
Nonperturbative effects and resurgence in Jackiw-Teitelboim gravity
at finite cutoff

Luca Griguolo*
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Dipartimento SMFI, Università di Parma and INFN Gruppo Collegato di Parma,
Viale G.P. Usberti 7/A, 43100 Parma, Italy

Domenico Seminara§
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We investigate the nonperturbative structure of Jackiw–Teitelboim gravity at finite cutoff, as given by its
proposed formulation in terms of a TT̄-deformed Schwarzian quantum mechanics. Our starting point is a
careful computation of the disk partition function to all orders in the perturbative expansion in the cutoff
parameter. We show that the perturbative series is asymptotic and that it admits a precise completion
exploiting the analytical properties of its Borel transform, as prescribed by resurgence theory. The final
result is then naturally interpreted in terms of the nonperturbative branch of the TT̄-deformed spectrum.
The finite-cutoff trumpet partition function is computed by applying the same strategy. In the second part of
the paper, we propose an extension of this formalism to arbitrary topologies, using the basic gluing rules of
the undeformed case. The Weil–Petersson integrations can be safely performed due to the nonperturbative
corrections and give results that are compatible with the flow equation associated with the TT̄ deformation.
We derive exact expressions for general topologies and show that these are captured by a suitable
deformation of the Eynard–Orantin topological recursion. Finally, we study the “slope” and “ramp”
regimes of the spectral form factor as functions of the cutoff parameter.
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I. INTRODUCTION

A crucial problem in quantum gravity is the precise
definition of physical observables. Asymptotic quantities,
such as the S-matrix in Minkowski space or boundary
correlators in anti–de Sitter (AdS), are pretty well under-
stood. Still, it seems essential to extend the set of computable
quantities, especially when black holes and cosmological
aspects are involved. A direct attempt to obtain more “local”

observables would consist of defining quantum gravity in a
box, imposing suitable boundary conditions on the metric at
some finite spatial extent. In the AdS=CFT correspondence,
this program should imply the extension of the holographic
dictionary to gravitational theories defined on bounded
regions of spacetime.
Unexpectedly, the renewed interest in a class of solvable

irrelevant deformations of two-dimensional conformal field
theories (CFTs), known as the TT̄ deformations [1–3], has
suggested an innovative strategy to address the above issue, at
least in low dimensions. It was proposed in [4] (see also [5])
that TT̄-deformed CFTs could realize the holographic dual of
AdS3 gravities on a finite patch. The crucial element in favor
of this conjectured duality is that the conformal Ward identity
of the relevant CFT translates, in the presence of the
deformation, into a second-order functional differential
equation that closely resembles the Wheeler–DeWitt equa-
tion of AdS3 gravity. This observation suggests a possible
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identification between the wave functionals of gravitational
theories in dþ 1 dimensions and partition functions of
d-dimensional nontrivially deformed quantum field theories.
This correspondence has been checked in various ways [6–8],
but the consistency of the proposal is still under scrutiny. An
unsatisfying feature of this duality is that for large enough
energies, the spectrum of the deformed boundary theory
becomes complex, implying a potential breakdown of
unitarity for the bulk theory. A different and maybe related
problem is to better understand the flow induced by the TT̄
deformation from the holographic point of view, as coming
from integrating out a portion of the asymptotic geometry.
While there have been attempts to generalize the con-

jecture to higher dimensions [9], a simpler context, where we
can accurately study the status of the proposal, is to consider
the finite cutoff version of Jackiw–Teitelboim (JT) gravity
[10,11]. In its modern formulation [12], the JT path integral
itself is defined as a limit procedure from a cutoff theory:
after imposing Dirichlet boundary conditions at some finite
distance, the proper boundary length and the boundary value
for the dilaton are scaled appropriately in the large area limit
to preserve the boundary degrees of freedom. In so doing, JT
gravity reduces to a solvable one-dimensional theory, the
Schwarzian quantum mechanics [13–15]. The natural
expectation is that at finite cutoff the relevant dual formu-
lation is provided by a TT̄-deformed version of such a
theory [16,17].
The partition function of JT gravity restricted on a finite

AdS2 subregion has been computed in [18], using two
different approaches based on either canonical or path-
integral quantization.1 The results of both methods are
mutually consistent and are directly related to the TT̄
deformation of the Schwarzian theory. An important issue
addressed in [18] concerns the spectrum of the deformed
theory, which complexifies above a certain energy threshold.
As a consequence, the naïve integration prescription does not
generate a well-defined partition function. A consistent
partition function can be obtained instead by adding con-
tributions originating from a nonperturbative branch, but the
related spectral density becomes not positive definite, calling
for a physical interpretation. Moreover, in the analysis of
[18], the nonperturbative completion seems to be accom-
panied by certain ambiguities that the authors cannot wholly
fix in their approach. Last but not least, the construction of
partition functions for arbitrary topologies configurations,
relevant for the nonperturbative definition of JT gravity itself
[20,21], is left unexplored.
In this paper, we reexamine JT gravity at finite cutoff,

starting from its definition in terms of the TT̄-deformed
Schwarzian quantum mechanics. We begin by studying
the TT̄ flow purely at a perturbative level and compute the
entire perturbative series associated with the deformation

parameter, both for the disk and the trumpet partition
functions. We find that the resulting series has a vanishing
radius of convergence and, as such, requires an appro-
priate nonperturbative completion. We then exploit the
standard resurgence technique [22,23], using the proper-
ties of the lateral Borel resummation, to take into account
nonperturbative contributions. This procedure unambig-
uously brings into the game the nonperturbative configu-
rations associated with the new energy branch and
prescribes the correct integration contour. For the disk
topology, we obtain the partition function in terms of a
modified Bessel function of the first type, an expression
already considered in [18]. The energy spectrum naturally
spans a finite interval; however, the associated spectral
density is not positive definite. The trumpet partition
function experiences an even more dramatic modification:
the nonperturbative corrections completely smooth out
naïve singularity associated with the fact that the cutoff
boundary could overlap with the geodesic boundary.
Relying on this observation, in the second part of the

paper, we explore the construction of the deformed
version of the partition functions for arbitrary topologies,
using the same gluing procedure derived for the unde-
formed theory [20]. We remark that without the non-
perturbative corrections, the relevant gluing integral
would be ill-defined. The gluing procedure results in a
consistent deformation of the standard Eynard–Orantin
recursion relations [24] associated with the original
theory: the deformed spectral curve and the higher-genus
correlation functions are fully compatible with the flow
equation of the TT̄ deformation, and we find a precise
mapping that encodes the flow. We stress that the
nonpositivity of the input spectral density does not spoil
the consistency of the recursion relations, although its
actual physical interpretation is still missing in our case.
An essential step in our construction is the explicit
evaluation of the cylinder partition function: it is closely
related to the kernel necessary to engineer the Eynard–
Orantin topological recursion formula [24] and is respon-
sible for the “ramp” growth in the spectral form factor
[20,25,26]. We derive in this last perspective its late-time
behavior and observe the transition between the slope and
the ramp phase at finite cutoff. Quite interestingly, the
change of regime does not seem to depend on the value
of the finite cutoff.
The paper is structured as follows. We start in Sec. II by

briefly reviewing some generalities on JT gravity and its
TT̄ deformation. Subsequently, in Sec. III, we compute the
perturbative series arising from the deformation and its
completion using the theory of resurgence, both for the disk
and the trumpet. Section IV is devoted to the spectral
properties of the deformed theory: the relevant partition
functions are seen arising from a compact spectrum and
computed with a suitable integration contour. The spectral
density is derived and found to be not positive defined. In

1See also the interesting alternative investigation [19], relying
on a completely different method.
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Sec. V we construct the partition functions for arbitrary
topologies, exploiting the gluing prescription of the unde-
formed theory. The consistency of this construction with
the TT̄ flow equation is discussed in Sec. VI. The extension
of the Eynard–Orantin recursion relations in the deformed
case is presented in Sec. VII, opening the possibility to
interpret holographically the theory at finite cutoff. Finally,
in Sec. VIII, we study the deformed spectral form factor,
deriving the behavior of the “slope” and “ramp” regimes.
Section IX presents our conclusion and the possible
extensions of this work. A couple of technical appendices
complete the manuscript.

