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a b s t r a c t

Optimistic replication algorithms allow data presented to users to be stale (non-up-to-date) but in a con-
trolled way: they propagate updates in background and allow any replica to be accessed directly most of
the time. When the timely propagation of updates to remote distributed replicas is an important issue, it
is preferable that a replica gets the same update twice than it does not receive it at all. On the other hand,
few assumptions on the topology of the network can be made in a nomadic environment, where connec-
tions are likely to change unpredictably. An extreme approach would be to blindly ‘‘push” every update to
every replica; however, this would lead to a huge waste of bandwidth and of resources. In this paper, we
present a novel approach based on timed buffers, a technique that tends to reduce the overall number of
propagated updates while guaranteeing that every update is delivered to every replica and that the prop-
agation is not delayed.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Internet provides means for sharing resources and data
among several computers and users distributed over a network,
leading to the so-called global computers [7]. A user may have sev-
eral devices that, when connected, can be seen in a uniform way as
a single global computer. This scenario can be extended also to
multiple users that can exploit connectivity for working in a collab-
orative shared framework. In this context Replication [17,23,37,43]
and Synchronization [28,18,38,4,31,33] are key concepts, since they
enable consistency among data shared by several cooperating
devices.

Through replication users can access data even if some sites are
not reachable or temporarily non-functional, moreover, the nearest
or the idlest site can be used to access shared data in a more effi-
cient way. Synchronization becomes important, not only for keep-
ing all the copies of data, also known as replicas, consistent, but
also for enabling off-line operations. Indeed an network connection
may not be available all the time, however, the user can work off-
line and, upon reconnection, synchronize his own modified data
with a central repository or with other cooperating users.

Traditional replication algorithms such, e.g., those used in dis-
tributed database systems [5], quorum consensus algorithms [16]
and atomic broadcast protocols [6] usually sacrifice availability of
data, since a replica is not accessible until shared data is provably
up-to-date. For this reason, these replication algorithms are typi-
cally called pessimistic [44,19,1,41]: operation requests that might
lead to future inconsistencies will be rejected. These are essential
ll rights reserved.
in applications where consistency is a major vital concern (such
as, e.g., banking transactions). Moreover, the resulting delay, due
to blocked access to data during replication, can be accepted in
these contexts, where, usually, network is dedicated and reliable,
so that failures may not be ascribed to communications.

On the other hand, when the underlying execution context is
the Internet, pessimistic algorithms may lead to a huge decrease
in execution efficiency and in data availability. Indeed open nets,
such as the Internet, are, by their own nature, dynamically evolving
structures, since new nodes can get connected or existing nodes
can disconnect. Connections and disconnections can be temporary
and unexpected. For instance, temporary connections can be estab-
lished ‘‘on the fly” among terminals equipped with wireless de-
vices and ad-hoc paths to services and remote resources can be
built dynamically among components. In these scenarios, mobile
devices such as laptops, PDAs and cellular phones highly rely on
a dynamically evolving communication infrastructure, which is
able to reconfigure itself. Thus, the assumption that the underlying
communication network will always be available is too strong.
Moreover, the knowledge of node addresses may not suffice to
establish connections or to perform migrations, since network
routes may be affected by restrictions (such as temporary failures
or firewall policies).

An alternative to pessimistic replication are optimistic replica-
tion algorithms [41], which allow data presented to users to be stale
(i.e., non-up-to-date) but in a controlled way. Optimistic algo-
rithms propagate updates in background and allow any replica to
be accessed directly most of the time. Usenet [22] is probably the
oldest Internet service that relies on optimistic replication: indeed
it may take some time, even days, for a news group article to reach
all the news servers; on the other hand news groups are available
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widely all the time. Other popular Internet protocols, such as, e.g.,
WWW and FTP, use this kind of replication, for caching
[46,24,45,2] and mirroring [14] purposes. Optimistic replication
is also well suited for directory services such as the widely used
DNS [29] and the more recent Active Directory [30]. The key fea-
tures of optimistic replication algorithms make them more suitable
for nomadic applications and mobile computing, and an attractive
key enabling solution in wide area distributed applications where
communications may be slow and unreliable.

When the timely propagation of updates to remote distributed
replicas is an important issue, it is preferable that a replica gets the
same update twice than it does not receive it at all. On the other
hand, few assumptions on the topology of the network can be
made in a nomadic environment, where connections are likely to
change unpredictably. An extreme approach would be to blindly
‘‘push” every update to every replica but this would lead to a huge
waste of bandwidth and of resources.

In this paper, we present a novel approach based on timed buf-
fers, a technique that tends to reduce the overall number of prop-
agated updates while guaranteeing that every update is delivered
to every replica, without delaying the propagation.

Timed buffers were originally designed to be exploited in mid-
dleware platforms for disconnected computing, supporting distrib-
uted applications that use replicated shared objects. The original
case study was the middleware proposed in [42,25] which allows
individual replicas of the shared objects to diverge, with write up-
dates to the replicated objects at each instance being captured.
Then, the middleware uses a reconciliation process to update the
replicas. However, timed buffers are a general solution that can
be adopted in any nomadic environment.

Platforms like the one just mentioned require the timely prop-
agation of updates among replicas. The underlying network topol-
ogy assumptions are few: the platform must be able to support ad-
hoc wireless nodes, high-latency wide area networks (WAN), and
low-latency local area networks (LAN). A possible use of this plat-
form is, for instance, the implementation of a collaborative design
tool, where the drawing is the shared object. Many designers in the
same office can be working and altering the drawing; at the same
time a consultancy firm on a different continent can also be alter-
ing the drawing, and two designers can be on a plane where they
are both altering the drawing as well. In this case, the designers
in the office have LAN connectivity, the consultancy firm is con-
nected, but via a high-latency link, and the designers on the plane
are connected to each other, but isolated from the rest of the users
of the shared data. Furthermore, over the lifetime of a single appli-
cation instance, multiple different connectivity topologies of the
nodes are possible. The platform embodies the concept of tentative
views of the data, and, as such, the sooner an update on one replica
is propagated to the other replicas, the sooner the tentative views
of the data are updated. This, in turn, minimizes the number of
conflicts during reconciliation. On every node, a daemon is run to
provide the platform services, and the daemon maintains a list of
other nodes with which it believes it can currently communicate.
In order to achieve this, an explicit node discovery protocol is used,
which involves the use of multicast beacons. When a node receives
a beacon, it replies with any necessary information, such as IP ad-
dress etc. In this paper, we will concentrate only on the algorithms
and protocols used to control the propagation.

