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Objective: To study the possible implication of the two biomarkers, intermediate alleles
(IAs) of the Huntingtin (HTT) gene and neurofilament light chain (NfL) levels in plasma, in
amyotrophic lateral sclerosis (ALS) patients.

Methods: We analyzed IAs in a cohort of 106 Italian ALS patients and measured the
plasma NfL levels in 20% of the patients of the cohort. We correlated the two biomarkers
with clinical phenotypes.

Results: Intermediate alleles were present in 7.5% of the patients of our cohort, a
frequency higher than that reported in general population. Plasma NfL levels increased
with age at onset (p < 0.05). Patients with bulbar onset (BO) had higher plasma NfL
concentration (CI −0.61 to −0.06, p = 0.02) and a later age at onset of the disease (CI
−24.78 to −4.93, p = 0.006) with respect to the spinal onset (SO) form. Additionally,
two of the patients, with IAs and plasma NfL concentration lower with respect to normal
alleles’ carriers, presented an age at onset higher than the mean of the entire cohort.

Conclusion: According to our findings, plasma NfL and IAs of HTT gene may represent
potential biomarkers in ALS, providing evidence of a possible implication in clinical
phenotype.

Keywords: amyotrophic lateral sclerosis, neurofilament light chain, CAG repeat expansion, HTT gene, biomarkers

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by degeneration
of upper and lower motoneurons, leading to progressive weakness, paralysis, and, in the end, death
typically within 3–5 years from symptom onset (Hardiman et al., 2011; van Es et al., 2017). To
date, the causes of ALS remain unknown; most cases are sporadic, whereas only 5–10% of the
patients have a familiar form caused by a mutation in a known gene (Taylor et al., 2016). The
most common pathogenic mutations are in the causative genes superoxide dismutase 1 (SOD1),
TAR DNA binding protein (TARDBP or TDP-43), and chromosome 9 open reading frame 72
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(C9orf72) (Yousefian-Jazi et al., 2020). The diagnosis of ALS is
based on clinical findings and arrives only many months after
symptom onset (Paganoni et al., 2014), so there is an urgency
to find biological markers that could be helpful in diagnosis
and prognosis and that could be included in common medical
practice. Neurofilament light chain (NfLs) is the most promising
biomarker in neurodegenerative diseases, and in the last years,
it has been studied extensively in different neurological diseases
(Bacioglu et al., 2016; Khalil et al., 2018; Gaetani et al., 2019).
NfLs are subunits of neurofilaments, neuron-specific proteins
belonging to the intermediate filament family, highly expressed
in large caliber myelinated axons (Herrmann and Aebi, 2016).
NfL levels increase in biological fluids, such as cerebrospinal
fluids (CSF) and blood, proportionally to the degree of the axonal
damage (Reiber, 1994). An elevated concentration of NfLs in
CSF or blood indicates neuronal degeneration (Gaiottino et al.,
2013). An innovative ultrasensitive single-molecule technology,
called Simoa, can detect proteins at femtomolar concentration
in blood, allowing precise quantification of NfLs (Rissin et al.,
2010). Recently, several studies have focused on the potential
diagnostic performance of NfLs as a biomarker in ALS (Lu et al.,
2015; Li et al., 2018; Poesen and Van Damme, 2018; Verde et al.,
2019). Their levels in CSF and blood are higher in ALS patients
compared with healthy controls and also correlate with the
disease progression rate and survival (Tortelli et al., 2012; Boylan
et al., 2013; Lu et al., 2015; De Schaepdryver et al., 2018; Gille et al.,
2019). Furthermore, recent studies are also trying to highlight the
role of CAG repeat expansion in different neurological disorders
(Dewan et al., 2021; Leotti et al., 2021). Expansions of the CAG
repeat in the ATXN2 gene, which cause spinocerebellar ataxia
type 2, have been associated with increased risk of ALS (Sproviero
et al., 2017), while patients carrying CAG triplet expansion in the
Huntingtin (HTT) gene in a range between 27 and 35, referred
to as an intermediate allele (IA), showed motor and cognitive
changes (Cubo et al., 2016; Jot, 2019; Savitt and Jankovic,
2019). A correlation between susceptibility to neurodegenerative
diseases and HTT CAG repeat expansion was reported in 2019,
suggesting that IAs might have a role also in the pathogenesis of
Alzheimer’s disease, increasing disease risk (Menéndez-González
et al., 2019). The reported frequency of IAs in the general
population is around 6% (Savitt and Jankovic, 2019), not so
different from that observed in neurodegenerative disorders
(Menéndez-González et al., 2019). For these reasons, further
studies are still needed. The aim of our study was to test, for the
first time, in an Italian cohort of ALS patients, the implication in
the disease of the two biomarkers, plasma NfLs and IAs of the
HTT gene focusing on disease susceptibility, age at onset, and
site of onset (bulbar versus spinal). Finally, we examined whether
there was a correlation between the two biomarkers.