II. BASICS OF JT GRAVITY AND ITS TT̄
DEFORMATION

JT gravity is a two-dimensional theory of gravity whose
dynamical fields are the metric and a dilaton field ϕ. The
theory, placed on a generic orientable two-dimensional
manifold Σ, is governed by the action

I ¼ −S0IEH þ IJT; ð1Þ

IJT ¼ −
1

2

Z
Σ
dx2

ffiffiffi
g

p
ϕðRþ 2Þ −

Z
∂Σ

dx
ffiffiffi
h

p
ϕðκ − 1Þ; ð2Þ

where h is the induced metric on the boundary ∂Σ and κ the
extrinsic curvature. The two-dimensional Einstein–Hilbert
action

IEH ¼ 1

4π

Z
Σ
dx2

ffiffiffi
g

p
Rþ 1

2π

Z
∂Σ

dx
ffiffiffi
h

p
κ ð3Þ

is a purely topological term that computes the Euler
characteristic χðΣÞ.
In the present work, we consider the Euclidean theory with

Dirichlet boundary conditions imposed on the fields: the n
connected components of the boundary ∂Σ have assigned
lengths β1=ϵ;…; βn=ϵ, while the dilaton is taken to have
constant value ϕb ¼ ϕr=ϵ along each boundary component.
Such a theory has been extensively studied in the double
scaling limit ϵ → 0, where ϵ plays the role of a “holographic
renormalization” parameter. The dilaton field acts as a
Lagrange multiplier enforcing the constraint R ¼ −2 and
thus fixing the bulk geometry. Once integrated out, the
nontopological part of the action reduces to a boundary term.
The only topology supporting classical solutions is the

disk (see Fig. 1), where the single boundary cuts out some
inner region of Euclidean AdS2 with length β=ϵ. In the ϵ →
0 limit, the theory reduces to the boundary dynamics of a
single reparametrization mode θðξÞ with Schwarzian
action

ISchw ¼ ϕr

2

Z
β

0

dξ

�
θ002ðξÞ
θ02ðξÞ − θ02ðξÞ

�
: ð4Þ

The associated quantum theory is one-loop exact, and its
partition function can be written as the Boltzmann integral

Zd
Schw ¼

Z
∞

0

dE
ϕr sinhð2π

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p Þ
2π2

e−βE: ð5Þ

A topology that plays a crucial role in constructing
results for generic manifolds is the trumpet (see Fig. 1),
which differs from the disk by the presence of a geodesic
boundary of length b. The additional boundary can be taken
into account by considering a disk with a hyperbolic defect
in the bulk [27]. This choice leads to a Boltzmann integral
with a modified density of states,

Zt
Schw ¼

Z
∞

0

dE
ϕr cosðb

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p Þ
π

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p e−βE: ð6Þ

In [16] a certain integral deformation of the Schwarzian
theory was considered, which is the one-dimensional
analog of the TT̄ deformation. It introduces a shift of
the energy levels of the theory which is exactly solvable in
terms of a parameter t. The shift is controlled by the
following differential equation for the Hamiltonian H,

2∂tH ¼ ϕrH2

1 − ϕrtH
; ð7Þ

which governs the flow of the theory under the deforma-
tion.2 The solutions form two branches

H�ðtÞ ¼
1

ϕrt
ð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ϕrtE
p

Þ; ð8Þ

FIG. 1. The disk (left) and trumpet (right) topologies. The
dashed lines represent the full AdS2 geometry, while the actual
manifolds have wiggly boundary of length β=ϵ. The trumpet has
an additional boundary, running along a geodesic of length b.

2The TT̄ deformation parameter t is defined is such a way to
match the expansion parameter ϕ−2

b that we will use for the bulk
theory. To match the conventions of [16–18], one should set
t ¼ 4λ=ϕr.
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however, only HþðtÞ reproduces the expected undeformed
limit for t → 0. The deformed partition function3 is defined
by introducing the level shift in (5) and (6),

Zd
TT̄ ¼

Z
∞

0

dE
ϕr sinhð2π

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p Þ
2π2

e−
β
ϕrt

ð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ϕrtE

p
Þ; ð9Þ

Zt
TT̄ ¼

Z
∞

0

dE
ϕr cosðb

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p Þ
π

ffiffiffiffiffiffiffiffiffiffiffi
2ϕrE

p e−
β
ϕrt

ð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ϕrtE

p
Þ: ð10Þ

It was then argued [18] that the deformed Schwarzian
theory is the holographic dual of JT gravity at finite cutoff,
establishing a correspondence between the TT̄ deformation
parameter t and the bulk gravity cutoff ϵ. For finite values
of the boundary length, as the boundary of Σ is pushed
away from the asymptotic boundary of AdS2 and into the
bulk, the boundary theory flows accordingly.

III. DISK AND TRUMPET

This section is devoted to studying both the disk and the
trumpet partition functions for the theory at finite cutoff.
At infinite cutoff, the ϵ parameter is introduced to take

the double-scaling limit where both the boundary length
and the value of the dilaton on the boundary diverge, while
their ratio u ¼ β=ϕr remains constant. In principle, when
considering the theory at finite cutoff, ϵ becomes redundant
since the theory should only depend on its bare parameters.
However, as mentioned in Sec. II, ϵ plays an important role,
as it parametrizes the deviation from the infinite cutoff limit
and is the analog of the deformation parameter t ¼ ϵ2=ϕ2

r in
the TT̄-deformed Schwarzian theory. Moreover, the start-
ing point of our analysis is to study the theory from the
point of view of its perturbative expansion in t. For this
reason, throughout most of the paper, we will find it
convenient to express the results in terms u and t.
With a simple change of variables, we can recast the disk

and the trumpet partition functions in (9) and (10) as

Zdðu; tÞ ¼ 1

2π2

Z
∞

0

ds s sinhð2πsÞ e−Iðu;t;sÞ; ð11Þ

Ztðu; b; tÞ ¼ 1

π

Z
∞

0

ds cosðbsÞ e−Iðu;t;sÞ; ð12Þ

where the t-deformed action reads

Iðu; t; sÞ ¼ u
t
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ts2

p
Þ: ð13Þ

For any t > 0, the part of the action (13) depending on s
becomes imaginary in the region s ∈ ð1= ffiffi

t
p

;þ∞Þ and the

integral diverges. Moreover, the expression above is ambigu-
ous as it is not clear a prioriwhich of the two branches of the
square root one should take when crossing the branch point
at s ¼ 1=

ffiffi
t

p
. As we will see in the following, these aspects

ultimately signal the presence of nonanalytic (namely
instantonlike) contributions in the parameter t, and care
should be taken in choosing the correct prescription to take
these into account and make sense of the integrals above.

A. Perturbative expansion

Despite the possible ambiguities in defining the integrals
(11) and (12), they can be used to yield well-defined
asymptotic series in t for the partition functions. This is
achieved by first expanding the exponential term as

e−Iðu;t;sÞ ¼ e−us
2=2

�
1þ

X∞
n¼1

Anðs; uÞtn
�
: ð14Þ

The coefficients An can be expressed in terms of general-
ized Laguerre polynomials,

Anðs; uÞ ¼ −
us2nþ2

22nþ1n
Lnþ1
n−1

�
us2

2

�
: ð15Þ

In Appendix A, we show in detail how the expression
above is derived. By integrating each term in the series, we
rewrite the partition functions as

Zdðu; tÞ ¼
X∞
n¼0

Zd
nðuÞtn; ð16Þ

Ztðu; b; tÞ ¼
X∞
n¼0

Zt
nðu; bÞtn: ð17Þ

The t0 terms come from taking the integral against the
undeformed action factorized in (14) and, as such, correctly
reproduce the known results computed in the t → 0
limit [20],

Zd
0ðuÞ ¼

u−3=2ffiffiffiffiffiffi
2π

p e2π
2=u; ð18Þ

Zt
0ðu; bÞ ¼

u−1=2ffiffiffiffiffiffi
2π

p e−b
2=2u: ð19Þ

For n > 1 we have the following expressions:

Zd
nðuÞ ¼

1

2π2

Z
∞

0

ds s sinhð2πsÞ e−us2=2Anðs; uÞ; ð20Þ

Zt
nðu; bÞ ¼

1

π

Z
∞

0

ds cosðbsÞ e−us2=2Anðs; uÞ: ð21Þ

For any n ∈ N, the above integrals are real and convergent.
By expanding in t, we have apparently cured the ambiguity

3The integrals (9) and (10) are actually ill-defined if the
integration region spans the entire positive line. In [18], it was
suggested to Wick-rotate the bare parameters of the theory to
make sense of these integrals. In the following, we shall choose a
different approach to address this issue.
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arising from the integration over s. We will see in a moment
where the subtlety is now hiding. We first need to perform
the integration. In order to deal with both integrals at once,
we compute

aj¼
Z

∞

0

dss2j e−us
2=2Anðs;uÞ

¼−
1

n!
2j−n−1=2u−j−n−1=2

�
1

2
−j

�
n−1

Γ
�
jþnþ3

2

�
; ð22Þ

where ðxÞn denotes the Pochhammer symbol. Then, we
simply use the Taylor expansion of s sinhð2πsÞ and
cosðbsÞ to obtain

Zd
nðuÞ ¼

1

2π2
X∞
j¼0

ð2πÞ2jþ1ajþ1

ð2jþ 1Þ!

¼ Zd
0ðuÞ

ð2nÞ!
n!

ð−2uÞ−nL3=2−n
2n

�
−
2π2

u

�
; ð23Þ

and

Zt
nðu; bÞ ¼

1

π

X∞
j¼0

ð−b2Þjaj
ð2jÞ!

¼ Zt
0ðuÞ

ð2nÞ!
n!

ð−2uÞ−nL1=2−n
2n

�
b2

2u

�
: ð24Þ

Conveniently, the two expressions above capture also the
n ¼ 0 cases in (18) and (19). In both cases, the perturbative
coefficients are the undeformed partition functions times a
polynomial in 1=u of degree 3n. Finally, we must remark
that these two series expansions can also be directly
obtained by solving the flow equation perturbatively in t

(see Sec. VI for some details) without making any reference
to the integral representations (11) and (12).