A general survey of existing systems and basic optimistic replica-
tion algorithms can be found in [41], where a classification schema
of update propagation in distributed systems using optimistic rep-
lication is presented. This classification schema is based on single
or multi-master, log- or content-based and whether the updates
are propagated in a push or pull manner. If a particular node main-
tains a master copy of the shared data, then the system is described
as single master, otherwise it is multi-master. If the system main-
tains a log of updates applied to the replicated data, rather than
comparing the state to determine differences, the system is log-
based as opposed to content-based. Finally, if the nodes request up-
dates from other replicas then the system is pull-based, rather than
push-based (a node pushes updates to other nodes). According to
this classification, the platform we are considering is a multi-mas-
ter, push-based and log-based platform.

After a discussion about some related works, the paper proceeds
as follows: in Section 2 we recall the standard techniques for mul-
ti-master, push-based update propagation and in Section 3 we
present our novel approach for optimizing epidemic update prop-
agation. Section 4 presents the protocol for establishing a commu-
nication between two nodes, in order to exploit our technique.
Some experimental results are presented in Section 5. Section 6
concludes the paper.

1.1. Related work

Many systems use propagation algorithms in distributed or mo-
bile environments. Bayou [12] provides the application writers
with a replicated, weakly consistent, data storage engine. There
is no centralized data store and it relies on pair-wise communica-
tions between computers; every replica eventually receives up-
dates from all the other replicas through a chain of pair-wise
propagation of data, using anti-entropy, performed automatically
at a set interval, or when requested by an application. In our ap-
proach, updates have to be propagated as soon as possible, and it
is not simply pair-wise.

Ficus [37] is a distributed file system that allows files, grouped
in volumes, to be selectively replicated without storing the entire
volume. It maintains data consistency with update notification mes-
sages and reconciliation. In our platform, all nodes directly propa-
gate the updates rather than propagating a notification message.
However, an optimization aimed at reducing the size of messages
when the size of updates is huge, is sketched in Section 6. Rumor
[38] is an intellectual descendant of Ficus, and it is a peer-to-peer
reconciliation-based replication service aimed at distributed file
systems. It uses version vectors in order to guarantee that each up-
date is issued with a unique signature and that the same update is
never transmitted to the same replica more than once. In [36], an
effort is made in order to manage these vectors in an efficient
way and save space for their storage. The idea is that once all rep-
licas have the same value for an update issued by a replica R, then
R’s entry can be removed from the vector. Obviously, compression
requires consensus, in order to be performed in a safe way.

In [21], another solution (hierarchical matrix timestamps) is
adopted in order to reduce the size of timestamp matrices. The
sites that store a replica are partitioned among a set of domains;
each site stores two timestamp matrices: one for the information
about replicas in the same domain, and the other matrix contains
summary information about the other domains. Entries in this sec-
ond matrix contain the minimum of the timestamps of all the rep-
licas in another domain. So the estimation is less accurate but it is
still safe. With this approach if these nodes are split in Oð

ffiffiffi

n
p
Þ do-

mains, the timestamp matrices can require only a linear space, in-
stead of quadratic. In our approach, the dimension of the
timestamp matrices can be split in two (as sketched in Section 6)
so that only the most used part is kept in memory. Moreover,
our assumption of a nomadic environment is not well suited for
a static division of nodes in domains.

Roam [34], built using the Ward architecture (Wide Area Replica-
tion Domain) [35] is a replication system redesigned specifically for
mobile computing. The Ward model combines peer-to-peer and
client–server providing domains of grouped nodes and also han-
dles replicas’ domain crossing. The ward master is the only link
to the other wards. In a highly mobile system, like the ones we
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are addressing, domain crossing could be very frequent, and these
situations should be handled implicitly; indeed in our system we
do not keep groups (we have a real multi-master approach), and
the nodes adapt themselves to the topology of connections by
exchanging information.

Porcupine [39,40] is a cluster-based mail server. Its architecture
is fully dynamic in that every node can manage any user’s profile
and store any user’s e-mail messages. A set of nodes is chosen on
which to replicate and store a message based on the load of the
node and message affinity. Any replica can issue an update at
any time, and the update is then propagated by pushing the new
object state to others in background (Thomas write rule [44] is used
to resolve conflicts between updates). When the issuer of an up-
date knows that all the target nodes received an update (by receiv-
ing ack messages), the update is retired, and a retire message is sent
to the target nodes. Basically our schema for propagation using
timed buffers (Section 3) is similar to the retire algorithm in Porcu-
pine but the updates are not removed. Moreover we do not trans-
mit the state of the object, but only the actions in order to bring the
state up-to-date (log-based), and conflicts between these actions
can be handled, separately, by a reconciliation module.

Deno [8,10] is an object replication system, specifically designed
for use in mobile and weakly connected environments. It uses
weighted voting [9] for selecting transactions that have to be com-
mitted or aborted. Clients connect to a peer server, which commu-
nicates through pair-wise information exchanges, so only servers
take part in voting and in synchronization, but there is no primary
server that owns an item. Election information flows through anti-
entropy sessions in a uni-directional way. Deno supports both
pushing and pulling of updates, but uses pulling by default.

2. Update propagation

A key concept in log-based replication is the propagation of up-
dates to replicas. In this section, we recall the standard techniques
for multi-master, push-based update propagation, and introduce
the basic concepts that will be used in our approach. Hereafter,
we will use indistinguishably the term node and replica to refer
to the application storing and modifying the shared data.

