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Abstract
In forensic science, the rare type match problem arises
when the matching characteristic from the suspect
and the crime scene is not in the reference database;
hence, it is difficult to evaluate the likelihood ratio that
compares the defense and prosecution hypotheses. A
recent solution consists of modeling the ordered pop-
ulation probabilities according to the two-parameter
Poisson–Dirichlet distribution, which is a well-known
Bayesian nonparametric prior, and plugging the max-
imum likelihood estimates of the parameters into the
likelihood ratio. We demonstrate that this approxima-
tion produces a systematic bias that fully Bayesian
inference avoids. Motivated by this forensic application,
we consider the need to learn the posterior distribu-
tion of the parameters that governs the two-parameter
Poisson–Dirichlet using two sampling methods: Markov
Chain Monte Carlo and approximate Bayesian computa-
tion. These methods are evaluated in terms of accuracy
and efficiency. Finally, we compare the likelihood ratio
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that is obtained by our proposal with the existing solu-
tion using a database of Y-chromosome haplotypes.

K E Y W O R D S

ABC, MCMC, likelihood ratio, rare type match problem,
two-parameter Poisson–Dirichlet distribution

1 INTRODUCTION

The two-parameter Poisson–Dirichlet (PD) distribution, denoted by PD(𝛼, 𝜃), is a well-known
Bayesian nonparametric prior for ordered infinite-dimensional vectors p = (p1, p2,…) belonging
to the infinite simplex. Our interest in learning the parameters of this distribution arises from
a forensic application (Cereda & Gill, 2020). One of the authors of this paper proposed to use
the PD(𝛼, 𝜃) to model the ranked frequencies of Y-chromosome short tandem repeat (Y-STR)
haplotypes in a population of possible donors of a DNA stain found at the crime scene. The final
aim of that work was to calculate the likelihood ratio (LR) for the so-called “rare type match
problem,” which occurs when the crime stain Y-STR profile that matches the suspect’s profile has
not been observed in the reference population sample. Following the forensic science terminology
(as well as we will do hereafter) they refer to LR as what, in Bayesian circles, is called Bayes factor
(Dorp et al., 2020; Taroni et al., 2016) and show that it depends on the posterior distribution of
the PD parameters. Since this posterior distribution is analytically intractable, they proposed a
plug-in solution that is based on the maximum likelihood estimate (MLE) of the parameters. Here
we demonstrate that this approximation provides a systematic overestimation of the LR, which
is an especially unpleasant result in forensic individualization. Instead, we address the problem
of dealing with the lack of knowledge on 𝛼 and 𝜃 by evaluating their posterior distribution via
Markov Chain Monte Carlo (MCMC) and approximate Bayesian computation (ABC) methods.
Furthermore, we compare the performance of the two sampling schemes on simulated datasets.

This paper is structured as follows. In Section 2, we provide the essentials about the PD
prior, the related Pitman sampling formula, and the Chinese restaurant representation. In
Section 3, we illustrate the Y-STR rare type match problem that motivates our interest in explor-
ing inference strategies and the need of using a fully Bayesian inference instead of the plug-in
of the MLEs of the PD parameters. Section 4 deals with the implementation of the MCMC
and ABC simulation methods. Section 5 provides some proof-of-concept experiments based on
simulated data in a controlled experiment. Section 6 considers a real and large Y-STR col-
lection of profiles and performs 50 identification activities by using the plug-in and the fully
Bayesian approaches. Finally, we give our conclusions and make some suggestions for possible
developments.

2 THE TWO-PARAMETER POISSON–DIRICHLET
DISTRIBUTION

The two-parameter PD distribution, PD(𝛼, 𝜃) with 𝛼 ∈ (0, 1) and 𝜃 > −𝛼, is a distribution over the
infinite simplex of the form
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∇∞ =

{
(p1, p2,…)|p1 ≥ p2 ≥ · · · > 0,

+∞∑
i=1

pi = 1

}
.

Actually, it is a probability distribution over a set of discrete probability distributions. This distri-
bution was first introduced by Pitman (1992) and is the generalization of the one-parameter PD
distribution due to Kingman (1975), which is obtained by introducing a discount parameter.

Operationally, the PD distribution can be constructed in two steps:

1. For 𝛼 ∈ (0, 1), and 𝜃 > −𝛼, the vector W = (W1,W2,…) is distributed according to GEM(𝛼, 𝜃)
if ∀i,Wi = Vi

∏i−1
j=1(1 − Vj), and Vi ∼ Beta(1 − 𝛼, 𝜃 + i𝛼). GEM(𝛼, 𝜃) is also known as stick

breaking prior (Pitman, 2002).
2. The random vector P = (P1,P2,…), obtained sorting the elements in W in decreasing order,

has the PD(𝛼, 𝜃) distribution. Parameters 𝛼 and 𝜃 are called the discount and the concentration
parameters, respectively.

Insights into the role of the two parameters in the characterization of the shape of the distribu-
tion can be found in Navarrete et al. (2008), and De Blasi et al. (2015). One of the exciting features
of PD is that it shows an asymptotic Zipf’s-law distribution for the ordered frequencies (Goldwa-
ter et al., 2006), meaning that their probabilities are inversely proportional to their rank. This is
the fundamental reason why we use it for the forensic application in Section 3. Notice that the lit-
erature also includes the value 0 in the definition of the parameter space for 𝛼, corresponding to
the (one parameter) Poisson–Dirichlet distribution (Kingman, 1975). However, we do not include
the value 0 because this implies a critical distributional difference from the two-parameter PD:
more specifically, in such a case, the ranked frequencies do not asymptotically show the desired
Zipf’s law behavior (Broderick et al., 2012).

The one-parameter Poisson–Dirichlet distribution, corresponding to 𝛼 = 0, is related to the
well-known Dirichlet process (DP) (Ferguson, 1973) and similarly, the two-parameter PD distri-
bution finds an extension in the so-called Pitman Yor process (PYP). The DP and the PYP are used
for hierarchical mixture modeling and clustering problems, and are both functional on distribu-
tions: they take as an input a measurable space with domain Ψ, and a distribution over it (called
the base distribution G(⋅)), and they yield a discrete distribution as an output with a countable set
of possible values of the form

k∑
i=1

pi𝛿𝜓i(⋅),

where 𝜓1, 𝜓2,… are i.i.d from G, and the vector p is distributed according to a PD(0, 𝜃) for the
Dirichlet process, or according to PD(𝛼, 𝜃) with 𝛼 > 0 for the PYP. Note that here we are interested
in the PD distribution, modeling the probability of the ordered vector p, and we are not interested
in the entire process, which is also characterized by the base measure.

Another possible set of values for the two parameters traditionally associated to the PD is
𝛼 < 0, 𝜃 = −m𝛼 for some positive integer m (Pitman, 1996). However, we are not interested in
this choice because it is only suitable in the case of a finite k; hence, it is neither appropriate as a
Bayesian nonparametric prior nor for the application at hand because we do not know in advance
the number of types.

