disorder is
able to add some dipole strength to other states allowing the lowest excitonic state to also transfer energy
to the central core absorber. In this way we achieve the same separation of absorption from transfer shown
to be so effective in improving light-harvesting efficiency. Finally, a lesson can be drawn about natural
photosynthetic antenna complexes from our analysis: natural LH2 systems can be very efficient at absorbing
and transporting light excitations if emission is efficiently suppressed either by a large trapping rate, see
figure 5(c), or by properly detuning the RC energy, see figure 7(d). In this sense it is likely that natural
systems also exploit suppression of superradiant emission while using super-absorption to enhance their
efficiency.
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Appendix A. Effective Hamiltonian

The effective Hamiltonian of an aggregate interacting with an EMF can be written as [31–33, 49]

Heff = H0 +Δ− i

2
Γ (A.1a)

=
∑

n

�ω0|n〉〈n| +
∑
m,n

�

(
Δnm − i

2
Γnm

)
|n〉〈m|, (A.1b)

where the latter expression refers explicitly to the site basis |n〉. In equation (A.1a) �ω0 is the energy
of each site. In the limit where only one excitation is present in the system [31–33, 49] the diagonal and
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off-diagonal matrix elements are given respectively by,

Δnn = 0, (A.2a)

Γnn = γ, (A.2b)

and

Δnm =
3γ

4

[(
− cos xnm

xnm
+

sin xnm

x2
nm

+
cos xnm

x3
nm

)
p̂n · p̂m

−
(
− cos xnm

xnm
+ 3

sin xnm

x2
nm

+ 3
cos xnm

x3
nm

)(
p̂n · r̂nm

) (
p̂m · r̂nm

)]
(A.2c)

Γnm =
3γ

2

[(
sin xnm

xnm
+

cos xnm

x2
nm

− sin xnm

x3
nm

)
p̂n · p̂m

−
(

sin xnm

xnm
+ 3

cos xnm

x2
nm

− 3
sin xnm

x3
nm

)(
p̂n · r̂nm

) (
p̂m · r̂nm

)]
(A.2d)

,
where �γ = 4

3μ
2k3

0/εr, μ = |�μ| is the transition dipole matrix element, εr the relative dielectric permittivity,
p̂n := �μn/μ the normalized dipole moment of the nth site, xnm = k0rnm, r̂nm :=�rnm/rnm the unit vector
joining the nth and the mth sites, and k0 = ω0/c. A derivation of the expressions in equations (A.2c) and
(A.2d) is presented in appendix H.

In the small volume limit xnm � 1, that is when the system size is much smaller than the wavelength
λ0 = 2π/k0 connected with the optical transition, the matrix elements can be approximated as

�Δnm ≈ μ2

εr

p̂n · p̂m − 3(p̂n · r̂nm)(p̂m · r̂nm)

r3
nm

(1 − δnm) (A.3a)

Γnm ≈ γ(p̂n · p̂m). (A.3b)

Appendix B. Emission rates and coupling to the laser beyond the small volume limit

Eigenvalues and eigenstates can be obtained by diagonalizing the effective Hamiltonian, equation (A.1a).
From them it is possible to define the emission rate γα associated with each eigenstate with eigenvalue
Eα − i�γα/2. In the small volume limit one can approximate the emission rate as

γα ≈ γ|�pα|2. (B.1)

For any value of the angle θ between the dipoles and the ring plane, the dipole strength of the ring
eigenstates is non-vanishing for just three bright eigenstates. Two of them correspond to the degenerate
subspace of the first and second excited states. Without loss of generality, we choose two combinations of
those two states so that their dipole moments are

�pE2 =

√
N

2
cos θŷ and (B.2a)

�pE3 =

√
N

2
cos θx̂, (B.2b)

with x̂ and ŷ being the unit vectors of the planar axes (note that E1 is the excitonic ground state energy).
The third bright eigenstate is the highest-energy one, whose dipole moment is

�pEN =
√

N sin θẑ, (B.2c)

perpendicular to the ring plane. For the above three states, the dipole strength increases with the system size
due to cooperative effects induced by the symmetric arrangement of the dipoles in the ring.

In order to study the range of validity of the small volume approximation, in figure B1 we compare the
normalized maximal decay width Γmax/γ obtained from the complex eigenvalues of Heff (open circles) with
that obtained in the small volume limit using equation (B.1) (continuous line) for different values of R/λ0

where R is the radius of the system ring. Note that we increase R keeping a fixed density, meaning that the
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Figure B1. Maximal decay rate Γmax of the effective Hamiltonian, see equations (A.1a) and (A.2a), normalized to the single
molecule decay rate γ (open black circles) vs the ratio of the radius of the ring over the wavelength, R/λ0. Here the density is kept
fixed and equal to d = 32/(10π) nm−1. The green continuous line corresponds to the dipole strength of the state having the
highest energy, see equation (B.2c), which is also the maximal dipole strength of the system for the chosen parameter θ = π/3.
The red dots are the maximal squared coupling induced by a laser polarized along z, see equation (B.4), normalized by the
single-site squared coupling to the laser (�ΩR/2)2.

number of sites N increases proportionally to R. As one can see significant deviations appear already for
R/λ0 > 0.1.

In the previous paragraph we analyzed the emission rate of the system eigenstates. Now we focus on the
absorption rate. In particular, let us assume that the ring system is coupled to a laser, described as a
monochromatic electromagnetic wave. The interaction between the ring sites and the laser is modeled by an
additional term

HEM =
�ΩR

2

∑
n

(p̂n · ε̂)e−i�k·�rn |0〉〈n|+ h.c. (B.3)

to the effective Hamiltonian (A.1a). Here ΩR = μE0/� is the Rabi frequency (E0 being the amplitude of the
electric field), ε̂ the laser polarization and�k the wave vector of the incident field. HEM describes the photon
absorption and stimulated emission, and it induces coherent oscillations between the ground state |0〉
(i.e. the state without any excitation) and the single excitation states |n〉.

The absorption rate of each eigenstate |Eα〉 is proportional to the square of the following matrix
element:

〈0|HEM|Eα〉 =
�ΩR

2

∑
n

cn(Eα)(p̂n · ε̂)e−i�k·�rn , (B.4)

where we used the decomposition

|Eα〉 =
∑

n

cn(Eα)|n〉 with cn(Eα) =
ei2παn/N

√
N

(B.5)

of the ring eigenstates in the site basis. When the size of the system is smaller than the wavelength of the
laser (�k ·�rn � 1), the coupling can be expressed using the dipole strength of an eigenstate

�pα =
∑

n

cn(Eα)p̂n, (B.6)

so that

|〈0|HEM|Eα〉|2 ≈
(
�ΩR

2

)2∣∣�pα · ε̂
∣∣2. (B.7)

Since |�k0| ≈ |�k|, for small ring sizes (|�k0|R � 1) we are in small volume limit approximation, therefore both
equations (B.1) and (B.7) are satisfied. This means that for each eigenstate, the absorption and the emission
rate are both proportional to the squared dipole strength. In figure B1 we plot the squared dipole strength
of the eigenstate with highest energy (as a continuous line) vs the ratio R/λ0. In the same figure we also
plot the maximal normalized emission Γmax/γ (open black circles) and the maximal normalized absorption

|〈0|HEM|Eα〉|2max/
(
�ΩR

2

)2
(full red dots). We can observe that, for R/λ0 < 0.1 both the maximal emission
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Γmax/γ and the maximal absorption are well approximated by the squared dipole strength. Since the
maximal dipole strength is proportional to N (see equations (B.2a)) we have a cooperative coupling to the
laser. On the other hand, when�k ·�rn ≈ �k0 ·�rn � 1, the approximations (B.1) and (B.7) are not valid and
both the maximal absorption and the maximal emission rate grow slower than linearly with N.