A simple and safe way of performing propagation is using blind
pushing: a replica propagates the update indiscriminately to every
replica it can communicate with. This may obviously lead to flood-
ing and generate many duplicate information, if the replicas share
many connections with other replicas: most of them will end up
receiving the same update by many replicas. Indeed a pull-based
propagation would not suffer from this problem: replicas never re-
ceive the same update twice, because the set of updates to receive
is determined by the replica itself by polling other replicas. On the
other hand, push-based propagation systems are more efficient
since they do not require polling and they reduce the update prop-
agation delay: the update is pushed (propagated) right after the
issuance.

In order to deal with duplicate updates, replicas have to filter
the incoming updates, so they do not handle the same update more
than once. One simple way to filter these updates is to use Time-
stamps,1 i.e., every update is added a unique timestamp by the rep-
lica that originated it; then if an update is received with a timestamp
that has already been handled, it is discarded. In our implementation
a timestamp is simply a number that increases monotonically, i.e., a
1 A timestamp could be any number that increases monotonically, such as a logical
clock [26], a wall clock [28], or any simple increasing counter. Timestamps are also
used when the contents, instead of the logs, are transferred; for instance the Thomas
write rule [44] associates with each replica a timestamp, that records the last time the
replica was modified. New contents are downloaded only when they are newer
according to the timestamp.
counter that is incremented at each update issuance, and it is part of
the identifier of an update: an update is uniquely identified within
the system by its timestamp and the issuer replica that originated it.

If we want to avoid blind pushing, some sort of knowledge of
the state of the other replicas has to be kept. Obviously, we can
only estimate the state of the other replicas, as we do not know
the complete configuration and topology of the network: it may
be continuously changing since we are dealing with mobile appli-
cations. We use timestamp matrices, which are an example of state-
estimating technique, used in multi-master, log-transfer, push-
based systems [27,47,17]. The main idea is that each replica esti-
mates the state of the other replicas it is connected to, and propa-
gates to each of them only the updates that are likely to miss.

This way of performing propagation is also known as epidemic
propagation [17,11,15,20,13], since the update is very similar to a
disease that infects the whole population (the other replicas).2

The user performs operations on its own data and, asynchronously,
a separate activity (also known as anti-entropy) compares the esti-
mated state of other replicas and propagate updates to replicas that
store older versions. Anti-entropy can also be used as a symmetric
mechanism: it allows two replicas to bring each other up-to-date.

Every replica stores a timestamp matrix indexed by node iden-
tifiers (e.g., node guids). By TMi we mean the timestamp matrix of
node i. The entries in the timestamp matrix are timestamps of up-
dates, and they have the following meaning for a node i:

� TMi[i] is the timestamp vector that summarizes the state of the
node i itself, i.e., the most recent timestamps of received updates
issued by each replica. Thus, TMi[i][j] = n means that the last
update created by j, that i received, has timestamp n.

� The other rows in the matrix show an estimate of the timestamp
vectors of other replicas, thus TMi[j][k] = n means that i knows
that the last update created by k, that j received, has timestamp
n. j might have received other updates from k but that knowl-
edge has not yet reached i. This estimate is said to be conserva-
tive: it cannot happen that the last update that j actually
received from k has timestamp m with m < n.

It is important to note that we are considering the issuer of the
update (i.e., the real creator of the update), and not the sender: in
fact due to the epidemic propagation and to the network topology,
a replica could receive an update by someone else different from
the issuer. The creator of the update is stored in the update itself
(as previously stated, it is part of the update’s identifier), while
the sender is not.

During the propagation of an update with timestamp n issued
by k, i will send it to j only if TMi[j][k] < n. The node i will not up-
date that entry in its timestamp matrix until it receives an
acknowledge from the receiver. Indeed every sent update has to
be acknowledged by the receiver, by means of an ack message.

Timestamp matrices are piggybacked in messages (also when
sending an ack for a received update). Thus, when i sends a mes-
sage to j they will both have the timestamp matrix of each other.
Then they both perform a merging operation on the timestamp
matrices. This operation consists of computing the pair-wise max-
imum for every element. During the merging, the estimate of the
state of the other replicas is updated with the estimate contained
in the received timestamp matrix. Obviously, a node updates its
own timestamp vector only upon receiving an update, not during
the merging. Note that when a node receives a timestamp matrix
attached to a message, this matrix may be different in size from
2 Epidemic algorithms, apart from the metaphor with real diseases, also benefit
from the results of mathematical theories of epidemics [3] that, in case of a push-
based approach, show that the entire population is eventually ‘‘infected” in expected
time proportional to the log of the entire population [32].
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its own timestamp matrix, since the two nodes (the sender and the
receiver) may be connected to different nodes. During the merging
operation the information about these new nodes, to which there is
no connection, can be discarded, or, alternatively, can be exploited
for trying to establish a connection also with these nodes.

In the rest of this section, we show the basic procedures and
data structures for simple epidemic update propagation. It is
important to observe that, in our context, when we use the term
‘‘connection” between two nodes, we do not necessarily mean that
a real network connection is established between them, but only
that the two nodes have previously established a connection.
Due to the high dynamism of the nomadic scenario that we are
considering, such a connection may be closed without any notice.

In the algorithms when a procedure refers to TMme, it refers to
the timestamp matrix of the node it is executed on. The procedure
SendUpdate(n,u) sends the update u to the node n, and Sen-

dAck(n,u) sends an ack about the update u to n. The timestamp
matrix of the sender node is automatically and implicitly attached
to messages before they are actually delivered.

We assume that an update has the following structure:

Update:

id: integer // the timestamp
action: Action // the actual content of the update
issuer: UpdateIssuer

Upon receiving an update a node checks whether it has already
received that update and if it has, it simply discards it; otherwise it
uses it (e.g., for reconciliation), it updates its own timestamp vector
in its timestamp matrix and it starts the epidemic propagation. In
any case it notifies the sender that it received the update with an
ack message.

proc ReceiveUpdate(u: Update, from: node)

SendAck(from, u)
if TMme[me][u.issuer] < u.id then

// accept update
TMme[me][u.issuer]: = u.id
// handle the update and propagate it

else
// discard update

endif

The epidemic propagation takes place according to the contents
of the timestamp matrix. The platform maintains a set connected
that contains the identifiers of nodes with which it is connected:

proc PropagateUpdate(u: Update, from: node)

for every node i in connected where i 6¼ from and i 6¼ u.issuer
do

if TMme[i][u.issuer] < u.id then
SendUpdate(i, u)

endif
enddo

Thus, an update is propagated to a node i only if it is estimated
that i has not received that update yet (and, obviously, if it is nei-
ther the issuer nor the sender of that update).

