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Abstract
We study the dynamics of classical localization in a simple, one-dimensional model of a tracking chamber. The emitted 
particle is represented by a superposition of Gaussian wave packets moving in opposite directions, and the detectors are two 
spins in fixed, opposite positions with respect to the central emitter. At variance with other similar studies, we give here a 
phase-space representation of the dynamics in terms of the Wigner matrix of the system. This allows a better visualization 
of the phenomenon and helps in its interpretation. In particular, we discuss the relationship of the localization process with 
the properties of entanglement possessed by the system.
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1  Introduction

Since the early days of quantum physics, one of the funda-
mental questions has been how our “classical” world can 
emerge from its quantum mechanical substrate. A paradig-
matic situation is represented by the so-called Mott problem 
[9]: an alpha-particle emitter in a cloud chamber generates a 
spherically symmetric wave function, which propagates in 
the chamber according to Schrödinger equation; yet the par-
ticle wave produces in the chamber a track corresponding to 
a classical trajectory (a radial, straight line originating from 
the emitter). Such apparently contradictory phenomenon is 
named “classical localization.”

In order to explain this phenomenon, Mott studied 
a model where a central emitter injects a spherical wave 
function (the particle) and the cloud chamber is represented 
by an environment made of only two atoms in fixed (but 
generic) positions. The detection of the particle at a certain 
position corresponds to the ionization of the atom that occu-
pies that position. Mott showed that the probability of both 
atoms being ionized is nearly zero unless the two atoms are 
aligned with the emitter. The interpretation of this fact is that 
the particle manifests itself only along a radial trajectory. 

This confirms, or at least indicates, that the phenomenon 
of classical localization emerges naturally form the laws of 
quantum mechanics.

Since then, the model has been refined in several ways 
[3–5, 10, 11]; see also Ref. [7] and references therein. In 
particular, a one-dimensional model with N spins at fixed 
positions on each side of a central emitter has been theoreti-
cally and numerically studied in Refs. [3, 4, 11]. In this case, 
the particle “spherical wave” is represented by the superpo-
sition of two wave packets moving in opposite directions, 
and the detection of the particle corresponds to the spin flip. 
These studies have confirmed and reinforced the original 
Mott’s result, to the extent that the configurations with the 
largest probability turn out to be those where the majority 
of spins have been flipped on just one side of the “chamber.” 
Because of the symmetry of the problem, the probability 
of such states is equally distributed at the two sides, which 
means that the side where the track is formed is completely 
random, in the same way as in the cloud chamber the tracks 
form towards any direction with equal probability.

In this paper, we consider an oversimplified one-dimen-
sional model of this kind, with only two spins in sym-
metrical positions with respect to the central emitter. At 
variance with the standard setup, we adopt here a phase-
space formulation [1, 2, 6, 8, 12] and follow the evolution 
of the (matrix-valued) Wigner function of the system. In 
spite of its simplicity, this model, together with the phase-
space perspective, turns out to be rather useful to visual-
izing, and perhaps better understanding, the localization 
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dynamics and its relationships with entanglement. In par-
ticular, we will show that localization is tightly related to 
the initial independence of particle and spins, and to the 
properties of “local” entanglement of the system.

The paper is organized as follows. In Sect. 2, we estab-
lish the mathematical formulation of the model in terms 
of the system wave function. In Sect. 3, the model is trans-
lated into the spinorial Pauli–Wigner formalism. Section 4 
is devoted to the numerical experiments and their interpre-
tation. The conclusions are drawn in Sect. 5.

2 � The model

Let us consider an oversimplified model of a one-dimen-
sional tracking chamber consisting of a particle emitter, 
placed at x = 0 , and of two 1

2
-spinors, acting as detectors, 

that are placed at fixed positions −r and r at the two sides 
of the emitter. The particle interacts with the spins, and it 
is “detected” when the spin along a given direction, say z, 
is flipped.

A particle-detectors quantum state is therefore 
described by a wave function � (x) belonging to the space

Hence, �  is a 4-component spinor of the following form

where ���(x) is the wave function of the system with the left 
spin up ( � = u ) or down ( � = d ), and right spin up ( � = u ) 
or down ( � = d ). Then, for example, |�du(x)|2 can be inter-
preted as the probability density that the particle is in posi-
tion x, the left spin is down, and the right spin is up.

The dynamics of the system is assumed to be described 
(in suitably non-dimensionalized variables) by the 
Schrödinger equation

where

is the Hamiltonian. Here, �±r(x) = �(x ∓ r) , where �(x) is a 
real function localized around x = 0 (e.g., a Gaussian-shaped 
function), and

L
2(ℝ,ℂ)⊗ ℂ

2 ⊗ ℂ
2 ≡ L

2(ℝ,ℂ4).

