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INTRODUCTION

The implementation of routine genotyping within 
livestock breeding populations has become a common 
practice and is used as a tool to make more effective 
selection decisions in swine breeding companies (Knol 
et al., 2016). Previous research has highlighted the 

advantages of genomic relationships compared with 
pedigree-based information to obtain more precise es-
timates of the genetic merit and homozygosity of an 
individual (Lopes et al., 2013; Knol et al., 2016). Also, 
genomic information allows genome-wide inbreeding 
estimates to be supplemented by characterizing the 
impact of homozygosity for specific genomic regions. 
Elevated levels of homozygosity result in a reduction in 
phenotypic performance, referred to as inbreeding de-
pression (Falconer and Mackay, 1996). The identifica-
tion of region-specific stretches allows breeders to more 
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ABSTRACT: Although, for the most part, genome-
wide metrics are currently used in managing livestock 
inbreeding, genomic data offer, in principle, the abil-
ity to identify functional inbreeding. Here, we present 
a heuristic method to identify haplotypes contained 
within a run of homozygosity (ROH) associated with 
reduced performance. Results are presented for simu-
lated and swine data. The algorithm comprises 3 steps. 
Step 1 scans the genome based on marker windows of 
decreasing size and identifies ROH genotypes associ-
ated with an unfavorable phenotype. Within this stage, 
multiple aggregation steps reduce the haplotype to the 
smallest possible length. In step 2, the resulting regions 
are formally tested for significance with the use of a 
linear mixed model. Lastly, step 3 removes nested 
windows. The effect of the unfavorable haplotypes 
identified and their associated haplotype probabilities 
for a progeny of a given mating pair or an individu-
al can be used to generate an inbreeding load matrix 
(ILM). Diagonals of ILM characterize the functional 
individual inbreeding load (IIL). We estimated the 
accuracy of predicting the phenotype based on IIL. 
We further compared the significance of the regression 
coefficient for IIL on phenotypes with genome-wide 

inbreeding metrics. We tested the algorithm using 
simulated scenarios (12 scenarios), combining differ-
ent levels of linkage disequilibrium (LD) and number 
of loci impacting a quantitative trait. Additionally, we 
investigated 9 traits from 2 maternal purebred swine 
lines. In simulated data, as the LD in the population 
increased, the algorithm identified a greater propor-
tion of the true unfavorable ROH effects. For example, 
the proportion of highly unfavorable true ROH effects 
identified rose from 32 to 41% for the low- to the 
high-LD scenario. In both simulated and real data, 
the haplotypes identified were contained within a 
much larger ROH (9.12–12.1 Mb). The IIL prediction 
accuracy was greater than 0 across all scenarios for 
simulated data (mean of 0.49 [95% confidence interval 
0.47–0.52] for the high-LD scenario) and for nearly 
all swine traits (mean of 0.17 [SD 0.10]). On average, 
across simulated and swine data sets, the IIL regression 
coefficient was more closely related to progeny per-
formance than any genome-wide inbreeding metric. A 
heuristic method was developed that identified ROH 
genotypes with reduced performance and character-
ized the combined effects of ROH genotypes within 
and across individuals.
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effectively manage inbreeding because the impact of ho-
mozygosity for a trait can vary across the genome. The 
estimation of dominance effects to identify unfavorable 
regions of the genome has been used in the past (Lopes 
et al., 2016; Xiang et al., 2016) but lacks power for low-
frequency mutations and does not consider that whole 
segments of the genome are passed from parent to off-
spring. To overcome these limitations, regions of the ge-
nome in a continuous run of homozygosity (ROH) have 
been proposed to investigate homozygous segments that 
arose due to past inbreeding (Howard et al., 2015; Saura 
et al., 2015). Previous research has investigated the phe-
notypic effect of a region being in a ROH (Pryce et al., 
2014; Howard et al., 2015). The previous methods did 
not directly identify the unique ROH genotype that gave 
rise to the reduced phenotypic performance. Therefore, 
the objective of the current study was to develop a heu-
ristic algorithm that identifies unfavorable haplotypes 
contained within ROH across the genome. The method 
was tested on simulated as well as real data.

MATERIALS AND METHODS

No animal care approval was required for this work 
because all genotypes and records came from data that 
were available from previous studies. The manuscript 
will be split in 2 sections. In the first section, an over-
view of the algorithm along with methods to summarize 
the number of unfavorable haplotypes shared within and 
across individuals is described. In the second section, 
simulated and swine data sets are used to summarize 3 
major results: 1) how effective the algorithm is at identi-
fying unfavorable haplotypes, 2) the length of ROH the 
unfavorable haplotype tags, and 3) the relationship of the 
aggregate effect of unfavorable haplotypes carried by an 
individual with its phenotype and genetic value.