Note that the timestamp matrix is only an estimate of the state
of other replicas, so it will be very likely, in a highly connected
graph that a node will receive the same update more than once;
but on the other side, it will also receive the update as soon as pos-
sible from the fastest connection.

Let us consider a scenario where a node a produces an update, it
will deliver it to all the nodes it is connected to, say b, c and d; as soon
as b receives such an update it will deliver it also to c and d. The same
happens for c and d. Let us analyze the best and the worst case,
assuming that a will send the update to every other nodes in a net-
work where every node is connected to every other node (n � 1):

� In the best case (depicted in Fig. 1) the first node that will
receive the update, say b, will propagate it to everyone but the
issuer itself (n � 2); note that at the moment b cannot know that
the others have received it. c may receive the update from b
sooner than from a, and so it will only propagate it to d, which,
if it had not yet received the update from a it will have not to
propagate it to anyone else (in fact by the piggybacked matrix
from c it knows that b already received the update). Thus, gen-
eralizing this scenario to n nodes, the total number of messages
that travel in the net is: (n � 1) + (n � 2) + � � � + 2, and thus O(n2).

� In the worst case (depicted in Fig. 2) all the n � 1 nodes will end
up receiving n � 1 messages, and thus it is still O(n2).

Actually there would be no need for the other nodes (b, c and d)
to propagate the update, because the issuer of the update itself, a,
will deliver it or has already delivered it (in fact we are considering
a fully connected graph). However, we want to make sure that
every replica will eventually get the update, and we are also con-
sidering disconnections; thus if d disconnects from a before the up-
date is sent, d might not receive the update if b and c (or at least
one of them) did not propagate it.

Summarizing, it is safe to let the epidemic propagation to
take place, but, at the same time, it seems to be feasible to re-
duce the number of messages spread through the network. In
the following sections, we will propose some optimizations for
reducing the number of messages exchanged during the epi-
demic propagation.
3. Timed buffers: optimizing epidemic update propagation

In this section, we present our novel approach for reducing the
number of messages during epidemic update propagation. All the
updates will be guaranteed to be sent to each replica and no delay
will take place in ordinary conditions; this means that if a node is
effectively connected to some nodes that have an update, it will re-
ceive that update without any delay (with respect to the simple
algorithms presented in Section 2).

Central in our approach is the concept of time-out: this is used
for specifying the time the replicas will have to wait before starting
the epidemic propagation; in the meantime the update is kept in a
buffer with an associated time-out: a timed buffer. Let us briefly
sketch our technique: nodes should wait some time before starting
the propagation; if the time-out expires, the propagation actually
takes place. This wait will hopefully be useful for avoiding sending
an update to a replica that is estimated to have already received it
from another replica. However, this wait should not delay the
delivery to other replicas. In order to do this, when a replica is
propagating an update to another replica, it should also specify
the other replicas it is going to send the update to.

The two variants of the timed buffer technique, presented in the
next sections, differ because of the place where the timed buffer is
handled.

3.1. Receiver-based timed buffers

The approach we are going to present in this section is called re-
ceiver-based because the buffer is kept on the receiver node. Basi-
cally the nodes involved in epidemic propagation of an update
perform these steps:

� The sender sends an update together with a time-out to all the
replicas it is connected to.
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� If it is acknowledged by them, it sends another message (a cancel
message) to the other replicas, specifying that the update is no
longer to be propagated. This notification message is sent only
if the time-out is estimated not to be already expired on the
other nodes.

� If no cancel message is received within the time-out, the other
nodes will propagate the update.

We call this sort of transaction a time-out session.
While it may seem that many messages are sent also in this

case, let us analyze the best and the worst case:

� In the worst case, all time-outs will expire, and thus we are in
the same situation as the simple algorithm presented in Section
2: O(n2).

� In the best case, i.e., all nodes receive the update from the issuer
and acknowledge the update before the time-outs expire, the
messages that travel in the net will be:
1. A message with the original update sent by the issuer to

every node.
2. An ack sent by every receiving node.
3. A cancel message sent to every node.
So the issuer of the update will send 2(n � 1) and receive (n � 1)

messages, and thus O(n) messages travel in the net.

Thus, we can only get better using this approach.
Note that, if we are considering clusters of fully connected

nodes with fast and reliable connections, by using this timed buffer
approach, the number of messages will decrease (linear), while the
simple epidemic propagation would still be quadratic. Indeed, in
such a situation, the simple approach, presented in Section 2,
would probably experience the worst case almost always, as, since
the connections are fast, all nodes will receive the updates almost
simultaneously, and they would propagate the updates to every
other nodes.

This solution, however, could delay propagation to other nodes
that are not related to the time-out session: in fact, if one of these
nodes, say b is also connected to a node e, to which a is not con-
nected, the propagation to e should not be stopped by the time-
out, because b could send the update to e meanwhile (Fig. 3). Thus,
when a node sends an update to a node n with a time-out, it should
also specify the nodes that are involved in the time-out session:
the nodes in the connection set that are common to the sender
of the update and to n. In our example, the nodes that belong to
this set for a and b are c and d, but not e. These sets can be esti-
mated by means of some additional information that can be trans-
mitted together with the timestamp matrix, and stored by a replica
together with its own timestamp matrix.

Let us consider the two cases when such an estimation is wrong
and show that, however, the estimation is still conservative:

� If the sender thinks that one of the receivers, say b, is not con-
nected to one of the other receivers, say c (while b is actually
connected to c), then b will soon propagate the update to c.

� If the sender estimates that b is connected to c, but this is not
true, b could not send the update to c anyway.