In what follows, we report two alternative characterizations of the PD(𝛼, 𝜃) distribution.
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2.1 Pitman sampling formula

Consider a sequence of integer-valued random variables, I1,… , In, representing some character-
istics of n units. Let the equivalence relation i ∼ j hold if and only if Ii = Ij (i.e., the ith and the
jth units have the same characteristics). The equivalence classes based on subsets of indices cor-
responding to the same value of I form a random partition of [n] = {1, 2,… ,n}, which will be
denoted as Π[n](I1, I2,… , In). For instance, the following realization of a random partition

𝜋[10] = {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}} (1)

corresponds to I1 = I3, I2 = I4 = I10, I5 = I6, while I7, I8, and I9 are singletons. We have retained
equalities and inequalities but we have lost information about the value of each Ii.

It holds that if ∀n ∈ N

I1,… , In|P = p∼i.i.d.p,
P|𝛼, 𝜃 ∼ PD(𝛼, 𝜃), (2)

then the random partition Π[n] = Π[n](I1,… , In) has the following distribution:

Pr(Π[n] = 𝜋[n]|𝛼, 𝜃) = [𝜃 + 𝛼]k−1;𝛼

[𝜃 + 1]n−1;1

k∏
i=1

[1 − 𝛼]ni−1;1, (3)

where ni is the size of the ith class of 𝜋[n], k is the number of classes, and ∀x, b ∈ R, a ∈ N,

[x]a;b ∶=

{∏a−1
i=0 (x + ib) if a ∈ N ∖ {0}

1 if a = 0.

The Pitman sampling formula (3), which was first derived by Pitman (1995), will be used as a
likelihood for obtaining the MLE and the MCMC posterior distribution for (𝛼, 𝜃).

2.2 Chinese restaurant representation

An alternative characterization of this model is called anecdotically the “Chinese restaurant pro-
cess” (CRP), due to Aldous (1985) for the one-parameter case, and studied by Pitman (2006) for
the two-parameter version.

Consider a restaurant with infinitely many tables, each table is infinitely large. Let S1, S2,… ,

be integer valued random variables representing the seating plan of the restaurant: Si =
j means that the ith customer seats at the jth table. Let S1 = 1. After that, the process
depends on parameters 𝛼 ∈ (0, 1), and 𝜃 > −𝛼 and is described by the following conditional
probability:

Pr(Sn+1 = j|S1,… , Sn) =

{
𝜃+k𝛼
n+𝜃

if j = k + 1
nj−𝛼
n+𝜃

if 1 ≤ j ≤ k,
(4)
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where k is the number of tables occupied by the first n customers, and nj is the number of
customers already seating at table j. Clearly, S1,… , Sn are not i.i.d., nor exchangeable, but
Π[n](S1,… , Sn) is distributed according to the Pitman sampling formula (3) (for a proof, see Pit-
man (2006)). This process provides the generative model required to perform ABC, see Section 4.2.

From Equation (4), it is apparent that allowing 𝛼 < 0, 𝜃 = −m𝛼, implies that after the observa-
tion of m types, the probability of observing an unseen type becomes 0; hence, no new types can
be observed, making the probability distribution inappropriate in the nonparametric framework.

2.3 Review of the literature

In the literature, there are a few contributions to methods for learning the PD parameters. Carl-
ton (1999) and Zhou et al. (2017) consider MLE for 𝛼 and 𝜃 separately and jointly, providing
(Carlton only) caveats on the consistency of the estimators under some conditions. Sibuya and
Yamato (2001), following Carlton, show the suboptimality of MLE and present some alternative
estimators. Hoshino (2001) deals with computational aspects of deriving MLE. In the Bayesian
framework, Lijoi et al. (2008) pose a prior on the two parameters to evaluate a Bayes factor
required for model choice, while Favaro et al. (2009), and Lijoi et al. (2007) solve the problem
through an empirical Bayes estimation.

In Jara et al. (2010), Carmona et al. (2018), and Murphy et al. (2019), MCMC inference
on the parameters of a PYP mixture models is explored providing posterior uncertainty on the
cluster locations and their relative sizes. Earlier contributions can be found in West (1992), Esco-
bar (1994), Escobar and West (1995), and Escobar and West (1998) for the DP mixture model,
where they derive (also) the full conditional for the parameter 𝛼.

Lijoi et al. (2008) attempted to derive the posterior for two parameters PD (𝛼, 𝜃), via a
Gibbs scheme. However, the computation of their full conditionals requires us to resort to a
discretization for the two parameters. To avoid constraining the choice of the prior to con-
venience reasons, which misrepresents the parameter’s support, we choose to perform a MH
inference.

As far as we know, there are no attempts in the literature to derive inference for the PD
parameters via ABC.

3 THE RARE TYPE MATCH PROBLEM

In a forensic case, the characteristic of a stain found on the crime scene turns out to match
the characteristic of a suspect. Let us name as D the two profiles along with a database of ref-
erence containing the characteristics of n statistical units. Throughout this paper, the database
is assumed to be a random sample from the population of possible donors, even though this
assumption might not always be satisfied.

To “weight the data” D under the prosecution’s (identification) and the defense’s
(no-identification) hypotheses, hp and hd, the forensic statistician has to calculate the likelihood
ratio, defined as:

LR =
Pr(D|hp)
Pr(D|hd)

. (5)
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In this basic forensic setting, the condition most favorable to identification happens if the suspect’s
profile and the crime stain’s profile are identical (i.e., whenever they match). The support to the
identification depends on the rarity of the trait in the database: the rarer the evidence is, the
stronger the support to hp will be.

The rare type match case is the situation in which the profile shared by the suspect and the
stain is not among those contained in the database of reference. In this framework, the rarity prin-
ciple is not operational because there are no frequencies to empirically evaluate the probability
of observing the characteristic exhibited by the crime and the suspect sample. Actually, one can
always enlarge the dataset with the crime’s sample (or equivalently, the suspect’s sample) as rec-
ommended by, for example, Dawid and Mortera (1996), but the estimate of the probability of the
matching characteristic would still be based on one observation only.

This state of affairs is not unusual because the evidence considered for forensic purposes (e.g.,
tire marks, glass fragments, and others) is often made of a large and unknown number of fea-
tures. The same happens when using Y-STR profiles, which are made of a number (varying from
7 to 23) of STR polymorphisms belonging to the nonrecombining part of the Y-chromosome.
The lack of recombination implies that there is no biological reason to assume independence
among Y-STR loci. This dependency, which was confirmed by Caliebe et al. (2015), makes the
available databases too small with respect to the very large number of possible profiles. This does
not represent a problem when dealing with autosomal STR profiles, for which the assumption of
independence among the loci holds and allows considering each locus separately.

To address this problem, we propose a “change of glasses strategy” that considers only the
event that a never observed characteristic has been observed twice as relevant, and hence con-
tributes to the augmented database partition with a further class of size two. What becomes
of interest is how rare is to observe two traces with the same characteristic in the augmented
database, with no mention of its value which becomes irrelevant.

This change of glasses strategy ignores information about the type of each observation, and
allows us to model the ordered vector p of the relative frequencies as a PD distribution. The
reasons that motivate this choice are detailed in Cereda and Gill (2020), and are fundamentally
due to the Zipf’s law behavior shown by the Y-STR ordered frequencies in the YHRD database.
In addition, assuming that the number of possible Y-STR haplotypes is infinite simplifies our
task because we are not required to fix their number in advance and we are always ready to
accommodate for the observation of a not yet observed type.

