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Backus problem in geophysics: a resolution
near the dipole in fractional Sobolev spaces

Toru Kan , Rolando Magnanini and Michiaki Onodera

Abstract. We consider Backus’s problem in geophysics. This consists in
reconstructing a harmonic potential outside the Earth when the intensity
of the related field is measured on the Earth’s surface. Thus, the boundary
condition is (severely) nonlinear. The gravitational case is quite under-
stood. It consists in the local resolution near a monopole, i.e. the potential
generated by a point mass. In this paper, we consider the geomagnetic
case. This consists in linearizing the field’s intensity near the so-called
dipole, a harmonic function which models the solenoidal potential of a
magnet. The problem is quite difficult, because the resolving operator
related to the linearized problem is generally unbounded. Indeed, exis-
tence results for Backus’s problem in this framework are not present in
the literature. In this work, we locally solve the geomagnetic version of
Backus’s problem in the axially symmetric case. In mathematical terms,
we show the existence of harmonic functions in the exterior of a sphere,
with given (boundary) field’s intensity sufficiently close to that of a dipole
and which have the same axial symmetry of a dipole. We also show that
unique solutions can be selected by prescribing the average of the poten-
tial on the equatorial circle of the sphere. We obtain those solutions as
series of spherical harmonics. The functional framework entails the use of
fractional Sobolev Hilbert spaces on the sphere, endowed with a spectral
norm. A crucial ingredient is the algebra structure of suitable subspaces.
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1. Introduction

One of the most interesting problems in geophysics is the determination of the
gravitational or magnetic field of the Earth from surface measurements of its
intensity. It is in fact much more convenient to measure field intensities rather
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than field directions. In mathematical terms, the problem can be formulated
as follows.

We shall represent the Earth’s surface by the unit sphere S ⊂ R
3 (centered

at the origin). We will denote by Ω the exterior of S, i.e. the unbounded
component of R

3 \ S. Also, we suppose a positive continuous function g is
given on S. If u represents the Earth’s external scalar potential associated to
the gravitational or magnetic field, then |∇u| represents the field’s intensity.
Backus’s problem then consists in finding solutions u ∈ C2(Ω) ∩ C1(Ω) of the
following nonlinear boundary value problem:

Δu = 0 in Ω, |∇u| = g on S, u → 0 as |x| → ∞. (1.1)

It is also important to specify sufficient conditions that ensure the uniqueness
of a solution.

A large part of the results known about this problem is contained in the
pioneering work of G. E. Backus [4]. There, the problem of finding solutions of
the first two equations in (1.1) is first examined for the two-dimensional case
in a bounded domain and, by conformal mappings, also in exterior domains.
A complete analysis is carried out: existence of solutions is proved, a severe
lack of uniqueness is pointed out, and conditions which restore uniqueness are
stated. Related to this case, questions about the regularity of solutions are
investigated in [12], together with an analysis of the case in which the data g
may vanish at isolated points.

In [4], a condition for uniqueness of a solution for problem (1.1) is given
in the gravitational case. Non-uniqueness for the geomagnetic case is noted
in [5]; [10] contains a general uniqueness condition for (1.1), which includes
both the gravitational and geomagnetic case. The solution of the linearized
problem near the dipole is also constructed in [10] by means of an expansion in
spherical harmonics. By a similar technique, the linearization near quadripoles
is considered in [1] and solved.

For what concerns the existence of a solution of (1.1) in physical di-
mension, a first conclusive result is contained in [9]. There, it is proved local
existence and uniqueness of a solution in the gravitational case. It is obtained
by linearizing (1.1) at the so-called monopole,

Φ(x) =
1
|x| , x ∈ Ω,

which is nothing else than a normalized version of the fundamental solution of
Laplace’s equation. More precisely, one can prove existence and uniqueness of
a solution of the form

u(x) = Φ(x) + w(x), x ∈ Ω, (1.2)

provided g is sufficiently close to |∇Φ| ≡ 1 in the norm of C0,α(S), 0 < α < 1,
the space of α-Hölder continuous functions on S. In fact, plugging the ansatz
(1.2) into (1.1) gives that w must solve the problem:

Δw = 0 in Ω, wν +
1
2

|∇w|2 =
g2 − 1

2
on S, w → 0 as |x| → ∞. (1.3)
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Here, ν denotes the unit normal to S, exterior to Ω.
In [9] (see also [13]), the nonlinear problem (1.3) is solved by a Neumann

series, essentially based on the following fixed point argument. In fact, one can
introduce a (nonlinear) operator TΦ by formally setting

TΦ[f ] = |∇v|2,
where v is the solution of the Neumann problem:

Δv = 0 in Ω, vν =
1
2

f on S, v → 0 as |x| → ∞. (1.4)

Since we know that (1.4) always has a unique solution v ∈ C1,α(Ω) for any
f ∈ C0,α(S), then TΦ turns out to be well-defined as an operator on C0,α(S)
into itself. The problem (1.3) is thus converted into the fixed-point equation:

f + TΦ[f ] = g2 − 1 on S.

This can be uniquely solved by a function f∗ ∈ C0,α(S), provided g2 − 1
is sufficiently small in the norm of C0,α(S). A solution of (1.1) is therefore
obtained by means of (1.2), where w is the solution of (1.4) corresponding to
f∗.

We conclude our review of known results with a couple of papers, [7,8],
which provide a genuinely nonlinear approach to problem (1.1). In [7], (1.1) is
converted into a boundary value problem in the unit ball B:

ΔU = 0 in B, (U + Uν)2 + |∇SU |2 = g2 on S, (1.5)

where ∇SU denotes the tangential gradient of U on S. Here, U is the Kelvin’s
transformation of u, which is such that

u(x) = |x|−1U(x/|x|2) for x ∈ Ω.

Then, a solution of (1.5) is obtained by solving the following boundary value
problem:

ΔU = 0 in B, U + Uν =
√

(g2 − |∇SU |2)+ on S. (1.6)

Since U + Uν = −uν on S, the corresponding solution u of (1.1) is such that
uν ≤ 0 on S. It turns out that harmonic functions in Ω, which vanish at
infinity and are subject to the constraint uν ≤ 0 on S, satisfy some sort of
comparison principle. This property is then instrumental to the definition of
maximal and minimal solutions of (1.1) such that uν ≤ 0 on S. This fact
allows the construction of a suitably defined viscosity solution of (1.6). In [8],
a numerical scheme to construct a maximal solution is proposed.

The aim of this paper is to study the local resolution of the geomagnetic
case, i.e. the (local) existence and uniqueness of solutions of (1.1) near the
dipole defined by

d(x) =
x3

|x|3 for x ∈ Ω.

In spherical coordinates x = r (cos θ cos ϕ, cos θ sin ϕ, sin θ), d can be written
as

d =
sin θ

r2
.
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Here r = |x|, −π/2 ≤ θ ≤ π/2 is the latitude, and −π ≤ ϕ < π is the longitude
on the Earth S. To the best of our knowledge, existence results for this problem
are not present in the literature.

Thus, similarly to the gravitational case, we linearize problem (1.1) by
setting u = d + w and obtain the following problem for w:

Δw = 0 in Ω,

∇d · ∇w + 1
2 |∇w|2 = g2−|∇d|2

2 on S, (1.7)
w → 0 as |x| → ∞.

Note that, being as ν(x) = −x, we have that

∇d(x) = τ(x) + 2x3 ν(x) for x ∈ S. (1.8)

The vector field

τ(x) = e3 + x3 ν(x) for x ∈ S,

is tangential to S and is obtained by projecting e3 = (0, 0, 1) on the tangent
plane of S at x ∈ S. Notice that ∇d(x) has intensity |∇d(x)| =

√
1 + 3x2

3 for
x ∈ S, and points outward to the Earth’s surface on the south hemisphere,
becomes tangential on the equator E = {x ∈ S : x3 = 0}, and points inward
on the north hemisphere. This behavior of ∇d tells us that neither d nor any
solution of (1.1) sufficiently close to d falls within the class of solutions studied
in [7,8].

Proceeding as in the monopole case gives the (irregular) oblique derivative
problem:

Δv = 0 in Ω, ∇d · ∇v =
1
2

f on S, v → 0 as |x| → ∞. (1.9)

Differently from regular oblique derivative problems, in which the relevant
directional derivative is controlled by a vector field that points either inward
or outward on the whole boundary, the irregular ones may present at least two
setbacks. These are caused precisely by a change of direction, as described for
∇d.

The former is a non-trivial lack of uniqueness. In fact, uniqueness can be
obtained only by prescribing Dirichlet boundary values on the subset of the
boundary in which the relevant vector field becomes tangential (the equator
E in the problem at stake). In other words, the homogeneous problem related
to (1.9) has infinitely many solutions.