Appendix C. Analytical coupling to the RC

Here we discuss the coupling between the ring eigenstates and the RC in the small volume limit. The RC is
modeled by a site with excitation energy �ωrc and the same transition dipole moment μ of the ring sites.
The dipole–dipole coupling between two sites is given by equation (A.3a) and the ring eigenfunctions by
equation (B.5). The coupling between a ring eigenstate and the RC is

〈rc|Δ|Eα〉 =
μ2

εr

∑
n

cn(Eα)
p̂rc · p̂n − 3

(
p̂rc · r̂n

) (
p̂n · r̂n

)
R3

. (C.1)

In our model, the radial component of the dipoles is vanishing, so that

p̂n · r̂n = 0 ∀ n = 1, . . . , N. (C.2)

This leads to a simplification of the expression (C.1), which becomes

〈rc|Δ|Eα〉 =
μ2

εrR3
p̂rc ·

(∑
n

cn(Eα)p̂n

)
=

μ2

εrR3
p̂rc ·�pα. (C.3)

We have the RC dipole oriented along the y axis, i.e.

p̂rc = ŷ, (C.4)

so that only one of the N eigenstates (which belongs to the doubly degenerate subspace of the first and
second excited states and which we call |E2〉) is coupled to the RC, with a coupling

ΩC = 〈rc|Δ|E2〉 =
μ2

εrR3

√
N

2
cos θ. (C.5)

In this manuscript, the density d = N/(2πR) is kept constant, so that ΩC scales with N as

ΩC =
μ2(2πd)3 cos θ√

2εr
N−5/2. (C.6)

Appendix D. The LH-configuration as a representative of natural light-harvesting
complexes

The molecular structure introduced in the main text in the LH-configuration is a good representative of
some natural light-harvesting complexes. In figure D1 on the left panels we show the LHI complex of
purple bacteria [29, 50], while on right panel we show the LH-configuration with θ = 0. On the top
panels we show a schematic representation of the directions of the transition dipoles in the models, while
in the lower graphs we show the normalized decay rates of the eigenstates of the systems vs their energy.
The positions and dipole orientations of the LHI complex have been taken from reference [50] and the
Hamiltonian parameters from reference [29]. In both configurations the decay rates are concentrated in the
first and second excited states, which are degenerate and have the same decay rate ≈ Nγ/2.

Appendix E. Master equation

The interaction with the laser field is described by equation (B.3). Note that we neglected the
counter-rotating terms, according to the rotating wave approximation (RWA, [31, 32]). Moreover, by a
unitary transformation, the time dependence of the laser term has been removed, leading to a shift of the
diagonal terms in the Hamiltonian (i.e. the site energies), which become

H0 → H0 =

N∑
n=1

�(ω0 − ω)|n〉〈n|+ �(ωrc − ω)|rc〉〈rc|. (E.1)
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Figure D1. Top panels: schematic representation of the directions of the transition dipoles for the purple bacteria LHI complex
taken from reference [50] (left) and for the LH-configuration (right). Lower panels: normalized decay rates Γα of the eigenstates
vs their energy Eα and vs the index α = 1, . . . , N. The Hamiltonian for the LHI complex is taken from reference [29]. Here the
system size is N = 32 for both the LHI complex and the LH-configuration.

In order to describe the dynamics of our model coupled to a thermal bath, we consider the following
Hamiltonian:

HS = H0 +Δ+ HEM, (E.2)

where Δ is defined in equation (A.3a) and we use the following ME [31–34],

dρ

dt
= − i

�
[HS, ρ] + Lfl[ρ] + Lrc[ρ] +RT [ρ], (E.3)

where the last three terms describe, respectively, the fluorescence, the trapping in the RC and the thermal
dissipation in presence of a thermal bath. They are given by

Lfl[ρ] =
∑
m,n

Γmn

[
anρa†m − 1

2

{
a†man, ρ

}]
(E.4)

Lrc[ρ] = κ

[
arcρa†rc −

1

2

{
a†rcarc, ρ

}]
(E.5)

RT [ρ] =
∑
ω,ω′

∑
n

γ(p)(ω)

2

[
An(ω)ρA†

n(ω′) + An(ω′)ρA†
n(ω) − A†

n(ω′)An(ω)ρ− ρA†
n(ω)An(ω′)

]
, (E.6)

where Γmn are given by equation (A.2d), an = |0〉〈n|, arc = |0〉〈rc| and RT [ρ] is the thermal dissipator. In
this scheme, each site is assumed to be coupled to an independent ohmic bath with linear coupling.
Nevertheless they all follow the same dynamics, having the same temperature, spectral density and coupling
strength [51, 52]. Specifically, the Hamiltonian of the system coupled to the independent thermal baths
reads

HSB = HS +
∑
k,n

ωkb†k,nbk,n +
∑
k,n

gk|n〉〈n|Xk,n, (E.7)

where gk is the linear coupling strength of a site with the harmonic oscillator with frequency ωk. Here,

Xk,n =
√
�/(2Mωk)

(
b†k + bk

)
is the position of the harmonic oscillator (M here is the mass of the

oscillator). The Redfield dissipator, equation (E.6), is derived under the Born–Markov approximations
[35], assuming weak system–bath coupling and fast bath relaxation time, but without applying the secular
approximation, as discussed in the main text. Taking the continuum limit for the sum over the bath
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frequencies ωk and defining the spectral density J(ω) through

∑
k

g2
k

�

2Mωk
→
∫ ∞

0
dω J(ω) (E.8)

we obtain equation (E.6) [34, 53], with

γ(p)(ω) =
2π

�
[J(ω)(1 + nBE(ω)) + J(−ω)nBE(−ω)]. (E.9)

In equation (E.9) nBE is the standard Bose–Einstein distribution of the phonons

nBE(ω) =
1

e�ω/kBT − 1
(E.10)

and the spectral density is chosen as [34]

J(ω) =

⎧⎨
⎩

ER
ω

ωc
e−ω/ωc if ω > 0

0 if ω < 0
. (E.11)

The linear dependence of the spectral density at small frequencies, J(ω) ∼ ω for ω � ωc, results from the
∼1/ω scaling of the squared system–bath coupling (see equation (E.8), left-hand side), multiplied by the
density of modes of the oscillators in 3D, ∼ ω2 dω. We use an exponential cut-off at large frequencies,
J(ω) ∼ e−ω/ωc for ω 	 ωc, because it has been used to reproduce spectroscopic results in similar molecular
aggregates [34, 53]. As regards the bath parameters, we set the reorganization energy to ER = 200 cm−1 and
the cut-off frequency to ωc = 333 cm−1. With this choice of the parameters the thermal relaxation among
exciton states occurs in about 1 ps at room temperature for N = 32, which is comparable with the estimates
for natural photosynthetic systems reported in literature [29, 30], and which is much faster than the times
obtained by the radiative emission rates γα ∼ 1 ns−1. The operators in equation (E.6) can be expressed as

An(ω) =
∑

Ẽβ−Ẽα=�ω

c̃n(Ẽα)̃c∗n(Ẽβ)|Ẽα〉〈Ẽβ |. (E.12)

Here |Ẽα〉 are the eigenstates of (H0 +Δ), according to

(H0 +Δ)|Ẽα〉 = Ẽα|Ẽα〉 (E.13)

and c̃n(Ẽα) = 〈n|Ẽα〉. Note that here the system includes both the ring and the RC, thus the expression of
the coefficients c̃n(Ẽα) is different from the one given in equation (B.5), where just the ring is considered.