Consider the partition 𝜋[10] shown in Section 2.1, representing a small database of 10 individ-
uals. By augmenting the database with the crime stain and suspect’s characteristics, in the rare
type match case we would obtain:

𝜋[12] = {{1, 3}, {2, 4, 10}, {5, 6}, {7}, {8}, {9}, {11, 12}}.

The 11th and the 12th characteristics (of the suspect’s and the crime stain’s) constitute a new
class by themselves because they are equal to each other but different from all of those previously
observed. The change of glasses allows one to focus on the classes of the partition; for instance, dis-
regarding the genetic information and taking into account only equalities and inequalities among
Y-STR profiles. In this framework, the computation of (5) requires us to evaluate the probabil-
ity of the partition conditionally to the hypothesis H ∈ {hp, hd}. In fact, the hypotheses matter:
when H = hp, the suspect and the crime characteristics belong to the same person and are actually
two observations of the suspect’s characteristic; when H = hd, they are two equal characteristics
belonging to two different persons.
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Let 𝜋[n+1] denote the partition obtained from the database augmented with the suspect’s char-
acteristic, and 𝜋[n+2] denote the partition obtained by adding the crime stain in the same class as
the suspect sample. Since defense and prosecution agree about the origin of the first n + 1 observa-
tions and they also assume the same model, 𝛱[n+1] ⟂⟂ H|𝛼, 𝜃 holds. In such a case, the likelihood
ratio becomes

LR =
p(𝜋[n+2]|hp)
p(𝜋[n+2]|hd)

=
p(𝜋[n+2], 𝜋[n+1]|hp)
p(𝜋[n+2], 𝜋[n+1]|hd)

because 𝜋[n+1] ⊂ 𝜋[n+2]

=
p(𝜋[n+2]|𝜋[n+1], hp)p(𝜋[n+1]|hp)

p(𝜋[n+2], 𝜋[n+1]|hd)

=
1 ⋅ p(𝜋[n+1]|hp)

p(𝜋[n+2], 𝜋[n+1]|hd)

=
∫ p(𝜋[n+1], 𝛼, 𝜃)d𝛼, d𝜃

∫ p(𝜋[n+2]|𝜋[n+1], 𝛼, 𝜃, hd)p(𝜋[n+1]|𝛼, 𝜃)p(𝛼, 𝜃)d𝜃d𝛼
(6)

= 1
∫ 1−𝛼

n+1+𝜃
p(𝛼, 𝜃|𝜋[n+1])d𝛼d𝜃

, (7)

where (a) p(𝜋[n+2]|𝜋[n+1], hp) = 1 because according to hp the suspect and the crime stain charac-
teristics must be equal, and hence belong to the same class; (b) (6) derives from 𝛱[n+1] ⟂⟂ H|𝛼, 𝜃;
and (c) the last line comes from (4) and Bayes’ theorem.

This result (7) is formally reminiscent of the LR employed in usual forensic identification
whenever the crime stain and the suspect characteristics coincide, as also shown by Dawid (2017,
Sect 4.1.2). Even there, the LR is obtained by integrating the probability of observing the crime
stain’s evidence with respect to the posterior distribution of unknown population parameters
given the database enlarged with the suspect’s characteristic. In our change of glasses perspec-
tive, one has to find the marginal probability of the event of observing the (n + 2)th characteristic,
identical to the (n + 1)th, both never observed before, by integrating with respect to the PD param-
eters. Using a PD distribution, the probability of this event, conditionally to the model parameters,
is provided by (4) (bottom line with ni = 1) and is equal to 1−𝛼

n+1+𝜃
, further mixed by the posterior

of 𝛼 and 𝜃, conditioning on 𝜋[n+1].
The fully Bayesian evaluation of the LR (7) differs from the proposal of Cereda and Gill (2020),

who proceeded to plug-in the MLE estimates of the PD parameters derived by the likelihood (3),
obtaining:

LRMLE = n + 1 + 𝜃MLE

1 − 𝛼MLE
. (8)

Expression (8) is an heterogeneous result because the LR comes from a Bayesian formulation but
its evaluation is obtained by considering the parameters as fixed quantities estimated by MLE. In
this work, the evaluation of the MLE for 𝛼 and 𝜃 has been obtained numerically by the routine
nlm available in R, using Newton-type algorithms (see Dennis and Schnabel (1996)). This is not
computationally intensive.

Actually, the question is whether the plug-in approach (8) produces a good approximation
of (7) or introduces a well-characterized bias in the evaluation of the LR compared to the fully
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Bayesian solution. The issue seems a specific instance of a contrived dispute opposing two
approaches to inference but, in this case, we believe that a reason motivating the preference for
the Bayesian solution does exist, as detailed in Section 3.1.

3.1 The plug-in and the fully Bayesian solution compared

Let us define 𝜙(𝛼, 𝜃) = n+1+𝜃
1−𝛼

. The fully Bayesian solution (7) can be estimated by resorting to a
MC estimate of the integral. Accordingly,

LRMC = 1
1

nsim

∑nsim
i=1

1−𝛼i
n+1+𝜃i

= nsim∑nsim
i=1 𝜙(𝛼i, 𝜃i)−1

, (9)

which corresponds to the harmonic mean of 𝜙(𝛼, 𝜃) evaluated using pairs (𝛼i, 𝜃i), i ∈ {1, ..nsim},
drawn from the posterior.

If the posterior distribution of the two parameters was concentrated around (𝛼MLE, 𝜃MLE),
then the estimate in (8) would represent the first-order Taylor approximation of the expected
value of 𝜙(𝜃, 𝛼). This suggests that, given nsim samples from the posterior, the arithmetic mean

1
nsim

∑nsim
i=1 𝜙(𝛼i, 𝜃i) would be very similar to LRMLE.

Recalling that the harmonic mean is always smaller than the arithmetic mean, LRMLE
represents a systematic overestimation of the fully Bayesian solution (7).

This implies that (8) provides a greater and unjustified support to identification, and is con-
sequently not desirable in the forensic setting. In other words, only if the posterior distribution
is strictly concentrated around (𝛼MLE, 𝜃MLE), that is, when p(𝛼, 𝜃|𝜋[n+1]) ≈ 𝛿(𝛼MLE,𝜃MLE)(𝛼, 𝜃) do the
two estimates approximately coincide. In such a case, the computational effort of sampling from
the posterior could be avoided by resorting to the plug-in estimate. In all other cases, a proper
evaluation of the Bayesian solution in (7) requires computation of the MC estimate in (9) based
on simulations from the posterior distribution.

Similarly, Meester and Slooten (2021) show that in the standard context of identification (i.e.,
when the specific characteristic of the matching trace is taken into account), it holds that

LR =
∫ p(Xs = x|𝜃, hp)p(𝜃)d𝜃

∫ p(Xc = x|Xs = x, 𝜃, hd)p(Xs = x|𝜃, hd)p(𝜃)d𝜃
= E(𝜃)

E(𝜃2)

= E(𝜃)
(E(𝜃))2 + var(𝜃)

= 1
E(𝜃) + var(𝜃)

E(𝜃)

,

where X is the characteristic of the matching profile, p(X = x|𝜃) = 𝜃, 𝜃 ∼ p(𝜃), and Xc = Xs = x
are the crime and the suspect sample, respectively.