The latter is the so-called loss of derivatives. In fact, it may happen
that suitably determined unique solutions of oblique boundary value problems
with, say, C0,α-regular boundary data, do not gain C1,α-regularity up to the
boundary, as it does happen for the Neumann problem or the regular oblique
derivative problem (see for instance [2,15,16]). In other words, the linear op-
erator on C0,α(S) associating the oblique derivative data to the (trace on the
boundary of the) solution of the problem may be unbounded. A similar be-
havior also occurs if we try to solve the oblique derivative problem in the scale
of fractional Sobolev spaces Hs(S) (this fact can be detected by an inspection
of the solution obtained in [10]).
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Besides causing a loss of surjectivity of the relevant operator, more impor-
tantly, the loss of derivatives disrupts the iterative scheme on which a classical
contraction argument is based. Thus, the strategy of defining an operator Td,h

by first setting

Td,h[f ] = |∇v|2,
where, for some fixed h : E → R, v is the solution of (1.9), subject to the
Dirichlet-type condition

v = h on E, (1.10)

and then solving the equation

f + Td,h[f ] = g2 − |∇d|2,
may miserably fail.

To by-pass these difficulties, a standard idea would be to use the Nash-
Moser implicit function theorem. This often works when a loss of derivatives
occurs. The second author and M. C. Jorge have tried this pathway, but with
no success. The main difficulty is the lack of sufficiently precise estimates for
the relevant oblique derivative problems involved. In fact, in such approach,
one would need to precisely control estimates not only for the solution of (1.9),
but also for a class of oblique derivative problems obtained by perturbing ∇d.

In this paper, we turn back to a fixed-point approach and obtain local
existence near the dipole for the nonlinear problem (1.1) in the case the bound-
ary data g is axially symmetric around the Earth’s axis. This result is obtained
in the framework of fractional Sobolev spaces and is made possible from the
discovery that the relevant oblique derivative problem (1.9) no longer loses
derivatives in presence of axially symmetric data. Hence, a fixed-point scheme
still works for problem (1.7).

From a technical viewpoint, we construct solutions of (1.9)-(1.10) by
means of series expansions of spherical harmonics as done in [10]. This time, we
trace more carefully the dependence on the data f and h of the coefficients of
the relevant expansion. The aim is to obtain precise estimates for the operator
Td,h in the scale of Sobolev spaces Hs(S). It turns out that Td,h is well-defined
as an operator on the subspace Hs

ax(S) of axially symmetric functions on S.
(For a precise definition of Hs(S) and Hs

ax(S), see Sect. 2.)
Our main result is then the following existence and uniqueness theorem.

Theorem 1.1. Suppose that g ∈ Hs
ax(S) for some s > 1 and that h ≡ h0 on S

with h0 ∈ R. If ‖g − |∇d|‖Hs(S) and |h0| are sufficiently small, then problem
(1.1) has a unique solution u ∈ C2(Ω)∩C1(Ω) satisfying (1.10). Moreover, we
have that u|S ∈ Hs+1

ax (S) and

‖u − d‖Hs+1(S) ≤ C
(‖g − |∇d|‖Hs(S) + |h0|

)
(1.11)

for some constant C > 0.

From the continuous embedding of Hs(S) into C(S) (see Proposition 2.1
below) and the maximum principle for harmonic functions, we see that (1.11)
holds if the left-hand side is replaced with ‖u − d‖C(Ω).
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We conclude this introduction with one more important technical remark
about the proof of Theorem 1.1.

In fact, it should be noticed that the Hilbert-space structure we adopt
for Hs(S) and Hs

ax(S) is based on an inner product of a spectral-type. In other
words, the relevant inner product is defined in terms of the coefficients in the
spherical-harmonics series expansions of the functions at stake. In order to
deal with problem (1.7), which shows a quadratic nonlinearity in the gradi-
ent, a Banach-algebra structure for Hs(S) is desirable. As a matter of fact,
Banach-algebra structures for Sobolev spaces on Riemannian manifolds are
systematically studied in [6] (see [6, Theorem 24] for the most relevant result),
in which the norm is defined by

|||u|||Hs,p(S) = ‖u‖Lp(S) + ‖(−Δ)s/2u‖Lp(S),

where the fractional Laplace-Beltrami operator (−Δ)s/2 is defined by the Dun-
ford integral. It is shown that (−Δ)s/2u is comparable to an integral repre-
sentation of the fractional derivative of u, and hence an algebra structure is
derived by Leibniz’ rule. However, to the best of our knowledge, there is no
explicit comparison between our spectral norm ‖u‖Hs(S) and |||u|||Hs,2(S) in the
literature. Thus, in Theorem 2.4, we provide our own proof for the case of
axially symmetric functions. This is based on the series expansions in spher-
ical harmonics of products of spherical harmonics, and the so-called Wigner
3j-symbols. (In Proposition 2.5, we show that such a structure also holds in
other instances.)

The paper is organized as follows. We begin with Sect. 2, in which we
collect all the functional analytical results on the spaces Hs(S) and Hs

ax(S)
useful for our purposes. Then, in Sect. 3, we derive the appropriate estimates
for the relevant oblique derivative problem. The proof of Theorem 1.1 is given
in Sect. 4.

2. The fractional spectral Sobolev space Hs(S) and its
subspace Hs

ax(S)

In this section, we collect old and new results on the spectral Hilbert space
Hs(S).

2.1. Spherical harmonics and the space Hs(S)
As mentioned in the introduction, we adopt a system of spherical coordinates
by setting

x = r (cos θ cos ϕ, cos θ sin ϕ, sin θ) , r > 0, −π

2
≤ θ ≤ π

2
, −π ≤ ϕ < π;

we call θ the latitude and ϕ the longitude on the earth surface S. With this
parametrization, the surface element on S is given by dSx = cos θ dθ dϕ.

We denote by {Y m
l (θ, ϕ)}|m|≤l,l=0,1,... the spherical harmonics system of

functions. We have that

Y m
l (θ, ϕ) = αm

l P
|m|
l (sin θ) eimϕ (|m| ≤ l, l = 0, 1, . . . ) ,
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where Pm
l (z) is the associated Legendre polynomial of degree l and order m,

and αm
l is defined by

αm
l = (−1)

m+|m|
2

√
(2l + 1)(l − |m|)!

4π(l + |m|)! .

It is well-known that {Y m
l (θ, ϕ)}|m|≤l,l=0,1,... forms an orthonormal basis of

L2(S), that is, the equality

ψ(θ, ϕ) =
∞∑

l=0

l∑

m=−l

ψ̂m
l Y m

l (θ, ϕ) with

ψ̂m
l =

∫ π

−π

∫ π
2

− π
2

ψ(θ, ϕ)Y m
l (θ, ϕ) cos θ dθdϕ

holds in L2(S) for any function ψ ∈ L2(S).
For any non-negative real number s, we define the fractional Sobolev

space:

Hs(S) =
{

ψ ∈ L2(S) :
∞∑

l=0

l∑

m=−l

(l + 1)2s|ψ̂m
l |2 < +∞

}
.

Thus, we have that H0(S) = L2(S) and we know that Hs(S) is a Hilbert space
endowed with the inner product

〈ψ, φ〉Hs(S) =
∞∑

l=0

l∑

m=−l

(l + 1)2sψ̂m
l φ̂m

l .

Similarly, we set

Hs(E) =
{

Ψ ∈ L2(E) :
∞∑

m=−∞
(|m| + 1)2s|Ψ̂m|2 < +∞

}
,

where Ψ̂m =
1
2π

∫ π

−π

Ψ(ϕ) e−imϕ dϕ,

and write the norm on Hs(E) as

‖Ψ‖Hs(E) =

√√√
√

∞∑

m=−∞
(|m| + 1)2s|Ψ̂m|2.

Then, any function Ψ ∈ Hs(E) can be expanded in Hs(E) as

Ψ(ϕ) =
∞∑

m=−∞
Ψ̂meimϕ.

The following properties of Hs(S) will be useful in the sequel.

Proposition 2.1. Set s > 1. Then, the Sobolev space Hs(S) is continuously
embedded into C(S).
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Proof. It is known that the identity

l∑

m=−l

Y m
l (θ1, ϕ1)Y m

l (θ2, ϕ2)

=
2l + 1

4π
Pl (sin θ1 sin θ2 + cos θ1 cos θ2 cos (ϕ2 − ϕ1)) (2.1)

holds for any l = 0, 1, . . . , −π/2 ≤ θ1, θ2 ≤ π/2, and −π ≤ ϕ1, ϕ2 < π (see [3,
(16.57), (16.59)]). In particular, this identity and the fact that Pl(1) = 1 give

l∑

m=−l

|Y m
l (θ, ϕ)|2 =

2l + 1
4π

. (2.2)

Hence, by the Cauchy-Schwarz inequality, we have that

l∑

m=−l

|ûm
l Y m

l (θ, ϕ)| ≤
√

2l + 1
4π

√√
√√

l∑

m=−l

|ûm
l |2.