Appendix F. Thermal dephasing rate

Using the expressions in appendix E, we have that the dynamics of the coherences between the ground state
|0〉 and the ring eigenstates in the small volume limit follow

dρ0α

dt
= − i

�
〈0| [H, ρ] |Eα〉 −

γ|�pα|2
2

ρ0α − 1

2

∑
β,δ

γ(p)(Eβ − Eδ)Λδδ
αβρ0β (F.1)

with the overlap coefficients

Λδδ
αβ =

∑
n

cn(Eα)∗cn(Eβ)|cn(Eδ)|2. (F.2)

Equation (F.1) can be simplified in the present case, under polarized CW laser excitation. Coherences
between the ground state and the ring eigenstates are created by the laser Hamiltonian term HEM. In our
analysis, such coherent coupling involves just one ring eigenstate: either |EN〉 for the D-configuration, or
|E2〉 for the LH-configuration. No coherent coupling with the ground state is present in the sunlight
configuration. Therefore, in equation (F.1) the only non-zero term is where α = β, coinciding with the
absorbing state, that we label ‘abs’ in the following. Thus, after re-labelling the summed index δ → β,
equation (F.1) simplifies to

dρ0,abs

dt
= − i

�
〈0| [H, ρ] |Eabs〉 −

γ|�pabs|2
2

ρ0,abs −
1

2

∑
β

γ(p)(Eabs − Eβ)Λabs,βρ0,abs (F.3)
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Figure F1. Dephasing rate (see equation (F.6)) vs the system size N for LH-configuration (θ = 0) and D-configuration
(θ = π/3, 5π/12). Parameters: ER = 200 cm−1, ωc = 333 cm−1, T = 300 K.

with the simplified overlap coefficients

Λabs,β =
∑

n

|cn(Eabs)|2|cn(Eβ)|2. (F.4)

In a more compact expression, we can write

dρ0,abs

dt
= − i

�
〈0| [H, ρ] |Eabs〉 − ΓTρ0,abs, (F.5)

where we define the dephasing rate

ΓT =
γ|�pabs|2

2
+

1

2

∑
β

γ(p)(Eabs − Eβ)Λabs,β. (F.6)

Using the spectral density, equation (E.11), we obtain:

γ(p)(Eabs − Eβ) =
πER

�2ωc

(Eabs − Eβ)e−|Eabs−Eβ |/(�ωc)

1 − e−(Eabs−Eβ)/(kBT) , (F.7)

where ER is the reorganization energy, ωc is the cut-off frequency, T is the bath temperature, and the
coefficients Λabs,β are given in equation (F.4).

In the case of the device described in the main text (D-configuration), when the absorbing state is the
highest-energy state, we can make some approximations. The coefficients (F.4) have the value Λabs,β = 1/N
for any β so, using equation (B.2a) for �pabs and integrating over the spectrum we have

ΓT =
Nγ sin2 θ

2
+

πER

N�2ωc

∫ EN

E1

dE�(E)
(EN − E)e−|EN−E|/(�ωc)

1 − e−(EN−E)/(kBT)
, (F.8)

where �(E) is the density of states. Since in our case the spectral extension EN − E1 is independent of N,
then the average density of states is

�(E) =
N

EN − E1
∝ N. (F.9)

Moreover, in realistic situations (T = 300 K and the parameters ER and ωc from the literature) the first term
in equation (F.8) can be neglected for N � 106. Thus, under these approximations, we can claim that ΓT is
independent of N.

For the LH-configuration we need to use the full expression given in equation (F.6) which can be
obtained by the parameters of the system and by the diagonalization of the system Hamiltonian. Also
in this case we have found (numerically) that ΓT is independent of N, as shown in the following.

In figure F1 we plot ΓT vs N for the LH-configuration (θ = 0, open circles) and the D-configuration
(squares for θ = π/3 and crosses for θ = 5π/12). As one can see, for N � 20 the thermal dephasing rate
is weakly dependent of N in all cases. Moreover, the two values of θ considered for the D-configuration
exhibit the same dephasing rate for any N � 20.
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Figure F2. Dephasing rate (see equation (F.6)) vs θ for D-configuration. Parameters: N = 100, ER = 200 cm−1, ωc = 333 cm−1,
T = 300 K.

We also study the dependence of ΓT on the angle θ for the D-configuration, see figure F2, for N = 100.
We can see that ΓT has a very weak dependence on θ (less than 3% variation), too.

So, our analytical approximation (supported by numerical simulations) show that the dephasing rate
depends very weakly on both N and θ. For instance at T = 300 K and for the parameters considered in the
main text, we have that

ΓT ≈ 6 ps−1 for LH − configuration (F.10a)

ΓT ≈ 20 ps−1 for D − configuration. (F.10b)

Appendix G. Analytical results for a single site

Here we analyze the explicit expression of the master equation (6) in the case of a single site which plays the
role of an absorber, emitter and trapping state. We call respectively |0〉 and |1〉 the ground state and the
excited state of the site, so that equation (6) reads

dρ00

dt
= i

ΩR

2

(
ρ01 − ρ∗01

)
+ γρ11 + κρ11 (G.1a)

dρ11

dt
= i

ΩR

2

(
ρ∗01 − ρ01

)
− γρ11 − κρ11 (G.1b)

dρ01

dt
= i

ΩR

2
(ρ00 − ρ11) − γ + κ+ γ(p)(0)

2
ρ01 + iΔ0ρ01, (G.1c)

where Δ0 = ω0 − ω is the detuning between the laser frequency and the transition frequency of the site. As
one can see from equation (G.1c), the coherence term has a dephasing rate

Γ
(p)
01 =

γ + κ

2
+

γ(p)(0)

2
(G.2)

which can be determined by neglecting the terms proportional to iΩR and iΔ0, which are related to
oscillations. Note that this dephasing rate is exactly the same given by equation (F.6), in the trivial case
β = 1. The dephasing rate of the coherence term ρ01 can also be interpreted as the dephasing rate between
the ground state and the (unique) absorbing state, which we call ΓT.

In the following we will show that it is possible to obtain a stationary solution for equation (G.1a).
Using (E.9), equation (G.2) can be rewritten as

ΓT =
γ + κ

2
+ π

ER

�

kBT

�ωc
. (G.3)

The stationary current Is of a single molecule at fixed temperature T is defined as:

Is = κρ∞11, (G.4)

23



New J. Phys. 24 (2022) 013027 F Mattiotti et al

where ρ∞11 is the steady-state value of ρ11(t). The explicit expression for Is can be derived analytically by
setting the derivatives in equation (G.1a) to zero,

Is =
κ

2

Ω2
R

Δ2
0(γ + κ)/ΓT +Ω2

R + ΓT(γ + κ)
. (G.5)

It is well known that, for sufficiently large dephasing (ΓT 	 ΩR/2), the full quantum ME is well
approximated by a set of rate equations with suitably defined rates [43]. Specifically, following reference
[43], we derive the pumping rate TL between the states 0, 1 as

TL =
Ω2

RΓT

2
(
Δ2

0 + Γ2
T

) . (G.6)

With such rate we proceed to write a probability-preserving rate equation for the probabilities P0 and P1 to
be in ground and in excited state respectively,

dP0

dt
= TLP1 − TLP0 + (γ + κ)P1 (G.7a)

dP1

dt
= TLP0 − TLP1 − (γ + κ)P1, (G.7b)

where we have taken into account the pumping rate TL (G.6). The incoherent transmitted current

I(inc)
s = κP∞

1 , (G.8)

where P∞
1 is the stationary value of the probability P1(t), can be easily obtained from (G.7a) and it is given

by

I(inc)
s =

κTL

2TL + γ + κ
. (G.9)

Interestingly, the result in equation (G.9) coincides with the exact quantum result given in equation (G.5)
for any value of the parameters. Note that in general (when the number of sites is larger than one) a set of
effective rate equations like equations (G.7a) gives different results from a quantum ME like
equation (G.1a).