(1)� (x) =

⎛⎜⎜⎜⎝

�uu(x)

�ud(x)

�du(x)

�dd(x)

⎞⎟⎟⎟⎠
,

(2)i�t � = H�

(3)
H = −

1

2
𝜕xx 𝜎0 ⊗ 𝜎0 + 𝛾−r(x)𝜎1 ⊗ 𝜎0

+ 𝛾+r(x)𝜎0 ⊗ 𝜎1

are the Pauli matrices. Note that 𝜎0 ⊗ 𝜎0 is the 4 × 4 identity 
matrix and

In the Hamiltonian (3), the interaction of the first spin is 
localized around x = −r , and the interaction of the second 
spin is localized around x = r (this is indeed what allows us 
to speak of “left” and “right” spin). Since in both cases the 
interaction is proportional to �1 , it has the form of the inter-
action with a “magnetic field” oriented in the x-direction.

The model is completed by a suitable choice of the initial 
datum. Since in the actual cloud chamber the particle wave 
function is a spherical wave originating from the emitter, in 
the corresponding one-dimensional picture we consider a 
symmetrical wave function consisting of two Gaussian pack-
ets moving in opposite directions (representing therefore a 
“one-dimensional spherical wave”). We moreover assume 
that both spins are initially in the “up” state. This picture 
corresponds to an initial datum of the form

This is a superposition of two Gaussian wave packets, ini-
tially centered at x = 0 , with position variance �2 , moving 
away from the origin with velocities −k0 and +k0 , respec-
tively. The fact that only the first component �uu of the 
spinor is nonzero means that in such initial state both spins 
are up. The spinor � (x, 0) is normalized to unity in the norm 
of L2(ℝ,ℂ4) , that is

Now, the dynamics of the system can be intuitively described 
as follows. Initially, the two packets move away from the 
origin and the two spins remain up. As soon as the packets 
touch the zones where �±r are significantly different from 
zero, the interactions are triggered and the three components 
�ud , �du , �dd , begin to populate, which means that the spins 
will get a certain probability to be found in the ud, du and dd 
states. In the same time, the two wave packets are scattered 
(partially reflected, partially transmitted) by the interaction. 
Incidentally, the presence of reflected waves that undergo 
significant multiple interactions is the main difference that 
the one-dimensional case has got with respect to the two- or 

�0 =

(
1 0

0 1

)
, �1 =

(
0 1

1 0

)
, �2 =

(
0 −i

i 0

)
,

�3 =

(
1 0

0 −1

)

𝜎1 ⊗ 𝜎0 =

(
0 𝜎0
𝜎0 0

)
, 𝜎0 ⊗ 𝜎1 =

(
𝜎1 0

0 𝜎1

)
.

(4)� (x, 0) =
cos(k0x) e

−x2∕4�2

4
√
2��2e−k

2

0
�2∕2

�
cosh(k2

0
�2)

⎛⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎠
.

(5)‖�‖2 ∶= ‖�uu‖2 + ‖�ud‖2 + ‖�du‖2 + ‖�dd‖2 = 1.
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three-dimensional ones, where the importance of multiple 
interactions of scattered waves is much less [11]. However, 
this fact will not qualitatively affect our conclusions since, 
as we will see, they can be drawn before the reflected wave 
reach again the spins. When the interactions are over, the 
different spin states stabilize to certain probabilities: ‖�uu‖2 
is the probability that both spin are up (the particle has not 
been detected) ‖�ud‖2 is the probability that only the right 
spin is down (the particle has been detected on the right-
hand side), ‖�du‖2 is the probability that only the left spin 
is down (the particle has been detected on the left-hand 
side), ‖�dd‖2 is the probability that both spins are down (the 
particle has been detected on both sides). The fact that the 
Schrödinger evolution (2) is unitary guarantees that the four 
probabilities sum up to one, as it was for the initial state.

Remarkably, it turns out that the final probability ‖�dd‖2 
is nearly zero, which means that the particle is either not 
detected at all or it is only detected on one side. This is the 
one-dimensional analogue of the formation of a classical 
track from a spherical quantum wave, i.e., the phenomenon 
pointed put by Mott.

Numerical experiments with N spins (corresponding to 
a spinor with 2N components) have confirmed the fact that 
the track formation (i.e., detection on one side) is more and 
more pronounced as N grows, giving a numerical evidence 
of the transition from quantum to classical behaviour [3, 5, 7, 
10]. Current numerical experiments are able to consider up 
to N = 14 [4] and are all performed in the one-dimensional 
case.