B. Resurgence

The coefficients in (23) and (24) grow asymptotically as n!.
This means that the perturbative expansions in (16) and (17)
should be understood as formal power series, since both have
vanishing radius of convergence. It is possible to associate a
finite result to these series by performing a Borel resummation.
The Borel sum of a series

ΦðzÞ ¼
X
n

ωnzn ð25Þ

is defined as follows. First, one should take the Borel
transform of Φ,

B½Φ�ðζÞ ¼
X
n

ωn
ζn

n!
: ð26Þ

If the coefficients ωn grow as n!, B½Φ� has finite radius of
convergence, thus defining a germ of an analytic function at
ζ ¼ 0. Then, the directional Borel resummation of Φ along
a chosen direction θ on the complex ζ-plane is defined as

SθΦðzÞ ¼ 1

z

Z
eiθ∞

0

dζe−ζ=zB½Φ�ðζÞ; ð27Þ

where the integral, taken along the ray with arg ζ ¼ θ, is also
known as a directional Laplace transform. The directional
resummation SθΦðzÞ defines an analytic function in the wedge
Reðe−iθzÞ > 0 that, upon expansion in z, reproduces (25).
In our case, rather than directly computing the Borel

transform of (16) and (17), it is convenient to first recast
(23) and (24) as

Zd
nðuÞ ¼

X∞
m¼0

ð−2uÞ−n u
−3=2ffiffiffiffiffiffi
2π

p
�
2π2

u

�
m Γðmþ nþ 5

2
Þ

n!m!Γðm − nþ 5
2
Þ ; ð28Þ

Zt
nðu; bÞ ¼

X∞
m¼0

ð−2uÞ−n u
−1=2ffiffiffiffiffiffi
2π

p
�
−
b2

2u

�
m Γðmþ nþ 3

2
Þ

n!m!Γðm − nþ 3
2
Þ ; ð29Þ

and then perform the Borel transform on each term in the sum over m.4 When summing over n, each series has finite radius
of convergence,

B½Zd�ðu; ζÞ ¼ u−3=2ffiffiffiffiffiffi
2π

p
X∞
m¼0

1

m!

�
2π2

u

�
m

2F1

�
−m −

3

2
; mþ 5

2
; 1;

ζ

2u

�
; ð30Þ

B½Zt�ðu; b; ζÞ ¼ u−1=2ffiffiffiffiffiffi
2π

p
X∞
m¼0

1

m!

�
−
b2

2u

�
m

2F1

�
−m −

1

2
; mþ 3

2
; 1;

ζ

2u

�
: ð31Þ

4In fact, for fixed m, the modulus of the coefficient of the series in n behaves as ðn−1Þ!
πm!

when n approaches infinity.
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Now, in order to complete the Borel summation and
obtain an analytic expression for the formal series in (16)
and (17) one should proceed as in (27). However, the
hypergeometric functions appearing in the Borel trans-
forms (30) and (31) have branch cuts located on the positive
real axis in the range ζ ∈ ð2u;þ∞Þ. The branch cut
identifies a Stokes line at arg ζ ¼ 0, i.e., a singular direction
in the ζ plane. Namely, when taking a directional Laplace
transform at θ ¼ 0, one runs into an ambiguity since the
results obtained by approaching the Stokes line from above
and below differ.
In the theory of resurgence, Stokes lines are associated

with nonperturbative contributions, encoded by the disconti-
nuity ðSθþ⋆ − Sθ−⋆ ÞΦðzÞ in the directional Borel resummation
as the ray of angle θ crosses the Stokes line at θ⋆. The
directional Borel resummations approaching the Stokes lines
from both sides are usually referred to as lateral Borel
resummations. Because of the nonperturbative nature of the
discontinuity, both Sθþ⋆ ΦðzÞ and Sθ−⋆ΦðzÞ share the same
expansion in z, but crucially differ by instantonic contribu-
tions. In general, the correct nonperturbative completion of
ΦðzÞ is obtained by choosing some combination of the two.
If Φ is real and the Stokes line lies at θ⋆ ¼ 0, under some
general assumptions the correct real completion of ΦðzÞ is
given by the median resummation

SmedΦðzÞ ¼ 1

2
ðS0þ þ S0−ÞΦðzÞ: ð32Þ

Let us apply this to the case at hand. In Appendix B, we
provide details on how to compute Laplace transforms of
Gauss hypergeometric functions above and below the cut.
These, in turn, give us the lateral Borel resummations of
the disk and trumpet partition functions starting from the
expressions for their Borel transforms in (30) and (31),

S0�Z
dðu; tÞ ¼ e−

u
t

πu
ffiffi
t

p
X∞
m¼0

1

m!

�
2π2

u

�
m

×

�
πImþ2

�
u
t

�
�ð−1ÞmiKmþ2

�
u
t

��
;

S0�Z
tðu;b; tÞ ¼ e−

u
t

π
ffiffi
t

p
X∞
m¼0

1

m!

�
−
b2

2u

�
m

×
�
πImþ1

�
u
t

�
�ð−1ÞmiKmþ1

�
u
t

��
; ð33Þ

as depicted in Fig. 2. We see that the median resummation
mentioned above, indeed, cancels the imaginary terms in the
two lateral Borel resummations and gives the real disk and
trumpet partition functions

Zdðu; tÞ ¼ e−
u
t

u
ffiffi
t

p
X∞
m¼0

1

m!

�
2π2

u

�
m
Imþ2

�
u
t

�
; ð34Þ

Ztðu; b; tÞ ¼ e−
u
tffiffi
t

p
X∞
m¼0

1

m!

�
−
b2

2u

�
m
Imþ1

�
u
t

�
: ð35Þ

Both sums can be performed through theBesselmultiplication
theorem

X∞
k¼0

1

k!

�
zðλ2 − 1Þ

2

�
k

InþkðzÞ ¼ λ−nInðλzÞ; ð36Þ

to obtain

Zdðu; tÞ ¼ uffiffi
t

p e−u=t

u2 þ 4π2t
I2

�
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4π2t

p �
; ð37Þ

Ztðu; b; tÞ ¼ uffiffi
t

p e−u=tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − b2t

p I1

�
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − b2t

p �
: ð38Þ

Through resurgence, we have been able to unambiguously fix
the nonperturbative completions of both the disk and the
trumpet partition functions with just their perturbative expan-
sions at t ¼ 0 as inputs. These corrections naturally carry the
information of the nonperturbative branch H− of the TT̄
deformation in (8).

IV. THE SPECTRUM

The results for the disk and the trumpet partition functions
obtained in (37) and (38) through resurgence can be
reproduced by changing the prescription for the integration
contour in (11) and (12). At the level of the boundary theory,
this prescription induces a cutoff on the spectrum for any
finite value of t and gives rise to instantonic contributions
associated with a region in the spectrum where the density of
states becomes negative. The present section is dedicated to
discussing these aspects.

A. Integration contour

The action (13) has two branch points, located at s ¼
−1=

ffiffi
t

p
and s ¼ þ1=

ffiffi
t

p
. We can extend the definition of

Iðt; u; sÞ to the complex s-plane by placing a branch cut in
the interval s ∈ ð−1= ffiffi

t
p

;þ1=
ffiffi
t

p Þ. Then, we can replace the

FIG. 2. The lateral Borel resummations of Zd and Zt approach-
ing the Stokes line at θ ¼ 0 from above and below.
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original contour, running along the real axis, with an
integration contour S surrounding the branch as depicted
in Fig. 3.
Let us consider a generic integral

W ¼
Z
S
dsfðsÞe−Iðt;u;sÞ; ð39Þ

where f is some entire function. The integral is easily
computed in terms of the discontinuity of the action across
the branch cut,

W ¼ 2e−u=t
Z þ1=

ffiffi
t

p

−1=
ffiffi
t

p ds fðsÞ sinh
�
u
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ts2

p �

¼ 2e−u=tffiffi
t

p
Z

π

0

dθ sin θf

�
cos θffiffi

t
p

�
sinh

�
u
t
sin θ

�
; ð40Þ

where in the last step we introduced the change of variable
cos θ ¼ ffiffi

t
p

s. By replacing the hyperbolic sine with its
Taylor expansion, we find

W ¼
X∞
j¼0

�
u
t

�
2jþ1 2e−u=t

ð2jþ 1Þ! ffiffi
t

p

×
Z

π

0

dθ ðsin θÞ2jþ2f

�
cos θffiffi

t
p

�
: ð41Þ

Disk. The disk partition function is obtained by setting
fðsÞ ¼ s sinhð2πsÞ=ð4π2Þ. Actually, because the original
integral is even in s and the integration range is symmetric
about the origin, one can equivalently use fðsÞ ¼
s expð2πsÞ=ð4π2Þ, which gives

Zdðu; tÞ ¼
X∞
j¼0

�
u
t

�
2jþ1 e−u=t

2π2ð2jþ 1Þ!t

×
Z

π

0

dθ ðsin θÞ2jþ2 cos θ exp

�
2π cos θffiffi

t
p

�
: ð42Þ

The term

ðsin θÞ2jþ2 cos θ ¼ 1

2jþ 3

d
dθ

ðsin θÞ2jþ3 ð43Þ

can be used to integrate by parts and obtain

Zdðu; tÞ ¼
X∞
j¼0

�u
t

�
2jþ1 e−u=t

πð2jþ 1Þ!ð2jþ 3Þt3=2

×
Z

π

0

dθðsin θÞ2jþ4 exp

�
2π cos θffiffi

t
p

�
: ð44Þ

We perform the integration by using the integral representa-
tion of the modified Bessel function, that, for j ∈ Z, reads

IjðzÞ ¼
zj2jj!
ð2jÞ!π

Z
π

0

dθðsin θÞ2j expðz cos θÞ: ð45Þ

This gives

Zdðu; tÞ ¼ ue−
u
t

4π2t3=2
X∞
j¼0

1

j!