Therefore, also in the standard context, if we replace E(𝜃) with 𝜃MLE and we ignore the
parameter’s uncertainty and its variability, we obtain an overestimation of the LR.

4 INFERENCE OF THE PD PARAMETERS

In this section, we specify how to make inference on 𝛼 and 𝜃 by considering that a solution in
closed form does not exist. In this case, a likelihood and a generative model are both available.
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Therefore, we planned to explore the use of MCMC and ABC sampling scheme to compare their
respective merits and demerits.

4.1 Markov Chain Monte Carlo

Nowadays, MCMC methods (Robert & Casella, 2013), especially Gibbs sampler and Metropo-
lis Hastings (MH), are the main tool to perform calculations in Bayesian inference. The MH
algorithm generates samples from the posterior distribution of a set of parameters, which are
generically indicated by 𝛾 and indexing a possible multivariate random variable X through a spe-
cific model, say p(x|𝛾), by building an ergodic Markov chain through an acceptance-rejection
mechanism: at each iteration, t, the proposal 𝛾∗ is accepted or rejected after a comparison with
the last accepted parameter, 𝛾t−1. The algorithm relies on three ingredients: (a) the likelihood
function, 𝓁(𝛾; x), providing the link between the model parameters, 𝛾 , and the data, x; (b) the
prior distribution, p(𝛾), and (c) the proposal distribution, q(𝛾∗|𝛾t−1). Upon assessment of the
convergence, the result is a sample from the posterior distribution of 𝛾 .

MCMC for PD(𝛼, 𝜃). For a budget of T simulations, Algorithm 1 summarizes how to imple-
ment MH for the parameters 𝛾 = (𝛼, 𝜃) of the PD distribution, conditionally to an observed
random partition 𝜋[n].

Algorithm 1. MH

Initialize 𝛼0 ∼ p(𝛼), 𝜃0 ∣ 𝛼0 ∼ p(𝜃|𝛼0),
for t = 1,… ,T do

Draw 𝛼∗, 𝜃∗ ∼ q(𝛼, 𝜃|𝛼t−1, 𝜃t−1)
Evaluate the ratio

R =
p(𝛼∗, 𝜃∗|𝜋[n])

p(𝛼t−1, 𝜃t−1|𝜋[n]) q(𝛼t−1, 𝜃t−1|𝛼∗, 𝜃∗)
q(𝛼∗, 𝜃∗|𝛼t−1, 𝜃t−1)

Set (𝛼t, 𝜃t) = (𝛼∗, 𝜃∗) with probability equal to min(R, 1)
end for

The acceptance ratio R in Algorithm 1 can be expanded as

R =
p(𝛼∗, 𝜃∗)

p(𝛼t−1, 𝜃t−1)
𝓁(𝛼∗, 𝜃∗;𝜋[n])

𝓁(𝛼t−1, 𝜃t−1;𝜋[n])
q(𝛼t−1, 𝜃t−1|𝛼∗, 𝜃∗)
q(𝛼∗, 𝜃∗|𝛼t−1, 𝜃t−1)

,

where the intractable posterior normalizing constants cancel. We propose the following prior and
proposal distributions:

1. A joint prior p(𝛼, 𝜃) = p(𝜃|𝛼)p(𝛼) made of:

• A vague prior for 𝛼: 𝛼 ∼ Unif(0, 1).
• A truncated Gaussian distribution for 𝜃|𝛼:
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𝜃|𝛼, 𝜃 ∼ N
(
𝜃, 2|𝜃|, (−𝛼,+∞)

)
(10)

where 𝜃 is a guess on the location of 𝜃 with variance 2|𝜃|. The variance of 𝜃 accounts for
the difficulty in eliciting this prior according to the magnitude of the parameter spanning
in (−𝛼,∞). This choice attempts to reduce the effect of a largely inaccurate prior specifi-
cation, which more easily occurs for a distribution on 𝜃 posing the bulk of the probability
around high values of the variable. Furthermore, our choice requires to set only one hyper-
parameter, whereas other existing approaches involve two parameters: for the prior on 𝜃,
Jara et al. (2010) specify the mean and the variance of a truncated normal, while Carmona
et al. (2018) rely on a shifted Gamma distribution.

2. A proposal distribution

q(𝛼∗, 𝜃∗|𝛼t−1, 𝜃t−1) = q(𝛼∗|𝛼t−1)q(𝜃∗|𝜃t−1, 𝛼
∗)

made of:

• A reflecting random walk for 𝛼∗|𝛼t−1 (see Hoff (2009)) assuring that 𝛼∗ ∈ (0, 1) by sampling

𝛼′|𝛼t−1 ∼ Unif(𝛼t−1 − 𝛿, 𝛼t−1 + 𝛿),

𝛼∗|𝛼′ = {|𝛼′|, −1 < 𝛼′ ≤ 1
2 − 𝛼′, 1 < 𝛼′ ≤ 2

where 0 < 𝛿 < 1 is the tuning parameter, here set as 𝛿 = 0.1, so that we move tightly around
the previous accepted 𝛼. This seems a good compromise between a reasonable speed in
exploration and the need to avoid to search too far from an already accepted proposal.

• A truncated Gaussian for 𝜃∗|𝜃t−1, 𝛼
∗:

𝜃∗|𝜃t−1, 𝛼
∗ ∼ N(𝜃t−1, |𝜃t−1|, (−𝛼∗,+∞)).

Also Jara et al. (2010) employ a truncated Gaussian distribution, while Carmona et al. (2018)
propose 𝜃∗|𝜃t−1 ∼ U(𝜃t−1 − 𝜙, 𝜃t−1 + 𝜙) which has the advantage of providing a symmetric
transition kernel at the cost of specifying a further tuning parameter (𝜙).

4.2 Approximate Bayesian computation

ABC denotes a class of methods for Bayesian inference on model parameters, ruling out either
the analytical or numerical evaluation of the likelihood whenever they are unfeasible. A compre-
hensive overview on the ABC methods can be found in Sisson et al. (2018).

The main requirement of ABC is the possibility to simulate synthetic-data from a genera-
tive model (i.e., a computer program reproducing the generative data process) once fed with an
instance of the model parameters. The primal rejection ABC converts samples from the prior into
samples from the posterior distribution of the parameters by retaining only those values that when
provided to the generative model produce synthetic data (y) identical to those observed (x). In this
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way, the likelihood is empirically evaluated through a Monte Carlo estimate of the probability that
each value of the parameter(s) could lead to simulations identical to the observed data. The event
y = x occurs with positive probability only when observed data live in a discrete space: otherwise,
the generative model has no chance to reproduce exactly the original data. In addition, the event
y = x is very rare in high-dimensional discrete spaces, hence leading to discarding many simula-
tions. The solution to this problem is to accept a certain degree of approximation by relaxing the
y = x requirement, and introducing a discrepancy function d(x, y) and a tolerance threshold, 𝜖, so
that a parameter proposal is accepted if d(x, y) < 𝜖. For 𝜖 → 0, the primal rejection ABC is recov-
ered, and there is no approximation. The same holds if the comparison between the observed
and the simulated data is realized by means of summary statistics, s, sufficient for the parameters
(see Sisson et al. (2018, Ch 5)). If a (set of) sufficient statistics is not known, then some others,
heuristically chosen, may be proposed by introducing a further source of approximation. Several
improvements on the ABC sampling scheme have been proposed (e.g., see Beaumont (2019), and
Lintusaari et al. (2017) for a review). Nevertheless, here we use a simple rejection scheme as the
end-of-scale of the potentiality of ABC.

