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Palindromic Bernoulli distributions

Giovanni Marchetti

Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”, Florence,

and Nanny Wermuth

Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden and

Medical Psychology and Medical Sociology, Gutenberg–University, Mainz

Abstract

We introduce and study a subclass of joint Bernoulli distributions which has the palindromic

property. For such distributions the vector of joint probabilities is unchanged when the order of

the elements is reversed. We prove for binary variables that the palindromic property is equivalent

to zero constraints on all odd-order interaction parameters, be it in parameterizations which are

log-linear, linear or multivariate logistic. In particular, we derive the one-to-one parametric trans-

formations for these three types of model specifications and give simple closed forms of maximum

likelihood estimates. Some special cases and a case study are described.

Keywords: Central symmetry; Linear-in-probability models; Log-linear models, Multivariate logistic

models; Median-dichotomization; Orthant probabilities; Odd-order interactions

1 Introduction

A sequence of characters, such as QR*-TS, becomes a palindromic sequence when the order of the

characters is reversed and appended, here to give QR*-TSST-*RQ. The notion is used in somewhat

modified forms, among others, in musicology, biology and linguistics. An example of a palindromic

sentence which respects the spacings between words is ‘step on no pets’.

Here, we adapt the term to Bernoulli distributions. For a single binary variable, the distribution

is palindromic if it is uniform, that is if both levels occur with probability 1/2. For a Bernoulli

distribution of d binary variables A1, . . . , Ad, having a probability mass function p(a) with a in the

set of all binary d-vectors, the distribution is palindromic if p(a) = p(∼ a) for all a, where ∼ a is the

complement of a; for instance, ∼ a = (0, 1, 0) for a = (1, 0, 1).

With α, β, γ, δ denoting probabilities, bivariate and trivariate palindromic Bernoulli distributions

can be written, as in the following tables:

A1 A2 : 0 1 sum

0 α β 1/2

1 β α 1/2

sum 1/2 1/2 1

A3 : 0 0 1 1

A1 A2 : 0 1 0 1 sum

0 α γ δ β 1/2

1 β δ γ α 1/2

sum α+ β γ + δ γ + δ α+ β 1

Continuous distributions may also be palindromic. For instance, a bivariate Gaussian distribution

centred at zero is palindromic because its probabilities coincide in the first, positive quadrant and in

the fourth, negative quadrant. Similarly, for the second and the third quadrant, these probabilities
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agree. For more than two variables, quadrants are replaced by orthants and a joint distribution

is said to palindromic if their orthant probabilities repeat in reverse order. Examples are mean-

centred Gaussian distributions, spherical distributions and, more generally, distributions with central

symmetry; see Serfling (2006).

Edwards (2000, App. C) studied the properties of the dichotomized normal distribution and

introduced the term multivariate symmetry. We change the terminology to stress the special structure

of these distributions and to distinguish them from the class of completely symmetric tables, defined in

the literature on contingency tables by Bhapkar & Darroch (1990). These satisfy the weaker condition

p(a) = p(σ(a)), for any a and for any permutation σ of the indices.

The orthant probabilities of a joint Gaussian distribution give a nonhierarchical log-linear model

in which all interactions involving an odd number of factors vanish, that is they are zero. In this

paper, we study properties of palindromic Bernoulli distributions. In particular, we prove that the

vanishing of all odd-order log-linear interactions is not only a necessary but also a sufficient condi-

tion. We show the same characterization for models linear-in-probabilities, Streitberg (1990), and for

the multivariate logistic parametrization, Glonek & McCullagh (1995), and explain why palindromic

Bernoulli distributions with Markov structure are in the regular exponential family.

2 Characterization in terms of interaction parameters

2.1 Notation

Let A = (A1, . . . , Ad) be a random vector with a multivariate Bernoulli distribution. Thus, A takes

values a = (a1, . . . , ad) in the set I = {0, 1}d with probabilities

p(a) = Pr(A1 = a1, . . . , Ap = ap),
∑

a∈I p(a) = 1.

For simplicity, we assume p(a) > 0 for all a. The probability distribution of A is determined by the

2d×1 vector π containing all the probabilities p(a) and belonging to the (2d−1)-dimensional simplex.

We list vectors a in a lexicographic order such that the first index in a runs fastest, then the second

changes and the last index runs slowest. Cells of a corresponding contingency table are in vector b ∈ I.

Given a subset M ⊆ V of the variables, the marginal distribution of the variables Av, for v ∈ M

has itself a joint Bernoulli distribution, in the same lexicographic order:

pM (aM ) = Pr(Av = av, for all v ∈ M).

We use three well-studied parameterizations for joint Bernoulli distributions, that is the log-linear,

the linear and the multivariate logistic parameterizations and show how and why they differ even for

palindromic Bernoulli distributions.