Taking the sum in l and using the Cauchy-Schwarz inequality again, we obtain

∞∑

l=0

l∑

m=−l

|ûm
l Y m

l (θ, ϕ)| ≤
√√√√

∞∑

l=0

(l + 1)−2s(2l + 1)
4π

√√√√
∞∑

l=0

l∑

m=−l

(l + 1)2s |ûm
l |2

≤
√√√√

∞∑

l=0

(l + 1)1−2s

2π
‖u‖Hs(S).

Thus, the series (of continuous functions) on the left-hand side defines a con-
tinuous function, since it converges uniformly and absolutely for s > 1. �

Proposition 2.2. Let k be any natural number. Then, Ck(S) is continuously
embedded into Hk(S).

Proof. Assume u ∈ Ck(S). Let ∇S and ΔS denote the gradient and the
Laplace-Beltrami operator on S, respectively. In order to prove the propo-
sition, we verify that the equalities

∞∑

l=0

l∑

m=−l

[l(l + 1)]2j |ûm
l |2 =

∥∥(−ΔS)ju
∥∥2

L2(S)
, (2.3)

∞∑

l=0

l∑

m=−l

[l(l + 1)]2j+1 |ûm
l |2 =

∥∥∇S

[
(−ΔS)ju

]∥∥2
L2(S)

(2.4)

hold for any nonnegative integer j with 2j ≤ k, 2j + 1 ≤ k, respectively.
By repeated integration by parts and the fact that

−ΔSY m
l = l(l + 1)Y m

l ,
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the Fourier-Laplace coefficient of (−ΔS)ju is computed as
[

̂(−ΔS)ju
]m

l
=
∫

S

[(−ΔS)ju]Y m
l dS

=
∫

S

u [(−ΔS)jY m
l ] dS = [l(l + 1)]j ûm

l .

(2.5)

Hence (2.3) follows. To derive (2.4), we set w = (−ΔS)ju. For the moment,
we suppose that w ∈ C2(S). Then, we have that

‖∇Sw‖2
L2(S) = −

∫

S

wΔSwdS = −
∞∑

l=0

l∑

m=−l

ŵm
l

∫

S

Y m
l ΔSwdS,

where we used integration by parts and the expansion

w =
∞∑

l=0

l∑

m=−l

ŵm
l Y m

l =
∞∑

l=0

l∑

m=−l

ŵm
l Y m

l .

From the definition of w and (2.5), we see that

−ŵm
l

∫

S

Y m
l ΔSwdS =

[
̂(−ΔS)ju

]m

l

[
̂(−ΔS)j+1u

]m

l
= [l(l + 1)]2j+1 |ûm

l |2,
and therefore

‖∇Sw‖2
L2(S) =

∞∑

l=0

l∑

m=−l

[l(l + 1)]2j+1 |ûm
l |2.

By approximation, this equality also holds if w ∈ C1(S). We thus obtain (2.4).
Using (2.3) and (2.4), we deduce that

‖u‖2
Hk(S) ≤ C

∞∑

l=0

l∑

m=−l

(
[l(l + 1)]k + 1

)
|ûm

l |2

=

⎧
⎪⎪⎨

⎪⎪⎩

C

(∥∥∥(−ΔS)
k
2 u
∥∥∥

2

L2(S)
+ ‖u‖2

L2(S)

)
if k is even,

C

(∥∥∥∇S

[
(−ΔS)

k−1
2 u
]∥∥∥

2

L2(S)
+ ‖u‖2

L2(S)

)
if k is odd

≤ C‖u‖2
Ck(S),

where C > 0 is some constant. This proves the proposition. �

2.2. The subspace Hs
ax(S) and its Banach-algebra structure

In our analysis, the subspace of axially symmetric functions defined by

Hs
ax(S) =

{
ψ ∈ Hs(S) : ψ does not depend onϕ

}

will play a crucial role. It is clear that

Hs
ax(S) =

{
ψ ∈ Hs(S) : ψ̂m

l = 0, 1 ≤ |m| ≤ l, l = 1, 2, . . .
}
.

This section is the technical core of this paper. In fact, observe that,
for the solvability of the nonlinear problem (1.7), we need to deal with the
quadratic term |∇w|2. In other words, in the functional framework adopted,
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we must be sure that the product of two functions in the relevant space still
belongs to the same space. We shall show that the subspace Hs

ax(S) enjoys this
property, i.e. it is a Banach algebra with respect to the pointwise product.

To this aim, we recollect some notations and results about products of
spherical harmonics. We recall (see [14, Appendix III]) that the product of two
spherical harmonics Y m1

l1
, Y m2

l2
is represented by the formula:

Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ)

=
∞∑

l=0

l∑

m=−l

(−1)m

√
(2l1+1)(2l2+1)(2l+1)

4π

(
l1 l2 l
m1m2−m

)(
l1 l2 l
0 0 0

)
Y m

l (θ, ϕ).

In this formula, the so-called Wigner 3-j symbol is defined by
(

l1 l2 l3
m1m2m3

)
=

√
(−l1+l2+l3)!(l1−l2+l3)!(l1+l2−l3)!(l3−m3)!(l3+m3)!

(l1+l2+l3+1)!(l1−m1)!(l1+m1)!(l2−m2)!(l2+m2)!

×
∑

k

(−1)k+l1+m2−m3(l2+l3+m1−k)!(l1−m1+k)!
k!(−l1+l2+l3−k)!(l3−m3−k)!(l1−l2+m3+k)!

,

if m1 +m2 +m3 = 0, |l1 − l2| ≤ l3 ≤ l1 + l2, |m1| ≤ l1, |m2| ≤ l2 and |m3| ≤ l3;
the symbol is set to be zero otherwise. The summation in the formula is taken
over all integers k for which all the factorials in the sum have nonnegative
arguments.

By using the product formula, we find that the product uv of u, v ∈ Hs(S)
has the following Fourier-Laplace coefficients:

ûv
m
l =

∞∑

l1=0

l1∑

m1=−l1

∞∑

l2=0

l2∑

m2=−l2

√
(2l1+1)(2l2+1)(2l+1) W l1,l2,l

m1,m2,mûm1
l1

v̂m2
l2

,

where

W l1,l2,l
m1,m2,m :=

(−1)m

√
4π

(
l1 l2 l
m1m2−m

)(
l1 l2 l
0 0 0

)
. (2.6)

Our proof of the Banach-algebra property of Hs
ax(S) is based on an l-sum

relation (see [14, (7.61)]) satisfied by the Wigner 3-j symbols, that is
∞∑

lj=0

(2lj + 1)
(

l1 l2 l3
m1m2m3

)2

= 1 (j = 1, 2, 3),

if m1 + m2 + m3 = 0 and |mi| ≤ li for i �= j. This yields that

sup
l2,m2,l,m

∞∑

l1=0

l1∑

m1=−l1

(2l1 + 1)|W l1,l2,l
m1,m2,m| ≤ 1√

4π
,

sup
l1,m1,l,m

∞∑

l2=0

l2∑

m2=−l2

(2l2 + 1)|W l1,l2,l
m1,m2,m| ≤ 1√

4π
,

sup
l1,m1,l2,m2

∞∑

l=0

l∑

m=−l

(2l + 1)|W l1,l2,l
m1,m2,m| ≤ 1√

4π
,

(2.7)
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by the Cauchy-Schwarz inequality.
We conclude our preliminaries with the following simple result.

Lemma 2.3. For any σ < s − 1/2, there is a constant C > 0 such that
∞∑

l=0

(2l + 1)σ|û0
l | ≤ C‖u‖Hs(S)

for any u ∈ Hs
ax(S).

Proof. The Cauchy-Schwarz inequality implies that

∞∑

l=0

(2l + 1)σ|û0
l | ≤
√√√
√

∞∑

l=0

(2l + 1)2(σ−s)

√√√
√

∞∑

l=0

(2l + 1)2s|û0
l |2,

where the first series on the right hand side converges if 2(σ − s) < −1. �
We are now ready to state and prove the main result of this section.

Theorem 2.4. (Hs
ax(S) is a Banach algebra). Let s > 1. If u, v ∈ Hs

ax(S), then
uv ∈ Hs

ax(S) and

‖uv‖Hs(S) ≤ C‖u‖Hs(S)‖v‖Hs(S)

for some constant C > 0 independent of u, v.