MATERIALS AND METHODS

ALS Patients and Clinical Characteristics
The study does include ALS patients, with a defined diagnosis
according to El Escorial diagnostic criteria for ALS (Brooks,
1994), recruited at the Neurological Clinic I of Careggi Hospital

in Florence and consecutively enrolled from March 2009 to
November 2020. Patients carrying a pathogenic mutation in
a causative gene (SOD1, TDP43, and C9orf72) were excluded
from the study. In fact, pathogenic mutation in causative
genes could potentially act as a confounding factor in the
overall analysis. Moreover, the presence of all other disease
processes was an exclusion criterion. The study finally included
a cohort of 106 Italian ALS patients where, at the first visit,
all patients underwent a neurologic and functional assessment
and venipuncture for blood collection. A minority of the
patients (seven patients, with concomitant dementia at the
onset) were evaluated with an extensive neuropsychological
battery as described in more detail elsewhere (Bracco et al.,
1990) and with SAND for language evaluation (Screening for
Aphasia in NeuroDegeneration) (Catricalà et al., 2017), and
received a clinical diagnosis of FTD according to the current
criteria, including the behavioral variant (bv-FTD) and the non-
fluent variant of primary progressive aphasia (nfv-PPA) (Neary
et al., 1998; Gorno-Tempini et al., 2011). The study protocol
was approved by the local ethics committee and conducted in
accordance with the provisions of the Declaration of Helsinki.

Genetic Testing
High-molecular-weight DNA was isolated from whole blood
using a QIAamp DNA blood mini QIAcube Kit (Qiagen,
Germany), as described by the manufacturer. The amount
of DNA for each sample has been determined using a
NanoDrop ND-3300 R© Fluorospectrometer. DNA samples
were aliquoted and stored at −20◦C until use. HTT CAG
repeat expansion was determined by a polymerase chain
reaction (PCR) amplification assay using the following primers:
5′-[6-FAM] GACCCTGGAAAAGCTGATGA-3′ and 5′-
GGCTGAGGAAGCTGAGGAG-3′. The forwarded primer was
modified with 6-carboxyfluorescein (6-FAM), a fluorescent dye
for labeling oligonucleotides (Jama et al., 2013). The size of the
PCR product was determined by capillary electrophoresis using
an ABI 3130X automated DNA sequencer and the GeneMapper
version 4.0 software (Applied Biosystems). A set of HTT CAG
alleles, whose lengths were confirmed by DNA sequencing, was
used to provide standard size. CAG repeat expansions were
considered as follows: normal alleles with CAG expansion under
27 repeats, IAs with 27–35 repetitions, and pathologic allele with
expansions size > 35 repeats.

Plasma Sample Collection and NfL
Analysis
Plasma was isolated from peripheral blood sample within 2 h
of collection. Blood sample was centrifuged at 1300 rcf at 4◦
for 10 min, and the supernatant was immediately frozen and
stored at −80◦C until tested. Plasma NfL concentration was
detected with the ultrasensitive single-molecule array (Simoa)
technology provided by Quanterix Corporation (Lexington, MA,
United States) (Rissin et al., 2010), on the automatized Simoa SR-
X platform (GBIO, Hangzhou, China), following the instructions
of the manufacturer. A Simoa NF-Light SR-X kit (Cat. No
103400) for human samples was used according to the protocol
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provided by Quanterix. All plasma samples were analyzed in
a single run basis. Plasma samples and controls were diluted
at a 1:4 ratio and measured in duplicate with calibrators.
A calibration curve was calculated from measurements of
serially diluted calibrators. The lower limit of quantification
(LLOQ) and the limit of detection (LOD) provided by the kit
were 0.316 and 0.0552 pg/ml, respectively. The quality control
with low NfL concentration had a mean concentration of
5.08 pg/ml; the quality control with high NfL concentration had
a mean of 169 pg/ml.