In general, a parameterization of A is a smooth one-to-one transformation, mapping π into a 2p×1

vector θ = G(π), say, whose entries θb, are called interaction parameters. To index interactions, it is
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useful to have a one-to-one mapping between the cells in b and subsets of V = {1, . . . , p}. For p = 3:

Lexicographic order

cells in b: 000 100 010 110 001 101 011 111

subset of V : ∅ 1 2 12 3 13 23 123

θb : θ∅ θ1 θ2 θ12 θ3 θ13 θ23 θ123

The cardinality of the set b, denoted by |b| =
∑

v bv, gives the number of ones in vector b. Depending

on |b| being odd or even, an interaction parameter θb is said to be of odd or even order. For instance,

the even-order θ13 is a two-factor interaction of A1 and A3.

2.2 Log-linear parameters

Log-linear parameters are contrasts of log probabilities, that is linear combinations of log p(a), with

weights adding to zero. The vector of the log-linear parameters is

λ = H−1
d log π (2.1)

where

Hd =

(
1 1

1 −1

)
⊗ · · · ⊗

(
1 1

1 −1

)

︸ ︷︷ ︸
d

.

is a 2d × 2d symmetric design matrix whose generic entry is hab = (−1)a·b for (a, b) ∈ I × I. Its

inverse, the contrast matrix, is H−1
d = 2−dHd. The special form of Hd, chosen here, uses so-called

effect coding ; see Wermuth & Cox (1992). The individual interactions can be written as

λb = 2−d
∑

a∈IV
(−1)a·b log p(a), (2.2)

where a · b = a1b1 + · · · + apbp is the inner product of the two binary vectors a and b; see Haberman

(1973, p. 619). In equation (2.2), the symbol b is interpreted for λb as a subset of V and in the

expression (−1)a·b as binary vector.

The inverse mappings from λ to π may be explicitly computed as

π = exp(Hdλ), p(a) = exp
[∑

b∈I(−1)a·bλb

]
. (2.3)

Bernoulli distributions with positive cell probabilities belong to the so-called regular exponential

family with the vector λ containing the canonical parameters.

2.3 Linear interactions or moment parameters

In contrast to log-linear models, the linear-in-probability models, discussed for instance by Cox & Wermuth

(1992, Appendix 2), and their interactions are based on moments. The vector ξ = Hpπ is a moment pa-

rameter vector and the mapping between ξ and λ is one-to-one and differentiable; see Barndorff-Nielsen

(1978, p. 121).
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The moment vector ξ is proportional to the expected value of the sufficient statistics for λ. With

y denoting the vector of the frequencies and by the symmetry of Hd of equation (2.1), this vector of

sufficient statistics is Hdy. The elements of ξ, called also linear interactions, are

ξb =
∑

a∈I(−1)a·b p(a) (2.4)

and gives as inverse transformations

π = 2−d Hd ξ, p(a) = 2−d∑
b∈I(−1)a·bξb. (2.5)

For the transformed random variables Dv = (−1)Av , which take value 1 if Av = 0 and −1 if Av = 1,

the individual interactions are

ξb = E
(∏

v∈V D
bv
v

)
. (2.6)

Because the element (−1)a·b in equation (2.4) may be written with dv = (−1)av as

(−1)a·b = (−1)a1b1 × · · · × (−1)apbp =
∏

v∈V (dv)
bv ,

equation (2.4) gives the expected value of this product with respect to p(a).

Equation (2.6) implies that each moment parameter, ξb, is a marginal parameter, defined in the

marginal distribution of the random vector (Av)v∈b, while the log-linear parameter λb is defined in the

joint distribution. Therefore there is, in general, no simple relation between the log-linear parameter

λM
b , say, in the marginal distribution pM (aM ) and λb, the log-linear parameter in the joint distribution,

but there are exceptions for instance as in Example 3.2. By contrast, the moment vector ξMb defined

in pM(aM ) coincides with ξb.

There is the following important result for regular exponential families by Barndorff-Nielsen (1978,

pp. 121–122). For an arbitrary partition of the parameter vectors λ and ξ in two sub-vectors such

that λ = (λA, λB) and ξ = (ξA, ξB), the distribution π is uniquely parameterized by the mixed vector

(λA, ξB) or by (ξA, λB) and there is a diffeomorphism between this mixed parameterization and the

log-linear parameter λ or the moment parameter ξ.