In the next sections, we will try to look more closely at 
the dynamics of the system. We will use the Wigner repre-
sentation to have a more intuitive visualization, and we will 
try to better understand why the probability of detection at 
both sides is so small.

3 � The Wigner picture

3.1 � The Wigner function of a two‑spin system

In what follows, we will exploit the algebra of Pauli matri-
ces and so let us recall some basic facts about it. The Pauli 
matrices �k , k = 0, 1, 2, 3 (we recall that �0 is the identity 
matrix) have the product rule

for 1 ≤ i, j, k ≤ 3 , where �ij is the Kronecker symbol and �ijk 
is the Levi-Civita symbol. It follows that the four matrices

(6)�i�j = �ij�0 + i�ijk�k,

(7)Sk =
1

2
�k, k = 0, 1, 2, 3

form an orthonormal basis of the space ℂ2,2 , of 2 × 2 com-
plex matrices, with respect to the Hermitian product

where a, b ∈ ℂ
2,2 , tr denotes the matrix trace and a† is a 

transposed and conjugated. Then, any a ∈ ℂ
2,2 can be 

uniquely decomposed as

(note that S†
k
= Sk ). We will refer to a0, a1, a2, a3 as the Pauli 

components of a. It is easily shown that the Pauli compo-
nents are real if and only if a = a† , i.e., if a is Hermitian.

In the quantum mechanics of a single spin, the three 
matrices S1 , S2 and S3 represent the spin in the directions x, 
y and z, respectively. Then, if � ∈ ℂ

2,2 is the density matrix 
of a single-spin system (with no other degree of freedom 
than the spin itself), the expected value of the spin in the 
three directions is given by

which provides a direct physical interpretation of the Pauli 
components of �.

For a system of two spins (and no other degree of free-
dom), the state space is ℂ2 ⊗ ℂ

2 , which can be identified 
with ℂ4 , and the observables and the density matrices are 
4 × 4 , Hermitian complex matrices. A basis of the space ℂ4,4 
of 4 × 4 complex matrices can be constructed by taking all 
tensor products of the Pauli matrices

The sixteen matrices Sij constitute an orthonormal basis with 
respect to the Hermitian product (8) (where now a, b ∈ ℂ

4,4 ). 
Therefore, every a ∈ ℂ

4,4 is uniquely decomposed as

and the components aij will be real when a† = a . In particu-
lar, if � ∈ ℂ

4,4 is the density matrix of a two-spin system, the 
components of the type

with 1 ≤ i, j ≤ 3 , have, respectively, the physical meaning of 
the expected value of the spin in the ith direction and of the 
second spin in the jth direction. A component of the type

with 1 ≤ i, j ≤ 3 is the expected value of the product of the 
ith component of the first spin with the jth component of 

(8)tr (a†b),

(9)a =

3∑
k=0

akSk, ak = tr (Ska), k = 0, 1, 2, 3.

tr (Sk�) = �k, k = 1, 2, 3,

(10)Sij = Si ⊗ Sj =
1

4
𝜎i ⊗ 𝜎j 0 ≤ i, j ≤ 3.

(11)a =

3∑
i,j=0

aijSij, aij = tr (Sija)

�i0 = tr (Si0�) and �0j = tr (S0j�),

�ij = tr (Sij�),
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the second spin (it is therefore a spin correlation). It is also 
important to remark that the first row (�00, �10, �20, �30) and 
the first column (�00, �01, �02, �03)T of the matrix �ij contain 
the components of the reduced density matrices relative to, 
respectively, the first and the second spin.

We now consider also the continuous degree of freedom 
and work in the state space L2(ℝ,ℂ4) . The density matrix 
associated with the state (1) is the ℂ4,4-valued function

(� ∗ denoting the complex conjugate of �  ) and the corre-
sponding ℂ4,4-valued Wigner function (Wigner matrix) is

The Hermitian symmetry of � , i.e., �(x, y) = �†(y, x) , implies 
that W(x, p) = W†(x, p) , i.e., W is a pointwise Hermitian 
matrix. Hence, the sixteen Pauli components of W,

are real-valued functions on phase space.
It is readily seen that the projections on single-spin up/

down states are

and the projection on the two-spin up/down states are

for �1, �2 ∈ {+,−} (where + corresponds to up and − to 
down). The probability densities of the two-spin up/down 
states can be therefore retrieved from W in the following 
way:

Let us end this section by giving some bibliography where 
the interested reader can find a deeper introduction to the 
concepts that have been briefly exposed here. General refer-
ences for the Wigner formalism in quantum mechanics are 
(among many others) Refs. [1, 6, 8, 12]. A reference for the 
spinorial Wigner function is, e.g., Ref. [2]: although only the 

𝜌(x, y) = 𝛹 (x)⊗𝛹 ∗(y), x, y ∈ ℝ,

(12)
W(x, p) = ∫ �(x + �∕2, x − �∕2)

e−i�pd�, x, p ∈ ℝ.