Now, having computed the stationary current, we analyze the stationary population of the excited state
|1〉. Our interest is to determine when the single-excitation assumption (under which the master
equation (6) has been derived) is valid, as a function of the parameters. Let us start by considering the
resonance case, Δ0 = 0 so that the stationary solution of equation (G.1a) is

ρ∞11 =
Ω2

R

2Ω2
R + 2ΓT(γ + κ)

. (G.10)

Let us recall that the effective Hamiltonian (A.1a) and the master equation (6) have meaning only for low
excitation (ρ11 � 1). In our simulations we have ΩR = 4.68γ, (γ + κ) > γ and 2ΓT > γ(p)(0) ≈ 2 × 106γ.
This implies that ρ∞11 � 10−5, so that we are always in the single-excitation regime.

Appendix H. Natural sunlight

In this section we derive the ME for a generic molecular aggregate coupled to natural sunlight.
Let us consider an aggregate of N two-level systems all having the same excitation energy ω0. In these

calculations we use � = 1. The aggregate interacts with the radiation emitted by the Sun, that we model as a
black body at temperature TS, with a correction accounting for the Sun-to-Earth distance. In this approach,
the spontaneous emission process will come out naturally from the interaction with the vacuum mode of
the EMF. The full Hamiltonian is

Ĥ = Ĥ0 + ĤB + ĤI . (H.1)

Here the site Hamiltonian is

Ĥ0 =
ω0

2

N∑
j=1

σ̂z
j (H.2)

with σ̂z
j being the z Pauli matrix for the jth site. The black body Hamiltonian is

ĤB =
∑
�k,λ

ωkb̂†�k,λ
b̂�k,λ, (H.3)
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where the summation runs over the modes�k and the polarizations λ = 1, 2 of the field, the dispersion
relation is ωk = ck (c is the speed of light) and the creation/annihilation operators follow to the
commutation rules [b̂�k,λ, b̂†�k′ ,λ′] = δ�k,�k′δλ,λ′ . Finally, the light–matter interaction

Hamiltonian is

ĤI = −
N∑

j=1

�̂Dj · �̂E(�rj), (H.4)

where
�̂Dj = �dj(σ̂

+
j + σ̂−

j ) (H.5)

is the dipole operator on the jth site, �dj is the transition dipole moment of the same site, σ̂±
j = (σ̂x

j ± iσ̂y
j )/2

and

�̂E(�rj) = i
∑
�k,λ

√
2πωk

V
�e�k,λ

[
ei�k·�rj b̂�k,λ − e−i�k·�rj b̂†�k,λ

]
(H.6)

is the electric field in the position�rj, with�e�k,λ being a unit vector which specifies the polarization.
Since the coupling to the EMF degrees of freedom is weak, we perform the Born–Markov and secular

approximations [35]. The density matrix is therefore factorized as ρ̂(t) ≈ ρ̂S(t) ⊗ ρ̂B, and we get the
Lindblad ME

dρ̂S(t)

dt
=

∑
ω=±ω0

∑
i,j

Gij(ω)
[
Âj(ω)ρ̂S(t)Â†

i (ω) − Â†
i (ω)Âj(ω)ρ̂S(t)

]
+ h.c., (H.7)

where Âj(ω) are operators acting on the sites,

Âj(ω0) = σ̂−
j , Âj(−ω0) = Â†

j (ω0) = σ̂+
j . (H.8)

The complex rates Gij(ω) are

Gij(ω) =

∫ ∞

0
dτ eiωτ

∑
�k,λ,�k′,λ′

2π
√
ωkωk′

V

(
�di ·�e�k,λ

)(
�dj ·�e�k′ ,λ′

)

×
[
−ei(�k·�ri+�k′·�rj−ωkτ)

〈
b̂�k,λb̂�k′,λ′

〉
B
+ ei(�k·�ri−�k′·�rj−ωkτ)

〈
b̂�k,λb̂†�k′,λ′

〉
B

+ e−i(�k·�ri−�k′·�rj−ωkτ)
〈

b̂†�k,λ
b̂�k′,λ′

〉
B
− e−i(�k·�ri+�k′·�rj−ωkτ)

〈
b̂†�k,λ

b̂†�k′ ,λ′

〉
B

]
, (H.9)

where we use the notation 〈. . . 〉B = trB {. . . ρ̂B}. Now we assume that the black body, that in our case is the
Sun, is at thermal equilibrium, i.e.

ρ̂B =
e−ĤB/(kBTS)

trB

{
e−ĤB/(kBTS)

} , (H.10)

where TS = 6000 K is the temperature of the Sun. In this case the expectation values of the operators in
equation (H.9) are 〈

b̂�k,λb̂�k′,λ′
〉

B
= 0 (H.11a)〈

b̂†�k,λ
b̂†�k′,λ′

〉
B
= 0 (H.11b)〈

b̂�k,λb̂†�k′,λ′

〉
B
= δ�k,�k′δλ,λ′

(
1 + fSnS(ωk)

)
(H.11c)〈

b̂†�k,λ
b̂�k′,λ′

〉
B
= δ�k,�k′δλ,λ′ fSnS(ωk), (H.11d)

where we have defined the Bose–Einstein occupation of the Sun photons

nS(ωk) =
1

eωk/(kBTS) − 1
(H.12)

and we have introduced the factor

fS =
πr2

S

4πR2
ES

= 5.4 × 10−6 (H.13)

that represents the ratio of the Sun solid angle as seen from the Earth over the full solid angle (rS is the Sun
radius while RES is the Sun-to-Earth distance). Such factor is needed to correct the model to describe
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natural sunlight: in the present calculations, in fact, the molecular aggregates exchange energy with all the
modes of the EMF in all directions, both absorbing and emitting photons. This is correct for the
spontaneous emission process, but it needs to be corrected by the factor fS for the absorption and
stimulated emission processes, which depend on the number of thermal photons nS(ωk). Indeed, the Sun
photons hit the system from a fraction fS of the whole solid angle, so that nS is multiplied by fS.

Thus, defining�rij = �ri −�rj, equation (H.9) can be written as

Gij(ω) =

∫ ∞

0
dτ eiωτ

∑
�k,λ

2πωk

V

(
�di ·�e�k,λ

)(
�dj ·�e�k,λ

)

×
[

ei(�k·�rij−ωkτ)
(
1 + fSnS(ωk)

)
+ e−i(�k·�rij−ωkτ)fSnS(ωk)

]
. (H.14)

As regards the sum over�k, we take the continuum limit

1

V

∑
�k

→ 1

(2π)3

∫
d�k =

1

(2πc)3

∫
dΩ

∫ ∞

0
dωkω

2
k . (H.15)

Now, if we assume that the dipoles have all the same magnitude μ but different orientation, namely
�dj = μp̂j, and defining the function

Fij(x) =
1

4π

∑
λ

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)

(
p̂i ·�e�k,λ

)(
p̂j ·�e�k,λ

)
eix cos θ (H.16)

choosing a frame for the integration over�k where the z axis has the same direction as�rij, we have

Gij(ω) =

∫ ∞

0
dτ eiωτ

∫ ∞

0
dωk

μ2ω3
k

πc3

[
e−iωkτFij(krij)

(
1 + fSnS(ωk)

)
+ eiωkτFij(−krij)fSnS(ωk)

]
. (H.17)

Now we perform the integral over τ using the relation∫ ∞

0
dτ eiωτ = πδ(ω) + iP

1

ω
, (H.18)

where P is the Cauchy principal value. So, we can split the rates into their real and an imaginary parts,

Gij(ω) =
1

2
Γij(ω) + iSij(ω) (H.19)

which are, respectively,

Γij(ω) =

∫ ∞

0
dωk

2μ2ω3
k

c3

[
δ(ω − ωk)Fij(krij)

(
1 + fSnS(ωk)

)
+ δ(ω + ωk)Fij(−krij)fSnS(ωk)

]
(H.20)

Sij(ω) = P

∫ ∞

0
dωk

μ2ω3
k

πc3

[
Fij(krij)

(
1 + fSnS(ωk)

)
ω − ωk

+
Fij(−krij)fSnS(ωk)

ω + ωk

]
. (H.21)