2.4 Multivariate logistic parameters

The multivariate logistic parametrization, introduced by Glonek & McCullagh (1995), is defined by

the highest order log-linear parameters, considered here under effect coding, in each possible marginal

distribution of A. The parameters are given by the vector η = (ηb)b⊆V where

ηb = λb
b, b ⊆ V. (2.7)

Kauermann (1997) showed that the mapping T : λ 7→ η from the log-linear to the multivariate

logistic parameters is a diffeomorphism by proving that T is a composition of smooth transformations

between the canonical, the moment and the mixed parameters. More details are given below in

subsection 2.5.
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Let Λ = R
2p−1 be the parameter space for the log-linear parameters λ. Then the parameter space

E = T (Λ) for η is the image of λ under the transformation T . Explicit forms for the inverse function

T−1 : E → Λ are known for p = 1 or p = 2 and in special cases, such as in Example 3.2. An algorithm

provided by Qaqish & Ivanova (2006) detects simultaneously whether the vector η is compatible with

a proper probability vector π.

2.5 Properties of the palindromic Bernoulli distributions

Palindromic Bernoulli distributions are closed under marginalization.

Proposition 2.1. If p(a) is a palindromic Bernoulli distribution then, for any subset M of the vari-

ables, the marginal distribution pM(aM ) is a palindromic.

Proof. Define the partition a = (aN , aM ) and let pM (aM ) =
∑

aN∈{0,1}|N| p(aN , aM ). Then if the

distribution is palindromic, p(aN , aM ) = p(∼ aN ,∼ aM ) and

pM (aM ) =
∑

∼aN∈{0,1}|N| p(∼ aN ,∼ aM ) = pM (∼ aM ).

Next, we characterise the distribution by zero constraints on interactions.

Proposition 2.2. A Bernoulli distribution is palindromic if and only if, with θb = ξb or θb = λb, all

odd-order linear or log-linear interactions vanish, that is if and only if

θb = 0, for all b ⊆ V with |b| odd.

Proof. 1) (If A is palindromic then all odd-order ξb = 0.) Any linear interaction can be written as

ξb =
∑

a∈I1
(−1)a·b p(a) +

∑
a∈I1

(−1)(∼a)·b p(∼ a), (2.8)

where I1 denotes the subset of cells having a one as first element. Thus I1 contains half of the cells.

If the distribution is palindromic, p(∼ a) = p(a) and (−1)(∼a)·b) = (−1)|b|(−1)a·b. Thus,

ξb =
∑

a∈I1
(−1)a·b p(a) + (−1)|b|

∑
a∈I1

(−1)a·bp(a). (2.9)

When |b| is odd then (−1)|b| = −1 and ξb = 0; see also Edwards (2000, App. C).

2) (If all odd-order ξb = 0, then p(∼ a) = p(a).) If all odd-order interactions vanish, then

p(a) =
1

2d
∑

b∈Ieven
(−1)a·b ξb, (2.10)

where Ieven is the subset of the cells b such that |b| is even. Thus,

p(∼ a) =
1

2p
∑

b∈Ieven
(−1)(∼a)·b ξb =

1

2p
∑

b∈Ieven
(−1)|b|(−1)a·b ξb = p(a), (2.11)

because |b| is even. So the distribution is palindromic.
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3) The same arguments apply for the log-linear parameterization. The distribution is palindromic

if and only if log p(a) = log p(∼ a) for all a. Therefore, using equation (2.2), and the previous lines

of reasoning, λb = 0 whenever |b| is odd. Conversely, if all odd-order log-linear parameters λb vanish,

then from

log p(a) =
∑

b∈I(−1)a·bλb

we get log p(a) = log p(∼ a) and the distribution is palindromic.

By equation (2.6) and Proposition 2.2, the joint distribution of A is palindromic if and only if all

the odd-order moments of D = (−1)A are zero. Also as the palindromic property is characterized by

linear constraints on the canonical pararameters λ we have the following result.

Corollary 2.3. Palindromic Bernoulli distributions are a regular exponential family.

We show next a similar characterization for the multivariate logistic parametrization.

Proposition 2.4. A Bernoulli distribution is palindromic if and only if all odd-order multivariate

logistic parameters vanish, that is if and only if

ηb = 0, for all b ⊆ V with |b| odd.

The following proof uses a transformation T : λ 7→ η introduced by Kauermann (1997, p. 265). The

composition of smooth one-to-one transformations TM gives T , for each nonempty subset M ⊆ V .

The functions TM operate on parameter transformations between the canonical and the moment

parametrizations, as follows. If M = V ,

TM (λP(V )\V ), λV ) = (ξP(V )\V ), λV ).

If M ⊂ V, |M | 6= 1:

TM (. . . , ξP(V )\V ), ξM , . . . ) = (. . . , ξP(M)\M), ηM , . . . )

and the remaining parameters, which are not listed, are left unchanged. Finally, if |M | = 1,

TM (ξM , . . . ) = (ηM , . . . ).

For instance, to clarify, to get η = T (λ) for three variables we define

T (λ) = T1 ◦ T2 ◦ T3 ◦ T12 ◦ T13 ◦ T23 ◦ T123(η)

and Table 1 gives the details of the required transformations TM .