ABC for PD(𝛼, 𝜃). Concerning the implementation of ABC for the parameters 𝛼 and 𝜃 of the
PD distribution, we denote by 𝜋obs

[n] the observed partition and by 𝜋(t)
[n] the synthetic partition sim-

ulated at iteration t. The generative model is provided by the CRP, sequentially allocating each
individual, according to a probability defined by (4), either to an existing class of the partition or
to a new class. The choice of the summary statistics and the distance function is crucial. Looking
at (3), it is apparent that the partition of n, 𝜋n ∶= (n1,… ,nk), is a sufficient statistic for the two
parameters. It follows that by comparing 𝜋obs

n and 𝜋(t)
n , we might avoid the approximation deriving

from heuristically chosen statistics. However, the ABC approximation error’s asymptotic expres-
sion suggests that high-dimensional summary statistics give poor results (Barber et al., 2015;
Fearnhead & Prangle, 2012). Generally, the unavailability of low-dimensional sufficient summary
statistics leads to the curse of dimensionality. This problem becomes more relevant in our setting
by considering that the sufficient summary statistic𝜋n is potentially infinite-dimensional. Accord-
ingly, by naming kobs and k(t) the length of 𝜋obs

n and 𝜋(t)
n , respectively, we propose to mitigate the

curse of dimensionality by comparing observed and simulated data through:

• A distance between partitions:

d1(𝜋(t)
n , 𝜋

obs
n ) = 1

k∗

k∗∑
i=1

log2 n(t)
i

nobs
i

(11)

where k∗ = min(kobs, k(t)).
Distance in (11) has the following properties:

– d1(⋅, ⋅) = 0 if and only if nobs
i = n(t)

i ,∀i ∈ {1,… ,min(kobs, k(t))};
– d1(⋅, ⋅) is symmetric.

• A relative distance between the number of classes in the partitions:

d2(k(t), kobs) = |k(t) − kobs|
kobs .

– d2(⋅, ⋅) = 0 iff kobs = k(t).
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Algorithm 2 summarizes the resulting ABC algorithm.

Algorithm 2. ABC

Draw (𝛼(t), 𝜃(t)) ∼ p(𝛼, 𝜃) t ∈ 1,… ,T
Generate 𝜋(t)

[n] ∼ p(⋅|𝛼(t)𝜃(t)) from the CRP t ∈ 1,… ,T
Accept (𝛼(t), 𝜃(t)) if d1(𝜋(t)

n , 𝜋
obs
n )<𝜖1 and d2(k(t), kobs)<𝜖2 t ∈ 1,… ,T

The output of Algorithm 2 is a sample from the approximate distribution of 𝜃, 𝛼, 𝜋[n]|𝜋obs
[n] .

Marginalizing by disregarding the simulated summary statistics, the output of the algorithm
becomes a sample from the approximate marginal posterior distribution of 𝜃, 𝛼 given 𝜋obs

[n] . Note
that due to the sufficiency of 𝜋n and to the acceptance criterion, because (𝜖1, 𝜖2) → (0, 0) there is
no approximation in the distribution of 𝛼, 𝜃|𝜋obs

[n] achieved by ABC. The thresholds (𝜖1, 𝜖2) will be
chosen through the quantile criterion (Beaumont et al., 2002), as detailed in Section 5.1.

5 INFERENCE FROM CONTROLLED DATA

The aim of this section is to provide details on three experiments concerning the inference on PD
parameters. Each experiment is based on n i.i.d. observations, simulated from a distribution p
obtained as a realization of a PD with three pairs of known parameters 𝛼true and 𝜃true, as detailed
in Table 1.

5.1 MCMC and ABC inference comparison

For each population, inference on 𝛼 and 𝜃 has been obtained according to Section 4. This only
requires us to provide the value of 𝜃, the location of the prior on 𝜃 because 𝛼 is assumed distributed
as a Unif(0, 1). The values of 𝜃 in Table 1 allow us to evaluate how ABC and MCMC react to a
location of the prior close to or far from 𝜃true.

In detail, we have run:

T A B L E 1 Parameters (𝛼true, 𝜃true) characterizing three populations

P1 P2 P3

𝜶
true

𝜽
true

𝜶
true

𝜽
true

𝜶
true

𝜽
true

0.5 20 0.1 10 0.7 5

E(Kn) = 247.41 E(Kn) = 59.36 E(Kn) = 291.43

𝜃 = {1, 25} 𝜃 = {1, 12} 𝜃 = {4, 30}

Note: For each pair, we provide the expected number of classes, when n = 103. For each population, two different
hyperparameters 𝜃 are proposed.
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1. A CRP with n = 103 customers with parameters (𝛼true, 𝜃true) to simulate a partition 𝜋[n] from
the corresponding population.

2. A MCMC, as detailed in Algorithm 1, for a budget of 106 iterations. We have operated a
burn-in and a thinning as suggested in Raftery and Lewis (1992) to retain a number of almost
uncorrelated simulations from the posterior.

3. An ABC algorithm, as detailed in Algorithm 2, with 𝜖1 and 𝜖2 determined as the first percentile
of the empirical distributions of d1(⋅, 𝜋obs

[n] ) and of d2(⋅, kobs).

Comparisons are made in terms of the accuracy of the density estimation, computational time
and effective sample size (ESS).

Remark 1 (Density estimation). Figure 1 illustrates that, in almost every circumstance, the
ABC and MCMC posterior distributions are close to each other, showing that ABC and MCMC
lead to similar inferences. This judgment is supported by the Hellinger distances (Pardo, 2018)
between ABC and MCMC distributions, whose values are displayed in Figure 1, on the top of
each subfigure. Hellinger distances, which are defined in [0, 1], show values on the narrow range
[0.061-0.212]. The largest values occur when priors largely disagree with the information on the
parameters provided by the evidence because the rejection ABC draws parameter proposals from
the prior. A proposal distribution far from the target results in a high rejection rate or in a bad
approximation when 𝜖 is chosen, as we did, as a quantile of the empirical distributions of the dis-
tances. For example, in the first population, where 𝜃true = 20, the threshold 𝜖1 doubles from 0.016
(𝜃 = 25) to 0.031 (𝜃 = 1). In contrast, in the MCMC, the proposal stage does not depend on the
prior and is adapted according to the last accepted parameters values.

Remark 2 (Prior distribution). For the PD model, it is not easy to elicit priors because it is difficult
to figure out how 𝛼 and 𝜃 jointly affect the realization of a partition 𝜋[n]. A solution is to assume
an Empirical Bayesian (EB) approach by specifying priors through the MLE of the parameters,
as done in Lijoi et al. (2007), and Favaro et al. (2009). An alternative to plug-in the MLE solution
could be to resort to a matching moment strategy. However, the drawback is that a sample far
from being representative of the population would act on the inference twice. An application of
the EB approach can be found in Section 5.2.