(13)wij(x, p) = tr
(
SijW(x, p)

)
,

P± = S0 ± S3

(14)
P𝜖1,𝜖2

= P𝜖1
⊗ P𝜖2

= S00 + 𝜖1S30 + 𝜖2S03 + 𝜖1𝜖2S33,

(15)

|�uu(x)|2 = ∫
(
w00 + w30 + w03 + w33

)
(x, p) dp,

|�ud(x)|2 = ∫
(
w00 + w30 − w03 − w33

)
(x, p) dp,

|�du(x)|2 = ∫
(
w00 − w30 + w03 − w33

)
(x, p) dp,

|�dd(x)|2 = ∫
(
w00 − w30 − w03 + w33

)
(x, p) dp.

case of a single spin is considered there, the case of multiple 
spins is a straightforward generalization.

3.2 � Dynamics of the wigner function

The evolution equation for W can be straightforwardly 
obtained from the Schrödinger equation (2)–(3). Indeed, 
the equation for 𝜌(x, y, t) = 𝛹 (x, t)⊗𝛹 ∗(y, t) (the von Neu-
mann equation) reads as follows:

so that (recalling (10))

By taking the Wigner transform of both sides [1, 2], we 
deduce the evolution equation for W(x, p, t):

where we used the standard notation for the pseudo-differ-
ential operators

The initial Wigner matrix is the Wigner transform of 
𝛹 (x, 0)⊗ 𝛹 ∗(y, 0) , where � (x, 0) is given by (4). This can 
be explicitly computed and yields (in terms of the matrix of 
Pauli components)

where

the normalization constant being

i𝜕t𝜌(x, y, t) =
(
H𝛹

)
(x, t)⊗

𝛹 ∗(y, t) − 𝛹 (x, t)⊗
(
H𝛹

)∗
(y, t),

(16)
i�t� = −

1

2

(
�xx − �yy

)
� + 4

[
�−r(x)S10� − �−r(y)�S10

]

+ 4
[
�+r(x)S01� − �+r(y)�S01

]
.

(17)

�tW = −p�xW − 4i
[
�−r

(
x +

1

2
i�p

)
S10W

−�−r
(
x −

1

2
i�p

)
WS10

]

− 4i
[
�+r

(
x +

1

2
i�p

)
S01W

−�+r
(
x −

1

2
i�p

)
WS01

]
,

f (i�p)W(p) ≡ 1

2� � f (�)W(p�)e−i(p−p
�)�d� dp�.

(18)W(x, p, 0) = w0(x, p)

⎛⎜⎜⎜⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞⎟⎟⎟⎠
,

(19)
w0(x, p) =Ne

−
1

2�2
x2
[
e−2�

2(p+k0)
2

+e−2�
2(p−k0)

2

+ e−2�
2p2 cos(2k0x)

]
,
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Note that the Wigner function w0(x, p) is the sum of three 
terms. The first two terms are “classical” Maxwellians cen-
tered at (x = 0, p = −k0) and (x = 0, p = +k0) , respectively, 
hence with opposite mean velocities (remember that, in our 
nondimensional variables, k0 is at the same time a wave-
number, a momentum and a velocity). The third term is a 
Maxwellian centered at (x = 0, p = 0) , which modulates the 
oscillation cos(2k0x) ; this is interpreted as the quantum inter-
ference fringes between the two counter-moving wave pack-
ets. Note also that the momentum variance is 1∕4�2 , which 
reflects the minimal indetermination relation of a Gaussian 
state. The function (19) is a well known, and somehow pro-
totypical, example of Wigner function (see, e.g., the cover 
of the book [12]). Here, we interpret w0 as the Wigner func-
tion of the “one-dimensional spherical wave” produced by 
the emitter.

We finally remark that in (18) the only nonzero Pauli 
components of the initial W are w00 , w30 , w03 , w33 . This cor-
responds to the fact that, at the initial time, the two spins are 
both in the up state and are completely uncorrelated (they 
are in a product state).

4 � Numerical experiments

4.1 � Simulation setting

For the numerical experiments, we consider a phase-space 
domain x ∈ [−20, 20] , p ∈ [−10, 10] , and a time domain 
T ∈ [0, 3] (recall that we are working in nondimensional 
variables). The initial position spread is assumed to be 
� = 0.8 and the “spherical wave velocity” is assumed to 
be k0 = 4 . The two spins are placed at x = ±r , with r = 7 , 
and the interaction function � is assumed to have the super-
Gaussian shape

with � = 2 and � = 0.4 . The above values are chosen so that: 

1.	 the wave has enough time to interact with the two spins 
and then move away;

2.	 within the simulation time, the wave has no significant 
overlap with the border of the computational domain;

3.	 the reflected waves are small and have not enough time 
to re-interact with the opposite spin.