Proof. Let us simply write ûl, v̂l, ûvl for û0
l , v̂

0
l , ûv

0
l , respectively. Since W l1,l2,l

0,0,0

is nonzero only when l ≤ l1 + l2, and in this situation l1 ≤ l2 implies l ≤ 2l2,
while l1 ≥ l2 implies l ≤ 2l1, we have

(l + 1)s|ûvl| ≤
√

2
∞∑

l1=0

∞∑

l2=l1

√
2l1 + 1(2l2 + 1)s(l + 1)|W l1,l2,l

0,0,0 ||ûl1 ||v̂l2 |

+
√

2
∞∑

l2=0

∞∑

l1=l2

(2l1 + 1)s
√

2l2 + 1(l + 1)|W l1,l2,l
0,0,0 ||ûl1 ||v̂l2 |.

In what follows, we denote the two summands in this formula by Il and Jl,
respectively.

Now, Lemma 2.3 shows that
∞∑

l1=0

√
2l1 + 1| ûl1 | ≤ C‖u‖Hs(S),

∞∑

l2=0

√
2l2 + 1| v̂l2 | ≤ C‖v‖Hs(S). (2.8)

Thus, we use Lemma A.3 with the settings

pk =
√

2k + 1 |ûk|, qk = (2k + 1)s|v̂k|, and

ri,j,k =

{
(k + 1)|W i,j,k

0,0,0| for i ≤ j,

0 for i > j,

and, by recalling the l-sum relation (2.7), we see that
√√√√

∞∑

l=0

|Il|2 ≤ C√
2π

‖u‖Hs(S)‖v‖Hs(S).
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A similar formula can be obtained for the terms Jl. Therefore, the proof is
completed. �

For future reference, we conclude this section by showing that the algebra
structure still holds for the entire space Hs(S) if s > 3/2.

Proposition 2.5. If u, v ∈ Hs(S) with s > 3/2, then uv ∈ Hs(S) and

‖uv‖Hs(S) ≤ C‖u‖Hs(S)‖v‖Hs(S).

Proof. The proof runs similarly to that of Theorem 2.4. All what is needed is
an extension of (2.8) to the case of two independent variables l and m. Indeed,
we simply have that the inequality

∞∑

l=0

l∑

m=−l

√
2l + 1| ûm

l | ≤ C‖u‖Hs(S)

holds for u ∈ Hs(S) if s > 3/2, as in the proof of Lemma 2.3. �

2.3. The square of the gradient of a function in Hs
ax(S)

In the case of axially symmetric functions, we have that

|∇w|2 = w2
r + w2

θ .

The following two lemmas will be decisive for the proof of existence for problem
(1.1) of Sect. 4.

Lemma 2.6. Let u, v be harmonic functions in Ω, continuous up to the bound-
ary S, and such that u, v → 0 as |x| → ∞. If u, v ∈ Hs+1

ax (S) for s > 1, then
urvr ∈ Hs

ax(S) and

‖urvr‖Hs(S) ≤ C‖u‖Hs+1(S)‖v‖Hs+1(S)

for some C > 0 independent of u, v.

Proof. If u =
∞∑

l=0

r−l−1ûl Y
0
l , then ur = −

∞∑

l=0

r−l−2(l + 1)ûl Y 0
l , and similarly

for v. Hence, Theorem 2.4 gives

‖urvr‖Hs(S) ≤ C‖ur‖Hs(S)‖vr‖Hs(S)

= C

√√√√
∞∑

l=0

(l + 1)2s+2|ûl|2
√√√√

∞∑

l=0

(l + 1)2s+2|v̂l|2

= C‖u‖Hs+1(S)‖v‖Hs+1(S),

as desired. �

We now turn to the estimate for v2
θ in the Hs(S)-norm. Unlike the case

of vr, we do not have a simple expression of the spherical harmonics expansion
of vθ. Nevertheless, we will show that there is one for v2

θ , by using the fact
that the Legendre polynomial P 0

l (z) of degree l, which we will denote here by
Pl(z), solves the differential equation:

[(
1 − z2

)
P ′

l

]′
+ l(l + 1)Pl = 0. (2.9)
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Lemma 2.7. Let u, v be harmonic functions in Ω, continuous up to the bound-
ary S, and such that u, v → 0 as |x| → ∞. If u, v ∈ Hs+1

ax (S) for s > 1, then
uθvθ ∈ Hs

ax(S) and

‖uθvθ‖Hs(S) ≤ C‖u‖Hs+1(S)‖v‖Hs+1(S)

for some C > 0 independent of u, v.

Proof. Recall that

Y 0
l (θ, ϕ) =

√
2l + 1

4π
Pl(sin θ).

Hence, if u(θ) =
∞∑

i=0

ûiY
0
i (θ, ϕ) and v(θ) =

∞∑

j=0

v̂jY
0
j (θ, ϕ), we infer that

uθ(θ)vθ(θ) =
∞∑

i=0

∞∑

j=0

ûiv̂j

√
(2i + 1)(2j + 1)

(4π)2
cos2 θ P ′

i (sin θ)P ′
j(sin θ)

=
∞∑

l=0

clY
0
l (θ, ϕ),

where

cl = 2π

∫ π
2

− π
2

uθ(θ)vθ(θ)Y 0
l (θ, ϕ) cos θ dθ

= 2π

∞∑

i=0

∞∑

j=0

ûiv̂j

√
(2i + 1)(2j + 1)(2l + 1)

(4π)3

∫ 1

−1

(1 − z2)P ′
i (z)P ′

j(z)Pl(z) dz.

The last integral can be represented by the symbols W i,j,l
0,0,0 defined in (2.6).

Indeed, (2.9) gives that
{(

1 − z2
)
[P ′

i (z)Pl(z) − Pi(z)P ′
l (z)]
]}′Pj = [l(l + 1) − i(i + 1)] Pi(z)Pj(z)Pl(z).

An integration by parts then gives:

[i(i + 1) − l(l + 1)]
∫ 1

−1

PiPjPl dz =
∫ 1

−1

(
1 − z2

)
(P ′

iPl − PiP
′
l ) P ′

j dz

= 2
∫ 1

−1

(
1 − z2

)
P ′

iP
′
jPl dz

− j(j + 1)
∫ 1

−1

PiPjPl dz.

Hence, we compute:

cl =
∞∑

i,j=0

ûiv̂j [i(i+1) + j(j+1)−l(l+1)]

√
(2i+1)(2j+1)(2l+1)

64π

∫ 1

−1

PiPjPl dz

=
∞∑

i,j=0

i(i+1) + j(j+1)−l(l+1)
2

√
(2i+1)(2j+1)(2l+1) W i,j,l

0,0,0 ûi v̂j .
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Note that W i,j,l
0,0,0 is nonzero only when |i − j| ≤ l ≤ i + j, so that we have:

−ij ≤ i(i + 1) + j(j + 1) − l(l + 1)
2

≤ ij.

Therefore, as in the proof of Theorem 2.4, we can split up the sum into two
summands and obtain the inequality:

(l + 1)s|cl| ≤
∞∑

i=0

∞∑

j=i

(2i + 1)3/2(2j + 1)s+1(l + 1)|W i,j,l
0,0,0||ûi||v̂j |

+
∞∑

j=0

∞∑

i=j

(2i + 1)s+1(2j + 1)3/2(l + 1)|W i,j,l
0,0,0||ûi||v̂j |.

The desired estimate then follows thanks to the same arguments as those in
the proof of Theorem 2.4. �

3. Series solution for the linearized problem

In this section, we collect the results on the linearized problem (1.9)–(1.10),
which will be instrumental for the proof of our main theorem in Sect. 4.

In the spherical system of coordinates, we can compute that

d =
sin θ

r2
and ∇u · ∇v = ur vr +

uθ vθ

r2
+

uϕ vϕ

r2 cos2 θ
.

Thus, problem (1.9)–(1.10) reads as

1
r2

(r2vr)r +
1

r2 cos θ
(cos θ vθ)θ +

1
r2 cos2 θ

vϕϕ = 0

for r ≥ 1, −π/2 ≤ θ ≤ π/2, −π ≤ ϕ < π, (3.1a)

−2 sin θ vr + cos θ vθ =
1
2

f for r = 1, −π/2 ≤ θ ≤ π/2, −π ≤ ϕ < π,

(3.1b)
v → 0 uniformly in − π/2 ≤ θ ≤ π/2, −π ≤ ϕ < π as r → ∞, (3.1c)
v = h for r = 1, θ = 0, −π ≤ ϕ < π. (3.1d)

The main result of this section is the following.