H.1. Real part of the rates: absorption and decay
Let us start from the real part (H.20). The two integrals are easily performed, taking into account that the
only possible values of ω are ±ω0. By defining k0 = ω0/c we get

Γij(ω) =
2μ2ω3

0

c3

[
δω,ω0Fij(k0rij)

(
1 + fSnS(ω0)

)
+ δω,−ω0Fij(−k0rij)fSnS(ω0)

]
. (H.22)

To have the explicit dependence of Γij(ω) on the parameters, we evaluate Fij(x), that results

Fij(x) =

[
sin x

x
+

cos x

x2
− sin x

x3

] (
p̂i · p̂j

)
+

[
− sin x

x
− 3

cos x

x2
+ 3

sin x

x3

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
. (H.23)

Note that Fij(x) is an even function of x which, in our case, gives the useful equality
Fij(−k0rij) = Fij(k0rij). Moreover, one can see that Fji(x) = Fij(x), which implies that both the matrices
Γij(ω) and Sij(ω) are symmetric for i ↔ j. As regards the diagonal terms (i = j) we can analytically extend
the function to x = 0 thanks to the limit

lim
x→0

Fii(x) =
2

3
. (H.24)
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The real parts of the rates are then

Γij(ω) =
3γ

2
Fij(k0rij)

[
δω,ω0

(
1 + fSnS(ω0)

)
+ δω,−ω0fSnS(ω0)

]
, (H.25)

where the single-molecule spontaneous decay rates are

γ =
4

3
μ2 ω

3
0

c3
. (H.26)

Using the symmetry properties of Γij, the contribution from the real part of the rates to the ME reads[
dρ̂S(t)

dt

]
real

=
∑

i,j

Γij

(
1 + fSnS(ω0)

) [
σ̂−

j ρ̂S(t)σ̂+
i − 1

2

{
σ̂+

i σ̂
−
j , ρ̂S(t)

}]

+
∑

i,j

ΓijfSnS(ω0)

[
σ̂+

j ρ̂S(t)σ̂−
i − 1

2

{
σ̂−

i σ̂
+
j , ρ̂S(t)

}]
(H.27)

which is in the Lindblad form and where we have defined the coefficients

Γij =
Γij(ω0)

1 + fSnS(ω0)
=

Γij(−ω0)

fSnS(ω0)
=

3

2
γFij(k0rij). (H.28)

The first double sum of equation (H.27) describes the spontaneous and stimulated emission processes,
while the second double sum describes the absorption process of excitation from the Sun.

H.2. Imaginary part of the rates: radiative coupling
Let us now focus on the imaginary part of the ME. Thanks to the symmetry Sji(ω) = Sij(ω) we have[

dρ̂S(t)

dt

]
imag

=
∑

ω=±ω0

∑
i,j

iSij(ω)
[
Âj(ω)ρ̂S(t)Â†

i (ω) − Â†
i (ω)Âj(ω)ρ̂S(t)

]
+ h.c.

= −i
∑

ω=±ω0

∑
i,j

Sij(ω)
[
Â†

i (ω)Âj(ω), ρ̂S(t)
]

= −i
[
Δ̂, ρ̂S(t)

]
, (H.29)

where we have defined the real part of the radiative Hamiltonian using (H.8)

Δ̂ =
∑

ω=±ω0

∑
i,j

Sij(ω)Â†
i (ω)Âj(ω)

=
∑

i,j

[
Sij(ω0)σ̂+

i σ̂
−
j + Sij(−ω0)σ̂−

j σ̂
+
i

]
. (H.30)

Thanks to the commutation rules
[
σ̂+

i , σ̂−
j

]
= δijσ̂z we have

Δ̂ =
∑

i

[
Sii(ω0)σ̂+

i σ̂
−
i + Sii(−ω0)σ̂−

i σ̂
+
i

]
+
∑

i,j
i=j

Δijσ̂
+
i σ̂

−
j , (H.31)

where we have defined the matrix elements

Δij = Sij(ω0) + Sij(−ω0). (H.32)

The diagonal terms give a divergent renormalization energy that is constant for all the molecules, so we
disregard it here. Then, the off-diagonal matrix elements are independent of the Sun temperature, namely

Δij =
μ2

πr3
ij

P

∫ ∞

−∞
dx

x3

x0 − x
Fij(x), (H.33)

where x0 = ω0rij/c. The integral can be computed using contour methods, resulting in

Δij =
3γ

4

[
− cos xij

k0rij
+

sin xij

x2
ij

+
cos xij

x3
ij

] (
p̂i · p̂j

)
+

3γ

4

[
cos xij

k0rij
− 3

sin xij

x2
ij

− 3
cos xij

x3
ij

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
.

(H.34)
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H.3. Final expression and single-excitation approximation
The final expression of the ME is

dρ̂S

dt
= −i

[
Ĥ0 + Δ̂, ρ̂S

]
+
∑

i,j

Γij

(
1 + fSnS(ω0)

) [
σ̂−

j ρ̂Sσ̂
+
i − 1

2

{
σ̂+

i σ̂
−
j , ρ̂S

}]

+
∑

i,j

ΓijfSnS(ω0)

[
σ̂+

j ρ̂Sσ̂
−
i − 1

2

{
σ̂−

i σ̂
+
j , ρ̂S

}]
(H.35)

and, defining the parameters xij = ω0rij/c and γ = 4
3μ

2 ω3
0

c3 we have

Γij =
3γ

2

[
sin xij

xij
+

cos xij

x2
ij

− sin xij

x3
ij

] (
p̂i · p̂j

)
+

[
− sin xij

xij
− 3

cos xij

x2
ij

+ 3
sin xij

x3
ij

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
.

(H.36)
As regards the Hamiltonian term, neglecting the renormalization of the site energies, we have

Ĥ0 + Δ̂ =
ω0

2

∑
i

σ̂z
i +

∑
i,j

i=j

Δijσ̂
+
i σ̂

−
j , (H.37)

where the coupling terms are given by (H.34).
The master equation (H.35) acts on the full Hilbert space spanned by the N sites, having dimension 2N

and including all the possible numbers of excitations (from none to N excitations). However, in this
manuscript we focus on the weak fluence regime, where the photon absorption rate is much smaller than
the excitation decay rate, so that no more than one excitation at a time is present in the system. In this
regime we perform the single-excitation approximation, i.e. we neglect all the states with more than one
excitation and we consider only: the state |0〉, where all the sites are in their ground state, and the N
single-excitation states of the form |j〉 = σ̂+

j |0〉, where only the jth site is excited while all the other ones are

in their ground state. In this (N + 1)-dimensional subspace, each σ+
j operator acts only on |0〉 resulting in

σ+
j |0〉 = |j〉, while each σ−

j operator acts only on |j〉 giving σ−
j |j〉 = |0〉. Therefore, we write the ME in the

single-excitation approximation by replacing σ̂+
j → |j〉〈0| and σ̂−

j → |0〉〈j| into (H.35). For readability, we
also drop the subscript ‘S’ from ρ̂S, and we have the single-excitation ME

dρ̂

dt
= −i

[
Ĥ0 + Δ̂, ρ̂

]
+
∑

i,j

Γij

(
1 + fSnS(ω0)

) [
ρji|0〉〈0| −

1

2
{|i〉〈j|, ρ̂}

]

+
∑

i,j

ΓijfSnS(ω0)

[
ρ00|j〉〈i| −

1

2
δij {|0〉〈0|, ρ̂}

]
(H.38)

with the single-excitation Hamiltonian

Ĥ0 + Δ̂ = ω0

∑
i

|i〉〈i| +
∑

i,j
i=j

Δij|i〉〈j|. (H.39)

Finally, let us consider the particular case where there exist a common eigenbasis |α〉 for both(
Ĥ0 + Δ̂

)
and

∑
i,j Γij|i〉〈j| such that

〈α|Ĥ0 + Δ̂|β〉 = ωαδαβ (H.40)

〈α|

⎛
⎝∑

i,j

Γij|i〉〈j|

⎞
⎠ |β〉 = γαδαβ. (H.41)

We can then write (H.38) in that basis:

dρ̂

dt
= −i

∑
α

ωα

[
|α〉〈α|, ρ̂

]
+
∑
α

γα
(
1 + fSnS(ω0)

) [
ραα|0〉〈0| −

1

2
{|α〉〈α|, ρ̂}

]

+
∑
α

γαfSnS(ω0)

[
ρ00|α〉〈α| −

1

2
{|0〉〈0|, ρ̂}

]
. (H.42)
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If we consider the diagonal elements, which describe the dynamics of the populations of |0〉 and of the
eigenstates |α〉, that part of the ME can be mapped into a Pauli ME, which reads

dρ00

dt
=
∑
α

Bα (ραα − ρ00) +
∑
α

γαραα (H.43)

dραα
dt

= Bα (ρ00 − ραα) − γαραα, (H.44)

where we have defined the absorption and stimulated emission rates Bα = fSnS(ω0)γα.