Condition 2 implies that the experiments we perform 
are insensitive to the chosen boundary conditions (inci-
dentally, we impose non re-entry conditions). Condition 

N =
1

8�e−k
2

0
�2 cosh(k2

0
�2)

.

(20)�(x) = � e−x
4∕2�2 ,

3 is very important, since multiple interactions of the 
reflected waves represent a limitation of the one-dimen-
sional model with respect to the realistic three-dimen-
sional situation, where reflected waves play a negligible 
role [11].

For the numerical implementation of Eq. (17) we use a 
simple splitting scheme. Each time step �t is divided into 
two substeps of length �t∕2 : In the first one, only the free-
transport operator −p�x is considered and the system evolves 
according to

In the second one, only the interaction (second and third 
terms at the right-hand side of Eq. (17)) operates between 
t + �t∕2 and t + �t . Since a pseudo-differential operator is 
involved, this interaction step is easily implemented by using 
back and forth Fourier transform. We remark that the pre-
sent paper is focused on the model and not on the numerical 
aspects: we just chose a simple numerical method, which is 
certainly not the most efficient nor the most accurate one.

4.2 � Dynamics of localization

In Figs. 1 and 2, we can follow the evolution of some of the 
Pauli components of the Wigner matrix W(x, p, t).

In particular, Fig. 1 displays w00 , w30 , w03 and w33 , which 
are the only initially non-zero components (see (18)) and 
which determine the probabilities of the up/down states, 
according to (15). Each column contains a time snapshot of 
the four components in the phase space (x, p). Here and in 
the following figures, the background gray corresponds to 
the value 0, the lighter gray corresponds to positive values 
and the darker gray to negative ones. At t = 0 we can see 
therefore the gray-level representation of w0(x, p) : note the 
two counter-moving Gaussians and the central interference 
fringes. The two Gaussians move freely until they reach the 
two spins (concentrated around x = ±7 ) and the interaction 
begins, turning the spin from up (positive values) to down 
(negative values). Once the interaction zones have been 
overcome, the transmitted waves move away freely. Note 
also the presence of small reflected waves (the reflected por-
tion of the wave is larger when the interaction strength � is 
increased).

To interpret these pictures, let us recall that w00 is the 
Wigner function of the system where the spin degrees of 
freedom are traced out; hence w00 is the pseudo-distribution 
in phase space of the emitted particle. Analogously, w30 
(respectively, w03 ) can be interpreted as the pseudo-distri-
bution in phase space of the value of the z-component of the 
left (respectively, right) spin. Note that, after the interaction, 
the state of the left spin is down on the left-hand side and 
up on the right-hand side. This corresponds to the fact that 

W(x, p, t + �t∕2) = W(x − p�t∕2, p, t).
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the left spin is down if the particle will be detected on the 
left and it is up if the particle will be detected on the right 
(of course, the symmetrical conclusions can be drawn on 

the right spin). Therefore, the component w33 , which is the 
pseudo-distribution of the product of the z-component of the 
two spins, is always negative after the interaction.

Fig. 1   Grayscale plots showing 
the evolution of the components 
w00 , w30 , w03 and w33 of the 
Wigner matrix. The background 
gray corresponds to 0, the 
lighter gray to positive values 
and the darker gray to negative 
ones

Fig. 2   Same as Fig. 1 but for the 
components w10 , w20 , w01 and 
w02 (the x- and y-components 
of each spin). They are initially 
zero and acquire nonzero 
values with the interaction. In 
a semiclassical perspective, the 
spin vector rotates around the 
“magnetic field” �±r�1 (which 
is oriented in the x-direction), 
and therefore, the x-component 
of the spin should remain equal 
to 0 at any time. In the quantum 
evolution, this is only true “on 
average”: by computing the 
integrals of w10 and w01 with 
respect to p one obtains 0 (in 
the pictures, we can note the 
oscillations that produce such 
null average)
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Figure 2 shows the evolution of other spin components: 
Since they are not directly involved in the localization pro-
cess, we shall limit ourselves to commenting on them briefly 
in the figure caption.