�
u2

4πt3=2

�
j

Ijþ2

�
2πffiffi
t

p
�
; ð46Þ

which, upon summation with (36), reproduces the result
computed in (37).
Trumpet. Likewise, the trumpet partition function is

recovered from W by setting fðsÞ ¼ cosðbsÞ=ð2πÞ,

Ztðu; b; tÞ ¼
X∞
j¼0

�
u
t

�
2jþ1 e−u=t

πð2jþ 1Þ! ffiffi
t

p

×
Z

π

0

dθðsin θÞ2jþ2 cos
�
b cos θffiffi

t
p

�
: ð47Þ

We use the integral representation

JjðzÞ ¼
zj2jj!
ð2jÞ!π

Z
π

0

dθðsin θÞ2j cosðz cos θÞ; ð48Þ

to find

Ztðu; b; tÞ ¼ ue−
u
t

bt

X∞
j¼0

1

j!

�
u2

2bt3=2

�
j

Jjþ1

�
bffiffi
t

p
�
: ð49Þ

Using the multiplication theorem

X∞
k¼0

1

k!

�
zð1 − λ2Þ

2

�
k

JnþkðzÞ ¼ λ−nJnðλzÞ; ð50Þ

we finally get

FIG. 3. The contour S surrounding the branch cut of the
integrands in (11) and (12).
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Ztðu; b; tÞ ¼ uffiffi
t

p e−u=tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2t − u2

p J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2t − u2

p

t

�
; ð51Þ

which agrees with (38), since InðxÞ ¼ i−nJnðixÞ.

B. The density of states

The prescription on the integration contour S translates
into a prescription for the integration over the spectrum of
the boundary theory. Changing the integration variable to
E ¼ s2 brings the disk partition function into the form

Zdðu; tÞ ¼
Z

1=t

0

dE
sinhð2π ffiffiffi

E
p Þ

4π2

× ðe−uð1−
ffiffiffiffiffiffiffi
1−tE

p Þ=t − e−uð1þ
ffiffiffiffiffiffiffi
1−tE

p Þ=tÞ: ð52Þ

The above differs from the naïve integral (9) associated
with the TT̄-deformed Schwarzian theory in two ways: the
integration range is now capped at E ¼ 1=t, and there is an
additional term of instantonic origin. The spectrum is
always real within the integration range, and in the t →
0 limit, one recovers the undeformed Schwarzian partition
function.
The deformed density of states ρðE; tÞ can be obtained as

follows. We split the exponential terms into two separate
integrals and apply on both an appropriate change of
variables to obtain integrals of the type

Z
dE ρðE; tÞ e−ϕruE; ð53Þ

where the density of states is weighted by a Boltzmann
factor with inverse temperature β ¼ ϕru. This amounts to
set

E¼−
1

ϕrt
ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
1− tE

p
−1Þ; E¼1

t
ð1−ð1−ϕrtEÞ2Þ: ð54Þ

The the two integrals combine nicely as

Zdðu; tÞ ¼
Z

2=ðϕrtÞ

0

dE ρðE; tÞ e−ϕruE; ð55Þ

where the t-deformed density of states is given by

ρðE; tÞ ¼ 1

4π2
sinh ð2π

ffiffiffiffiffiffiffiffiffiffi
EðEÞ

p
Þ dEðEÞ

dE

¼ ϕrð1 − tϕrEÞ
2π2

sinh ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕrEð2 − tϕrEÞ

p
Þ: ð56Þ

Here and in the following, whenever we Laplace-transform
from u to E, we adopt the widely used convention of setting
ϕr ¼ 1=2. With this choice, the density of states reads

ρðE; tÞ ¼ 1 − tE=2
4π2

sinh ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1 − tE=4Þ

p
Þ: ð57Þ

To interpret the integral as a conventional Laplace trans-
form we simply extend the integration range to the entire
real positive E axis and define ρðE; tÞ to have support on
the interval E ∈ ð0; 4=tÞ. At t ¼ 0, the above reproduces
the familiar Schwarzian density ρ ∝ sinhð2π ffiffiffiffi

E
p Þ growing

exponentially in
ffiffiffiffi
E

p
. At finite t, the result is qualitatively

rather different. In the “perturbative range” 0 < E < 2=t
the density is positive, but after an initial growth it
decreases and reaches a zero at E ¼ 2=t. In the “non-
perturbative range” 2=t < E < 4=t the density becomes
negative; the two ranges are related by the symmetry
property ρð4=t − E; tÞ ¼ −ρðE; tÞ and thus the integral
of ρðE; tÞ over the entire spectrum vanishes.

V. OTHER TOPOLOGIES

The disk partition function Zdðu; tÞ computed in the
previous sections is the partition function associated with a
manifold of genus zero whose boundary has a single
connected component of (rescaled) length u,

Z0;1ðu; tÞ ¼ Zdðu; tÞ: ð58Þ

In general, one can compute partition functions on orient-
able manifolds with arbitrary topology. These are classified
by the number n of connected components of the boundary,
and by the genus g. The resulting partition function, Zg;n

will depend on the lengths u1;…; un of the connected
boundaries.
In a theory of quantum gravity, the path integral receives

contributions from different spacetime topologies. Such a
property sometimes goes under the name of “third quanti-
zation.” This means that, for any given choice of n, the full
partition function should really be a sum over the Zg;n

obtained for any value of the genus g. Each term is weighted
by the topological (Einstein–Hilbert) action term that gives a
factor of ðeS0Þχ , where χ ¼ 2 − 2g − n is the Euler charac-
teristic. At fixed n the full partition function reads

Znðu1;…; un; tÞ ¼ eð2−nÞS0
X∞
g¼0

e−2gS0Zg;nðu1;…; un; tÞ:

ð59Þ

In [20], it was shown that the partition function Zg;n for a
generic choice of n and g can be obtained in terms of a
certain topological decomposition. Each boundary compo-
nent of length ui is associated with a trumpet Ztðui; bi; tÞ
that is glued to a bordered Riemann surface of genus g
through a common geodesic boundary of length bi. In
Fig. 5, we show the simple case of Z1;1. The gluing is
performed by taking an integral over the length bi of each
geodesic boundary,
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Zg;nðu1;…; un; tÞ

¼
Z

∞

0

db1b1…
Z

∞

0

dbnbnVg;nðb1;…; bnÞ

× Ztðu1; b1; tÞ…Ztðun; bn; tÞ: ð60Þ

The formula is written in terms of Vg;nðb1;…; bnÞ, the
Weil–Petersson volume of the moduli space of hyperbolic
Riemann surfaces of genus g with n geodesic boundaries of
lengths b1;…; bn. The Weil–Petersson volume can be
represented as an integral over the Deligne–Mumford
compactification M̄g;n of the moduli space of Riemann
surfaces of genus g and n marked points pi,

Vg;nðb1;…; bnÞ ¼
Z
M̄g;n

exp

�
ωþ 1

2

Xn
i¼1

ψ ib2i

�
; ð61Þ

where ω is the Weil–Petersson symplectic form and ψ i the
first Chern class of the line bundle whose fiber is the
cotangent space at pi. We refer the reader to [28] for an
introduction on the subject.
Besides the disk, the only other topology that represents

an exception to the formula above is given by the cylinder

Z0;2ðu1; u2; tÞ ¼
Z

∞

0

db bZtðu1; b; tÞZtðu2; b; tÞ; ð62Þ

which is obtained by directly gluing together two trumpets
along their geodesic boundary, as shown in Fig. 4.
In principle, it is not obvious why the gluing prescription

should still be valid at finite t. In fact, for any t > 0, there is a
portion of the integration range where the length b of the
geodesic boundary exceeds the length u=

ffiffi
t

p
of the Dirichlet

boundary of the same trumpet. However, as already noticed
in [18], the inclusion of nonperturbative terms had the effect
of making the trumpet partition function in (38) regular at
b ¼ u=

ffiffi
t

p
and real across the entire integration range, thus

making the integral well defined. Although we do not have
an ab initio derivation of (60) and (62) for finite t, we take
these formulas as prescriptions for the computation of
partition functions for any topology. We will show later
that the results they generate have remarkable properties.

A. Cylinder

We start our analysis of by considering the cylinder
Z0;2ðu1; u2; tÞ. The series representation in (49) turns out to
be particularly useful when dealing with integrals over b.
We plug that expression in (62) and use

Z
∞

0

db
bjþkþ1

Jjþ1

�
bffiffi
t

p
�
Jkþ1

�
bffiffi
t

p
�

¼ 1

2j!k!ðjþ kþ 1Þ
�

1

2
ffiffi
t

p
�

jþk
ð63Þ

to write

Z0;2ðu1; u2; tÞ ¼ 2u1u2e−ðu1þu2Þ=t
X∞
j¼0

X∞
k¼0

u2j1 u
2k
2

ðj!Þ2ðk!Þ2

×

�
1

4t2

�
jþkþ1 1

ðjþ kþ 1Þ : ð64Þ

To split the sums, we can use the trivial identity

�
1

4t2

�
jþkþ1 1

ðjþ kþ 1Þ ¼
Z

1=ð2tÞ2

0

dx xjþk ð65Þ

and perform the summations

X∞
j¼0

ðxu2Þj
ðj!Þ2 ¼ I0ð2

ffiffiffi
x

p
uÞ ð66Þ

to obtain

FIG. 5. The topological decomposition of a disk at genus one.
A trumpet is glued to genus-one Riemann surface along a
common geodesic boundary.