Theorem 3.1. (Unique existence and fractional Sobolev estimates). Suppose
that f ∈ Hs(S), with fϕ ∈ Hs−1/2(S), and h ∈ Hs+3/4(E) for some s > 1.
Then (3.1) has a unique classical solution v ∈ C2(Ω) ∩ C1(Ω). Furthermore,
the solution satisfies v|S ∈ Hs+1(S) and

‖v‖Hs+1(S) ≤ C
(‖f‖Hs(S) + ‖fϕ‖Hs−1/2(S) + ‖h‖Hs+3/4(E)

)
, (3.2)

where C > 0 is a constant independent of f and h.
In particular, if f ∈ Hs

ax(S) and h is a constant, then v|S ∈ Hs+1
ax (S) and

‖v‖Hs+1(S) ≤ C
(‖f‖Hs(S) + |h|) .

The proof of Theorem 3.1 is given in Sect. 3.2.
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3.1. Formal derivation of a series solution

We start by formally deriving a representation formula of a solution v of prob-
lem (3.1) (computations here will be verified in Proposition 3.7 below). The
formula is given by

v(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

(bm
l + cm

l )r−l−1Y m
l (θ, ϕ), (3.3)

where bm
l and cm

l are defined as follows. We set

βm
l =

√
(l − |m|)(l + |m|)
(2l − 1)(2l + 1)

,

γm
l = − (l + 1)βm

l

3(l + 2)βm
l+1

= − l + 1
3(l + 2)

√
(2l + 3)(l − |m|)(l + |m|)

(2l − 1)(l + 1 − |m|)(l + 1 + |m|)
for m = 0,±1, . . . , l = |m|, |m| + 1, . . . ,

and put

Γm
0 = 1, Γm

k =
k∏

j=1

γm
|m|+2j−1 for m = 0,±1, . . . , k = 1, 2, . . . .

For f ∈ L2(S) and h ∈ L2(E), we write

am
l =

1
6(l + 2)βm

l+1

f̂m
l , ãm =

ĥm −
∞∑

k=0

bm
|m|+2kαm

|m|+2kP
|m|
|m|+2k(0)

∞∑

k=0

Γm
k αm

|m|+2kP
|m|
|m|+2k(0)

(note that the denominator in the definition of ãm is nonzero due to the in-
equality (3.8) of Lemma 3.3 below). bm

l is then defined by the recurrence
relation

bm
|m|−1 = bm

|m| = 0 for m = 0,±1, . . . ,

bm
l+1 = γm

l bm
l−1 + am

l for m = 0,±1, . . . , l = |m|, |m| + 1, . . . ,

and cm
l is given by

cm
|m|+2k−1 = 0, cm

|m|+2k = Γm
k ãm for m = 0,±1, . . . , k = 0, 1, . . . .

Let us derive (3.3). Let v̂m
l (r) denote the Fourier-Laplace coefficients of

v(r, ·, ·), that is,

v̂m
l (r) = 〈v(r, ·, ·), Y m

l 〉L2(S) =
∫ π

−π

∫ π
2

− π
2

v(r, θ, ϕ)Y m
l (θ, ϕ) cos θ dθdϕ.

For abbreviation, we write v̂m
l instead of v̂m

l (1) and, for convenience, we set
v̂m

l = 0 if l < |m|. First, we observe that v has the form

v(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

v̂m
l r−l−1Y m

l (θ, ϕ). (3.4)
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This follows from (3.1a) and (3.1c). Indeed, multiplying (3.1a) by Y m
l , inte-

grating over S and using the fact that −ΔSY m
l = l(l+1)Y m

l , we see that v̂m
l (r)

satisfies
d2v̂m

l

dr2
(r) +

2
r

dv̂m
l

dr
(r) − l(l + 1)

r2
v̂m

l (r) = 0 for r > 1.

This together with the condition (3.1c) gives v̂m
l (r) = v̂m

l r−l−1, and hence we
obtain (3.4).

Next, we derive a recurrence relation for v̂m
l from (3.1b). It is known that

the following recurrence relations hold (see [3, (15.88)] for the first equality
and [3, (15.88), (15.89), (15.92)] for the second equality):

zP
|m|
l (z) =

l − |m| + 1
2l + 1

P
|m|
l+1(z) +

l + |m|
2l + 1

P
|m|
l−1(z),

(
1 − z2

) dP
|m|
l

dz
(z) = − l(l − |m| + 1)

2l + 1
P

|m|
l+1(z) +

(l + 1)(l + |m|)
2l + 1

P
|m|
l−1(z).

Hence we have that

sin θ Y m
l = βm

l+1Y
m
l+1 + βm

l Y m
l−1,

cos θ
∂Y m

l

∂θ
= −lβm

l+1Y
m
l+1 + (l + 1)βm

l Y m
l−1.

Here, Y m
l = 0 if l < |m|. From these identities, we see that

〈sin θ vr, Y
m
l 〉L2(S) =

∫ π

−π

∫ π
2

− π
2

vr(r, θ, ϕ) sin θ Y m
l (θ, ϕ) cos θ dθdϕ

=
d

dr

(
βm

l+1v̂
m
l+1(r) + βm

l v̂m
l−1(r)

)

= −(l + 2)βm
l+1v̂

m
l+1r

−l−3 − lβm
l v̂m

l−1r
−l−1,

and

〈cos θ vθ, Y
m
l 〉L2(S)

=
∫ π

−π

∫ π
2

− π
2

vθ(r, θ, ϕ)Y m
l (θ, ϕ) cos2 θ dθdϕ

=
∫ π

−π

∫ π
2

− π
2

v(r, θ, ϕ)

(

cos θ
∂Y m

l

∂θ
(θ, ϕ) − 2 sin θY m

l (θ, ϕ)

)

cos θ dθdϕ

= (l + 2)βm
l+1v̂

m
l+1r

−l−2 − (l − 1)βm
l v̂m

l−1r
−l,

where we used integration by parts. Thus, multiplying (3.1b) by Y m
l and in-

tegrating over S, we find the recurrence relation

v̂m
l+1 = γm

l v̂m
l−1 + am

l for m = 0,±1, . . . , l = |m|, |m| + 1, . . . .

Finally, we consider the condition (3.1d). Interchanging the sum in (3.4),
we have that

v(1, θ, ϕ) =
∞∑

m=−∞
v̂m(θ)eimϕ, where v̂m(θ) =

∞∑

l=|m|
v̂m

l αm
l Pm

l (sin θ).
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Hence, by (3.1d), we deduce that

ĥm = v̂m(0) =
∞∑

l=|m|
v̂m

l αm
l Pm

l (0). (3.5)

The recurrence relations for bm
l and v̂m

l show that dm
l = v̂m

l − bm
l satisfies

dm
|m|−1 = 0, dm

|m| = v̂m
|m| for m = 0,±1, . . . ,

dm
l+1 = γm

l dm
l−1 for m = 0,±1, . . . , l = |m|, |m| + 1, . . . ,

and therefore dm
|m|+2k−1 = 0 and dm

|m|+2k = Γm
k v̂ m

|m|. Plugging v̂m
l = bm

l + dm
l

into (3.5) and using the fact that P
|m|
l (0) = 0 if l−|m| is odd (see [3, (15.96)]),

we find that

ĥm =
∞∑

k=0

bm
|m|+2kαm

|m|+2kP
|m|
|m|+2k(0) + v̂m

|m|

∞∑

k=0

Γm
k αm

|m|+2kP
|m|
|m|+2k(0).

This gives dm
l = cm

l , and thus we obtain (3.3).

Remark 3.2. Suppose that f and h are independent of ϕ, that is, f̂m
l = ĥm = 0

if m �= 0. Then, by definition, we see that bm
l = cm

l = 0 unless m = 0. This
shows that the function v defined by (3.3) is also independent of ϕ.

3.2. Proof of Theorem 3.1

We divide the proof of Theorem 3.1 into a sequence of lemmas. First we show
some estimates to be mainly used in deriving (3.2).

Lemma 3.3. The inequalities

c
4

√
|m| + 2k + 1

2k + 1

≤ (−1)
|m|−m

2 +kαm
|m|+2kP

|m|
|m|+2k(0) ≤ C

4

√
|m| + 2k + 1

2k + 1
, (3.6)

c 4

√
|m| + 1

(2k + 1)(|m| + 2k + 1)
≤ (−3)kΓm

k ≤ C 4

√
|m| + 1

(2k + 1)(|m| + 2k + 1)
,

(3.7)

c 4
√

|m| + 1 ≤
∣∣∣∣∣

∞∑

k=0

Γm
k αm

|m|+2kP
|m|
|m|+2k(0)

∣∣∣∣∣
≤ C 4
√

|m| + 1 (3.8)

hold with some positive constants c and C.

Proof. It is known (see [3, (15.96)]) that

P
|m|
|m|+2k(0) = (−1)|m|+k (2|m| + 2k − 1)!!

(2k)!!
,
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which gives:

(−1)
|m|−m

2 +kαm
|m|+2kP

|m|
|m|+2k(0)

=

√
(2k)!