Appendix I. Effective three-level model

Here we provide a detailed derivation of the three-level model introduced in the main text.
Let us consider a system made of N sites (molecules) and let us perform our analysis in the

single-excitation approximation, meaning that we consider just the ground state of the whole system |0〉
and the states |j〉 where only the jth site is excited. Let us now consider a basis where the single-excitation
subspace is diagonal, and let us call |α〉 the eigenstates of the single-excitation subspace.

The system is assumed to be coupled to an incoming radiation field, which induces absorption and
stimulated emission to each eigenstate |α〉 with a pumping rate Bα. Moreover, we consider the spontaneous
emission of excitation by radiation from each eigenstate |α〉, with a fluorescence rate γα. Finally, we add one
level (labelled ‘RC’) which is coupled to each |α〉 state with a transfer rate TRC

α and where excitation can be
collected to a trapping environment (sink), modeled by a trapping rate κ. The RC can also absorb excitation
from the radiation field with a rate BRC, and it also has stimulated and spontaneous emission rates, BRC and
γ.

Neglect coherences. As a first approximation, we assume that the coherences between the eigenstates do
not play a role in the transport process. We then write a rate equation for the population of the ground state
and for the RC state:

dP0(t)

dt
= −

∑
α

BαP0(t) − BRCP0(t) +
∑
α

BαPα(t) + BRCPrc(t) +
∑
α

γαPα(t) + (κ+ γ)Prc(t) (I.1a)

dPrc(t)

dt
= −

∑
α

TRC
α Prc(t) +

∑
α

TRC
α Pα(t) + BRCP0(t) − BRCPrc(t) − (κ+ γ)Prc(t), (I.1b)

where P0 is the population of the ground state, Prc is the population of the RC and Pα is the population of
the α-th excitonic eigenstate.

Thermal equilibrium. Secondly, let us assume that the excitonic subspace is at thermal equilibrium with a
temperature T. Formally, we define the population in the whole excited subspace as

Pe(t) =
∑
α

Pα(t), (I.2)

so that the trace preservation condition is

P0(t) + Pe(t) + Prc(t) = 1. (I.3)

We impose thermal equilibrium in the aggregate as

Pα(t) = Pe(t)pα with pα =
e−Eα/(kBT)

Z
, (I.4)

where Eα is the energy of the α-th excitonic eigenstate and

Z =
∑
α

e−Eα/(kBT) (I.5)

is the partition function. By substituting equation (I.4) into equation (I.1a) we have

dP0(t)

dt
= −

(∑
α

Bα

)
P0(t) +

(∑
α

Bαpα

)
Pe(t) +

(∑
α

γαpα

)
Pe(t) + (κ+ γ)Prc(t) − BRCP0(t)

+ BRCPrc(t) (I.6a)

29



New J. Phys. 24 (2022) 013027 F Mattiotti et al

dPrc(t)

dt
= −

(∑
α

TRC
α

)
Prc(t) +

(∑
α

TRC
α pα

)
Pe(t) + BRCP0(t) − BRCPrc(t) − (κ+ γ)Prc(t) (I.6b)

Steady-state solution and current. We now express equation (I.6a) in terms of thermal averages of the
rates (〈X〉 =

∑
α Xαpα) and by defining the total absorption rate, BTOT =

∑
α Bα, and the total transfer rate

to the RC, TRC
TOT =

∑
αTRC

α , so that

dP0(t)

dt
= −BTOTP0(t) + 〈B〉 Pe(t) − BRCP0(t) + BRCPrc(t) + 〈γ〉 Pe(t) + (κ+ γ)Prc(t) (I.7a)

dPrc(t)

dt
= −TRC

TOTPrc(t) +
〈

TRC
〉

Pe(t) + BRCP0(t) − BRCPrc(t) − (κ+ γ)Prc(t) (I.7b)

1 = P0(t) + Pe(t) + Prc(t), (I.7c)

where the last equation is equation (I.3). The steady-state solution is obtained by setting the time derivatives
to zero, and it is reached at long time (‘t = ∞’), so that we have

Prc(∞) =
BTOT + BRC

BTOT + γ + κ+ 2BRC +
(
BTOT + BRC + 〈B〉+ 〈γ〉

) TRC
TOT+BTOT

BRC+γ+κ
BTOT+BRC

〈TRC〉+BRC
〈B〉+〈γ〉

BTOT+BRC

(I.8)

Pe(∞) =
TRC

TOT + BTOT
BRC+γ+κ
BTOT+BRC

〈TRC〉+ BRC
〈B〉+〈γ〉

BTOT+BRC

Prc(∞). (I.9)

Finally, we define the stationary current trapped into the sink as

I3 = κPrc(∞). (I.10)

By substituting equation (I.8) into equation (I.10) we have

I3 =
κ (BTOT + BRC)

BTOT + γ + κ+ 2BRC +
(
BTOT + BRC + 〈B〉+ 〈γ〉

) TRC
TOT+BTOT

BRC+γ+κ
BTOT+BRC

〈TRC〉+BRC
〈B〉+〈γ〉

BTOT+BRC

. (I.11)

I.1. Equivalence with the multi-chromophoric Förster resonance energy transfer (MC-FRET)
Here we show that the transfer rates 〈TRC〉 and TRC

TOT between ring and RC are exactly the MC-FRET rates
[21, 40], also known as generalized Förster theory [41]. In the MC-FRET framework, the transfer rate from
a donor aggregate ‘D’ to an acceptor ‘A’ is expressed in terms of their emission and absorption spectra, E(ω)
and I(ω) respectively. An aggregate absorption spectrum is [21] I(ω) ∝

∑
α |�pα|2Iα(ω), where |�pα|2 and

Iα(ω) are, respectively, the dipole strength and the normalized lineshape for each α eigenstate. The emission
spectrum on the other hand is E(ω) ∝

∑
α|�pα|2Eα(ω), where the emission lineshapes are multiplied by the

thermal populations pα, see equations (I.4) and (I.5), namely Eα(ω) = pαIα(ω). The MC-FRET rate is
usually expressed as [21, 40, 41]

KD,A =
∑
α∈D

∑
β∈A

|〈α|HS|β〉|2
2π�2

∫ ∞

−∞
Eα(ω)Iβ(ω)dω, (I.12)

where 〈α|HS|β〉 is the Hamiltonian matrix element between the α donor eigenstate and the β acceptor
eigenstate and the normalization condition is

∫∞
−∞Iα(ω)dω = 2π.