Thus, once again, no update is either delayed or lost. Note that a
node is not estimating the entire network topology, but only the
connections of the nodes it is connected to. This estimate is kept
up-to-date through the additional information received together
with messages and processed during the merging of timestamp
matrices. Let us recall that the additional information, such as
timestamp matrices and connection sets, are always attached by
the sender to every kind of messages that is exchanged in the fol-
lowing propagation algorithms.

Hereafter, in the procedures that we are going to present we
will use the following structures, available in every replica: con-
nected is the set of nodes (node identifiers) to which the replica
is connected to (up to the notion of connectivity introduced previ-
ously); connections is the estimate of other nodes’ connections,
thus connections[i] stores the connections of node i as estimated
by the replica.

We assume that an Hashtable data type is available that sup-
plies operations for inserting (put) a pair (key, value), for retrieving
Fig. 3. a and b do not have e in their common connection set.
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a value given a key (get), and for extracting a value given a key
(extract). When the value is a set (e.g., of nodes) we assume that
a put will not overwrite the previous value, but simply add new
elements to the set. Records are shown in angle brackets h i. For
the sake of simplicity, when we refer to ‘‘node i” we mean ‘‘node
with identifier i”. Finally the procedure copy returns a copy of
the argument.

The procedures for the propagation will make use of and update
some tables (altogether these tables implement timed buffers):

TOSessionTable: Hashtable
key: h Update, node i
value: h StartingTime, to_node_set, Timeout i

where StartingTime is the time the update was sent (the time-
out should be considered from this time on), to_node_set is the
set of the nodes that are involved in this time-out session, and
Timeout is the time-out associated with this set.

retirement_table: Hashtable
key: h Update, node i
value: retirement_set (set of nodes)

This table stores the nodes (retirement_set) that are in-
volved in the time-out session for a specific update sent by a spe-
cific node. We assume that we can use a system function, getTime,
in order to retrieve the current time.

Given a set of nodes, the following procedure will take care of
filtering out the nodes that the update is not to be propagated to:

proc FilterOutNodes(u: Update, nodes: set of nodes)

for every node i in nodes do

if TMme[i][u.issuer] P u.id or

u has already been sent to i or
i has an associated time-out for u then

remove i from nodes
endif

enddo
Note that the first condition implies the second one, but the
contrary does not hold: indeed an update may have been sent to
a node, but that node has not sent the ack yet; in that case
TMme[n][u.issuer] < u.id; but the update should not be sent another
time. The second condition can be easily handled by storing in a
table, say sent, the nodes an update u has been sent to. When the
sender receives an ack back for that update from a node n, this
node is removed from the list associated with u in the table sent;
the entry for u will be deleted from this table when there are no
more nodes associated to u. Finally, the last condition is tested
by inspecting the TOtable (shown later).

Upon creation of an update u the following procedure is called

proc PropagateCreatedUpdate(u: Update)
var nodes_to_propagate :¼copy(connected)
FilterOutNodes(u, nodes_to_propagate)
PropagateUpdateWithTO(u, nodes_to_propagate)

and the procedure for the propagation follows:

proc PropagateUpdateWithTO(u: Update, n: set of nodes)

for every node i in n do

var to_node_set :¼connections[i] \ connected
for every node m in to_node_set do

retirement_table.put(h u, m i, i)
enddo
TOSessionTable.put(h u, i i,
h getTime(), to_node_set, TIMEOUT i)

SendUpdate(i, u, to_node_set, TIMEOUT)
enddo

When a node n sends an update to a group of nodes, for every
node m in this group, n estimates the nodes that are connected
both to m and itself, the set to_node_set. For the nodes in this
set, that will be delivered together with the update, the receiver
node will store the update in a timed buffer, but it can propagate
the update to any other node that is not in this set.

TIMEOUT could be a prefixed value, or a dynamic value that is
computed on the fly, e.g., according to the latency of getting
acknowledgments back from the receivers: it could be the maxi-
mum of all the average latencies for all the nodes the update is sent
to. Alternatively, it could be different for each single node.

The next procedures handle an ack from node from about the
update u.

proc ReceiveAck(from: node, u: Update)

retirement_set :¼retirement_table.extract(h u, from i)
for every node n in retirement_set do

CheckRetirement(n, from, u)
enddo
proc CheckRetirement(n, from: node, u: Update)

h StartingTime, to_node_set, Timeout i :¼
TOSessionTable.get(h u, n i)
to_node_set.extract(from)
if to_node_set.isEmpty() then

if (getTime() - StartingTime) < (Timeout - d) then
SendCancel(n, u)

endif
TOSessionTable.extract(h u, n i)

endif
So every time an ack from a node n about an update u is received,

n is removed from the time-out set of all the other nodes. If such a
set becomes empty for a node m, a cancel message is sent to m. Such
a cancel message is sent only if the time-out on the remote node is
estimated not to be expired already. The d value should serve as a
value that takes these additional factors into account.

These are the procedures that nodes execute when they receive
an update with a time-out. They use a table indexed by update
identifiers.

TOtable: Hashtable

key: Update
value: h timeout_node_set,

StartingTime, Timeout, TimeoutProc i
proc ReceiveUpdateWithTO(u: Update,
to_node_set: set of nodes, Timeout: int)

var deliver_set :¼connected-to_node_set
TOtable.put(u, h to_node_set, getTime(),

Timeout, TimeoutProc(u) i)
FilterOutNodes(u, deliver_set)
PropagateUpdateWithTO(u, deliver_set)

The update can be immediately propagated to the nodes (deli-
ver_set) that are not in the to_node_set. Note that the proce-
dure FilterOutNodes is still used. For the other nodes a timed
buffer is set, and a procedure (TimeoutProc) will be triggered if
that time-out expires before receiving the cancel message. This
procedure will start the update propagation for the nodes in to_-
node_set, after further filtering them.

proc TimeoutProc(u: Update)

h to_nodes, _, _, _ i :¼TOtable.extract(u)
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FilterOutNodes(u, to_nodes)
PropagateUpdateWithTO(u, to_nodes)

The values for _ fields are simply ignored. Otherwise, upon
receiving a cancel message, the timed buffer and the associated
time-out is canceled:

proc ReceiveCancel(u: Update)
TOtable.extract(u)

We conclude with a possible scenario: in Fig. 4 an example of a
session is depicted, together with the TOSessionTable and
retirement_table of the sender, the node a; in the messages
that are sent to the nodes, apart from the update, also the to_no-
de_set is shown. Note that retirement_table and TOSession-

Table have the same set of nodes: this makes sense, since the
connections are symmetric. We are keeping separate tables in or-
der to keep the algorithms simple in this place. In this example a
different time-out is sent to each node.