Proof. Let odd = {b ∈ {0, 1}|V | : |b| odd} be the subset of all odd-order interactions. Then, below we

show that ηodd = 0 if and only if λodd = 0.

From Proposition 2.2 we know that a binary distribution is palindromic if and only if λodd = 0. If

π is palindromic then all the marginal distributions pb(ab), b ⊆ V are palindromic and thus in each of

them, such that |b| is odd, λb
b = ηb = 0. Thus, ηodd = 0. Let even = P(V ) \ odd. Then

T (λeven, λodd = 0) = (ηeven, ηodd = 0). (2.12)
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Table 1: The sequence of transformations required to obtain the multivariate logistic parameter η from

the log-linear parameter λ.

Transformation Parameters Intermediate result

T123(λ) ξ1 ξ2 ξ12 ξ3 ξ13 ξ23 η123 θ(1)

T23(θ
(1)) ξ1 ξ2 ξ12 ξ3 ξ13 η23 η123 θ(2)

T13(θ
(2)) ξ1 ξ2 ξ12 ξ3 η13 η23 η123 θ(3)

T12(θ
(3)) ξ1 ξ2 η12 ξ3 η13 η23 η123 θ(4)

T3(θ
(4)) ξ1 ξ2 η12 η3 η13 η23 η123 θ(5)

T2(θ
(5)) ξ1 η2 η12 η3 η13 η23 η123 θ(6)

T1(θ
(6)) η1 η2 η12 η3 η13 η23 η123 η

Conversely, if ηodd = 0, let ηeven be arbitrarily chosen such as (ηeven, ηodd) = 0) ∈ E0 ⊂ E (the

parameter space of the ηs). As E0 is connected we can directly use equation (2.12) and the smoothness

of the inverse transformation T−1 to get

T−1(ηeven, ηodd = 0) = (λeven, λodd = 0),

and thus the distribution π is palindromic.

Table 2 illustrates the different parameters with a 23 table.

Table 2: Illustration of the the different parameters with a 23 table; constant terms omitted.

Lexicographic order

cells b : 000 100 010 110 001 101 011 111

80 π : 15 9 1 15 15 1 9 15

subsets of V : ∅ 1 2 12 3 13 23 123

ξ : − 0 0 1/2 0 −1/5 1/5 0

λ : − 0 0 log(5)/2 0 −1/5 1/5 0

η : − 0 0 log(3)/2 0 − log(3)/2 log(3)/2 0

Next, we state a result connected with binary probability distributions generated by a linear tri-

angular system, as studied in Wermuth, Marchetti & Cox (2009). Their joint probabilities may be

defined by the recursive factorization

Pr(A1 = a1, . . . , Ad = ad) = Pr(A1 = a1)
∏d

s=2Pr(As = as | A1 = a1, . . . , As−1 = as−1)

with uniform margins. With βs,j denoting linear regression coefficients,

Pr(As = as | A1 = a1, . . . , As−1 = as−1) =
1
2(1 +

∑d
1=s−1 βs,j(−1)as+aj ). (2.13)
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The conditional expected values of As given variables A[s−1] = (A1, . . . , As−1) are linear regressions

with only main effects and no constant term. For these distributions, all the even-order linear inter-

actions are known functions of the marginal correlations. Here, we prove in Appendix 1 the following

result and get back to such systems later.

Proposition 2.5. If a binary probability distribution is generated by a linear triangular system, then

it is palindromic.

3 Some special cases

3.1 Median dichotomization

Let (X1,X2) have a joint distribution function F12 with marginal distributions functions F1 and F2.

Let further U1 = F1(X1) and U2 = F2(X2) be the probability integral transforms of X1 and X2, so

that U1 and U2 are uniform. Also let X̃j be the medians of Xj , j = 1, 2. Consider now the median

dichotomized variables,

A1 = I[U1 >
1
2 ], A2 = I[U2 >

1
2 ] (3.1)

where I[·] is the indicator function. Then, the joint distribution of A1 and A2 is a bivariate palindromic

Bernoulli distribution, as given in Section 1, with α = P (U1 >
1
2 , U2 >

1
2).

The variables D1 = (−1)A1 and D2 = (−1)A2 , taking values 1,−1, have mean zero and unit

variance, so that ξ12 = E(D1D2), the correlation coefficient between D1 and D2, becomes the cross-

sum difference of the joint probabilities

ξ12 = 2α− 2β = 4α− 1. (3.2)

Thus the correlation between two binary variables, which is a multiple of the cross-product difference,

coincides in a bivariate palindromic Bernoulli distribution with the cross-sum difference. This was not

noted, when ξ12 was proposed as a measure of dependence between any two random variables X1 and

X2 by Blomqvist (1950):

4α− 1 = Pr
{
(X1 − X̃1)(X2 − X̃2) > 0

}
− Pr

{
(X1 − X̃1)(X2 − X̃2) < 0

}

= 2Pr(U1 ≤
1
2 , U2 ≤

1
2) + 2Pr(U1 >

1
2 , U2 >

1
2)− 1.