Let us rather look at Fig. 3, where we plot the Wigner 
functions

which, according to (15), can be interpreted as the phase-
space quasi-distributions of the uu, ud, du and dd states. 
It is immediately apparent that at t = 0 only the uu state 
is populated while, after the interactions, the ud and du 
states gain the highest probability, and the dd state remains 
with zero probability. Indeed, computing the integrals over 
phase space of the four components at t = 3 yields the total 
probabilities

As already mentioned in Sect. 2, such values are the sign 
of localization: the probability of detecting the particle at 
both sides is nearly zero, while the larger probability is that 
of detecting the particle on one of the two sides (with equal 

(21)

wuu = w00 + w30 + w03 + w33,

wud = w00 + w30 − w03 − w33,

wdu = w00 − w30 + w03 − w33,

wdd = w00 − w30 − w03 + w33,

‖�uu‖2 = 0.1664, ‖�ud‖2 = 0.4168, ‖�du‖2 = 0.4168,

‖�dd‖2 = 0.0000.

probability). There is also a certain probability that the par-
ticle is not detected at all, which depends on the interaction 
strength � . We remark that there might be a tiny nonzero 
probability of detection at both sides, due to reflected waves 
(and to the non-perfect locality of the interaction function � ): 
as already pointed out, the effect of reflected waves is even 
smaller in the two- or three-dimensional cases.

By comparing Figs. 1 and 3, it is clear from (21) that the 
prevalence of wud and wdu , and the smallness of wdd can be 
interpreted in terms of constructive/destructive interference 
among the components w00 , w30 , w03 and w33 . But a more 
insightful way to understand the phenomenon is in terms of 
projections and entanglement, which will be treated in the next 
subsection.

4.3 � Relationships with entanglement

It will be useful to adopt Dirac’s notation for the spin states. 
Our initial state can be represented as

where � is the initial particle wave function, the first �u⟩ is 
the initial state of the left spin and the second �u⟩ is the initial 
state of the right spin (both are up). The fact that the state 
is factorized corresponds to the initial independence of the 
particle and the two spins. The initial particle wave function 
is the sum of the two wave packets with mean velocities −k0 

��u⟩�u⟩

Fig. 3   Same as Fig. 1 but for 
the components w

uu
 , w

ud
 , w

du
 

and w
dd
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and +k0 . So, before the interaction, the state of the system 
keeps the form

where �± denote the two counter-moving wave packets as 
they have moved away from the origin ( �− and �+ being 
approximately localized at x < 0 and x > 0 , respectively). 
In this situation, the projections Pud , Pdu and Pdd (see Eq. 
(14), where the plus sign corresponds to u and the minus 
sign corresponds to d) are of course zero. In terms of the 
Wigner matrix, this situation can be visualized in the first 
column of Figs. 1, 2 and 3. Then, interactions take place 
(second and third columns of Figs. 1, 2 and 3), progressively 
increasing the d-component of the left and right spins. After 
that (fourth column of Figs. 1, 2 and 3), the state has (sche-
matically) the form

where �±
u

 and �±
u

 are position-dependent coefficients. We see 
therefore that the state is not factorized any longer (indeed, 
it is an entangled state) but, nevertheless, it is locally, side-
wise, factorized. This implies that the Pdd projection of this 
state is null:

which explains the smallness of the dd component. Actually, 
the expression (22) of the final state is just an approxima-
tion, because a possible entanglement of the right spin on 
the left side and of the left spin on the right side arises from 
reflected waves (and also, but this is of course a negligible 
effect, form the non-perfect locality of the interaction func-
tion (20)). However, our simulations show that such approxi-
mation is really good, at least for the chosen values of the 
parameters. This is illustrated in Fig. 7, which is explained 
below.

What emerges from the preceding discussion is that two 
main facts determine the localization process: 

1.	 The two spins and the particle are initially independent;
2.	 The interactions produce on each side the local entangle-

ment of one spin and preserve the independence of the 
other one.

In order to illustrate point 1, let us change our experiment 
by assuming that the two spins are initially entangled. In 
particular, let us assume that they initially are in the so-
called singlet state

�−�u⟩�u⟩ + �+�u⟩�u⟩,

(22)
�
�−
u
�u⟩ + �−

d
�d⟩��u⟩ + �u⟩��+

u
�u⟩ + �+

d
�d⟩�,

(23)

P
dd

��
�−
u
�u⟩ + �−

d
�d⟩��u⟩

+�u⟩��+
u
�u⟩ + �+

d
�d⟩��

= P
d

�
�−
u
�u⟩ + �−

d
�d⟩�P

d
�u⟩

+ P
d
�u⟩P

d

�
�+
u
�u⟩ + �+

d
�d⟩� = 0,

corresponding to an initial Wigner matrix (expressed in 
terms of the Pauli components) of the form

Figures 4 and 5 are the equivalent of Figs. 1 and 3 where the 
initial Wigner function (18) has been substituted with (24).