Description of the Algorithm

A pictorial overview of the algorithm is displayed 
in Fig. 1. The method follows 3 steps. The first step 
scans the genome to identify ROH genotypes that result 
in an unfavorable change in the phenotype of interest. 
The genotypes used in the algorithm are coded as 0 for 
the homozygote, 1 for the heterozygote, and 2 for the 
alternative homozygote. Step 1 begins at the first SNP 
of a chromosome by constructing a window of a prede-
termined number of SNP (default = 60). Within a win-
dow, the mean phenotype is tabulated for each unique 
ROH genotype and any genotype that is not in a ROH 
is aggregated into a category referred to as non-ROH. 
A ROH genotype is not allowed to have any heterozy-
gous genotypes. Furthermore, any ROH genotype below 
a user-defined frequency (default = 0.0075) is removed 

from the ROH genotype list and placed in the non-ROH 
category. If the phenotypic mean for a ROH genotype is 
below/above a user-defined value (discussed below), the 
window is stored. Next, the window is shifted forward 
by 1 SNP and the previous process is repeated. Once 
the entire chromosome has been scanned, windows 
containing the same set of animals and representing the 
same ROH genotype except for the first and last SNP 
are aggregated (Fig. 1, step 1b). Because recombination 
does not occur within a given region for the individu-
als of the same ROH genotype, ROH genotypes that are 
combined in this step contain the same amount of infor-
mation. Following the aggregation of nested windows, 
the window length is reduced by “n” SNP (default = 5) 
and the previous steps are repeated for the new window 
size. The window size is reduced by “n” until a mini-
mum window size is reached (default = 20). Once the 
minimum window size is reached, the process of scan-
ning for unfavorable ROH genotypes is complete for a 
chromosome. For windows that contain the same set of 
animals and are nested within each other (Fig. 1, step 
1d), the shortest window is kept for further analysis. The 
aggregation steps (Fig. 1, step 1b and 1d) trap the ROH 
genotypes across individuals that have the same core 
ROH genotype to the smallest possible length. No in-
formation is lost within the aggregation steps because 
each ROH genotype belongs to the same set of indi-
viduals, yet the step significantly reduces the number of 
windows tested in following steps. The core ROH geno-
type is now expected to serve as a tag for the full ROH 
segment observed in an individual, which may differ 
across subjects due to recombination occurring at dif-
ferent locations across subjects. As a result, the length of 
the tag ROH genotype is expected to be short compared 
with the observed ROH genotype across individuals that 
have the same unique tag ROH genotype.

Any window remaining after step 1 is subse-
quently tested for significance using a standard mixed 
model that accounts for the environment and additive 
genetic and permanent environment effect of an indi-
vidual plus any number of fixed effects. A description 
of the full model for each window is outlined below:

y = Xb + Za + Wpe + e,  [1]

in which y is the trait of interest, b is a vector of fixed 
effects, a is a vector of random additive genetic effects, 
pe is a vector of random permanent environmental 
effects, e is a vector of random residuals, and X, Z, 
and W are incidence matrices relating b, a, and pe, re-
spectively, to y. The fixed effects can include any envi-
ronmental classification or covariate effect along with 
the effect of ROH genotype (i.e., unique ROH geno-
type and non-ROH) for a given window. The random 
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additive genetic effect is assumed ~N(0, Aσa
2, with A 

representing the additive relationship matrix derived 
from a pedigree (Henderson, 1976). The random per-
manent environmental and residual effects are assumed 
~N(0, Iσpe

2) and ~N(0, I σe
2), respectively, with I being 

an identity matrix. Variance components of the current 
implementation are assumed fixed across windows 
based on the null model of no ROH effect (i.e., no ROH 
genotype in the model). For each window, solutions 
are obtained using the Cholesky decomposition of the 
left-hand side. Given the solutions for each window, a 
contrast between each unique ROH genotype versus 
non-ROH and the associated t-statistic are obtained. 
The hypothesis test is 1-sided, and the direction of the 

test is dependent on the direction of the unfavorable 
phenotype. Under this parameterization, the genotypes 
not in a ROH are assumed normal compared with indi-
viduals that have the ROH genotype. This aligns with 
the partial dominance hypothesis, which is thought 
to account for the majority of inbreeding depression 
observed in populations (Simmons and Crow, 1977; 
Charlesworth and Charlesworth, 1987). Any contrast 
that passes the user-defined significance threshold is 
kept and moved onto the final window reduction step, 
which resolves nested windows (Fig. 1, step 3).