Let us now examine a possible execution in the scenario of
Fig. 4. Since the sender is a we consider the state of its tables while
they are evolving. The initial tables are
TOSessionTable:
b

c

d

e

a

(u, [d
], t e

)

(u, [b,c,e], td
)

(u, [b,d], tc)

(u, [c,d], t
b )

Fig. 4. Receiver-based timed buffers: an upd
retirement_table:

h u,b i, h tb, [c,d] i
 h h u,b i, [c,d] i

h u,c i, h tc, [b,d] i
 h h u,c i, [b,d] i

h u,d i, h td, [b,c,e] i
 h h u,d i, [b,c,e] i

h u,e i, h te, [d] i
 h h u,e i, [d] i
If a receives an ack from b the tables become:
TOSessionTable:
 retirement_table:

h u,b i, h tb, [c,d] i

h u,c i, h tc, [d] i
 h h u,c i, [b,d] i

h u,d i, h td, [c,e] i
 h h u,d i, [b,c,e] i

h u,e i, h te, [d] i
 h h u,e i, [d] i
If now d sends an ack, then a can send a cancel message both to c
and e, in fact their sets in the TOSessionTable have just become
empty (and their entries will be deleted as well):
TOSessionTable:
 retirement_table:

h u,b i, h tb, [c] i
 h h u,c i, [b,d] i

h u,d i, h td, [c,e] i
 h h u,e i, [d] i
Then, when also c sends an ack, a cancel message can be sent to
b, and so on.
retirement_table:
<u,b>, [c,d]
<u,c>, [b,d]
<u,d>, [b,c,e]
<u,e>, [d]

TOSessionTable:
<u,b>, <tb, [c,d]>
<u,c>, <tc, [b,d]>
<u,d>, <td, [b,c,e]>
<u,e>, <te, [d]>

ate propagation.
3.2. Sender-based timed buffers

In the sender-based approach the sender node still specifies, in
the message, the set of nodes to which the update must not be
immediately propagated, but, instead of specifying a time-out, a
timed buffer is set locally: if an ack from a node is not received
within that time-out a propagate message is delivered to the other
nodes, which then propagate the update to that node. Otherwise
the nodes that receive an update do not start propagation by de-
fault. In other words, the epidemic propagation is automatically
executed only by the issuer of the update; as regards the other
nodes, that receive an update, they execute epidemic propagation
only towards the nodes that are not specified in the message, while
for the remaining nodes, it is executed only on demand.

Using this approach a message is saved if no time-out expires
(the cancel message in receiver-based approach), and thus the
number of messages is still O(n), but with a smaller factor
(2(n � 1) instead of 3(n � 1)). However, if the time-out should ex-
pire the sender will specify, in the propagate message, the set of
nodes that have not sent the ack: the propagation would then be
confined to those nodes only, thus the number of messages would
be quadratic in the number of nodes that did not ack, which is
likely to be small.

The procedure to filter out nodes is smaller because the time-
out is associated to the nodes the update is sent to, and that have
not acknowledged yet: these are the nodes for whom the second
test fails.

proc FilterOutNodes(u: Update, nodes: set of nodes)

for every node n in nodes do

if TMme[n][u.issuer] P u.id or
u has already been sent to n then

remove n from nodes
endif

enddo
and the procedures for the propagation are

proc PropagateCreatedUpdate(u: Update)

nodes_to_propagate :¼copy(connected)
FilterOutNodes(u, nodes_to_propagate)
PropagateUpdateWithTO(u, nodes_to_propagate)
proc PropagateUpdateWithTO(u: Update, nodes: set of node)

for every node n in nodes do

not_to_send_to :¼connections[n] \ connected
SendUpdate(n, u, not_to_send_to)

enddo
StartTimeOut(TIMEOUT, TimeoutProc(u))

StartTimeOut sets a time-out and a callback procedure to be
triggered when the time-out expires:

proc TimeoutProc(u: Update)

var to_set :¼nodes that did not acknowledge u
for every node m in connected do

propagate_to :¼to_set \ connections[m]
if not propagate_to.isEmpty() then

SendPropagate(m, propagate_to, u)
endif

enddo

Thus, when such a time-out expires, the nodes that have not
acknowledged the update u are collected, and propagate messages
are sent to the nodes that are connected to some of the former.
Upon receiving a propagate message, the update will be propa-
gated to the specified nodes, after filtering nodes out with the
same procedure.
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proc ReceivePropagate(u: Update, propagate_to: set of node)
propagate_to :¼propagate_to \ connected
FilterOutNodes(propagate_to)
PropagateUpdateWithTO(u, propagate_to)

Note that the first operation is necessary because the sender
only estimates the connections of the receiver. Moreover, the filter
procedure is still applied, since a node that receives a propagate
message may know that some of the nodes to propagate to already
have the update.

Thus, the sender-based approach performs even better, but it
has a drawback: if a node b receives an update from a, where it
is specified that it must not be propagated to c, and a disconnects
or fails, b has no way of knowing if the last updates received from a
have actually reached all the destinations; if b should sense that a
has disconnected, then it should propagate all the updates from a
that are not known to c (according to the timestamp matrix). If
these updates are many, a resynchronization session (Section 4)
with c could be performed instead.

4. Starting a connection

The propagation algorithms presented in Section 3 apply to rep-
licas that are already connected and communicate. Another anti-
entropy synchronization has to be executed when two nodes con-
nect to each other. This will lead them both to the right starting
state from which the propagation algorithms based on timed buf-
fers can be safely executed.