(2k)!!
(2|m| + 2k + 1)!!
√

(2|m| + 2k + 1)!

√
2|m| + 4k + 1

4π(2|m| + 2k + 1)
.

Also, by definition, we have that

(−3)kΓm
k =

√
2|m| + 4k + 1

2|m| + 1

k∏

j=1

|m| + 2j

|m| + 2j + 1

√
2j − 1

2j

2|m| + 2j − 1
2|m| + 2j

=
(|m|+1)!! (|m|+2k)!!
|m|!! (|m|+2k+1)!!

√
2|m|+4k+1

2|m|+1

×
√

(2k−1)!!
(2k)!!

(2|m|)!!
(2|m|−1)!!

(2|m|+2k−1)!!
(2|m|+2k)!!

.

Therefore (3.6) and (3.7) follow from Lemma A.1 and some simple estimates.
The inequality (3.8) is derived easily by (3.6) and (3.7). �

Next, we derive an estimate of the Hs(S)-norm of the formal solution
(3.3). For a ∈ R, we write a+ = max{a, 0}.

Lemma 3.4. (Fractional Sobolev estimates for v). Suppose that f ∈ Hs(S),
fϕ ∈ H(s−1/2)+(S) and h ∈ Hs+3/4(E) for some s ≥ 0. Then the function v
defined by (3.3) satisfies v|S ∈ Hs+1(S) and

‖v‖Hs+1(S) ≤ C
(
‖f‖Hs(S) + ‖fϕ‖

H(s−1/2)+ (S)
+ ‖h‖Hs+3/4(E)

)
(3.9)

for some constant C > 0 independent of f and h.

Proof. Throughout the proof, c and C denote generic positive constants de-
pending only on s, which may change from formula to formula.

Notice that, since (Y m
l )ϕ = imY m

l , we have that (̂fϕ)
m

l = imf̂m
l , and

hence

‖fϕ‖2
Hs(S) =

∞∑

l=0

l∑

m=−l

m2(l + 1)2s|f̂m
l |2. (3.10)

Next, we write v|S as

v|S = v1 + v2, v1 =
∞∑

l=0

l∑

m=−l

bm
l Y m

l , v2 =
∞∑

l=0

l∑

m=−l

cm
l Y m

l ,

and estimate the norms of v1 and v2 separately. We first consider v1. It is
elementary to show that |γm

l | ≤ 2/3, and hence |bm
l+1| ≤ 2|bm

l−1|/3 + |am
l |.

Thus, applying Lemma A.2 with pk = |bm
|m|+2k|, qk = |am

|m|+2k+1|, σ = 2/3,
τ1 = 2(s + 1), τ2 = 0, and χ = |m| gives:

∞∑

k=0

(|m| + 2k + 1)2(s+1)
∣
∣∣bm

|m|+2k

∣
∣∣
2

≤ C
∞∑

k=0

(|m| + 2k + 1)2(s+1)
∣
∣∣am

|m|+2k+1

∣
∣∣
2

.



NoDEA Backus problem near the dipole Page 19 of 29    21 

We use Lemma A.2 again with pk = |bm
|m|+2k−1| and qk = |am

|m|+2k|, and
combine the resulting inequality with the above inequality to obtain that

∞∑

l=|m|
(l + 1)2(s+1)|bm

l |2 ≤ C

∞∑

l=|m|
(l + 1)2(s+1)|am

l |2.

Since

(l + 1)2(s+1)|am
l |2 ≤ (l + 1)2(s+1)

(l + 1 − |m|)(l + 1 + |m|) |f̂m
l |2

= (l + 1)2s|f̂m
l |2 +

m2(l + 1)2s

(l + 1 − |m|)(l + 1 + |m|) |f̂m
l |2

≤ (l + 1)2s|f̂m
l |2 + m2(l + 1)(2s−1)+ |f̂m

l |2,
we find

∞∑

l=|m|
(l + 1)2(s+1)|bm

l |2 ≤ C

∞∑

l=|m|
(l + 1)2s|f̂m

l |2 + C

∞∑

l=|m|
m2(l + 1)(2s−1)+ |f̂m

l |2.

By taking the sum over m and applying (3.10), we conclude that

‖v1‖Hs+1(S) ≤ C
(
‖f‖Hs(S) + ‖fϕ‖

H(s−1/2)+ (S)

)
. (3.11)

In order to examine v2, we estimate ãm. We see from (3.6) and the
Cauchy-Schwarz inequality that

∣∣∣∣
∣

∞∑

k=0

bm
|m|+2kαm

|m|+2kP
|m|
|m|+2k(0)

∣∣∣∣
∣

≤ C
∞∑

k=0

4

√
|m| + 2k + 1

2k + 1

∣∣
∣bm

|m|+2k

∣∣
∣

≤ C

√√√√
∞∑

k=0

1
(2k + 1)3/2

√√√√
∞∑

k=0

(2k + 1)
√

|m| + 2k + 1
∣∣∣bm

|m|+2k

∣∣∣
2

.

Applying Lemma A.2 with pk = |bm
|m|+2k|, qk = |am

|m|+2k+1|, σ = 2/3, τ1 = 1/2,
τ2 = 1, and χ = |m| yields that

∞∑

l=0

(2k+1)
√

|m|+2k+1
∣∣
∣bm

|m|+2k

∣∣
∣
2

≤ C
∞∑

k=0

(2k + 1)
√

|m| + 2k + 1
∣∣
∣am

|m|+2k+1

∣∣
∣
2

≤ C

∞∑

l=|m|

√
l + 1 (l + 1 − |m|)|am

l |2

≤ C

∞∑

l=|m|

1√
l + 1

|f̂m
l |2.
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Hence
∣∣∣∣∣

∞∑

k=0

bm
|m|+2kαm

|m|+2kP
|m|
|m|+2k(0)

∣∣∣∣∣

2

≤ C

∞∑

l=|m|

1
(l + 1)1/2

|f̂m
l |2.

From this and (3.8), we obtain that

|ãm|2 ≤ C
√|m| + 1

⎡

⎣|ĥm|2 +
∞∑

l=|m|

1√
l + 1

|f̂m
l |2
⎤

⎦ . (3.12)

Now, we are ready to estimate v2. Note that

‖v2‖2
Hs+1(S) =

∞∑

l=0

l∑

m=−l

(l + 1)2(s+1)|cm
l |2

=
∞∑

m=−∞

[ ∞∑

k=0

(|m| + 2k + 1)2(s+1)(Γm
k )2
]

|ãm|2.

By (3.7) and the fact that |m| + 1 ≤ |m| + 2k + 1 ≤ (|m| + 1)(2k + 1), we have
∞∑

k=0

(|m| + 2k + 1)2(s+1)(Γm
k )2 ≤ C

∞∑

k=0

[(|m| + 1)(2k + 1)]2(s+1)

32k

≤ C(|m| + 1)2(s+1).

This, together with (3.12), gives

‖v2‖2
Hs+1(S) ≤ C

∞∑

m=−∞
(|m| + 1)2s+ 3

2 |ĥm|2

+C

∞∑

m=−∞

∞∑

l=|m|

(|m| + 1)2s+3/2

√
l + 1

|f̂m
l |2.

Since

(|m| + 1)2s+ 3
2 ≤ 2(m2 + 1)(l + 1)2s− 1

2 ≤ 2m2(l + 1)(2s−1)++ 1
2 + 2(l + 1)2s+ 1

2 ,

we deduce that

‖v2‖2
Hs+1(S) ≤ C

∞∑

m=−∞
(|m|+1)2s+ 3

2 |ĥm|2

+ C

∞∑

m=−∞

∞∑

l=|m|

[
m2(l+1)(2s−1)+ + (l+1)2s

]
|f̂m

l |2

= C
(
‖h‖Hs+3/4(E) + ‖fϕ‖

H(s−1/2)+ (S)
+ ‖f‖Hs(S)

)
.

Combining this and (3.11), we obtain (3.9). Thus the proof is completed. �

In the next lemma we check that, under the assumptions of Theorem 3.1,
the function v given by (3.3) is indeed a classical solution of (3.1).
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Lemma 3.5. (Regularity of v). Suppose that f ∈ Hs(S), fϕ ∈ Hs−1/2(S) and
h ∈ Hs+3/4(E) for some s > 1, and let v be defined by (3.3). Then v belongs
to C2(Ω) ∩ C1(Ω) and satisfies (3.1) in the classical sense.