The algorithm presented was developed in C++11. 
The source code and compiled executable files for Linux 
operating systems are available at https://github.com/

Figure 1. Overview of algorithm that identifies unfavorable haplotypes. ROH = run of homozygosity. 



Method to identify unfavorable regions 4321

jeremyhoward. The primary option the user controls 
is the cutoff value for the mean phenotype for a given 
ROH genotype that is considered unfavorable in Fig. 1, 
step1a. The user can specify a cutoff value based on prior 
knowledge of what is considered an unfavorable pheno-
type or generate an empirical t-statistic distribution from 
the data to declare a cutoff value. The latter option is 
conducted by randomly specifying a chromosome, win-
dow length, and start position and estimating the signifi-
cance value for ROH genotypes within the window. All 
1-sided t-statistics are stored. Across samples, the mean 
phenotype for t-statistics with a significance ranging 
from 0.05 to 0.10 is chosen as the cutoff value.

The haplotypes identified can be used in a variety of 
ways, but 2 are investigated in the current study. The first 
application is to apply the algorithm across economi-
cally important phenotypes and identify haplotypes hav-
ing an unfavorable effect across multiple traits. Regions 
with consistent unfavorable effect across multiple traits 
should have a high probability of being sensitive to in-
breeding and therefore result in a reduction in the overall 
fitness and vigor of an individual. The second applica-
tion is to generate a matrix aiming at characterizing the 
decrease in the trait of interest across all unfavorable 
haplotypes, herein referred to as the inbreeding load ma-
trix (ILM). Its calculation follows the method outlined 
by Cole (2015). To implement an ILM, the genotype 
phase needs to be known. This matrix then can be used 
in mating designs to minimize the probability of prog-
eny containing the unfavorable haplotype or haplotypes 
for a single trait or across multiple traits. The diagonals 
of the matrix, referred to as individual inbreeding load 
(IIL), represent an individual’s decrease in phenotypic 
performance due to inbreeding, whereas off-diagonals 
represent the predicted decrease in phenotypic perfor-
mance in the trait of the progeny given the mating of 
the 2 (potential) parents. It should be noted that in this 
implementation, the algorithm does not simultaneously 
run all haplotypes across the genome. As a result, any 
observed ROH genotype for an individual might contain 
multiple significant unfavorable haplotypes. Therefore, 
multiple tag haplotypes identified by the algorithm could 
be counted as different in an individual when in fact  the 
unfavorable haplotypes are tagging the same observed 
haplotype. Within the current study, when multiple hap-
lotypes tagged the same observed ROH genotype, only 
the haplotype with the highest significance value and 
resulting in the largest number of haplotypes observed 
across individuals was retained. For the ith row and jth 
column of the ILM, the following formula was used to 
calculate elements of the ILM:

1

ILM  O ˆR H
h n

ij h h

h

b
=

=

= ×∑ ,

in which n is the number of unfavorable haplotypes 
that remained after eliminating haplotypes that were 
not observed or removed to avoid double counting. 
The ROHh refers to the probability of generating a 
ROH for haplotype h and βh is the effect of the ROH 
genotype estimated from step 2 of the algorithm. The 
probability values for the diagonals elements of the 
ILM include 0.25 (haplotype carrier) or 1.0 (haplotype 
in ROH). The probability values for the off-diagonal 
elements include 0.25 (mating of haplotype carriers), 
0.5 (mating of haplotype carrier and ROH genotype), 
or 1.0 (both parents have ROH genotype). The ILM 
values range from 0 (i.e., no unfavorable haplotypes) 
to any value in the unfavorable direction.