When a node A starts to communicate with another node B,
they both execute a protocol that allows them to bring each other
up-to-date. Basically the two nodes exchange their timestamp vec-
tor, and then they request possible missing updates. Thus, pull-
based resynchronization is performed upon connection with an-
other node. Fig. 5 shows a session of this connection protocol be-
tween A and B.

The following steps are performed by a node A that starts to
communicate with a node B:

1. A sends its own timestamp vector.
2. In response, A receives the timestamp vector (TV) of B together

with the list of updates that B is requesting (update_request).
3. A updates its timestamp matrix according to this vector, it com-

putes the missing updates (the ones that A does not have, but B
does) and sends a request for these updates to B together with
the updates that B had requested.

4. Finally A receives from B the updates it had requested with the
previous message.

The procedures that implement these steps follow:

protocol UponConnectionWith(n: node)
T
im

e

SendTo(n, TMme[me])
hTV, update_request i :¼ReceiveFrom(n)
Node A Node B

1

2

3

4

[ TMA[A] ]

[ TMB[B], updates requested to A ]

[ updates requested to B, updates requested by B ]

[ updates requested by A ]

Fig. 5. Messages exchanged during the protocol.
update TMme[n] with TV
missing_updates :¼Diff(TV, TMme[n])
SendTo(n, h missing_updates, updates requested by ni)
requested_updates :¼ReceiveFrom(n)

The procedure Diff(V1,V2) computes the difference between
two timestamp vectors; note that the two vectors may not have
the same length. Indeed if it is the first time that A communicates
with B, TMA[B] will not even be defined, neither will TMA[A][n] for
some n to which B is connected to but A is not. Such undefined en-
tries are assumed as 0 in the Diff procedure, and they are auto-
matically created during the update of TMA with the vector
received by B.

On the other node, B in this example, there will be a process that
waits for a connection request; when such a request arrives, the
sender of the request and its timestamp vector (respectively, from
and TV in the following procedure), are retrieved and the comple-
mentary steps are executed:

protocol UponReceivingConnection

while true do
h from, TV i :¼Wait4ConnectionRequest();
update TMme[from] with TV
missing_updates :¼Diff(TV, TMme[from])
SendTo(from, h TMme[me], missing_updates i)
h update_request, requested_updates i :¼

ReceiveFrom(from)
SendTo(from, updates requested by from)

enddo
Should an update be received by A during this protocol it would

not be missed by B:

� If such a new update is received before time 1 (refer to Fig. 5), it
will be included in the vector that A sends to B, and thus it will
be requested by B, if B does not have it already.

� If it is received after time 1, but before time 2, then A may not
know anything about the state of B; in this case, since A wants
to stay conservative, it will propagate that update to B.

� In all the other cases, A already has an estimate of the state of B
so it will decide whether that update should be propagated or
not.

5. Experimental results and analysis

In order to test these algorithms we built a simulator that sim-
ulates the propagation of one update in a graph with a randomly
generated topology. The simulator consists of a Java program that
implements timed buffers and the propagation techniques de-
scribed in the paper (also the simple push and pull approaches);
then the simulation is performed on a single machine, using dis-
crete time (discrete-event simulation). The connections are gener-
ated according to a certain percentage: when we specify, for
instance, that the percentage of connections is 20%, we mean that
every node is connected to 20% of the other nodes. The latency of
communications is set to 10 ms. There is no mobility in these sim-
ulations, and no disconnections either. We are considering the
number of messages that are sent in such graphs in order to prop-
agate the update to every node and the time it takes for every node
to receive the update.
5.1. Number of messages

In Figs. 6 and 7, we let the number of nodes vary, we generate
connections with a percentage of 20% and 50%, respectively, and
we count the number of messages sent in the graph. We note that,
as expected, the two proposed optimizations reduce the number of
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messages that are used to propagate the update, with respect to
the simple push technique presented in Section 2. Indeed the sen-
der-based approach performs even better than the receiver-based
one because there is no need to send a cancel message in the for-
mer. We also simulated a pull-based approach: every node polls
the nodes with which they can communicate, with a frequency
of 30 ms, and receives the update back if one of these nodes has
it. To make the simulation real for this approach the simulator
stops when all nodes have the update, but a node does not stop
polling just after receiving the update, since the polling is continu-
ously performed in such systems. We noted that a pull-based ap-
proach actually increases the number of messages. Moreover, by
comparing Figs. 6 and 7, we also note that the difference between
the normal push approach and the optimized ones increases as the
percentage of connections increases: the number of messages
tends to grow linearly.

This is generalized by the results in Fig. 8, where the number of
nodes is fixed to 200, and the percentage is variable. This graph
shows that when the percentage of connections goes over 50%
the number of messages, generated by our algorithms, even
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decreases, and it gets very low when the graph is fully connected
(100%). In this case, in fact, the issuer of the update sends the up-
date to every one else, waits for the acknowledgment, and then, in
the receiver-based approach, sends the cancel message; so actually
no node gets the same update more than once (while this could
happen in a non-complete topology). Note also that for a complete
graph, the pull-based approach performs better than the normal
push: indeed, as all nodes are connected to everyone, as soon as
one has the update, the other ones will know about it at the first
poll.

We also simulated the expiration of some time-outs for graphs
with 100 nodes and 50% and 100% of connectivity (Figs. 9 and 10,
respectively). The probability of time-out is variable from 0 to 1.
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Fig. 9. The probability that a time-out expires varies (num
The horizontal line in these graphs represent the normal push ap-
proach. We note that, unless the graph is fully connected, the recei-
ver-based approach does not reach the number of messages
produced by the normal push, even when the probability is 1. This
is because the timed buffers give time to the system to get a better
estimate of the other nodes (due to duplicate updates); so when
the time-out expires, the node may already know that the ones,
to which it is going to propagate the update, already have that up-
date, and in that case many messages are saved. This is also a con-
sequence of the fact that a time-out does not stop a node to
propagate the update to other nodes which are not connected to
the original sender. This does not happen in complete graphs
where a time-out stops from propagating the update to anyone.
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In such a situation, when the time-out expires, the update is actu-
ally propagated to everyone, and indeed the algorithms behaves
just like the normal push approach when time-outs expire with
probability 1 (Fig. 10).