FIG. 4. The topological decomposition of the cylinder in terms
of two trumpets glued along their geodesic boundary.
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Z0;2ðu1; u2; tÞ ¼ 2u1u2e−ðu1þu2Þ=t

×
Z

1=ð2tÞ2

0

dxI0ð2
ffiffiffi
x

p
u1ÞI0ð2

ffiffiffi
x

p
u2Þ: ð67Þ

The last integral is easily evaluated and gives

Z0;2ðu1; u2; tÞ ¼
u1u2e−ðu1þu2Þ=t

tðu21 − u22Þ
�
u1I0

�
u2
t

�
I1

�
u1
t

�

− u2I0

�
u1
t

�
I1

�
u2
t

��
: ð68Þ

It is not immediate to see how this extends the result at
infinite cutoff, but performing an expansion at the first few
orders in t, one finds

Z0;2ðu1; u2; tÞ ¼
1

2π

ffiffiffiffiffi
u1

p ffiffiffiffiffi
u2

p
ðu1 þ u2Þ

þ 1

26π

1ffiffiffiffiffi
u1

p ffiffiffiffiffi
u2

p t

þ 9

256π

u1 þ u2
ð ffiffiffiffiffi

u1
p ffiffiffiffiffi

u2
p Þ3 t

2 þOðt3Þ; ð69Þ

which matches the t → 0 limit previously computed in [20].
However, a power expansion in t necessarily misses non-
perturbative contributions that, as we will discuss later,
constitute a crucial feature of the theory at finite cutoff.
From the cylinder partition function one can extract the

resolvent by taking a Laplace transform over both u1
and u2,

5

R0;2ðE1; E2; tÞ ¼
1

4

Z
∞

0

du1

Z
∞

0

du2Z0;2ðu1; u2; tÞ

× eu1E1=2þu2E2=2: ð71Þ

We assume E1; E2 < 0 and apply the identity

Z
∞

0

duue−αuI0ðβuÞ ¼
α

ðα2 − β2Þ3=2 ; ð72Þ

which holds for Reα > jReβj, to (67). This gives

R0;2ðE1; E2; tÞ ¼
1

2

Z
1=ð2tÞ2

0

dx
1=t − E1=2

½ð1=t − E1=2Þ2 − 4x�3=2
1=t − E2=2

½ð1=t − E2=2Þ2 − 4x�3=2

¼ t2ð1 − tE1=2Þð1 − tE2=2ÞðtE2
1=4þ tE2

2=4 − E1 − E2Þ
4½ð1 − tE1=2Þ2 − ð1 − tE2=2Þ2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E1ð1 − tE1=4Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E2ð1 − tE2=4Þ

p

−
t2½ð1 − tE1=2Þ2 þ ð1 − tE2=2Þ2�
4½ð1 − tE1=2Þ2 − ð1 − tE2=2Þ2�2

: ð73Þ

When continuing the resolvent to arbitrary complex values of E1 and E2, the square roots in (73) induce branch cuts at
E1 ∈ ð0; 4=tÞ and E2 ∈ ð0; 4=tÞ. The double-discontinuity of the resolvent across the real E1 and E2 lines, appropriately
normalized by a −1=ð4π2Þ factor, gives the two-point correlator of the density ρðE; tÞ,

ρ0;2ðE1; E2; tÞ ¼
t2ð1 − tE1=2Þð1 − tE2=2ÞðtE2

1=4þ tE2
2=4 − E1 − E2Þ

4π2½ð1 − tE1=2Þ2 − ð1 − tE2=2Þ2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1E2ð1 − tE1=4Þð1 − tE2=4Þ

p : ð74Þ

Interestingly, its support coincides with the one com-
puted for the one-point function of ρðE; tÞ in (57), obtained
from the disk partition function. In fact, the above expres-
sion is valid within the ranges where the branch cuts
extend, i.e., for E1 ∈ ð0; 4=tÞ or E2 ∈ ð0; 4=tÞ. Outside
those ranges, ρ0;2 vanishes, since the double discontinuity
of the resolvent R0;2 is zero.

B. The general case

The Weil–Petersson volume Vg;n is a polynomial of
degree 3g − 3þ n in the squared lengths b21;…; b2n of the
geodesic boundaries. By linearity, (60) can be computed by
splitting the contribution of each monomial as a product of
integrals where a single Ztðu; b; tÞ is integrated against
some even power of b. It is sufficient to use

Z̃mðu; tÞ ¼
Z

∞

0

db bZtðu; b; tÞb2m

¼ m!ffiffi
t

p 2mumþ1e−u=tIm

�
u
t

�
ð75Þ

to read off Zg;n from the coefficients in the polynomial
Vg;n. Moreover, we can use the representation of Vg;n

5Here, we make use of the trivial change of variables

−
Z

∞

0

dβe−βEfðβÞ ¼ −ϕr

Z
∞

0

due−ϕruEfðϕruÞ; ð70Þ

together with the convention, stated at the end of Sec. IV B,
according to which ϕr ¼ 1=2.
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in (61) as an integral over M̄g;n together with (75) to
recast (60) as6

Zg;nðu1;…; un; tÞ

¼ 1

tn=2

Z
M̄g;n

eω
Yn
i¼1

uie−ui=t
X∞
j¼0

ðψ iuiÞjIj
�
ui
t

�
: ð77Þ

A similar approach can be used to compute generic
resolvents Rg;nðE1;…; En; tÞ. Instead of taking an integral
transform of the result Zg;nðu1;…; un; tÞ, it is possible to
first apply the transformation to a single trumpet. This
generates a term, for E < 0,

TðE;b;tÞ¼−
1

2

Z
∞

0

duZtðu;b;tÞeuE=2

¼−
ffiffi
t

p
2

ffiffiffi
π

p
X∞
k¼1

Γðkþ1=2Þ
ð1− tE=2Þ2k

�
2

ffiffi
t

p
b

�
k
Jk

�
bffiffi
t

p
�

ð78Þ

which can be glued to different topologies as in (60) to
compute directly the resolvent for any g and n,

Rg;nðE1;…; En; tÞ

¼
Z

∞

0

db1b1…
Z

∞

0

dbnbn

× Vg;nðb1;…; bnÞTðE1; b1; tÞ…TðEn; bn; tÞ: ð79Þ

Again, because of linearity, one simply needs to use

R̃mðE;tÞ ¼
Z

∞

0

dbbTðE;b; tÞb2m

¼−
ð2mþ 1Þ!ð1− tE=2Þ

2ð−Eð1− tE=4ÞÞmþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eð1− tE=4Þp ; ð80Þ

to immediately obtain the result for Rg;n for any given Vg;n.
To compute arbitrary correlators of ρðE; tÞ one can take the
discontinuity

ρ̃mðE; tÞ ¼
R̃mðE − i0; tÞ − R̃mðEþ i0; tÞ

2πi

¼ ð−1Þmþ1
ð2mþ 1Þ!ð1 − tE=2Þ

2πðEð1 − tE=4ÞÞmþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1 − tE=4Þp

× θðEÞθð4 − tEÞ: ð81Þ

Examples. As an example of the above setup, we
compute the partition function for the disk at genus
one (see Fig. 5). The relevant Weil–Petersson volume
is given by

V1;1ðbÞ ¼
1

48
ð4π2 þ b2Þ: ð82Þ

By replacing each power of b with the appropriate term in
(75), we find

Z1;1ðu; tÞ ¼
1

48
ð4π2Z̃0ðu; tÞ þ Z̃2ðu; tÞÞ

¼ ue−u=t

24
ffiffi
t

p
�
2π2I0

�
u
t

�
þ uI1

�
u
t

��
: ð83Þ

When computing results at higher g and n, which involve
higher powers of b, one can recursively apply the identity

Inþ1ðzÞ ¼ In−1ðzÞ −
2n
z
InðzÞ; ð84Þ

to rewrite the result solely in terms of modified Bessel
functions of order zero and one. For instance, from

V2;1ðbÞ ¼
1

2211840
ð4π2 þ b2Þð12π2 þ b2Þ

× ð6960π4 þ 384π2b2 þ 5b4Þ; ð85Þ

V1;2ðb1; b2Þ ¼
1

192
ð4π2 þ b21 þ b22Þð12π2 þ b21 þ b22Þ;

ð86Þ

V0;3ðb1; b2; b3Þ ¼ 1; ð87Þ

we can compute the disk at genus two,

Z2;1ðu; tÞ ¼
ue−u=t

5760
ffiffi
t

p ð870π8 þ 278π4u2 − 232π2tu2

þ 120t2u2 þ 5u4ÞI0
�
u
t

�

þ u2e−u=t

2880
ffiffi
t

p ð338π6 − 278π4tþ 232π2t2 − 120t3

þ 29π2u2 − 20tu2ÞI1
�
u
t

�
; ð88Þ

the cylinder at genus one,

6The infinite sum can be rewritten in terms of Lommel
functions of two variables as