Remark 3.1. The probability αmay be interpreted as the copula C(12 ,
1
2) of the random vector (X1,X2),

where the function C(u, v) = Pr(U1 ≤ u,U2 ≤ v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

By using the linear interaction expansion of equation (2.5), the distribution of D1,D2 is

P (D1 = i,D2 = j) = 1
4(1 + ξ12ij), i, j = 1,−1. (3.3)

After median-dichotomizing d > 2 continuous variables, the resulting binary variables Av, v =

1, . . . , d are still marginally uniform, but their joint distribution is palindromic only for centrally
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symmetric variables, that is when Xv − X̃v has the same distribution as −(Xv − X̃v) for each Xv, v =

1, . . . d.

With d = 3, the joint distribution of the median-dichotomized variables is palindromic with pa-

rameters α, β, γ and δ, as given in section 1. Their marginal correlations are

ξ12 = 4α + 4δ − 1, ξ13 = 4α + 4γ − 1, ξ23 = 4α+ 4β − 1

and the joint probability distribution is, with i, j, k = 1,−1.

P (D1 = i,D2 = j,D3 = k) = 1
8(1 + ξ12ij + ξ13ik + ξ23jk).

Example 3.2. The following example gives the orthant probabilities of a trivariate, mean-centred

Gaussian distribution having equal correlations: −1/2 < ρ < 1. The joint probability vector of the

median-dichotomized variables is:

8π = (1 + 3ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1− ξ, 1 + 3ξ)

and the explicit transformations between the three types of parameters result with

ξ =
2

π
arcsin ρ, λ =

1

4
log

1 + 3ξ

1− ξ
, η = atanh ξ. (3.4)

The arcsin transformation is due to Sheppard (1898) and the obtained distribution is a concentric

ring model ; see Wermuth, Marchetti & Zwiernik (2014).

Proposition 3.3. If X has a d-variate Gaussian distribution with mean zero and correlation matrix

R = [ρst] for s, t = 1, . . . , d and A is the binary random vector obtained by median dichotomizing

X, with linear interaction parameters ξb, then R can be reconstructed from the correlation matrix

RA = [ξst] between the binary variables A by

ρst = sin{(π/2)ξst}, s, t = 1, . . . , d.

The proof results by inverting the arcsin transformation of the quadrant probability

ξst = 4Pr(Xs ≤ 0,Xt ≤ 0)− 1 = 2π−1 arcsin ρst.

As a consequence one may to reconstruct the original correlations from the palindromic Bernoulli

distribution derived via the orthant probabilities.

3.2 Maximum likelihood estimation

For a palindromic Bernoulli distribution, given a random sample of size n, one has as counts, that is

as observed cell frequencies: n(a), a ∈ I. The likelihood is

∏
a∈Ip(a)

n(a) =
∏

a∈I0
p(a)n(a)p(∼ a)n(∼a) =

∏
a∈I0

p(a)n(a)+n(∼a) (3.5)

9



where I0 is the set of half of the cells a such that a1 = 0. The sufficient statistics are thus the set

of the 2d−1 frequencies n(a) + n(∼ a), obtained by summing each cell and its complement image.

The maximum likelihood estimate of a cell probability (or of a cell count) is the average of the two

proportions (or of counts):

p̂(a) = {n(a) + n(∼ a)}/(2n), n̂(a) = {n(a) + n(∼ a)}/2 (3.6)

For palindromic Bernoulli distributions, Wilks’ likelihood ratio test statistic is

w = 2
∑

a∈In(a) log

(
2n(a)

n(a) + n(∼ a)

)
. (3.7)

It has an asymptotic χ2 distribution with 2d−1 degrees of freedom; see Edwards (2000, App. C). The

maximum likelihood estimates of the linear interaction parameters are

ξ̂b =




0 if |b| odd,
∑

a∈I(−1)a·b n(a)/n. if |b| even.

Thus, the estimated distribution matches the observed to the fitted moments and the estimator

ξ̂b for b of even cardinality contains just marginal correlations, computed from the fitted table. For

|b| = 2, the estimated marginal correlation, ξ̂12 coincides with the correlation coefficient in the fitted

table p̂(a), hence results as a cross-sum difference of the counts

ξ̂12 = (n00 + n11)− (n01 + n10). (3.8)

Since the log-linear and the multivariate logistic parameters are in a one-to-one relation to the linear

interactions, the maximum likelihood estimates of their parameter vectors, result by the same trans-

formations that hold for the parameters; see Fisher (1922). For the special transformations that apply

here, see equations (2.3), (2.5).