Summary of Metrics Used to Test the Algorithm  
using Simulated and Swine Data

Simulated data sets, where the true genetic signal is 
known, were used to determine how effective the algo-
rithm was at identifying true negative ROH regions as 
well as to characterize the relationship between IIL and 
the true aggregate genotypic value of individuals. The 
length of ROH the unfavorable haplotype tagged was 
determined across both simulated and swine data sets 
to ensure that long stretches of ROH were represented. 
Long ROH stretches have a higher probability of being 
true identical by descent (IBD) segments as a result of 
recent inbreeding, compared with shorter ones. The re-
lationship between IIL and the phenotype was summa-
rized based on either 1) IIL accuracy of predicting the 
phenotype or 1) the significance of the regression coef-
ficient when IIL was included as a fixed covariate in a 
mixed linear model. The latter relationship was generat-
ed under the premise that the management of inbreeding 
is traditionally done by minimizing parental coancestries 
using genome-wide inbreeding metrics. Therefore, the 
significance (i.e., −log P-value) of the regression coef-
ficient from traditionally used genome-wide inbreeding 
metrics was compared with the IIL value. Lastly, IIL was 
benchmarked across simulated and swine data sets with 
estimates of the genetic value based on a whole-genome 
regression model. This was conducted to generate a ref-
erence comparison on the prediction accuracy for a given 
trait based on traditionally used genome-wide modeling 
techniques. It is important to note that the genetic signal 
from IIL encompasses only unfavorable effects resulting 
from long IBD segments. As a result, a comparison of 
the prediction accuracies between the 2 metrics needs 
to not be interpreted as an exercise of ranking the pre-
dictive ability of the 2 metrics (the IIL value would, by 
construction, capture only a subset of the overall genetic 
signal) but rather to determine the relationship between 
complementary metrics, to allow their integration.
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Simulated Data

Multiple scenarios were simulated to determine 
the frequency of unfavorable haplotypes being identi-
fied by the algorithm. Simulation was performed using 
Geno-Diver (Howard et al., 2017), a combined coales-
cence and forward-in-time simulation software. We hy-
pothesized that the amount of short-range linkage dis-
equilibrium (LD) existing in the genome impacts how 
well the algorithm can identify unfavorable haplotypes. 
Four scenarios of increasing levels of short-range LD 
in the historical population were generated as outlined 
in Supplemental Fig. S1 (see the online version of the 
article at http://journalofanimalscience.org) and will be 
referred to as low, low-medium, medium-high, and high, 
respectively. For each LD scenario, different genetic ar-
chitectures were simulated with 250, 500, or 1,000 QTL 
spread equally across 5 chromosomes. The combination 
of variable LD and QTL parameters produced 12 dif-
ferent scenarios. Each scenario was replicated 25 times.

Within each LD setting, SNP sequence data for 
4,000 base haplotypes across 5 chromosomes, each with 
a length of 150 Mb, were simulated by internally calling 
MaCS (Chen et al., 2009) within the Geno-Diver soft-
ware. Scenarios with the same LD parameter were ini-
tialized using the same set of sequence data to limit the 
computational time and variability across replicates due 
to historical sequence information. Following the gen-
eration of sequence data, QTL were randomly placed 
along the genome and a SNP panel with neutral markers 
was created. A total of 4,000 markers (20,000 genome-
wide) were used within each chromosome. This marker 
density was chosen to generate a density within each 
chromosome that is similar to a medium-density marker 
array such as the Illumina PorcineSNP60K (Illumina 
Inc., San Diego, CA). Across all scenarios, the mini-
mum minor allele frequency was set at 0.10 and 0.015 
for markers and QTL, respectively.

For each QTL the additive effect (a) of a QTL, de-
fined as half the difference in genotypic value between 
the homozygote genotypes (Falconer and Mackay, 1996), 
was sampled from a gamma distribution (shape = 0.4 and 
scale = 1.66) with an equal chance of being positive or 
negative. The dominance effect (d) of a QTL, defined as 
the deviation of the genotypic value of the heterozygote 
from the mean of the genotypic values of the 2 homozy-
gotes (Falconer and Mackay, 1996), was generated simi-
larly to the method of Wellmann and Bennewitz (2012). 
First, the degree of dominance (h) at QTLi was sampled 
from a normal distribution (mean = 0.1 and variance = 
0.04) and then the dominance effect at QTLi was cal-
culated as di = hi|ai|, in which |ai| is the absolute value 
of the additive effect. Across all scenarios, the additive 
and dominance effects were scaled to generate a narrow- 
(h2) and broad-sense heritability (H2) of 0.35 and 0.40, 

respectively. The normal distribution parameters used to 
generate the degree of dominance were used to create a 
trait that displayed directional dominance along with a 
majority of the loci displaying partial dominance. The 
phenotype for an individual (yi) was generated as

( )
QTL

 ,
n

i i q i q i

q

y a d em g d= + + +∑

in which μ is the general mean, nQTL is the number 
of QTL, γ is the genotype (i.e., 0 for the homozygote, 
1 for the heterozygote, and 2 for the alternative homo-
zygote) for individual i at QTLq, a is the additive sub-
stitution effect for QTLq, δ is the dominance genotype 
(i.e., 1 for heterozygote and 0 for either homozygote) 
for individual i at QTLq, d is the dominance effect for 
QTLq, and ei is a normal residual such that e ~ N[0, 
(1 − H2)]. Summary statistics on the QTL architecture 
and genetic diversity of the 12 scenarios is outlined in 
Supplemental Table S1 (see the online version of the 
article at http://journalofanimalscience.org).