X∞
j¼0

ðψ iuiÞjIj
�
ui
t

�
¼ V0

�
i

tψ i
;
iui
t

�
− iV1

�
i

tψ i
;
iui
t

�
: ð76Þ
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Z1;2ðu1; u2; tÞ ¼
u1u2
24t

e−ðu1þu2Þ=t
�
u1ð2π2 − tÞI1

�
u1
t

�
I0

�
u2
t

�
þ ðu1 ↔ u2Þ

þ ðu21 þ u22 þ 6π4ÞI0
�
u1
t

�
I0

�
u2
t

�
þ u1u2I1

�
u1
t

�
I1

�
u2
t

��
; ð89Þ

and the topology with three boundaries at genus zero

Z0;3ðu1; u2; u3; tÞ ¼
u1u2u3
t3=2

e−ðu1þu2þu3Þ=tI0

�
u1
t

�
I0

�
u2
t

�
I0

�
u3
t

�
: ð90Þ

VI. FLOW EQUATION

The shift in the spectrum of the TT̄-deformed theory as a
function of the deformation parameter is controlled by (7).
The equation imposes a constraint at the level of the
thermal partition function, in the form of a partial differ-
ential equation in both the deformation parameter t and the
(rescaled) temperature u. In fact, the differential operator

Fðu; tÞ ¼ u
∂2

∂u2 þ 2t
∂2

∂u∂t − 2

�
t
u
− 1

� ∂
∂t ð91Þ

has the property that, for any density of states ϱðEÞ,

Fðu; tÞ
Z

∞

0

dEϱðEÞe−uð1−
ffiffiffiffiffiffiffi
1−tE

p Þ=t ¼ 0: ð92Þ

This induces a recursion relation

2uðnþ 1ÞZnþ1ðuÞ ¼ 2nZnðuÞ − 2nuZ0
nðuÞ − u2Z00

nðuÞ
ð93Þ

for both the disk and the trumpet coefficients in the
t-expansion introduced in Sec. III A. A simple check on
the explicit forms derived in (23) and (24) shows that,
indeed, the above holds true.
With the introduction of nonperturbative corrections,

however, the integral of the type in (92) should be modified
according to the prescriptions discussed in Sec. IV B.
Interestingly, the modified integral is still a solution of
the flow equation,

Fðu; tÞ
Z

1=t

0

dEϱðEÞðe−uð1−
ffiffiffiffiffiffiffi
1−tE

p Þ=t

− e−uð1þ
ffiffiffiffiffiffiffi
1−tE

p Þ=tÞ ¼ 0: ð94Þ

As a consequence, both (37) and (38) are solutions of the
flow equation, as one can explicitly check. The non-
perturbative contributions to both the disk and the trumpet
partition function correct the perturbative series with the
addition of a transseries term of the form

Zinst:ðu; tÞ ¼ e−2u=t
X∞
n¼0

Z�
nðuÞtn: ð95Þ

The presence of the exponential associated with the
instantonic saddle has the effect of modifying the action
of the flow equation operator by flipping the sign of u,

Fðu; tÞZinst:ðu; tÞ ¼ −e−2u=tFð−u; tÞ
X∞
n¼0

Z�
nðuÞ: ð96Þ

As a consequence, the coefficients Z�
nðuÞ of the expansion

about the instantonic saddle obey the modified equation

2uðnþ 1ÞZ�
nþ1ðuÞ ¼ −2nZ�

nðuÞ þ 2nuZ�
n
0ðuÞ

þ u2Z�
n
00ðuÞ: ð97Þ

The fact that the trumpet partition function is annihilated
by Fðu; tÞ has important implications at g > 0. In fact, let us
consider the gluing formula (60) for n ¼ 1. Since the
dependence on u and t comes exclusively from the single
Ztðu; b; tÞ inside the integral, we can immediately conclude
that the disk partition function is a solution of the flow
equation, not just at genus zero, but at any genus g:

Fðu; tÞZg;1ðu; tÞ ¼ 0: ð98Þ

A similar conclusion can be drawn for other topologies,
i.e., when n > 1, but it requires a modification in the way
we assign boundary conditions. So far, we considered a
specific way of assigning Dirichlet boundary conditions.
Specifically, we imposed on each boundary the same value
ϕb ¼ 1=

ffiffi
t

p
for the dilaton field. In principle, nothing

prevents us from computing higher topologies by gluing
trumpets associated with different values of t. The gener-
alization for the gluing formulas presented in Sec. V is
actually straightforward, and so is the generalization of the
result written in terms of the building blocks (75). This is
effectively a refinement of the results considered so far,
since for any given topology, the generalized partition
function Zg;n is now a function of n different deformation
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parameters t1;…; tn. At the level of the flow equation, to
each boundary is associated a differential operator Fðui; tiÞ
which annihilates the partition function:

Fðui; tiÞZg;nðu1;…; un; t1;…; tnÞ ¼ 0: ð99Þ

For the purpose of the present paper, we will not consider
further this refinement, and we will only deal with the case
where the dilaton field takes the same value on each
disconnected component of the boundary.

VII. TOPOLOGICAL RECURSION

In Sec. V, we have given a prescription to obtain the
resolvents Rg;n for any topology. At t ¼ 0, these functions
have a natural interpretation in terms of correlators com-
puted in a certain dual double-scaled Hermitian matrix
integral [20]. The correlators enjoy Schwinger–Dyson-like
identities, known as loop equations, that allow to recur-
sively compute results at all orders in the large-N expansion
[29]. This procedure goes under the name of topological
recursion, and the set of data initiating it can be captured by
a single mathematical object: the spectral curve [30].
Thanks to the simplicity of the undeformed trumpet

partition function (19), at t ¼ 0 the resolvents Rg;n are,

essentially, the Laplace transforms of the Weil–Petersson
volumes Vg;n. In fact, the undeformed topological recursion
[20] is given precisely by the recursion formula of Eynard
and Orantin [24], which is the Laplace-transformed version
of the recursion formula derived by Mirzakhani [31].
Remarkably, we find that the deformation induced by t

represents a consistent deformation of the spectral curve.
By this, we mean that the resolvents Rg;n computed through
the Weil–Petersson gluing, as described in Sec. V, can be
reproduced by the topological recursion associated with a t-
deformation of the Eynard–Orantin spectral curve captur-
ing the t ¼ 0 case.
To define the spectral curve we introduce the map

EðzÞ ¼ −z2; ð100Þ

which, in turn, determines the functions

W0;1ðz1; tÞ ¼ iπρðEðz1Þ; tÞE0ðz1Þ

¼ z1ð2þ tz21Þ
4π

sin

�
πz1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tz21

q �
; ð101Þ

and

W0;2ðz1; z2; tÞ ¼
�
R0;2ðEðz1Þ; Eðz2Þ; tÞ −

1

ðEðz1Þ − Eðz2ÞÞ2
�
E0ðz1ÞE0ðz2Þ

¼ 4ð2þ tz21Þð2þ tz22Þ
ðz21 − z22Þ2½4þ tðz21 þ z22Þ�2

�
2z1z2 þ

4ðz21 þ z22Þ þ tðz41 þ z42Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tz21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ tz22

p
�
: ð102Þ

Notice how both functions are meromorphic in some neighborhood of the origin.
For any choice of g and n other than the two cases above, the topological recursion computes theWg;n functions through

the recursion formula7

Wg;nðz1;…; zn; tÞ ¼ Res
z→0

Kðz1; z; tÞ
�
Wg−1;nþ1ðz;−z; z2;…; zn; tÞ þ

X�
h1þh2¼g
I1∪I2¼J

Wh1;1þjI1jðz; I1; tÞWh2;1þjI2jð−z; I2; tÞ
�
; ð103Þ

where J ¼ fz2;…; zng, and the symbol � over the sum indicates that one should exclude terms where ðh1; I1Þ ¼ ðg; JÞ or
ðh2; I2Þ ¼ ðg; JÞ. The recursion kernel K that appears in (103) is defined as

Kðz1; z; tÞ ¼
1

2½W0;1ðz; tÞ þW0;1ð−z; tÞ�
Z

z

−z
dz2W0;2ðz1; z2; tÞ

¼ ð2þ tz21Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tz2

p

ð2þ tz2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tz21

p 4π cscðπz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ tz2

p
Þ

ðz21 − z2Þ½4þ tðz21 þ z2Þ� : ð104Þ

7There are more general formulations of the topological recursion. The formulas in (103) and (104) are valid for a map E such that dE
vanishes at z ¼ 0, where its local Galois involution is σ∶z ↦ −z.
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The functions Wg;n computed by the recursion are
closely related to the resolvents Rg;n. Specifically, one
can obtain the former by simply acting on the latter with the
change of variables induced by EðzÞ,

Wg;nðz1;…; zn; tÞ ¼ Rg;nðEðz1Þ;…; EðznÞ; tÞ
× E0ðz1Þ…E0ðznÞ: ð105Þ

As such, Wg;n can be computed, from a bulk perspective,
through the gluing (60). In the spirit of Sec. V, we define

W̃mðz; tÞ ¼ R̃mðE; tÞE0ðzÞ

¼ ð2mþ 1Þ! 2þ tz2

ð4þ tz2Þmþ3=2

�
2

z

�
2mþ2

ð106Þ

which provides the contribution associated with a single
trumpet integrated against b2m.
To prove that the topological recursion (103) indeed

matches the results obtained in Sec. V, wewill show that the
Wg;nðz1;…; zn; tÞ are connected to the undeformed ones,
Wg;nðz1;…; zn; 0Þ, through a change of variables.8 A
simple way to show this is to consider an alternative choice
for the map E. In particular, we consider a map with an
explicit dependence on t,