In the following, we speak of maximum likelihood estimates simply as ‘estimates’. Estimates may

simplify further, when the distribution satisfies independence constraints in such a way that they lead

to a graphical Markov model; see, for an overview of these models, Wermuth (2015).

Example 3.4 (A Markov chain). Let A1, A2 and A3 be three binary random variables where A1 and

A3 are conditionally independent given A2, so that the probabilities satisfy

pijk = p−1
+j+ pij+ p+jk for i, j, k = ±1 .

Its undirected graph, called a concentration graph, 1 2 3, has a missing edge for nodes 1 and

3, representing A1 and A2, and it is a simplest type of a graphical Markov model, a Markov chain in

3 variables.

The log-linear parameters are constrained by λ13 = λ123 = 0 for the conditional independence of

pair (1, 3). If, in addition, the distribution is palindromic, the odd-order parameters are zero so that

also λ1 = λ2 = λ3 = 0. In general Bernoulli distributions, the minimal sufficient statistics are the
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observed counts corresponding to the cliques of the graph, here these are just the node pairs (1,2)

and (2,3). However for a palindromic Bernoulli distribution, the minimal sufficient statistics are the

estimated counts n̂ij+ and n̂+jk for margins (1, 2) and (2, 3), defined as in equation (3.6) so that

p̂ijk = n−2 n̂ij+n̂+jk for i, j, k = ±1.

This example illustrates how independence constraints, conditionally given all remaining variables,

simply add to the linear constraints on canonical parameters of a palindromic Bernoulli distribution.

For each involved variable pair, the two-factor and all its higher-order log-linear interactions have to

vanish.

When a joint Bernoulli distribution has no higher than two-factor interactions, it is called in the

literature either an Ising model or a binary quadratic-exponential distribution. A palindromic Ising

distribution is therefore defined by having exclusively two-factor log-linear interactions, in addition

to a constant term. When the model is decomposable, since its concentration graph is chordal, see

e.g. Wermuth (2015), it can be generated by a linear triangular system; see end of Section 2. We

get a further result after noting that the maximal complete subsets of a concentration graph are its

cliques and that a concentration graph can be constructed by starting from a complete undirected

graph, in which each pair is connected by a line, and then deleting the edge for each pair that is to

be conditionally independent given all remaining variables.

Proposition 3.5. If the concentration graph of a palindromic Bernoulli distribution has maximal

clique size three, then it is an Ising model.

4 A case study

For a sample of grades obtained at the University of Florence, we aim at predicting grades in Physics

in terms of given grades in Algebra, Analysis and Geometry. The passing grades range in each

subject from 18 to 31. We use sums of grades over exams in three successive years and have data for

n = 78 students who reached in each of the subjects a sum of at least 60 points. Instructors expect

positive correlations for each pair of these grades and no sign reversal for the correlations at fixed level

combinations of the other variables. The data are in Appendix 2.

The four summed grades are closely bell-shaped, each of their scatter plots shows a nearly ellip-

tic form as well as the plots of residual pairs obtained after linear least squares regression of each

grade on the other three. There is also no evidence for nonlinear relations in the probability plots

of Cox & Wermuth (1994). Thus, there is substantive and empirical support for assuming a joint

Gaussian distribution.

After replacing for pairs (1,4) and (2,4) the observed correlations by r̂14 = r13r34, r̂24 = r23r34, in

Table 3 we have the estimate of the correlation matrix, which has zeros for pairs (1,4) and (2,4) in its

inverse, in its concentration matrix; see e.g. Wermuth, Marchetti & Cox (2009), equation (2.8).

Wilks’ likelihood-ratio test statistic on 2 degrees of freedom shows with a value of w = 2.8 a

good fit to the model with generating sets {{1, 2, 3}, {3, 4}}. This implies conditional independence of
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Table 3: For four fields and 78 students, observed marginal correlations, rij (below the diagonal),

concentrations on the diagonal and partial correlations, rij.kl (above the diagonal).

Analysis Algebra Geometry Physics

1:=Analysis 2.64 0.27 0.34 0.17

2:=Algebra 0.72 3.03 0.51 0.04

3:=Geometry 0.76 0.80 4.07 0.38

4:=Physics 0.62 0.60 0.71 2.09

the grade in Physics from those in Analysis and Algebra given the grade in Geometry. This follows

directly, for instance, with the corresponding concentration graph, on the left of Fig. 4. It has the

cliques {1, 2, 3} and {3, 4} for which node 3 separates node 4 from nodes 1,2 since to reach nodes 1,2

from node 4, one has to pass via node 3.

Similarly, after replacing the marginal correlations for pairs (1, 2), (1, 3) and (2, 3) by their average

r̂ = 0.76, we have for the submatrix of (1,2,3) the conventional estimate of an equicorrelation matrix;

see Olkin and Pratt (1958, Section 3). This is here well-fitting since w = 3.4 on 2 degrees of freedom.