Proof. We know that the Fourier-Laplace coefficients v̂m
l of v|S is given by

v̂m
l = bm

l + cm
l . From (2.2) and the Cauchy-Schwarz inequality, we have that
∞∑

l=0

l∑

m=−l

|v̂m
l r−l−1Y m

l (θ, ϕ)|

≤ r−1
∞∑

l=0

l∑

m=−l

|v̂m
l Y m

l (θ, ϕ)|

≤ r−1‖v‖Hs+1(S)

√√√√
∞∑

l=0

l∑

m=−l

(l + 1)−2(s+1)|Y m
l (θ, ϕ)|2

≤ r−1‖v‖Hs+1(S)

√√√
√ 1

2π

∞∑

l=0

(l + 1)−1−2s. (3.13)

Lemma 3.4 and the fact that s > 0 show that the right-hand side is bounded
by a constant independent of (r, θ, ϕ). Hence the series on the left-hand side
converges uniformly on Ω. Since it is well-known that a uniform limit of a
sequence of harmonic functions is smooth and harmonic, we deduce that v is
of class C2 in Ω and satisfies (3.1a). In addition, from (3.13), we see at once
that (3.1c) is satisfied.

Next, we show that v ∈ C1(Ω) and that (3.1b) and (3.1d) hold. It suffices
to show that the series

∞∑

l=0

l∑

m=−l

(l + 1)v̂m
l r−l−2Y m

l (θ, ϕ)

(

=
∞∑

l=0

l∑

m=−l

∂

∂r

(
v̂m

l r−l−2Y m
l (θ, ϕ)

)
)

,

∞∑

l=0

l∑

m=−l

v̂m
l r−l−1 ∂Y m

l

∂θ
(θ, ϕ),

∞∑

l=0

l∑

m=−l

v̂m
l r−l−1 1

cos θ

∂Y m
l

∂ϕ
(θ, ϕ)

(3.14)

are uniformly convergent on Ω. A computation similar to that in the derivation
of (3.13) gives

∞∑

l=0

l∑

m=−l

|(l + 1)v̂m
l r−l−2Y m

l (θ, ϕ)| ≤ ‖v‖Hs+1(S)

√√√
√ 1

2π

∞∑

l=0

(l + 1)1−2s.

Since the right-hand side is finite if s > 1, we deduce that the first series
of (3.14) converges uniformly. For the second and third series, we use the
identities

l∑

m=−l

∣∣∣
∣
∂Y m

l

∂θ
(θ, ϕ)

∣∣∣
∣

2

=
l∑

m=−l

1
cos2 θ

∣∣∣
∣
∂Y m

l

∂ϕ
(θ, ϕ)

∣∣∣
∣

2

=
l(l + 1)(2l + 1)

8π
,
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which are derived by operating ∂2/∂θ1∂θ2 or ∂2/∂ϕ1∂ϕ2 to the equality (2.1)
and then taking (θ1, ϕ1) = (θ2, ϕ2) = (θ, ϕ). From these identities and the
Cauchy-Schwarz inequality, we have that

∞∑

l=0

l∑

m=−l

∣∣
∣∣v̂

m
l r−l−1 ∂Y m

l

∂θ
(θ, ϕ)

∣∣
∣∣+

∞∑

l=0

l∑

m=−l

∣∣
∣∣v̂

m
l r−l−1 1

cos θ

∂Y m
l

∂ϕ
(θ, ϕ)

∣∣
∣∣

≤ ‖v‖Hs+1(S)

√√√√
∞∑

l=0

l∑

m=−l

(l + 1)−2(s+1)

∣∣∣
∣
∂Y m

l

∂θ
(θ, ϕ)

∣∣∣
∣

2

+ |v‖Hs+1(S)

√√√√
∞∑

l=0

l∑

m=−l

(l + 1)−2(s+1)
1

cos2 θ

∣∣
∣∣
∂Y m

l

∂ϕ
(θ, ϕ)

∣∣
∣∣

2

≤ ‖v‖Hs+1(S)

√√√
√ 1

π

∞∑

l=0

(l + 1)1−2s.

This shows that the second and third series of (3.14) are uniformly convergent,
and thus the assertion follows. �

Finally, we prove the uniqueness of a solution of (3.1).

Lemma 3.6. Let v1, v2 ∈ C2(Ω) ∩ C1(Ω) satisfy (3.1). Then v1 = v2 on Ω.

Proof. Although the lemma can be shown in the same way as [10, Theorem],
we give a proof for readers’ convenience.

We know that the function w = v1 − v2 satisfies

Δw = 0 in Ω, ∇d · ∇w = 0 on S, w → 0 as |x| → ∞, w = 0 on E.

(3.15)

We show that w ≤ 0 on Ω. On the contrary, suppose that w is positive some-
where. Then, we can take a point x0 ∈ Ω such that w(x0) = supΩ w > 0, since
w decays at infinity. By the last condition of (3.15), we have either x0 ∈ Ω or
x0 ∈ S \ E. Assume x0 ∈ Ω. Then, since w is harmonic in Ω and vanishes on
E, we see from the strong maximum principle that w(x0) = 0, a contradiction.
Assume x0 ∈ S \ E. In this case, we note that the tangential derivative of w
on S vanishes at x0. From (1.8) and the second condition of (3.15), it follows
that

∂w

∂ν

∣
∣∣∣
x=x0

=
1

2x3
(∇d · ∇w − τ · ∇w)

∣
∣∣∣
x=x0

= 0.

Hence the Hopf lemma and the last condition of (3.15) give w(x0) = 0, which
is impossible. Consequently w is nonpositive everywhere. The fact that w ≥ 0
can be shown in the same way, and therefore we obtain w = 0. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. The unique existence of a solution of (3.1) follows from
Lemmas 3.5 and 3.6 . The inequality (3.2) is a direct consequence of Lemma 3.4.
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From Remark 3.2, we see that the solution v satisfies v|S ∈ Hs+1
ax (S) if f ∈

Hs
ax(S) and h is a constant. Therefore the proof is completed. �

3.3. Validity of the formula (3.3)

We have proved in Theorem 3.1 that any classical solution of (3.1) is given
by the formula (3.3), provided that f and h are in certain Sobolev spaces. At
the end of this section, we prove that this is still true without assuming extra
regularity conditions on f and h.

Proposition 3.7. Any solution v ∈ C2(Ω)∩C1(Ω) of (3.1) is of the form (3.3).

Proof. Most of computations in Sect. 3.1 are valid, since the assumption v ∈
C2(Ω) ∩ C1(Ω) implies that v̂m

l (r) ∈ C2((1,∞)) ∩ C1([1,∞)), f ∈ C(S) and
h ∈ C1(E). The only point where we have to verify is (3.5). In order to ensure
(3.5), we need to show that the equality (3.1) holds in L2(E) for θ = 0. For
this purpose, we use the inequality (see [11, Corollary 1])

∣∣P |m|
l (z)

∣∣ ≤ 4

√
64

π3(2l + 1)
√

1 − z2

√
(l + |m|)!
(l − |m|)! ,

which gives

∣∣αm
l P

|m|
l (sin θ)

∣∣ ≤ 4

√
4(2l + 1)
π5 cos θ

.

From this and the Cauchy-Schwarz inequality, we have that

|v̂m(θ)|2 ≤
√

8
π5 cos θ

⎛

⎝
∞∑

l=|m|

4
√

l + 1|v̂m
l |
⎞

⎠

2

≤
√

8
π5 cos θ

[ ∞∑

l=0

1
(l + 1)3/2

]⎡

⎣
∞∑

l=|m|
(l + 1)2|v̂m

l |2
⎤

⎦ .

Since Proposition 2.2 and the assumption v|S ∈ C1(S) show that
∞∑

m=−∞

∞∑

l=|m|
(l + 1)2|v̂m

l |2 = ‖v‖H1(S) < ∞,

we see from the Weierstrass M-test that the series
∑∞

m=−∞ |v̂m(θ)|2 converges
locally uniformly in θ ∈ (−π/2, π/2). This means that the right-hand side of
(3.1) is convergent in L2(E) locally uniformly in θ ∈ (−π/2, π/2). Since we
know that (3.1) holds in L2(S), we conclude that (3.1) is valid in L2(E) for
every θ ∈ (−π/2, π/2). Thus (3.5) is verified, and the proof is completed. �

4. Axially symmetric solutions of Backus problem

In this section, we finally prove the existence of axially symmetric solutions of
Backus problem (1.1) near the dipole.
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Remark 4.1. Notice that, since |∇d(x)| =
√

1 + 3x2
3 for x ∈ S, then |∇d| ∈

Hs(S) for any s, thanks to Proposition 2.2, being as |∇d| ∈ C∞(S).

Lemma 4.2. Let u, v be harmonic functions in R
N \ B, continuous up to the

boundary S, and such that u, v → 0 as |x| → ∞. If u, v ∈ Hs+1
ax (S) for s > 1.