Statistical Analysis
Statistical analysis was performed using R software v4.0.3 (The R
Foundation) and SPSS software version 27 (IBM SPSS Statistics).
We tested the correlations between continuous variables using
Pearson’s correlation analysis; p < 0.05 was set as significant.
Multiple linear regression was performed between the log
function of NfL measurement and clinical parameters. Shapiro–
Wilk’s test was executed to test the data normal distribution.
To evaluate variable differences between groups, we used
independent-samples t-test and Mann–Whitney U-test. Welch
t-test was run when the assumption of homogeneity of variances
was violated. To test whether the difference between two
proportions is statistically significant, we used Fisher’s exact test.

RESULTS

Italian ALS Cohort: Clinical Phenotype
The Italian cohort included 106 ALS patients (Table 1); 51
were female (48.1%) and 55 were male (51.9%). Disease clinical
presentation at onset was ALS for 99 patients (93.4%) and ALS
and bv-FTD for six patients (5.7%), and one patient (0.9%)
showed ALS and nfv-PPA. The age at onset was available
for 94 patients of the entire cohort, with a mean age of
67.04 ± 11.54 years. About 66% (70 out of 106) of ALS patients
had a spinal onset (SO); 34% (36 patients) had ALS with a bulbar
onset (BO). The mean age at onset of SO was 63.66± 11.91 years
(64 out of 70 patients); the mean age at onset of BO was
74.30± 6.232 years (30 out of 36 patients).

IAs in ALS Patients
Out of 106 ALS, eight patients (7.5%) were carrying IAs of the
HTT gene, and 98 patients (92.5%) presented normal alleles. No
one showed a pathological allele expansion. Seven patients had
IAs and SO, and one patient had IA and BO. Of the 98 ALS
patients with normal alleles, 63 had SO and 35 had BO. There
was no statistically significant association between IAs’ presence
and site at onset, as assessed by Fisher’s exact test (p = 0.174),
and neither with gender (p = 0.316). Moreover, IAs’ presence
was not linearly related with age at onset [F(1,92) = 0.41,
p = 0.840, and adjusted R2

= −0.010]. A Mann–Whitney U-test
was run, and the mean ranks of age at onset for patients with
IAs (41.94) and normal alleles (48.02) were not statistically
significantly different, U = 299.5, z = −0.604, p = 0.546, using
an exact sampling distribution for U (Dineen and Blakesley,
1973). The mean age at onset of IA carriers (eight out of 94) was

TABLE 1 | Clinical information of the Italian cohort of ALS patients.

ALS patients
n = 106

Gender

Female, n (%) 51 (48.1)

Male, n (%) 55 (51.9)

Site of onset

SO, n (%) 70 (66)

BO, n (%) 36 (34)

Age at onset (n = 94), mean 67.04 ± 11.54

Clinical presentation at onset

ALS, n (%) 99 (93.4)

ALS and bv-FTD, n (%) 6 (5.7)

ALS and nfv-PPA, n (%) 1 (0.9)

Abbreviations: ALS, amyotrophic lateral sclerosis; SO, spinal onset; BO, bulbar
onset; bv-FTD, behavioral variant of frontotemporal dementia; nfv-PPA, non-fluent
variant of primary progressive aphasia.

66.25 ± 7.78 years, and in normal allele carriers (86 out of 94), it
was 67.12± 11.86 years.

Plasma NfL Levels in ALS Patients
The plasma sample was available for a subgroup of 21 patients
out of 106 ALS patients. To gain normally distributed data
for all independent variables, we used the log function of NfL
concentration (LogNfL) for analysis. The mean of plasma LogNfL
detected in the entire cohort was 1.98 ± 0.32 pg/ml. There was
a statistically significant, moderate positive correlation between
LogNfL and age at onset (β 0.039; p < 0.05). In our subgroup,
the mean age at onset was 67.20 ± 14.617 years. A linear
regression model established that there were significant linear
relationships between LogNfL and clinical data, age at onset
[F(1,18) = 4.96, p < 0.05, and adjusted R2

= 0.17], and site
of onset [F(1,19) = 6.47, p < 0.05, and adjusted R2

= 0.21].
Moreover, a statistically significant linear relationship emerged
between age at onset and site at onset [F(1,18) = 5.92, p < 0.05,
and adjusted R2

= 0.21]. There was univariate normality,
as assessed by Shapiro–Wilk’s test (p > 0.05). No significant
relationship was found with gender [F(1,19) = 0.4, p = 0.535,
and adjusted R2