The grade in Physics, correlates with this sum score as 0.706, even slightly less than with the grade

in Geometry alone, where r34 = 0.709. This is plausible in view of the well-fitting Markov structure.

1

1

4

2

2

3

3 L

Figure 1: Left: the well-fitting concentration graph for the Florence grades; right: a possible generating

graph for grades 1, 2, 3.

A possible generating graph for the Gaussian equicorrelation matrix is the star graph displayed

on the right of Fig. 4. In it mathematical ability is represented by the unobserved inner node, L, and

the three grades are the outer nodes of the graph, shown as responses to L by arrows starting at L

and pointing to the uncoupled nodes 1,2,3; each arrow has assigned to it the same positive correlation

ρ. After marginalizing over L, each outer pair is correlated like ρ2. We shall see next how well these

results are reflected in the dichotomized data.

After median-dichotomizing the grades with jittering, we generate precisely uniform binary vari-

ables, the marginal distributions of which differ only little from those obtained by simple median-

dichotomizing. One obtains the estimate of a palindromic contingency table in closed form using

equation (3.6) and as we shall see, the same well-fitting concentration graph as on the left of Fig. 4.

The observed contingency table is given next, together with, in the additional rows and in the

following order, the estimates of palindromic counts, and of the counts after imposing, in addition,

12



conditional independences for the model of Fig. 4 on the left, and the estimates of the corresponding

log-linear interactions.

Table 4: Cells ijkl, levels of interactions, counts nijkl, MLEs of palindromic counts, of the palindromic

concentration graph counts and of the log-linear interactions under the latter model

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0110 1111

∅ 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

22 3 3 0 1 0 1 9 6 2 2 1 3 2 1 22

22 2 2.5 1.5 1 1 1.5 7.5 7.5 1.5 1.0 1.0 1.5 2.5 2.0 22.0

21.2 2.5 2.5 1.8 0.7 1.0 1.0 8.3 8.3 1.0 1.0 0.7 1.8 2.5 2.5 21.2

0.90 0 0 0.45 0 0.62 0.62 0 0 0 0 0 0.47 0 0 0

The palindromic concentration graph model fits well, with w = 10.3 on 11 degrees of freedom. This

decomposes into w = 9.1 on 9 degrees of freedom for the saturated palindromic model and w = 1.2

on 2 degrees of freedom for the additional independence constraints. Values of the studentized log-

linear interactions are 2.5, 3.5, 3.5 and 3.7 for λ12, λ13, λ23 and λ34, respectively. Thus, the same

independences as for the underlying joint Gaussian distribution fit also the median-dichotomized data

and further simplifications are not compatible given the sizes of the remaining studentized interactions.

The partial correlations implied by the well-fitting palindromic Markov structure has also zeros for

pairs (1, 4). This illustrates a result by Loh & Wainwright (2013): if the largest separating set of

a concentration graph contains a single node, then the conditional independences show also as zero

partial correlations for the independent pairs.

The sum score of the median-dichotomized grades 1,2,3 leads as in the underlying Gaussian dis-

tribution not to an improved prediction of grades in Physics. To our starting question, we get two

summarizing answers. Given a grade below the median in Geometry, one predicts that 72% of these

students will have a grade below the median in Physics and, similarly, given a grade above the median

in Geometry, one predicts that 72% will have a grade above the median in Physics.

5 Discussion

We say that centrally-symmetric Bernoulli distributions are palindromic since their probabilities, at

the fixed level of one of the variables repeat in reverse order for the second level of this variable and

thereby mimic palindromic sequences of characters as introduced in linguistics.

A palindromic Bernoulli distribution is characterized by the vanishing of all odd-order log-linear

interactions. Hence, such zero constraints lead to a non-hierarchical, log-linear model which give

centrally symmetric probabilities. Until now, it was only known that in centrally-symmetric Bernoulli

distributions, all odd-order log-linear parameters vanish; see Edwards (2000, App. C). With these

linear constraints, distributions result which are in the regular exponential family.
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Palindromic Bernoulli distributions may also be parameterized with all odd-order interactions van-

ishing in a linear-in-probability model and in a multivariate-logistic model. The parameters in the

three types of model are in one-to-one relations; see Section 2. These relations are now available in

closed form for the linear and the log-linear formulations, while in general, iterative procedures are

needed when the multivariate logistic formulation is involved. In any case, equivalent parameteri-

zations assure that the maximum-likelihood estimates of the parameters are in the same one-to-one

relation; see Fisher (1922).

It is remarkable that a palindromic Bernoulli distribution can be expressed precisely as a log-linear

and as a linear model, since log-linear parameters use the notion of multiplicative interactions and the

linear-in-probability models are based instead on the notion of additive interactions as discussed, for

instance by Darroch & Speed (1983).