Then, |∇u|2, |∇v|2 ∈ Hs
ax(S) and

‖|∇u|2‖Hs(S) ≤ C‖u‖2
Hs+1(S),

‖|∇u|2 − |∇v|2‖Hs(S) ≤ C
(‖u‖Hs+1(S) + ‖v‖Hs+1(S)

) ‖u − v‖Hs+1(S),

for some constant C > 0 independent of u, v.

Proof. The assertion follows from the decompositions

|∇u|2 = u2
r + u2

θ,

|∇u|2 − |∇v|2 = (u + v)r(u − v)r + (u + v)θ(u − v)θ,

Lemmas 2.6 and 2.7 . �

We are now in position to prove our main result.

Proof of Theorem 1.1. In the proof C denotes a generic positive constant de-
pending only on s. We define operators T and Ψ by

T[f ] = |∇v|2, Ψ[f ] =
1
2
(
g2 − |∇d|2 − T[f ]

)
,

where v is a unique solution of (3.1). Due to Theorem 3.1, Remark 4.1 and
Lemma 4.2, we see that T and Ψ are defined as mappings from Hs

ax(S) to
Hs

ax(S). Put δ = ‖g − |∇d|‖Hs(S) + |h| and define a closed subset Xδ of Hs(S)
by

Xδ = {f ∈ Hs
ax(S) : ‖f‖Hs(S) ≤ Mδ}.

We shall prove that Ψ has a unique fixed point, by showing that it is a con-
traction mapping on Xδ, for some number M > 0.

To this end, we observe that Theorems 2.4 and 3.1, Remark 4.1 and
Lemma 4.2 give that

‖g2 − |∇d|2‖Hs(S) ≤ C‖g + |∇d|‖Hs(S)‖g − |∇d|‖Hs(S) ≤ C(δ + 1) δ,

‖T[f ]‖Hs(S) ≤ C‖v‖2
Hs+1(S) ≤ C(‖f‖2

Hs(S) + |h0|2) ≤ C(M2 + 1) δ2,

for any f ∈ Xδ. Hence, the inequality

‖Ψ[f ]‖Hs(S) ≤ C1

[
(M2 + 1)δ + 1

]
δ (4.1)

holds for some other positive constant C1 only depending on s.
Next, let fj ∈ Xδ and let vj be a unique solution of (3.1) for f = fj

(j = 1, 2). We see from Theorem 3.1 and Lemma 4.2 that

‖T[f1] − T[f2]‖Hs(S) ≤ C
(‖v1‖Hs+1(S) + ‖v2‖Hs+1(S)

) ‖v1 − v2‖Hs+1(S)

≤ C(‖f‖Hs(S) + |h0|)‖f1 − f2‖Hs(S)

≤ C(M + 1) δ ‖f1 − f2‖Hs(S).
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Therefore we have

‖Ψ[f1] − Ψ[f2]‖Hs(S) =
1
2
‖T[f1] − T[f2]‖Hs(S) ≤ C2 (M + 1) δ ‖f1 − f2‖Hs(S),

(4.2)

for a constant C2 > 0, which only depends on s.
Now, in order to show that Ψ is a contraction mapping on Xδ, we must

choose the positive parameters M and δ such that

C1

[
(M2 + 1)δ + 1

]
< M,

so that Ψ(Xδ) ⊂ Xδ thanks to (4.1), and

C2 (M + 1) δ < 1,

from (4.2). The last two inequalities are certainly satisfied if we take M = 2C1

and

δ < min
{

1
1 + 4C2

1

,
1

C2 (1 + 2C1)

}
.

Thus, by the Banach fixed-point theorem, Ψ has a unique fixed point f∗
in Xδ. Therefore, we can easily see that the solution v∗ of (3.1) with f = f∗
is such that u = d + v∗ satisfies (1.1) with u = h on E. Thus, the proof is
completed. �

Remark 4.3. The constant h0 can be chosen as the average on E of a function
h. Thus, loosely speaking, Theorem 1.1 can be interpreted from a geophysics
point of view as: for any field intensity of dipolar character given on the Earth’s
surface, there exists a unique geomagnetic potential outside the Earth, with
that field intensity on its surface, and with given average potential on the
equator.
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Appendix A. Technical lemmas

In this appendix, we collect the following simple lemmas for numerical se-
quences. In what follows, we use the standard notations for the double facto-
rial:

n!! =
[n/2]−1∏

j=0

(n − 2j),

where [ · ] is the greatest integer function.

Lemma A.1. There are constants c > 0 and C > 0 such that

c 4
√

n + 1 ≤ n!!√
n!

≤ C 4
√

n + 1,

c
√

n + 1 ≤ (n + 1)!!
n!!

≤ C
√

n + 1,

for all n = 0, 1, · · · .
Proof. By Stirling’s formula, we can check that

lim
n→∞

(2n − 1)!!
4
√

2n
√

(2n − 1)!
= 4

√
2
π

, lim
n→∞

(2n)!!
4
√

2n + 1
√

(2n)!
= 4

√
π

2
,

lim
n→∞

(2n − 1)!!√
2n − 1(2n − 2)!!

=

√
2
π

, lim
n→∞

(2n)!!√
2n (2n − 1)!!

=
√

π

2
.

The desired inequalities then ensue. �

Lemma A.2. Let the sequences of non-negative real numbers {pk}k=0,1,... and
{qk}k=0,1,... satisfy the recurrence relations:

p0 = 0, pk ≤ σpk−1 + qk−1 for k = 1, 2, . . . ,

for some constant 0 ≤ σ < 1. Then, for any non-negative numbers τ1, τ2 and
χ, there exists a positive constant C depending only on σ, τ1 and τ2 such that

∞∑

k=0

(χ + 2k + 1)τ1(2k + 1)τ2p2
k ≤ C

∞∑

k=0

(χ + 2k + 1)τ1(2k + 1)τ2q2
k.

Proof. Iterating the recurrence relations gives that

pk ≤
k−1∑

j=0

σk−j−1qj for k = 1, 2, . . . ,

http://creativecommons.org/licenses/by/4.0/
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so that by the Cauchy-Schwarz inequality we infer that

p2
k ≤
⎛

⎝
k−1∑

j=0

σk−j−1qj

⎞

⎠

2

≤
⎛

⎝
k−1∑

j=0

σk−j−1

⎞

⎠

⎛

⎝
k−1∑

j=0

σk−j−1q2
j

⎞

⎠

≤ 1
1 − σ

k−1∑

j=0

σk−j−1q2
j for any k = 1, 2, · · · .

Next, we compute that
∞∑

k=0

(χ + 2k + 1)τ1(2k + 1)τ2p2
k

≤ 1
1 − σ

∞∑

k=1

k−1∑

j=0

(χ + 2k + 1)τ1(2k + 1)τ2σk−j−1q2
j

=
1

1 − σ

∞∑

j=0

∞∑

i=0

(χ + 2j + 2i + 3)τ1(2j + 2i + 3)τ2σiq2
j ,

after switching the two sums in the second line and then setting k = i + j.
Finally, we apply the simple algebraic inequality a+ b+3 ≤ (a+1)(b+3) (for
a, b ≥ 0), and hence infer:

∞∑

k=0

(χ + 2k + 1)τ1(2k + 1)τ2p2
k

≤ 1
1 − σ

[ ∞∑

i=0

(2i + 3)τ1+τ2σi

][ ∞∑

j=0

(χ + 2j + 1)τ1(2j + 1)τ2q2
j

]

.

Thus, the lemma follows. �
We conclude this appendix by recalling a well-known result for the stan-

dard space lp (p ≥ 1) of numerical sequences {an}n=0,1,... such that
∞∑

n=0

|an|p < ∞.

Lemma A.3. Let p = {pi}i=0,1,... ∈ l1, q = {qj}j=0,1,... ∈ l2 and let the 3-
indices sequence {ri,j,k}i,j,k=0,1,... satisfy

M := max

⎧
⎨

⎩
sup
i,k

∞∑

j=0

|ri,j,k|, sup
i,j

∞∑

k=0

|ri,j,k|
⎫
⎬

⎭
< ∞.

Then, the sequence s = {sk}∞
k=0 defined by

sk =
∞∑

i,j=0

ri,j,k piqj

belongs to l2 and satisfies

‖s‖l2 ≤ M‖p‖l1‖q‖l2 .
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Proof. The Cauchy-Schwarz inequality gives that

‖s‖2
l2 = 〈s, s〉l2 ≤

∞∑

k=0

∞∑

i,j=0

|ri,j,k piqjsk|

≤
∞∑

i=0

|pi|
√√√√

∞∑

j=0

∞∑

k=0

|ri,j,k||qj |2
√√√√

∞∑

k=0

∞∑

j=0

|ri,j,k||sk|2 ≤ M‖p‖l1‖q‖l2‖s‖l2 .

The claim then follows at once. �
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