=−0.031].
Out of 21 ALS patients, 14 (66.7%) had an SO and seven

(33.3%) had a BO. Independent-samples t-test determined that
LogNfL was higher in BO (2.21 ± 0.32 pg/mL) than SO
(1.87± 0.27 pg/mL), a statistically significant difference of−0.34
(95% CI, −0.61 to −0.06), t(19) = −2.54, p = 0.020, and there
was homogeneity of variances, as assessed by Levene’s test for
equality of variances (p = 0.906) (Figure 1). We ran a receiver
operating characteristic (ROC) analysis, and a cutoff level of
2.1028 pg/ml discriminated between BO and SO with 78.6%
sensitivity and 71.4% specificity (95% CI 54.5–98.6%). The mean
age at onset of SO was 62± 4.33 years, and BO had a mean age at
onset of 76.86± 1.74 years, a statistically significant difference of
−14.86 (95% CI,−24.78 to−4.93), t(15.377)=−3.18, p= 0.006
(Figure 2). No statistically significant differences in LogNfL
emerged in gender.
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FIGURE 1 | ALS site of onset compared for mean LogNfL levels. Mean
LogNfL was higher in BO than SO (2.21 + 0.32 versus 1.87 + 0.27 pg/mL;
p = 0.020). Abbreviations: LogNfL, log of NfL concentration; SO, spinal onset;
BO, bulbar onset.

FIGURE 2 | ALS site of onset compared for mean age at onset. Mean age at
onset was higher in BO than SO (62 + 4.33 versus 76.86 + 1.74. p = 0.006).
Abbreviations: LogNfL, log of NfL concentration; SO, spinal onset; BO, bulbar
onset.

Out of 21 patients, seven had a BO and normal alleles. Of 14
patients with SO, 12 had normal alleles and two were carrying
IAs. The ALS age at onset of these two patients with IAs was,
respectively, 73 and 77 years old.

IAs and NfL in ALS Patients
No significant relationship was found between IA presence and
LogNfL [F(1,19) = 1.07, p = 0.314 and adjusted R2

= 0.004]. Of
21 patients, two (9.52%) were carrying IAs with a mean LogNfL of
1.76± 0.2 pg/ml. The remaining 19 patients (90.47%) had normal
alleles and a mean LogNfL of 2.0± 0.8 pg/ml.

DISCUSSION AND CONCLUSION

The first aim of this study was to investigate for the first time
in an Italian cohort of ALS patients the distribution of two
potential biomarkers, IAs of the HTT gene and plasma NfL
levels, and to examine their possible implication with clinical-
demographic data, as gender, age at onset, and site of symptoms

onset (SO or BO). Another aim of our work was to detect
the possible interaction between the two biomarkers. IAs were
present in 7.5% of our cohort, a frequency higher than that
reported in the general population (Savitt and Jankovic, 2019),
but with no one statistically significant association with clinical-
demographic variables. Analysis of plasma NfL concentration
in a subgroup (20%) of the cohort provided evidence for a
statistically significant correlation with disease age at onset and
site of onset. Plasma NfL levels increased with progressing age
at onset. BO had higher plasma NfL concentration, suggesting
a neurodegeneration degree more elevated than in spinal form.
A significant correlation also resulted between the ALS site of
onset and age at onset. Patients with BO had a later age at
onset of disease. BO and higher age at symptom onset have been
identified as negative prognostic factors for the disease (Arora
and Khan, 2021; Ferraro et al., 2021), so we could hypothesize
that elevated NfL concentration is a negative factor for the
progression of the disease.

NfLs are highly expressed in axons (Lee and Cleveland,
1996). Damage to the axon scaffold, with a consequent impaired
trafficking, has been supposed at the base of the ALS pathogenesis
(Falzone et al., 2021). Several studies explored the potential
value of NfL as a biomarker in ALS and demonstrated that
ALS patients presented higher levels of NfL compared with
healthy controls and with pathological controls affected by other
forms of motor neuron disease (MND) (Steinacker et al., 2016;
Xu et al., 2016; Rossi et al., 2018; Gagliardi et al., 2019). In
our study, NfL concentration was analyzed with the Simoa
platform in plasma samples, and we detected elevated NfL levels
in Italian ALS patients. The mean concentration detected in
our Italian cohort was comparable with the plasma data of
ALS worldwide populations (Li et al., 2018; Gille et al., 2019;
Verde et al., 2019). So, our study could contribute to extend
the results of previous studies on NfL levels in ALS worldwide
population and, also, prove the diagnostic value of plasma
NfL in Italian ALS population as a non-invasive biomarker.
Several studies investigated the NfL biomarker in Italian ALS
patients but always in CSF (Gagliardi et al., 2019, 2021; Abu-
Rumeileh et al., 2020). NfL levels are more elevated and,
consequentially, easily detectable in CSF compared to peripheral
blood, but a lumbar puncture is required. The innovative
Simoa technology remarkably improved the analytical sensitivity,
allowing measurement of the lowest NfL concentrations in
blood samples (Rissin et al., 2010), and NfL levels in CFS and
blood values are comparable (Kuhle et al., 2016; Steinacker
et al., 2016). Blood-based biomarkers are preferable because they
require minimally invasive collection compared to CSF sampling
and also present the other important advantages to be simple,
inexpensive, and readily available. In fact, clinical application of
plasma NfLs, because they are an easily accessible biomarker,
has been recently investigated in several neurodegenerative
disorders, such as in multiple sclerosis, Alzheimer’s disease,
frontotemporal dementia, Huntington’s disease, Parkinson and
atypical Parkinsonian disorders, and traumatic brain injury
(Shahim et al., 2016; Hansson et al., 2017; Ljungqvist et al., 2017;
Barro et al., 2018; Lewczuk et al., 2018; Sánchez-Valle et al., 2018;
Rojas et al., 2021; Sampedro et al., 2021). The potential of NfLs
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has also been indagated in oncology, microbiology, and infection
diseases (Duffy, 2012; Schubert et al., 2015; Song et al., 2015).