Remark 3 (Computational time and ESS). Table 2 displays the time required to obtain 106 simu-
lations and the achieved ESS by using one core of an INTEL® i9 laptop. In two cases, ABC requires
more than twice the time employed by MCMC. In some others, the two computing times do not
differ so much. However, by using eight cores on the same machine and exploiting the ABC atti-
tude to parallel computation, the required time becomes about one-fifth of the time required by
MCMC. This latter shows some variability in the execution times because different values of 𝛼true

and 𝜃true generate partitions of different sizes. When the number of the classes in the partitions is
larger, the complexity of a point-wise likelihood evaluation will be greater. This step is completely
avoided by ABC. Thus, given a budget of iterations, ABC outperforms MCMC in terms of com-
putational effort once parallel computing is exploited. However, we note that MCMC achieves an
ESS largely greater than ABC. Even if the number of retained simulations affects the accuracy
of the parameters’ posterior densities, we wonder if such a large number of iterations is really
required for MCMC. The answer to this question is somewhat troublesome because it implies a
fictitious experiment consisting of two steps: (a) run an MCMC until convergence, operating the
burn-in and the thinning until an almost uncorrelated number of simulations is retained; and (b)
run an ABC until a roughly equal number of simulations as in MCMC is retained. For example, in
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F I G U R E 1 Inference on (𝛼, 𝜃) for populations displayed in Table 1. 𝜃 and Hellinger distance are specified
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T A B L E 2 Running time (seconds) and effective sample size for three populations and two different
hyperparameters 𝜃 (106 iterations)

P1 P2 P3

�̃� 1 25 1 12 4 30

Time MCMC 233 229 82 82 254 252

ABC 202 235 206 231 200 212

ABC (8 cores) 43 44 42 45 38 39

ESS MCMC 16k 42k 42k 35k 8k 9k

ABC ABC 470 575 479 3154 687 220

the first population, setting 𝜃 = 1, MCMC required 20,000 iterations and 5 seconds to retain 1500
almost uncorrelated simulations. To obtain a similar ESS, ABC required three million simulations
and 1020 and 104 s by using one or eight cores, respectively. The same test for the other popu-
lations led to similar results. Moreover, a comprehensive comparison between the two methods
would require us to quantify the effort: (a) to specify the full conditionals or the MH steps along
with the activities required to assess the convergence of the chain for MCMC; and (b) to imple-
ment a valid generative model, to select summary statistics, distance functions and the tolerance
threshold for ABC. This is clearly difficult to quantify but it is a relevant matter depending on the
case at hand.

Remark 4 (Scalability). Looking at Table 2, it is apparent that the running times of ABC are not
sensitive to changes of populations. However, the same does not hold for MCMC, whose compu-
tational times are affected by k, the number of classes in the observed partition whose expected
value varies with 𝛼true and 𝜃true according to the formula E(Kn) =

[𝜃+𝛼]n;1

𝛼[𝜃+1]n−1;1
− 𝜃

𝛼
(Pitman, 2006)

(see the expected values in Table 1). In fact, in the first and third population, where the MCMC
computational times are similar, the expected values of k are close. This is due to the fact that, as
already noted in the previous remark, MCMC requires an evaluation of the likelihood function in
(3), which is more computationally costly for higher values of k. Anyway, k depends also on the
size of the dataset n. Hence, we speculate that ABC methods scale better than MCMC, also with
respect to the sample size.

5.2 Assessing the effect of the sampling variability

To evaluate the effect of sampling variability, we gained some experience by sampling 50 partitions
from the three populations using the PD parameters already displayed in Table 1, from which we
derived inference by using MCMC and ABC. For the sake of brevity, the results are only displayed
for Population 1—the others are very similar. The inference is obtained by specifying three prior
distributions:

1. We chose 𝛼 ∼ Unif(0, 1) and, according to (10), pose 𝜃 = 25 corresponding to a small but not
negligible divergence of the prior location from 𝜃true = 20.

2. The parameter 𝛼 is still ∼ Unif(0, 1) but, now, 𝜃 = 1 corresponds to a large divergence of the
prior location from 𝜃true.
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3. According to the EB paradigm we assume 𝜃 ∼ N (𝜃MLE, 2|𝜃MLE|, [−𝛼,∞]). 𝛼 ∼ Beta(a, b) where
b = 2 and a ∶ Mode(𝛼) = 𝛼MLE.

Figure 2 shows the intervals of the CDFs (5th and the 95th percentile) over 50 experiments.
The most important result is that, independently of the priors, ABC and MCMC largely over-

lap their 90% CDF bands, showing a similar reaction to sampling variability. As a comment, the
lowest overlap occurs when the prior location for 𝜃 largely disagree respect to 𝜃true (see Figure 2
in the middle). As already discussed in Section 5.1, in such conditions the rejection ABC rarely
proposes candidates for 𝜃 close to the bulk of the posterior distribution, and this produces a dis-
tortion with respect to MCMC. A more sophisticated ABC version (e.g., Population Monte Carlo
ABC) is expected to solve the problem. Regarding the sampling variability, the EB approach pro-
duces posteriors that are correctly located (see Figure 2 top and bottom). In addition, the sampling
variability, which can be evaluated by looking at the thickness of the bands, does not vary appre-
ciably with respect to what happens by using a prior located not very far from 𝜃true. This suggests
that EB is a viable solution to specify priors in case of PD.

6 EXPERIMENTS

In this section, we propose an experiment based on real data using the YHRD database, a col-
lection of 18’925 7-loci (DYS19, DYS389 I, DYS389 II, DYS3904, DYS3915, DY3926, and DY3937)
Y-STR profiles gathered in 51 European countries as detailed by Purps et al. (2014). The PD
model shows a good fit with the ordered relative frequencies of the very large number of different
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profiles in the YHRD database (an approximation of the infinite number required by the PD)
(Cereda & Gill, 2020).

We planned an experiment where a forensic scientist disposes of a sample of n = 1000 obser-
vations from the reference population and has to deal with a rare type match case, consisting of
a crime’s and a suspect’s identical profiles that are not present among the 1000. In a change of
glass framework, the specific feature of these observations is irrelevant: what matters is that their
common characteristic is not included in the database that is available.

The aim of the experiment is to investigate the differences between evaluating the LR accord-
ing to (8) or to (9), and also to evaluate to what extent the sampling variability affects results. To do
so, the procedure described above has been replicated 50 times. In addition, to make the analyses
more comparable, we used EB priors described in Section 5.2.

Here, only the MCMC procedure has been employed because similar inference was obtained
by ABC and MCMC methods (see Section 5).