We see that the situation is now completely different and 
localization does not occur. On the contrary, the dd state 
gains the highest probability. By integration on phase space, 
we indeed obtain the post-interaction probabilities

Coming to point 2, we can check the emergence of entan-
glement in the system by computing the purity of the spin 
states. As it follows from the discussion in Sect. 3,

are the Pauli components of the reduced density matrix �red 
of the left spin (i.e., the density matrix obtained by tracing 
out the degrees of freedom of the right spin and of the par-
ticle). The purity index is defined as

If the left spin remains independent, then its reduced 
density matrix is that of a pure state (characterized by 
�2
1
+ �2

2
+ �2

3
= �2

0
= 1 ), and the purity index is 1. If the spin 

gets entangled, its reduced density matrix is that of a mixed 
state (characterized by 𝜌2

1
+ 𝜌2

2
+ 𝜌2

3
< 𝜌2

0
= 1 ) and the purity 

lies between 1/2 and 1. Figure 6 shows the computed evolu-
tion in time of the purity index in three cases: the case of 
the initially independent spins (corresponding to the initial 
datum (18)), the case of the initially entangled spins (cor-
responding to the initial datum (24)) and, as a further check, 
the case of initially independent spins without interaction 
(corresponding to initial datum (18) and � = 0 ). As we can 
see from the figure, the interaction introduces entanglement 
in the initially unentangled system.

Let us address the local behaviour of the purity for ini-
tially independent spins. In Fig. 7, we plot four time snap-
shots of the x-dependent quantity

�u⟩�d⟩ − �d⟩�u⟩√
2

,

(24)W(x, p, 0) = w0(x, p)

⎛⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎠
.

‖�uu‖2 = 0.4168, ‖�ud‖2 = 0.0832, ‖�du‖2 = 0.0832,

‖�dd‖2 = 0.4168.

�k = ∫ wk0(x, p) dp dx, k = 0, 1, 2, 3

(25)tr (�2
red
) =

1

2

3∑
k=0

�2
k
.
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Fig. 4   Evolution of w00 , w30 , 
w03 and w33 in the case of singlet 
initial state

Fig. 5   Evolution of w
uu

 , w
ud

 , 
w
du

 and w
dd

 in the case of sin-
glet initial state
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which can be interpreted as a “local impurity” index of the 
left spin (it is zero if the reduced density matrix obtained 
by tracing out the right spin at fixed x is a that of a pure 
state). We see that the left spin gets locally entangled (with 

(26)
(
∫ w00(x, p) dp

)2

−

3∑
k=1

(
∫ wk0(x, p) dp

)2

,

the particle) at the right-hand side while remaining locally 
independent on the right-hand side. Of course, the converse 
is true for the right spin. Figures 6 and 7 confirm the fact 
that interactions produce on each side local entanglement 
of one of the two spin, preserving the local independence of 
the other one, thus creating the conditions under which (23) 
holds and, therefore, localization takes place.

As a final remark, let us point out that if we had sent from 
the emitter two independent particles in the two directions, 
instead of the single particle we have sent, system entangle-
ment and localization would have not occurred. In fact, for 
an initial state of the form

where now � is the wave function of a left-moving particle 
and � is the wave function of another, right-moving, particle, 
the post-interaction state would have the form

since each spin has interacted with a different particle. In 
this case, the post-interaction dd state is given by

which has a nonzero amount of probability, depending on 
the efficiency of the spin flip. Indeed, the probability of 

� � �u⟩�u⟩

�
�u�u⟩ + �d�d⟩

��
�u�u⟩ + �d�d⟩

�
,

P
dd

��
�
u
�u⟩ + �

d
�d⟩���

u
�u⟩ + �

d
�d⟩��

= P
d

�
�
u
�u⟩ + �

d
�d⟩�P

d

�
�
u
�u⟩ + �

d
�d⟩� = �

d
�d⟩ + �

d
�d⟩,
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Fig. 6   Evolution of the left-spin purity (25) in three different cases. 
Continuous line: initially independent spins; dot-dashed line: initially 
entangled spins (singlet state); dashed line: initially independent spins 
with free evolution (obtained by setting � = 0)

Fig. 7   Evolution of the “local 
impurity” of the left spin, 
defined by (26), in the case of 
the initially independent spins. 
We see that the left spin remains 
independent on the right

-20 -10 0 10 20
0

1

2

3

4

lo
ca

l i
m

pu
rit

y

10-3 t = 0

-20 -10 0 10 20
0

1

2

3

4
10-3 t = 1.3

-20 -10 0 10 20
x

0

1

2

3

4

lo
ca

l i
m

pu
rit

y

10-3 t = 1.9

-20 -10 0 10 20
x

0

1

2

3

4 10-3 t = 3



Journal of Computational Electronics	

1 3

detecting two particles, one on each side, has no reason to 
be zero.