ÊðζÞ ¼ −
2

t
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tζ2

p
− 1Þ; ð108Þ

This choice has two important properties. The first is that it
correctly reproduces the undeformed map when t vanishes,
i.e., limt→0 ÊðζÞ ¼ EðζÞ. The second is that it eliminates
any dependence from t in W0;1 and W0;2, which then
necessarily agree with the undeformed ones. Specifically,

Ŵ0;1ðζ1Þ ¼
ζ1 sinð2πζ1Þ

2π

¼ W0;1ðζ1; 0Þ; ð109Þ

Ŵ0;2ðζ1; ζ2Þ ¼
1

ðζ1 − ζ2Þ2
¼ W0;2ðζ1; ζ2; 0Þ: ð110Þ

The same, then, holds true for the recursion kernel

K̂ðζ1; ζÞ ¼
π cscð2πζÞ
ζ21 − ζ2

¼ Kðζ1; ζ; 0Þ: ð111Þ

As anticipated at the beginning of this section, the
undeformed recursion induced by (109) and (111) is the
Eynard–Orantin topological recursion, while the unde-
formed Wg;n are connected to the Weil–Petersson volumes
Vg;n by a simple integral transform, as it can be easily seen
from the expression of the integrated trumpet

ˆ̃WmðzÞ ¼ ð2mþ 1Þ!z−2m−2

¼ W̃mðz; 0Þ: ð112Þ

We can therefore argue as follows. We start from the
undeformed case, where the recursion formula is known to
hold, and we notice that all quantities can be lifted to the
case of finite t through the change of variables induced by
E∘Ê−1. Because the recursion formula (103) is covariant
under change of variables induced by maps that are bi-
holomorphic in some neighborhood of z ¼ 0, the topo-
logical recursion is guaranteed to hold at any finite t.
As an example, we notice that both the recursion and the

standard gluing procedure give, for the disk at genus one,

W1;1ðz1; tÞ ¼
ð2þ tz21Þ½6þ π2z21ð4þ tz21Þ�

3z41ð4þ tz21Þ5=2
: ð113Þ

VIII. THE SPECTRAL FORM FACTOR

At t ¼ 0 [20], JT gravity was observed to reproduce the
characteristic shape of a spectral form factor associated
with an ensemble of Hamiltonians with random-matrix
statistics. From a bulk perspective, the spectral form factor
can be interpreted as a transition amplitude in the Hilbert
space of two copies of JT gravity [26]. It is computed by the
analytic continuation of two boundaries, u1 ↦ uþ iτ,
u2 ↦ u − iτ, which introduces a timescale τ. The quantity
includes terms coming from different topologies, each
weighted by the usual topological factor,

Fðu; τ; tÞ ¼ e2S0Z0;1ðuþ iτ; tÞZ0;1ðu − iτ; tÞ
þ Z0;2ðuþ iτ; u − iτ; tÞ þ…; ð114Þ

where the dots correspond to subleading terms associated
with higher-genus topologies. We can rewrite the definition
in a graphical way as

8As it is clear from the definitions in (101), (102) and (105), the
functions Wg;n transform as a differential n-forms. In fact, the
spectral curve and the topological recursion are naturally for-
mulated in terms of differential forms

ωg;nðz1;…; znÞ ¼ Wg;nðz1;…; znÞdz1 ∧ … ∧ dzn: ð107Þ

The recursion kernelK, on the other hand, defines a tensor of type
(1,1).
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ð115Þ

Interestingly, different features of the spectral form factor
are associated with contributions coming from different
topologies. The initial “slope” region comes from consid-
ering two disjoint disks (34). The characteristic shape of the
slope can be observed by looking at its large-τ regime,

Z0;1ðuþ iτ; tÞZ0;1ðu − iτ; tÞ

∼
1

2πτ3
ð1 − e−4u=tÞ þ e−2u=t

πτ3
sin

�
2τ

t

�
: ð116Þ

The first term gives a cubic decay that reproduces the known
t → 0 limit, while the second term is an oscillation of period
πt whose amplitude is exponentially suppressed in 1=t.
Eventually, the slope phase will end, and other topol-

ogies will dominate the form factor. The characteristic
“ramp” region comes, in fact, from the connected topology,
i.e., from the cylinder (68), which represents a Euclidean
wormhole connecting the two boundaries. The large-τ
behavior is again dominated by two terms,

Z0;2ðuþ iτ; u − iτ; tÞ

∼
τ

4πu
ð1 − e−4u=tÞ − e−2u=t

2π
cos

�
2τ

t

�
: ð117Þ

In Figs. 6 and 7, the slope and the ramp are plotted as
functions of τ for various values of t.

In [26] the spectral form factor has been discussed using
the long-time behavior of the Hartle–Hawking wave
function associated with JT gravity. The physical origin
of the slope, and in particular, of its decaying character,
has been interpreted probabilistically. As the time τ
increases, the amplitude for the time evolved Hartle–
Hawking state to have a small Einstein–Rosen bridge
decreases, being mostly supported at large values of the
bridge length. The relevant initial state is localized at
small Einstein–Rosen bridge lengths, and thus the tran-
sition amplitude decreases with τ. The exchange of a baby
universe instead explains the ramp in the spectral form
factor: at late times τ, Euclidean wormholes allow tran-
sitions from the initial Hartle–Hawking state to a state
with a short Einstein–Rosen bridge and a large baby
universe, with a size of order τ. The amplitude for this
process, while exponentially small in the entropy, does not
decay as τ increases, and the linear growth comes from the
τ different ways in which the baby universe can be rotated
before being absorbed [26].
At finite cutoff, we see from (116) and (117) that with

respect to the undeformed case, the leading τ-behaviors are
diminished by exponential finite-size effects while novel
periodic fluctuations appear. We observe that both the ramp
term (117) and the slope (116) share the same damping
factor in the nonoscillating part, which indeed suggests we
are capturing a universal effect of gravity at finite volume
and confirms our result for the cylinder partition function.
As a matter of fact, the intersection of these two regimes is
independent of the cutoff parameter t, up to exponentially
suppressed terms, leading to a transition time of order9

FIG. 7. A log–log plot of the ramp Z0;2ð1þ iτ; 1 − iτ; tÞ for
various values of t.

FIG. 6. A log–log plot of the slope Z0;1ð1þ iτ; tÞZ0;1ð1 − iτ; tÞ
for various values of t.

9The numerical factors are due to the choice of our conventions
but can be simply reabsorbed into a redefinition of the entropy S0.
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τ ∼ ð2uÞ1=4eS0=2: ð118Þ
In Fig. 8, the spectral form factor is plotted as a function of
τ for various values of t.
A more physical understanding of the late-time behavior

at finite cutoff should come from repeating the analysis of
[26] using the real Hartle–Hawking wave function obtained
in [18]. It considers both an expanding and a contracting
branch, and it is nonperturbative in the parameter t: we
expect, in particular, an interpretation of the oscillating
terms as coming from some interference effects.
More generally, the appearance of nonperturbative con-

tributions in the disk partition functions seems to suggest
the presence of some kind of tunneling process. At t ¼ 0,
the boundary of the AdS2 patch extends to asymptotic
infinity, which corresponds to having an infinite potential
wall. However, as we move the boundary toward the
interior of AdS2 by increasing t, the potential barrier turns
out to be not infinite anymore, and a hard wall replaces it
through Dirichlet conditions. Equivalently, according to the
holographic RG picture presented in [4], one would expect
that integrating out the geometry between the asymptotic
boundary and a finite radial distance would result in the TT̄
deformation of the original Schwarzian. It is not unreason-
able that the effective dynamics could support nontrivial
tunneling amplitudes among different vacua in both cases.

IX. CONCLUSIONS AND OUTLOOK

This paper studied JT gravity as a model for holography at
finite volume, considering the nonperturbative contributions
coming from the cutoff scale. We assumed the conjectured
holographic duality between a TT̄-deformed theory and
gravity in a finite patch of AdS space. In the case of JT

gravity, this amounts to consider the Schwarzian theory
deformed by a one-dimensional analog of the TT̄ deforma-
tion. The same approach has been advocated in [18] where,
among other things, crucial nonperturbative aspects arising
from the radial cutoff have been explored. We investigated
the appearance of exponentially-suppressed terms in the disk
and trumpet partition functions through Borel resummation
and resurgence, finding a nice relation between these terms
and the analytic structure of the perturbative series in the
deformation parameter. We then applied our findings to
compute results for arbitrary topologies, exploiting the
gluing procedure of [20]. The construction results in a
consistent deformation of the Eynard–Orantin topological
recursion relations, although we have not attempted to give a
physical interpretation to the deformed spectral density.
There are a certain number of open questions arising from

our studies that could stimulate further investigations. In our
opinion, a crucial one concerns the physical realization of the
deformed holographic dual. As already stressed, the
deformed spectral density associated with the topological
recursion is not positive definite, and it certainly cannot
originate from an ordinary (double-scaled) matrix model. It
would be interesting to explore the resolution of this problem
in a wider perspective: for example, naïve nonpositive-
definite spectral densities show up in super-matrix models.
Actually, in the context of JT gravity, one could consider the
supersymmetric version of the bulk theory [32,33]. In this
case, the holographic dual is a supersymmetric Schwarzian
quantum mechanics: its disk partition function provides
nevertheless a positive spectral density that allows consid-
ering a higher-genus completion, whose interpretation is
given in terms of different matrix ensembles [21,34]. The TT̄
deformation (or some kind of) could arise from a radial
cutoff in the bulk theory even for the supersymmetric JT
gravity: we expect that exploring this direction would
undoubtedly improve the understanding of the present
construction and maybe provide a link with the matrix
model approach proposed in [35]. A somewhat similar
positivity problem appears in the context of JT gravity with
defects [36] and was solved by an appropriate sum over
quantum configurations, leading to a nontrivial modification
of the theory [37].
Another research direction worth to be taken into

account concerns a full first-principles derivation of the
path integral for the bulk theory at finite cutoff. Besides
providing a solid foundation for the gluing procedure used
in Sec. V, this would unambiguously fix the integration
measure, which in [18] is assumed to be unaltered by the
deformation. Such a choice is in sharp contrast with the
approach of [19], where instead, a significant role was
played by a particular class of paths in the nonperturbative
regime, leading to very different results. In order to gain a
better understanding of this discrepancy, one would
perform a bulk path-integral calculation, taking properly
into account configurations with nonconstant Schwarzian