Figure 3 represents the contour plot of the parameters’ posterior density obtained by using
MCMC simulations (black levels); the 𝛼MLE and 𝜃MLE (red dot); the value of 𝜙(𝛼, 𝜃)−1 for pairs of
𝛼 and 𝜃 (blue lines). It appears that 𝜙(𝛼, 𝜃)−1 is much more sensitive to 𝛼 than to 𝜃, and that there
is an asymmetry toward small values of 𝛼. In this case, the posterior distribution is far from being
symmetric and centered around (𝛼MLE, 𝜃MLE) and has a long tail on pairs of 𝛼 and 𝜃, corresponding
to high values of𝜙(𝛼, 𝜃)−1. Accordingly, the value of the LRMC is all the more reason to be expected
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F I G U R E 3 Density of the posterior distribution of 𝛼, 𝜃|𝜋[n+1] obtained with MCMC (black lines), and
values of 𝜙(𝛼, 𝜃)−1 (blue lines). The MLE is represented with a red point [Colour figure can be viewed at
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F I G U R E 4 Comparison (scatterplot and boxplots) of the (log10) LR values obtained by using (8) or (9) over
50 experiments

to be smaller than LRMLE. This explanation holds for all experiments because the contour plots,
represented in Figure 3 for one experiment only, are very similar for all experiments.

As expected and discussed above, Figure 4 shows that the LRMC is always smaller than the
corresponding LRMLE. It also shows little variability among the LRs that are computed by using
50 different samples from the population. This is due to the reduction of the data in partitions
because many different databases may lead us to observe the same partition. Indeed, labels are
lost and the forensic statistician does not take into account the specific characteristic observed
on the crime scene, but only takes into account the equality between the crime and the suspect
profiles, and the novelty that they represent with respect to the database.

7 DISCUSSION

Since Brenner (2010) defined the problem of assigning a probative value to the rare type match
as the fundamental problem of forensic mathematics, some efforts have been made to provide a
solution to the problem (Cereda, 2017a; Cereda, 2017b; Dorp et al., 2020).

Recently, Cereda and Gill (2020) proposed a Bayesian nonparametric model, providing an
approximate solution based on modeling the ordered relative frequencies of a highly variable
characteristic through a PD prior distribution. In our opinion, switching attention from the spe-
cific characteristic to the event of observing a match of a not yet observed type is the correct way
to address the rare type match problem. Moreover, we demonstrate that the hybrid approximation
introduces a nonconservative bias, which is quite undesirable in the forensic context. To solve
this problem, we suggest two different inferential strategies to obtain the posterior distribution of
the two parameters: using the MCMC and using the ABC approach. As a by-product, this activity
also results in a study of the effectiveness of ABC to derive the parameters’ posterior distribution
in a Bayesian nonparametric setting where, as in the present case, it is possible to implement both
ABC and MCMC.

In Section 5.1 we verified that the two procedures provide a comparable inference so that they
can be both employed. As concerns efficiency, ABC naturally supports parallel computing on
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multi-core laptops, thus reducing the computational time. Finally, comparing Algorithms 1 and
2 and considering the machinery of convergence diagnostic for the MCMC, it appears that the
implementation of ABC is more straightforward than MCMC. The adoption of the rejection ABC
allows for a high degree of multi-threading. However, the same is not valid for schemes allowing
for parameters’ proposal following a Markov chain, such as in Marjoram et al. (2003), or when
the tolerance parameters are adaptively determined, such as in Beaumont et al. (2009), and Del
Moral et al. (2012).

Our forensic application considered Y-STR profiles, for which other authors proposed to
evaluate the support to the identification hypothesis through the inheritance of the genetic char-
acteristics among generations (Andersen et al., 2013; Andersen & Balding, 2017). A reduction of
data similar to the one used in our application was carried out in Cereda (2017b) to solve the rare
type match problem using a generalization of the Good Turing estimator.

Other kinds of evidence, such as fragments of glasses, measured according to the refractive
index, the chemical composition of the glass, its thermal history, and any surface characteristics,
quickly lead to a large number of different profiles and a rare match case may arise (e.g., see
Vergeer et al. (2020)).

The same is true for evidence such as fibers, which are another quite ordinary piece of evi-
dence. This circumstance suggests that our method should be successfully used in applications
using PD distribution in different forensic frameworks, such as speaker recognition (Silnova
et al., 2020), DNA analysis (Fernando, 2017) or in other fields, such as finance (Sosnovskiy, 2015).

ORCID
Giulia Cereda https://orcid.org/0000-0002-2913-6206
Fabio Corradi https://orcid.org/0000-0003-3949-3837
Cecilia Viscardi https://orcid.org/0000-0002-2791-7025

REFERENCES
Aldous, D. J. (1985). Exchangeability and related topics École D’Été de Probabilités de Saint-Flour (Vol. 1117).

Springer-Verlag.
Andersen, M. M., & Balding, D. J. (2017). How convincing is a matching Y-chromosome profile? PLOS Genetics,

13, 1–16.
Andersen, M. M., Eriksen, P. S., & Morling, N. (2013). The discrete Laplace exponential family and estimation of

Y-STR haplotype frequencies. Journal of Theoretical Biology, 329, 39–51.
Barber, S., Voss, J., & Webster, M. (2015). The rate of convergence for approximate Bayesian computation. Electronic

Journal of Statistics, 9, 80–105.
Beaumont, M., Cornuet, J. M., Marin, J. M., & Robert, C. P. (2009). Adaptive approximate Bayesian computation.

Biometrika, 96, 983–990.
Beaumont, M., Zhang, W., & Balding, D. (2002). Approximate Bayesian computation in population genetics.

Genetics, 162, 2025–2035.
Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and Its Application, 6,

379–403.
Brenner, C. H. (2010). Fundamental problem of forensic mathematics—The evidential value of a rare haplotype.

Forensic Science International: Genetics, 4, 281–291.
Broderick, T., Jordan, M. I., & Pitman, J. (2012). Beta processes, stick-breaking and power laws. Bayesian Analysis,

7, 439–476.
Caliebe, A., Jochens, A., Willuweit, S., Roewer, L., & Krawczak, M. (2015). No shortcut solutions to the problem

of Y-STR match probability calculation. Forensic Science International: Genetics, 15, 69–75.
Carlton, M. A. (1999). Applications of the two-parameter Poisson-Dirichlet distribution [Ph.D. thesis]. University of

California, Los Angeles.

https://orcid.org/0000-0002-2913-6206
https://orcid.org/0000-0002-2913-6206
https://orcid.org/0000-0003-3949-3837
https://orcid.org/0000-0003-3949-3837
https://orcid.org/0000-0002-2791-7025
https://orcid.org/0000-0002-2791-7025


20 CEREDA et al.

Carmona, C., Nieto-Barajas, L., & Canale, A. (2018). Model-based approach for household clustering with mixed
scale variables. Advances in Data Analysis and Classification, 13, 559–583.

Cereda, G. (2017a). Bayesian approach to LR in case of rare type match. Statistica Neerlandica, 71, 141–164.
Cereda, G. (2017b). Impact of model choice on LR assessment in case of rare haplotype match (frequentist

approach). Scandinavian Journal of Statistics, 44, 230–248.
Cereda, G., & Gill, R. D. (2020). A nonparametric Bayesian approach to the rare type match problem. Entropy, 22,

439.
Dawid, A. P. (2017). Forensic likelihood ratio: Statistical problems and pitfalls. Science & Justice, 57,

73–75.
Dawid, A. P., & Mortera, J. (1996). Coherent analysis of forensic identification evidence. Journal of the Royal

Statistical Society: Series B (Methodological), 58, 425–443.
De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Pruenster, I., & Ruggiero, M. (2015). Are Gibbs-type priors the

most natural generalization of the Dirichlet process. IEEE Transactions on Patterns Analysis and Machine
Intelligence, 37, 212–229.