In Table 1, we show some simulation results on a slightly differ-
ent kind of topology: we assume that 100 nodes are split into two
sets, say A and B. Nodes in A are not connected to each other, while
the nodes in B are connected to each other with a percentage of
80%. We consider that nodes in A are connected to some nodes in
B, with a percentage of 2%, 5% and 10%, for each simulation; this
means, for instance, that every node in A is connected to 2% of
nodes in B. The numbers in the first column (5 and 20) are the
numbers of nodes in the set A. The intent here is to simulate a
net, where some nodes are static, and highly connected to each
other (the nodes in B), while others are mobile and they communi-
cate only with the nodes in this subnet, but not to each other (the
nodes in A).

In this scenario it is interesting to note that in the case of (5, 5%),
i.e., the set A contains five nodes connected to the nodes of the set B
with a percentage of 5%, both for Push-receiver and Push-sender
the number of messages is larger than (5, 2%) and (5, 10%). Actually
the nodes in A can be seen as‘‘drain” nodes since the messages are
delivered to such nodes but a node inA will not propagate it to an-
other node in A. In the scenario (5, 5%) the nodes in B do not have
enough connections to the nodes in A to avoid sending duplicate
messages; on the other hand, the number of these connections is
large enough to waste messages. In the other two scenarios, the
relations among the number of connections balance themselves
to reduce the number of messages.
Table 1
Mixed topology

Push Push-receiver

2% 5% 10% 2% 5% 10%

5 15,306 15,370 15,398 1559 2551 1867
20 10,802 10,958 11,298 842 1374 2796
5.2. Time

We drew some results showing the time it takes for an up-
date to be propagated to every node in the graph, using the sev-
eral approaches presented in this paper. Every node stores the
time they receive the update for the first time, and then the
maximum for all the nodes is computed; this is the value that
is shown in the graphical results. The time is always expressed
in milliseconds.

In Fig. 11, we let the percentage of connections vary and com-
pute such time. The three push-based propagations behave the
same; this is consistent with one of our main goals: the optimized
algorithms must not increase the latency for an update to be prop-
agated. Indeed our two approaches let the receiver propagate the
update immediately to the nodes that are not connected to the
sender. The time for the pull approach is higher, as it depends on
the frequency (in this graph it is set to 30 ms). When the graph
is fully connected (100%) the time decreases since each replica
can get the update from any other replica in the system.

Indeed the number of messages in a pull-based approach is
independent of the frequency of polling (Fig. 12), but the time it
takes for an update to be propagated in the whole system increases
with that frequency (Fig. 13).

6. Conclusions and future work

In this paper we presented a new technique, timed buffers for
propagating updates in a network where replicas can be mobile.
Our goal is to provide all replicas with new updates as soon as
Push-sender Pull

2% 5% 10% 2% 5% 10%

1436 2356 1752 22,662 22,348 23,005
758 1254 2606 21,904 16,346 16,086
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possible, while keeping the total number of delivered messages
low. We use timestamp matrices both to stay conservative and
to avoid sending updates to nodes that are known to be already
up-to-date for sure. Vectors are not enough since we use a multi-
master, push-based approach.

In [23], it is stated that with pull-based transfers, commitments
tend to be executed more quickly than with push-based transfers.
This makes sense if we consider that a push model may have to
propagate more updates in order to stay safe; however, by using
timestamp matrices to estimate the status of the other updates,
and through the optimizations we describe at the end of this sec-
tion, we believe that updates could be epidemically transferred fas-
ter, especially compared to a polling model (Section 5). Results in
Fig. 9 also show that, if the topology of connections is not com-
plete, our proposed push-based approaches react well to time-
out expirations; this shows that time-outs give time to the system
to achieve a more precise estimate of the other nodes’ state.
Even if we do not address groupings explicitly we still believe
that our system scales pretty well even in very highly mobile envi-
ronments. Some problems with these implicit treating of the (pos-
sibly frequent) changing of network topology could arise when the
number of replicas (especially if they are completely connected)
enormously increases. However, in such cases, these systems
would still be hardly tractable, or at least they would show a very
low performance anyway.

Finally, our solution seems to be quite open to other optimi-
zations; for instance we could reduce the size of the timestamp
matrix which is piggybacked on every message that is sent and
which may tend to grow in size if the number of replicas that
share the same object grows. A possible optimization could be
sending only the differences from the last matrix, and thus only
deltas of timestamp matrices can be safely sent. This way very
few information are sent and also the merging operation will
be much faster, since most of the work has already been done.
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Note that this does not prevent from sending useless informa-
tion to a node (in fact its timestamp matrix could already be
up-to-date), but at least information that would surely be super-
fluous is not sent.

In order to save memory space, a node can store in memory
only the rows for the nodes it communicates to (the active
nodes), and store the other ones (inactive nodes) in a backing
store memory, for instance in a file; these rows can then be
loaded on demand, when they are necessary, e.g., when a delta
for them is received or upon reconnection with one of these
nodes. Thus, the matrix will be divided in an active set and in
a non-active set. This could be seen as an implicit implementa-
tion of grouping in domains inside the timestamp matrix [21].
Finally, we could reduce the size of messages that are sent, by
using a mixed push–pull:

� Upon receiving (or creating) an update a node propagates a mes-
sage with only deltas of its timestamp matrix (i.e., it communi-
cates to the other nodes that it has some new updates).

� Upon receiving such a message a node checks if it’s missing
some of these updates, and in case it requests them to the
sender.

This way we use the push-based approaches, described in Section
3, for propagating deltas of timestamp matrix, but without sending
the update itself; the update will have to be explicitly requested by
the other nodes (only once), so, in this case, a pull-based approach
is used, but without polling and its drawbacks. This can be quite
useful when the information to be transmitted are huge. In this
case the push-based approach (with our proposed protocols) can
be used to (conservatively) notify the replicas that more recent
data are available, and the replicas in turn can decide whether to
request the real data or not. Note that this can be adopted also if
the entire new state of a shared object should be delivered instead
of using a log-based approach.
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