FIG. 8. A log–log plot of the spectral form factor Fð1; τ; tÞ with
S0 ¼ 4 for various values of t. It includes contributions from the
slope and the ramp; other topologies are discarded.
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action [38]: in principle, a semiclassical calculation could
elucidate the contribution of such configurations to the
path-integral measure and indicate other nonperturbative
effects.
It would also be interesting to understand the behavior of

the bulk theory at finite cutoff in the presence of matter: for
example, the existence of a U(1) chiral current could provide
a deformation of the Schwarzian quantum mechanics
analogous to the JT̄ deformation in two-dimensional
CFTs [39]. In [40], such a deformation has been proposed
leading, for some choice of the parameters, to a positive-
definite spectral density.
As a final remark, we observe that the spectral form factor

in the TT̄-deformed theory shows some differences with
respect to the original JT case, although certain universal
aspects remain present. In particular, the appearance of an
oscillating term in the ramp regime hints toward a different
interpretation of the holographic picture.
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APPENDIX A: PERTURBATIVE EXPANSION
FROM BELL POLYNOMIALS

In this Appendix, we show how to obtain the coefficients
An defined in (14). These determine the t-expansion of the
disk and the trumpet partition functions. As in Sec. III A,
we begin by decomposing the exponential term as

e−Iðu;t;sÞ ¼ e−us
2=2 exp

�
us2

�
1

2
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ts2

p
þ 1

��
; ðA1Þ

and define An as the coefficients in the expansion of the
second term about t ¼ 0,

exp

�
us2

�
1

2
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ts2

p
þ 1

��
¼

X∞
n¼0

Antn; ðA2Þ

where

An ¼
1

n!
dn

dtn
exp

�
us2

�
1

2
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ts2

p
þ 1

��				
t¼0

: ðA3Þ

To compute the nth derivative above, we interpret the
exponential as a composite function and make repeated use
of the Faà di Bruno formula

dn

dtn
ðf∘gÞðtÞ¼Xn

k¼0

fðkÞðgðtÞÞBn;kðg0ðtÞ;g00ðtÞ;…;gðn−kþ1ÞðtÞÞ

ðA4Þ

involving Bell polynomials Bn;k.
We apply (A4) a first time, with the square root in (A3)

playing the role of the function g. This gives

An ¼
1

n!

Xn
k¼0

Ck

×Bn;k

�

−

ð2j− 3Þ!!s2j
2jð1− ts2Þj−1=2

�
j¼1;…;n−kþ1

�				
t¼0

; ðA5Þ

where

Ck ¼
dk

dzk
exp

�
us2

�
1

2
−

1

zþ 1

��				
z¼1

: ðA6Þ

We then apply (A4) again to determine Ck. This time, the
function g is identified with the term within parenthesis
inside the exponential,

Ck ¼
Xk
l¼0

dl

dyl
eus

2y

				
y¼0

× Bk;l

�
ð−1Þjþ1j!
ðzþ 1Þjþ1

�
j¼1;…;k−lþ1

�				
z¼1

: ðA7Þ

Bell polynomials enjoy the identity

Bn;kðabx1; ab2x2;…; abn−kþ1xn−kþ1Þ
¼ akbnBn;kðx1; x2;…; xn−kþ1Þ: ðA8Þ

We can make use of the above to rewrite the expressions for
An and Ck in terms of known combinations of Bell
polynomials,

An ¼
1

n!

�
s2

2

�
n Xn
k¼0

ð−1ÞkCk

× Bn;kðð−1Þ!!; 1!!; 3!!…; ð2ðn − kÞ − 1Þ!!Þ; ðA9Þ

Ck ¼
1

ð−2Þk
Xk
l¼0

�
−
us2

2

�
l

Bk;lð1!; 2!;…; ðk − lþ 1Þ!Þ:

ðA10Þ

Specifically,

Bn;kð1!; 2!; 3!; ðn − kþ 1Þ!Þ ¼
�
n − 1

k − 1

�
n!
k!

ðA11Þ

are Lah numbers, while [41]
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Bn;kðð−1Þ!!; 1!!; 3!!; ð2ðn − kÞ − 1Þ!!Þ

¼ ½2ðn − kÞ − 1�!!
�
2n − k − 1

2ðn − kÞ
�
: ðA12Þ

By plugging these identities in the expressions above, we
arrive at

An ¼
1

22nn!

Xn
k¼1

ð2n − k − 1Þ!
ðn − kÞ!

Xk
l¼1

�
k
l

��
−
u
2

�
l s2ðlþnÞ

ðl − 1Þ! :

ðA13Þ

It is convenient to exchange the two sums with

An ¼
1

22nn!

Xn
l¼1

�
−
u
2

�
l s2ðlþnÞ

ðl − 1Þ!
Xn
k¼l

ð2n − k − 1Þ!
ðn − kÞ!

�
k
l

�
:

ðA14Þ

The final expression (15) is obtained by using

Xn
k¼l

ð2n − k − 1Þ!
ðn − kÞ!

�
k
l

�
¼ ð2nÞ!ðn − 1Þ!

ðnþ lÞ!ðn − lÞ! ; ðA15Þ

and

Xn
l¼1

�
n − 1

l − 1

� ð−xÞl
ðnþ lÞ! ¼ −

ðn − 1Þ!
ð2nÞ! xLnþ1

n−1ðxÞ: ðA16Þ

APPENDIX B: DIRECTIONAL LAPLACE
TRANSFORMS OF HYPERGEOMETRIC

FUNCTIONS

In this Appendix, we collect some useful results con-
cerning the directional Laplace transforms of the hyper-
geometric functions appearing in the t-expansion of the
disk and the trumpet partition functions.
We start from the following identity,

Z
∞

0

dζe−βζ2F1

�
1

2
−m;

1

2
þm; 1;−αζ

�

¼ eβ=2αffiffiffiffiffiffiffiffi
παβ

p Km

�
β

2α

�
; ðB1Þ

which holds for j arg αj < π and Reβ > 0. When consid-
ering real negative values of α, one should be careful about
the fact that the Gauss hypergeometric function has a
branch cut on the positive real axis. Approaching the
branch cut from above and below gives the lateral
Laplace transforms

Z
e�i0∞

0

dζe−βζ2F1

�
1

2
−m;

1

2
þm; 1; γζ

�

¼ e−β=2γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−πγβ ∓ i0

p Km

�
−

β

2γ
� i0

�

¼ e−β=2γffiffiffiffiffiffiffiffi
πγβ

p
�
πIm

�
β

2γ

�
� ð−1ÞmiKm

�
β

2γ

��
; ðB2Þ

where γ > 0. The discontinuity in the directional Laplace
transform is reflected in the discontinuity of the square root
and of the modified Bessel function Km, the both having a
branch cut along the negative real axis. In the last steps of
the identity above we used

Kmð−x� i0Þ ¼ ð−1ÞmKmðxÞ ∓ iπImðxÞ; ðB3Þ

which holds for m ∈ Z and x > 0.
The difference between the two lateral Laplace trans-

forms can also be obtained through an integral over a
Hankel-like contour wrapping the branch cut, as depicted in
Fig. 9, which, in turn, amounts to taking the Laplace
transform of the discontinuity of the hypergeometric
function. We use the identity

2F1ða; b; c; xþ i0Þ − 2F1ða; b; c; x − i0Þ

¼ 2πiΓðcÞθðx − 1Þ
ΓðaÞΓðbÞΓð1þ c − a − bÞ ðx − 1Þc−a−b

×2F1ðc − a; c − b; 1þ c − a − b; 1 − xÞ; ðB4Þ

which holds for x > 1, to write

FIG. 9. The Hankel-like contour capturing the discontinuity in
the directional Laplace transform, as this crosses the branch cut of
the Gauss hypergeometric function at x ∈ ð1;þ∞Þ.
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Z
∞

0

dxe−βx
�
2F1

�
1

2
−m;

1

2
þm; 1; γxþ i0

�
− 2F1

�
1

2
−m;

1

2
þm; 1; γx − i0

��

¼ ð−1Þm2i
Z

∞

1=γ
dxe−βx2F1

�
1

2
−m;

1

2
þm; 1; 1 − γx

�

¼ ð−1Þm2ie−β=γ
Z

∞

0

dxe−βx2F1

�
1

2
−m;

1

2
þm; 1;−γx

�

¼ ð−1Þm2i e
−β=2γffiffiffiffiffiffiffiffi
πγβ

p Km

�
β

2γ

�
: ðB5Þ
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