Del Moral, P., Doucet, A., & Jasra, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian
computation. Statistics and Computing, 22, 1009–1020.

Dennis, J., & Schnabel, R. (1996). Numerical methods for unconstrained optimization and nonlinear equations
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics.

Dorp, I., Leegwater, A. J., Alberink, I., & Jongbloed, G. (2020). Value of evidence in the rare type match problem:
Common source versus specific source. Law, Probability and Risk, 19, 85–98.

Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical
Association, 89, 268–277.

Escobar, M. D., & West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the
American Statistical Association, 90, 577–588.

Escobar, M. D., & West, M. (1998). Computing nonparametric hierarchical models. Practical Nonparametric and
Semiparametric Bayesian Statistics, 133, 1–22.

Favaro, S., Lijoi, A., Mena, R. H., & Prünster, I. (2009). Bayesian nonparametric inference for species variety with a
two parameter Poisson–Dirichlet process prior. Journal of the Royal Statistical Society: Series B (Methodological),
71, 993–1008.

Fearnhead, P., & Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation:
Semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 74, 419–474.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparamteric problems. Annals of Statistics, 1, 209–230.
Fernando, M. (2017). Bayesian models for PCR stutter [Ph.D. thesis]. The University of Auckland.
Goldwater, S., Johnson, M., & Griffiths, T. (2006). Interpolating between types and tokens by estimating power-law

generators. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol.
18). MIT Press.

Hoff, P. (2009). A first course in Bayesian statistical methods Springer Texts in Statistics. Springer.
Hoshino, N. (2001). Applying Pitman’s sampling formula to microdata disclosure risk assessment. Journal of

Official Statistics, 17, 499–520.
Jara, A., Lesaffre, E., De Iorio, M., & Quintana, F. (2010). Bayesian semiparametric inference for multivariate

doubly-interval-censored data. The Annals of Applied Statistics. 4, 2126–2149.
Kingman, J. F. C. (1975). Random discrete distributions. Journal of the Royal Statistical Society. Series B (Method-

ological), 37, 1–22.
Lijoi, A., Mena, R. H., & Prünster, I. (2007). Bayesian nonparametric estimation of the probability of discovering

new species. Biometrika, 94, 769–786.
Lijoi, A., Mena, R. H., & Prünster, I. (2008). A Bayesian nonparametric approach for comparing clustering in EST

analysis. Journal of Computational Biology, 10, 1315–1327.
Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2017). Fundamentals and recent developments

in approximate Bayesian computation. Systematic Biology, 66, e66–e82.
Marjoram, P., Molitor, J., Plagnol, V., & Tavare, S. (2003). Markov Chain Monte Carlo without likelihoods.

Proceedings of the National Academy of Sciences of the United States of America, 100, 324–328.



CEREDA et al. 21

Meester, R., & Slooten, K. (2021). Probability and forensic evidence: Theory, philosophy, and applications. Cambridge
University Press.

Murphy, K., Viroli, C., & Gormley, C. (2019). Infinite mixtures of infinite factor analysers. Bayesian Analysis, 15
937–963.

Navarrete, C., Quintana, F., & Muller, P. (2008). Some issues on nonparametric Bayesian modeling using species
sampling models. Statistical Modelling, 8, 3–21.

Pardo, L. (2018). Statistical inference based on divergence measures Statistics: A Series of Textbooks and Monographs.
CRC Press.

Pitman, J. (1992). The two-parameter generalization of Ewens’ random partition structure (Technical Report No.
345). Department of Statistics U.C, Berkeley, CA.

Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probability Theory and Related
Fields, 102, 145–158.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme Lecture Notes-Monograph Series (Vol.
30, pp. 245–267). Institute of Mathematical Statistics.

Pitman, J. (2002). Combinatorial stochastic processes Lecture notes for St. Flour Summer School. Department of
Statistics, University of California at Berkeley.

Pitman, J. (2006). Combinatorial stochastic processes École D’Été de Probabilités de Saint-Flour XXXII - 2002.
Springer.

Purps, J., Siegert, S., Willuweit, S., Nagy, M., Alves, C., Salazar, R., Angustia, S. M. T., Santos, L. H., Anslinger, K.,
Bayer, B., Ayub, Q., Wei, W., Xue, Y., Tyler-Smith, C., Bafalluy, M. B., Martínez-Jarreta, B., Egyed, B., Balitzki,
B., Tschumi, S., … Roewer, L. (2014). A global analysis of Y-chromosomal haplotype diversity for 23 STR loci.
Forensic Science International: Genetics, 12, 12–23.

Raftery, A. E., & Lewis, S. M. (1992). One long run with diagnostics: Implementation strategies for Markov Chain
Monte Carlo. Statistical Science, 7, 493–497.

Robert, C., & Casella, G. (2013). Monte Carlo statistical methods. Springer Science & Business Media.
Sibuya, M., & Yamato, H. (2001). Pitman’s model of random partitions (Technical Report). RIMS Kokyuroku.

Research Institute for Mathematical Science, Kyoto University. https://www.kurims.kyoto-u.ac.jp/~kyodo/
kokyuroku/contents/pdf/1240-7.pdf

Silnova, A., Brummer, N., Rohdin, J., Stafylakis, T., & Burget, L. (2020). Probabilistic embeddings for speaker
diarization. Proceedings of the Odyssey 2020 the Speaker and Language Recognition Workshop.

Sisson, S. A., Fan, Y., & Beaumont, M. (2018). Handbook of approximate Bayesian computation. Chapman &
Hall/CRC Press.

Sosnovskiy, S. (2015). On financial applications of the two-parameter Poisson Dirichlet distribution.
arXiv:1501.01954.

Taroni, F., Bozza, S., Biedermann, A., & Aitken, C. (2016). Dismissal of the illusion of uncertainty in the assessment
of a likelihood ratio. Law, Probability and Risk, 15, 1–16.

Vergeer, P., Leegwater, A. J., & Slooten, K. (2020). Evaluation of glass evidence at activity level: A new distribution
for the background population. Forensic Science International, 316, 110431.

West, M. (1992). Hyperparameter estimation in Dirichlet process mixture models (Technical Report). Insti-
tute of Statistics and Decision Sciences Duke University. https://www2.stat.duke.edu/~mw/MWextrapubs/
West1992alphaDP.pdf

Zhou, X., Huang, J., & Wu, X. (2017). Estimation of Poisson–Dirichlet parameters with monotone missing data.
Mathematical Problems in Engineering, 2017, 7892507.

How to cite this article: Cereda, G., Corradi, F., & Viscardi, C. (2022). Learning the two
parameters of the Poisson–Dirichlet distribution with a forensic application. Scandinavian
Journal of Statistics, 1–21. https://doi.org/10.1111/sjos.12575

https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1240-7.pdf
https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1240-7.pdf
https://www2.stat.duke.edu/~mw/MWextrapubs/West1992alphaDP.pdf
https://www2.stat.duke.edu/~mw/MWextrapubs/West1992alphaDP.pdf
https://doi.org/10.1111/sjos.12575
https://doi.org/10.1111/sjos.12575