The log-linear parameterization shows that positive palindromic Bernoulli distributions are in

the regular exponential family with and without additional independence constraints in its concen-

tration graph. A palindromic Ising model may have only log-linear two-factor interactions as non-

vanishing canonical parameters, while in their linear-model formulations higher-order interactions may

be present. The palindromic property is preserved under marginalizing over any subset of the vari-

ables; see Proposition 2.1, even though one may no longer have an Ising model after marginalizing

over some of the variables.

Another property is important for applications. In palindromic Bernoulli distributions, many other

measures of dependence of a variable pair are one-to-one functions of the odds-ratio; in particular the

relative risk, used mainly in epidemiology, and the risk difference, employed almost exclusively in the

literature on causal modelling. Only if a measure of dependence is a function of the odds-ratio, it varies

independently of its margins; see Edwards (1963) and only then, measures of bivariate dependence

become directly comparable under different sampling schemes, for instance when the overall count is

fixed as in a cross-sectional study or one of the margins is fixed as in a prospective study or the other

margin is fixed as in a retrospective study.

In the future, it is desirable to investigate in more detail the relations between the palindromic and

the totally positive distributions with additional conditional independence constraints. We expect also,

that with a direct extension of the palindromic property to discrete variables of more levels, similar

attractive properties can be obtained as for the palindromic Bernoulli distribution.

Appendix 1. Proof of Proposition 2.5

Proof. Our proof of Proposition 2.5 is by induction. We know that A1 has a palindromic distribu-

tion. For s = 2, . . . , d we assume that the random vector A[s−1] = (A1, . . . , As−1) has a palindromic

distribution, and then we show that the distribution of A[s] = (A1, . . . , As) is palindromic. Let Ieven

denote the subset of {0, 1}s with even order and split it in two parts

I0 = {a ∈ Ieven : as = 0}, I1 = {a ∈ Ieven : as = 1}.
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We then start from the identity

Pr(A[s] = a[s]) = Pr(A[s−1] = a[s−1])Pr(As = as | A[s−1] = a[s−1])

and after substituting equations (2.5) and (2.13) and taking into account that by assumption A[s−1]

has a palindromic distribution and thus ξb = 0 for all b ∈ I1, we have

Pr(A[s] = a) = 2−s
∑

b∈I0
ξb(−1)a·b · {1 +

∑s−1
j=1βs,j(−1)a·es,j}

where es,j is a binary vector of dimension s with ones exactly in positions s and j. After multiplying

and collecting terms we get with

ξb =
∑

v∈I0 : v△{s,j}=b ξvβs,j, for b ∈ I1, (5.1)

Pr(A[s] = a) = 2−s
(∑

b∈I0
ξb(−1)a·b +

∑
b∈I1

ξb(−1)a·b
)
,

where △ denotes the symmetric difference of sets. Therefore A[s] has a linear parameterization with

exclusively even order interactions and hence is palindromic. Thus, by induction, the distribution of

A[d] = A is palindromic. From the recursive equation (5.1), each linear interaction is a linear function

of the regression parameters βs,j.

Appendix 2. The data for the case study

The columns of the following table contain sums of grades of three exams in four subjects for n = 78

mathematics students at the University of Florence.

Table 5: Summed grades over 3 exams in the order: Analysis, Algebra, Geometry and Physics.

78 78 74 80 88 77 79 85 82 82 74 89 85 77 93 85 79 85 74 69 78 88 67 92 85 69

76 75 71 77 81 79 77 90 79 72 62 90 75 83 92 88 80 88 68 80 75 88 70 89 88 75

82 81 74 71 85 74 81 83 73 73 71 86 84 84 93 82 78 90 70 79 71 89 68 91 91 62

85 77 80 80 79 80 75 82 71 71 72 87 82 69 90 75 75 82 70 78 72 77 69 93 87 68

79 92 76 88 73 91 76 71 65 74 80 71 78 77 70 83 89 72 82 77 91 92 75 90 90 93

78 92 78 87 68 85 78 79 68 76 89 74 81 74 68 89 81 76 81 74 92 92 69 79 82 93

71 92 84 88 64 83 82 69 71 75 80 71 85 69 67 88 83 75 83 82 93 92 72 90 89 93

79 90 86 78 69 75 82 71 63 72 78 74 81 67 66 72 82 75 79 76 92 87 75 79 78 89

92 87 81 82 76 86 92 87 79 91 88 90 90 92 89 83 77 69 89 92 86 76 68 79 76 88

93 83 69 70 75 71 80 70 70 77 88 92 85 92 84 83 82 74 83 92 74 71 62 68 66 89

93 87 74 67 80 69 87 77 69 92 83 91 82 91 86 83 80 83 83 90 78 71 65 74 83 91

89 77 81 79 84 72 80 81 70 79 77 72 88 81 86 81 78 76 77 79 73 69 69 72 80 85
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