We also observed that patients with incremented NfL levels
were carrying normal alleles of the HTT gene. Two patients
showed IAs and lower plasma NfL concentration. In addition,
they had SO and an age at onset higher than the mean of the
entire cohort. These preliminary data could indicate for IAs
of the HTT gene a possible neuronal protective effect from
neurodegeneration.

With regard to the second biomarker, the misfolded HTT
protein, generated by the expansion of the CAG repeats in
exon I of the HTT gene, is cleaved in mutated protein
fragments that generate nuclear aggregates (Vonsattel and
DiFiglia, 1998). Contrasting results were reported about their
toxicity. A neuroprotective effect was seen in a HD transgenic
mouse model with a strong reduction in susceptibility to
excitotoxicity. It was suggested that at the basis of the imbalance
toward the toxic or neuroprotective effect, there is the length
of the fragments generated after the cleavage of the poly-Q
stretch that could interact with proteins mediating resistance.
Also, a full-length HTT protein folded differently than a shorter
structure and could expose the exon I in a different manner
leading to altered interactions (Slow et al., 2005; Zuchner and
Brundin, 2008). Lee et al. (2018) described an “inverted U
relationship” between the number of the CAG repeats of the
HTT gene and a beneficial effect on cognitive functions. They
demonstrated that the number of CAG repeats under 35 gives
advantageous changes in brain structure and cognitive functions
that becomes a disadvantage with an increasing length above 39
repetitions (Lee et al., 2017, 2018). Above the 39 CAG repeats,
poly-Q tract would be non-functional in protein interactions, but
below this threshold, HTT protein could show an increasingly
greater flexibility, with an advantage in protein conformation
and function and mediating changes in brain structure (Cattaneo
et al., 2005; Schaefer et al., 2012; Caron et al., 2013). All these
data support a possible neuronal protective effect of IAs in ALS
patients.

Moreover, misfolded HTT protein and damaged axonal
neurofilaments result in impaired trafficking and, consequently,
in the loss of the neuronal connectivity. The impaired trafficking
is a potential common mechanism at the base of ALS and HD
pathogenesis (Morfini et al., 2013; Gatto et al., 2015).

In interpreting our findings, a few limitations should be
considered. The sample size was relatively small, especially the
subgroup (20% of patients) with data on plasma NfL. Moreover,
not all patients were evaluated with a neuropsychological battery,
so we did not control for the presence of associated cognitive
symptoms that could act as confounding factors. Another

limitation was the lack of a control group. IA frequency and
plasma NfL levels were compared to literature data. This is a
monocentric study, and a multicentric study would be useful
to confirm these results. On the other hand, all samples were
collected prospectively, processed, and stored using the same
standardized method, and measurements of plasma NfL were
done in a single batch, ensuring good reproducibility. As blood
was collected at the first visit, when patients underwent a
neurologic and functional assessment and venipuncture for
blood collection, the correlation with disease progression was
not considered. Our findings seem to reinforce the hypothesis
that IAs could confer an advantage in degenerative brain
disease, delaying the development of pathology and protecting
from neuronal death. These preliminary findings indicate that
both plasma NfL and IAs of the HTT gene may represent
potential biomarkers for age at onset and site of onset
(bulbar versus spinal), thus suggesting possible implication in
clinical phenotype.
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