For high temperature and short bath correlation time [21], we can neglect the phonon-induced Stokes
and anti-Stokes shifts and approximate all the absorption lines as Lorentzians

Iα(ω) =
2Γφ

Γ2
φ + (ω − ωα)2

(I.13)

peaked on the eigenstate frequency ωα and with a dephasing-induced linewidth Γφ. Under this assumption,
the overlap integral in equation (I.12) is analytically computed as
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∫ ∞

−∞
Eα(ω)Iβ(ω)dω = pα

4πΓφ

4Γ2
φ + (ωα − ωβ)2

. (I.14)

Therefore, we can express the MC-FRET rate in equation (I.12) as

KD,A =
∑
α∈D

∑
β∈A

pαK̄α,β , (I.15)

where the transfer rates between an α donor eigenstate and a β acceptor eigenstate are

K̄α,β =
|〈α|HS|β〉|2

�2

4Γφ

4Γ2
φ + (ωα − ωβ)2

. (I.16)

Note that these rates are symmetric, K̄β,α = K̄α,β , while the KD,A rate usually are non-symmetric, due to the
different thermal populations pα between the donor and acceptor.

The transfer rates between ring and RC from our rate equations, equations (I.7a), are exactly equivalent
to the MC-FRET rates in equation (I.15), in fact we have two cases:

(a) For the transfer from the ring to the RC, the ring is the donor and the RC the acceptor, so the sum over
β ∈ A runs over the single RC state and we have

Kring,RC =
∑
α∈ring

pαK̄α,rc, (I.17)

which is exactly 〈TRC〉;
(b) For the transfer from the RC to the ring we have the opposite situation, so the sum over the donor

states α ∈ D runs over the single RC state, whose normalized population is trivially pα = 1, and so we
have

KRC,ring =
∑
β∈ring

K̄rc,β , (I.18)

which is exactly TRC
TOT.

I.2. Transfer between ring and RC
Since the coupling between the ring and the RC is weak, we compute the incoherent transfer rates
between the ring eigenstates and the RC using the MC-FRET rates in equation (I.16), TRC

α ∝ |〈α|Δ|rc〉|2,
proportional to the squared coupling between the two states. As we show in appendix C, the coupling is
non-vanishing only for the eigenstate |E2〉, that is resonant with the RC, where the coupling scales as
ΩC ∝ (cos θ)/N5/2, see equation (4). Therefore, the transfer rate in equation (I.16) can be written in the
form

TRC
2 = τ−1

RC

(
32

N

)5

cos2 θ, (I.19)

where τRC represents the transfer time in the reference case N = 32 and θ = 0 (representing the natural
purple bacteria LHI complex, see appendix D). We have verified numerically that the scaling in
equation (I.19) holds for N = 16, 32, 64 and for different values of θ. By comparing equations (I.16) and
(I.19) we can find a proportionality between the dephasing Γφ in the MC-FRET approach and the reference
ring-RC transfer time τRC in our approach. We recall that |E2〉 and |rc〉 are at resonance and the matrix
element ΩC = 〈E2|Δ|rc〉 is given by equation (4), so that the MC-FRET equation (I.16) is written explicitly
as

K̄E2,rc =
Ω2

C

�2Γφ
=

32π6μ4d6

�2Γφ

cos2 θ

N5
. (I.20)

By setting equation (I.20) equal to equation (I.19) we have that cos2θ/N5 cancels since it is present in both
equations, and we obtain the relation

Γφ =
π6μ4d6

324�2
τRC. (I.21)

Substituting the parameter values used in this manuscript (μ2 = 519 310 cm−1 Å3 and d = 0.1 Å−1) we
have

Γφ = (8.8 ps−2)τRC. (I.22)
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Table I1. Fit parameters for figure I1, using equation (I.24).

N θ τRC (ps) p∗

16 0 5.0 0.120
32 0 3.9 0.223
64 0 4.0 0.173
16 0.475π 4.5 0.224
32 0.475π 4.5 0.139
64 0.475π 4.5 0.073

In order to determine the value of τRC, now we consider the ring + RC system in absence of absorption,
emission and trapping, where the excitation can only be exchanged between the ring and the RC. In such
situation, equation (I.7a) simplifies to

dPe(t)

dt
= −

〈
TRC

〉
Pe(t) + TRC

TOTPrc(t) (I.23a)

dPrc(t)

dt
= −TRC

TOTPrc(t) +
〈

TRC
〉

Pe(t) (I.23b)

where the two rates are related by 〈TRC〉 = TRC
TOTp∗ (here p∗ is the Boltzmann population of the eigenstate

|E2〉). If one excitation is initially present on the ring, the time evolution of the probability to be on the RC
is

Prc(t) =
p∗

1 + p∗

[
1 − e−TRC

TOT(1+p∗)t
]

, (I.24)

and it allows to determine the value of τRC, as explained below.
In figure I1 we compute the time evolution of the ring + RC system using the ME (see appendix E) in

absence of absorption, emission and trapping, and in presence of a thermal bath with the standard
parameters used in this work (see caption). We initialize the system with one excitation at thermal
equilibrium on the ring, i.e.

ρ(0) =
∑
α

e−Eα/(kBT)

Z
|Eα〉〈Eα| (I.25)

and we compute the time evolution of the population of the RC, Prc(t) = 〈rc|ρ(t)|rc〉 (symbols in figure I1).
We fit the results obtained this way with the three-level solution equation (I.24), leaving τRC and p∗ as
fitting parameters. As one can see from the figure, Prc(t) obtained from the ME (symbols) grows initially
quadratically in time (dashed lines) as

Prc(t) ≈ p∗
Ω2

Ct2

�2
. (I.26)

This quadratic growth is the pure quantum-mechanical time evolution given by the ring |E2〉 eigenstate
(with initial occupation probability p∗) resonant with |rc〉. For times larger than ≈ 0.01 − 0.1 ps, the time
evolution is instead well captured by equation (I.24) (continuous lines), with the fitting parameters
reported in table I1. We observe that, in the reference case N = 32, θ = 0 (representing the natural LHI
system), there is a perfect fit with τRC = 3.9 ps, and therefore we choose this value for all our simulations
with the three-level model across the manuscript. The corresponding dephasing value for the MC-FRET
rates is obtained from equation (I.22), and it has the value Γφ = 34 ps−1. We also note that τRC varies by
about 20% when θ is changed (see table I1). Such ±20% variation in τRC produces variations in the
steady-state current, and we show those variations as shaded areas in figures 3, J1 and J2. Finally, we
determine the critical time τφ when the dynamics changes from quadratic quantum-mechanical growth to
the linear growth predicted by the incoherent three-level model. This transition happens at the crossing
point between equation (I.26) and the initial, linear growth of equation (I.24), that for short times is
approximated as Prc(t) ≈ p∗TTOT

RC t. Matching the linear and quadratic expressions for Prc(t) and using
equation (I.20) for TTOT

RC , we have that Ω2
C cancels, so that the crossing point happens at τφ = Γ−1

φ . With the
choice of τRC and the corresponding Γφ used in this manuscript, we have τφ = 0.03 ps, independent of N
or θ, as one can see in figure I1.

I.3. Parametrization for D-configuration, LH-configuration and sunlight configuration
Here we express the relevant rates present in equations (I.7a) as a function of the system parameters, in
absence of disorder. Due to the symmetry, simple analytical expressions can be derived, as it is shown below.
Note however that, in presence of disorder, the following expressions are not valid and one must use instead
the general definitions of the rates (see equations (I.6a), the paragraph below those equations and
equations (I.7a)).
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Figure I1. Population of the RC as computed with the ME, equation (6) (symbols) in absence of absorption (ΩR = 0), emission
(Γmn = 0) and trapping (κ = 0). Best fits with the three-level solution, equation (I.24), are shown as continuous lines, with fit
parameters in table I1. The initial quadratic growths Prc(t) ≈ p∗Ω

2
Ct2/�2 (with ΩC given by equation (4)) are shown as dashed

lines. Parameters for the ME: ER = 200 cm−1, ωc = 333 cm−1, T = 300 K.