5 � Conclusions

In this work, we have studied a very simple Mott-like model 
in the framework of the phase-space formulation of quan-
tum mechanics. The heavier formalism required by this 
approach (sixteen real components of the Wigner matrix 
against the four complex components of the wave function) 
is compensated by two main advantages. The first one is a 
better visualization of the localization dynamics, in terms 
of “classical-looking” quasi-distributions in phase space. 
The second one is the fact that the reduced density matri-
ces of the various subsystems are easily retrieved from the 
Wigner matrix, which allows a straightforward analysis of 
both global and local entanglement.

The numerical simulations, of course, confirm what is 
already well known, i.e., the fact that detection of the parti-
cle at both sides has probability close to zero, which, in the 
one-dimensional model, corresponds to classical localiza-
tion. By means of simple considerations, we have shown 
that the main properties that lead to localization are the 
initial independence, the emergence of entanglement of the 
spins with the particle and the local (namely, side-wise) 
preservation of independence of the spin which is not inter-
acting. The numerical simulations confirm such interpreta-
tion. Indeed, by repeating the experiment with the two spins 
in an initially entangled state, we observe that localization 
does not occur and detection at both sides gain the highest 
probability. Moreover, computing the purity and the “local 
impurity” (in the case of initial independence) confirms the 
dynamical onset of entanglement of just one spin per side.

It is clear that the same kind of considerations apply to 
the case of arrays of N spins (N/2 on each side), thus extend-
ing their validity beyond the simple, yet insightful, two-spin 
model considered in this work.

Acknowledgements  The author acknowledges support from INdAM-
GNFM (Italian National Group for Mathematical Physics).

Funding  Open access funding provided by Università degli Studi di 
Firenze within the CRUI-CARE Agreement.

Availability of data and codes  The codes and datasets gener-
ated during the current study are available from the author 
on reasonable request.

Declarations 

Conflicts of interest.  The author declares that he has no conflict of in-
terest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Barletti, L.: A mathematical introduction to the Wigner formula-
tion of quantum mechanics. Boll. UMI 6B, 693–716 (2003)

	 2.	 Barletti, L., Frosali, G., Morandi, O.: Kinetic and hydrodynamic 
models for multi-band quantum transport in crystals. In: Ehrhardt, 
N., Koprucki, T. (eds.) Multi-band effective mass approximations: 
advanced mathematical models and numerical techniques, pp. 
3–56. Springer, Berlin (2014)

	 3.	 Cacciapuoti, C., Carlone, R., Figari, R.: A solvable model of a 
tracking chamber. Rep. Math. Phys. 59, 337–349 (2007)

	 4.	 Carlone, R., Figari, R., Negulescu, C.: A model of a quantum 
particle in a quantum environment: a numerical study. Commun. 
Comput. Phys. 18, 247–262 (2015)

	 5.	 Dell’Antonio, G.F.: On tracks in a cloud chamber. Found. Phys. 
45, 11–21 (2015)

	 6.	 Ferry, D., Nedjalkov, M.: The Wigner function in science and 
technology. IOP Publishing, Bristol (2018)

	 7.	 Figari, R., Teta, A.: Quantum dynamics of a particle in a tracking 
chamber. Springer, Berlin (2014)

	 8.	 Folland, G.B.: Harmonic analysis in phase space. Princeton Uni-
versity Press, Princeton (1989)

	 9.	 Mott, N.F.: The wave mechanics of α-ray tracks. Proc. R. Soc. 
Lond. A 126, 79–84 (1929)

	10.	 Recchia, C., Teta, A.: Semiclassical wave-packets emerging from 
interaction with an environment. J. Math. Phys. 55, 012104 (2014)

	11.	 Sparenberg, J.-M., Gaspard, D.: Decoherence and determinism 
in a one-dimensional cloud-chamber model. Found. Phys. 48, 
429–439 (2018)

	12.	 Zachos, C.K., Fairlie, D.B., Curtright, T.L. (eds.): Quantum 
mechanics in phase space. An overview with selected papers. 
World Scientific, Hackensack (2005)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	The two-spin model of a tracking chamber: a phase-space perspective
	Abstract
	1 Introduction
	2 The model
	3 The Wigner picture
	3.1 The Wigner function of a two-spin system
	3.2 Dynamics of the wigner function

	4 Numerical experiments
	4.1 Simulation setting
	4.2 Dynamics of localization
	4.3 Relationships with entanglement

	5 Conclusions
	Acknowledgements 
	References