Figure J1. Validity of the three-level model for large trapping, κ = 104γ. Transmitted normalized current at the peak laser
frequency, Ī/Is, vs θ for D-configuration (a), LH-configuration (b), and sunlight configuration (c). All simulations are done at
room temperature (T = 300 K). Different values of N have been considered, varying the radius of the ring to keep the density
fixed. Symbols represent the current Ī, see equation (5), obtained from the ME, see equation (6), while the solid curve is the
three-level approximation Ī3 (3L), see equation (18). Shaded areas represent variations in Ī3 produced by ±20% variations in
τRC. Parameters for all panels: κ = 104γ, ΩR = 4.68γ (laser intensity: 1365 W m−2, same as natural sunlight), τRC = 3.9 ps (for
three-level model).

Let us start with the D- and LH- configurations, where absorption takes place from a polarized CW laser
source.

I.3.1. D-configuration

For the D-configuration the laser source is polarized along the z axis and resonant with the ring eigenstate
having the highest energy. Thus we compute the quantities in equation (I.11) as

BTOT = TL =
NΩ2

RΓT sin2 θ

2[Γ2
T + (ω − ωN )2]

(I.27a)

〈B〉 = TLpN ≈ 0 (I.27b)

〈γ〉 = γN pN + γ2p2 + γ3p3 ≈ Nγ cos2 θp∗ (I.27c)

TRC
TOT = TRC

2 ≈ τ−1
RC

(
32

N

)5

cos2 θ (I.27d)
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Figure J2. Validity of the three-level model for small trapping, κ = 10−4γ. Transmitted normalized current at the peak laser
frequency, Ī/Is, vs θ for D-configuration (a), LH-configuration (b), and sunlight configuration (c). All simulations are done at
room temperature (T = 300 K). Different values of N have been considered, varying the radius of the ring to keep the density
fixed. Symbols correspond to the current Ī, see equation (5), obtained solving the ME, see equation (6), while the solid curve is
the three-level approximation Ī3 (3L), see equation (18). Shaded areas represent variations in Ī3 produced by ±20% variations in
τRC. Parameters for all panels: κ = 10−4γ, ΩR = 4.68γ (laser intensity: 1365 W m−2, same as natural sunlight), τRC = 3.9 ps (for
three-level model).

〈
TRC

〉
= TRC

2 p2 ≈ τ−1
RC

(
32

N

)5

cos2 θp∗ (I.27e)

BRC =
(p̂rc · ẑ)2Ω2

RΓT,RC

2[Γ2
T,RC + (ω − ωrc)2]

= 0, (I.27f)

where pN and p2 = p3 =:p∗ are, respectively, the Boltzmann populations for the eigenstate with the highest
energy, and for the first and second excited eigenstates, which are degenerate and, thus, they have the same
Boltzmann population p∗. Here, p̂rc = ŷ is the unit vector indicating the dipole direction of the RC, while
ΓT,RC is the dephasing rate between |0〉 and |rc〉, and it is given by equation (G.3). Since p̂rc is orthogonal to
the polarization ẑ of the laser, we have BRC = 0. The phenomenological parameter τRC represents the
transfer time between the ring and the RC for N = 32 and θ = 0, as explained above. In the range of
parameters that we have studied in our simulations, at T ≈ 300 K we are justified to neglect the factor pN.

I.3.2. LH-configuration

For the LH-configuration the laser source is polarized along the y axis and resonant with the first and
second (degenerate) excited states of the excitonic subspace. The difference between the D-configuration
and the LH-configuration is in the polarization and frequency of the laser source. The only parameters
which have different values between the two configurations are BTOT, 〈B〉 and BRC. Specifically, BRC here is
different from zero, because the dipole of the RC is parallel to the laser polarization, (p̂rc · ŷ)2 = 1, and
therefore for the LH-configuration we have

BTOT = TL =
NΩ2

RΓT cos2 θ

4[Γ2
T + (ω − ω2)2]

(I.28a)

〈B〉 = TLp2 =
NΩ2

RΓT cos2 θ

4[Γ2
T + (ω − ω2)2]

p∗ (I.28b)

〈γ〉 ≈ Nγ cos2 θp∗ (I.28c)

TRC
TOT ≈ τ−1

RC

(
32

N

)5

cos2 θ (I.28d)

〈
TRC

〉
≈ τ−1

RC

(
32

N

)5

cos2 θp∗ (I.28e)

BRC =
Ω2

RΓT,RC

2[Γ2
T,RC + (ω − ωrc)2]

. (I.28f)
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Figure J3. Peak current vs θ and N for large trapping, κ = 104γ. Normalized current at the peak laser frequency Ī3/Is obtained
from the three-level model, see equation (18). Different illumination conditions are used (see figure). For the sunlight
configuration (lowest panel), Ī3 coincides with I3, since there is no laser frequency. Parameters: κ = 104γ, ΩR = 4.68γ (laser
intensity: 1365 W m−2, same as natural sunlight), τRC = 3.9 ps, T = 300 K.

I.3.3. Sunlight

For the case of absorption from natural sunlight, the incoming light is isotropic, unpolarized, incoherent,
and it covers a broad black-body spectrum at TS ≈ 6000 K. Each eigenstate has a corresponding absorption
and stimulated emission rate Bα = fSnS(ω0)γα, see appendix H. The only parameters which have different
values with respect to the laser case are BTOT, 〈B〉 and BRC. Specifically, for the natural sunlight we have

BTOT = NγfSnS(ω0) (I.29a)

〈B〉 ≈ NγfSnS(ω0)cos2 θp∗ (I.29b)

〈γ〉 ≈ Nγ cos2 θp∗ (I.29c)

TRC
TOT ≈ τ−1

RC

(
32

N

)5

cos2 θ (I.29d)
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〈
TRC

〉
≈ τ−1

RC

(
32

N

)5

cos2 θp∗ (I.29e)

BRC = γfSnS(ω0). (I.29f)

Appendix J. Validity of the three-level model for weak and strong trapping rate

In the main text we have shown that the three-level model reproduces the peak current very well for the
trapping rate κ = 10γ. Here we show that the three-level model works very well also for weaker and
stronger trapping rates.

Specifically, in figure J1 we plot the peak current as a function of θ for the D-, LH- and
sunlight-configurations for large trapping rate, κ = 104γ. As one can see, the results obtained with the ME
(symbols) are very close to the three-level model results (lines). Some discrepancies are present in the
LH-configuration (figure J1(b)) for N = 16 and θ ≈ 0 because the three-level model in that regime does
not capture the ring-RC transfer process. In fact for those parameters, as one can see from figure I1, the
ring-RC population transfer follows purely quantum-mechanical quadratic dynamics, and therefore the
three-level model is not expected to work. Deviations are also seen for large N in the D- and sunlight
configurations. As discussed in the main text and in appendix I, those deviations are due to our choice of a
constant, θ-independent τRC parameter in our simulations, while table I1 shows that τRC can vary by up to
20% with θ. Once we account for ±20% variations in τRC, we obtain a confidence interval for the
three-level current (see shaded areas in figure) that include the MEs results. For the sunlight configuration
(figure J1(c)), for strong trapping, κ = 104γ, the current is independent of θ, because in this limit the
current it is ultimately determined just by the absorption rate, which is NfSnSγ, independent of θ.

On the other hand, in figure J2 we show the peak current as a function of θ for the D-, LH- and
sunlight-configurations for small trapping rate, κ = 10−4γ. Also here, the results obtained with the ME
(symbols) are nearly identical to the three-level model results (lines), thus justifying our use of the
three-level model in the main text.

Moreover, in figure J3 we show the peak current obtained from the three-level model as a function of θ
and N for large trapping, κ = 104γ. A similar figure is present in the main text, see figure 4, showing the
effectiveness of the D-configuration for intermediate trapping values, κ = 10γ. Here, see figure J3, we show
that for large trapping, κ = 104γ, the D-configuration is actually performing worse than the
LH-configuration.
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