After the founder population and genetic architec-
ture of the trait were generated, a selection scenario 
mimicking a livestock population was undertaken for 
10 generations. A population consisting of 50 males 
and 600 females was used, with a replacement rate of 
20% for both males and females. Progeny with a high 
EBV were selected to serve as parents for the next 
generation, and EBV were generated from an animal 
model based on pedigree information. A low pheno-
typic value represented the unfavorable direction for 
the simulated trait in this case. Animals were mated at 
random, and 1 progeny was produced for each mating 
pair. Progeny born from generations 7 to 9 served as 
the training population to identify unfavorable haplo-
types, and progeny from generation 10 served as the 
validation population. The model used to identify un-
favorable haplotypes is outlined below:

y = Xb + Za + e,  [2]

in which y is the phenotype, b is a vector of fixed effects, 
a is a vector of random additive genetic effects, e is a 
vector of random residuals, and X and Z are incidence 
matrices relating b and a, respectively, to y. The only 
fixed effect was the overall mean. The starting window 
size was set at 60 SNP and was reduced by 5 SNP until 
a window size of 20 SNP was reached. Different SNP 
window sizes were investigated based on the density 
simulated. Similar results were found in terms of the re-
gions identified, associated effects, and the relationship 
between IIL and the phenotype or true genetic signal 
(data not shown). The suggestive phenotypic cutoff in 
step 1 was declared by randomly sampling 1,000 win-
dows to generate the empirical t-statistic distribution.
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To investigate the proportion of true negative ROH 
effects the algorithm captured within each replicate, 
the true effect for any ROH with a length greater than 
1 Mb was calculated. A length of 1 Mb was chosen 
to provide a range of possible ROH lengths captured 
by the algorithm. The true negative and positive ROH 
effects were split into quantiles of decreasing and in-
creasing effects, respectively. The algorithm tests only 
for the unfavorable direction, and therefore, the per-
centage of true ROH effects the algorithm identified 
is expected to be higher in the negative direction than 
in the positive direction. Lastly, using the same 1-Mb 
ROH cutoff, statistics on the length of ROH the algo-
rithm identified (or missed) were calculated.

Within each replicate, the IIL was estimated based 
on haplotypes identified in the training population for 
individuals in the validation population. The correlation 
between IIL and the true genotypic value (TGV), true 
breeding value (TBV), and true dominance deviation 
(TDD) was also estimated. Additionally, the signifi-
cance (i.e., −log P-value) of IIL or a genome-wide met-
ric when included as a fixed covariate effect in model 
[2] was estimated for the validation population. The IIL 
or genome-wide metric was included as a fixed covari-
ate in the similar model (i.e., no ROH effect included 
in the model) that was used to identify haplotypes in 
the training population. Three genome-wide inbreeding 
metrics were used as comparison including pedigree in-
breeding (Henderson, 1976), diagonals of the SNP-by-
SNP relationship matrix (SNPRM; VanRaden, 2008), 
or proportion of the markers that were homozygous.

To explore the predictive ability of IIL compared 
with estimates of the genetic value using whole-ge-
nome regression models, a Bayesian ridge regression 
(BRR) analysis was conducted that included the ad-
ditive and dominance effect for each SNP. The same 
training and validation generations that were previ-
ously used were also used in the BRR analysis. Marker 
effects were estimated using the BGLR package in R 
(Perez and de los Campos, 2014). A total of 55,000 
iterations were run, with the first 5,000 discarded as 
burn-in and a thinning rate of 5 iterations. Across in-
dividuals, the EBV, estimated dominance deviation 
(EDD), and estimated genotypic value (EGV) were 
generated by multiplying the estimated effect by the 
associated genotype and summing across all markers. 
The prediction accuracy for either IIL or EGV was de-
termined in the validation population based on the cor-
relation between phenotype and EGV or IIL, respec-
tively. It was standardized by dividing by the square 
root of the heritability estimated in the training gen-
eration for each replicate (Legarra et al., 2008; Wolc 
et al., 2011). Correlations between IIL and the EBV, 
EDD or EGV were also estimated.

Swine Data

Phenotypic and genotypic data from 2 maternal 
purebred nucleus selection lines were obtained from 
Smithfield Premium Genetics (Rose Hill, NC). To deter-
mine the algorithm’s behavior across different genetic 
architectures, multiple traits were investigated including 
litter size, litter viability, and growth rate. Individuals 
with genotype information from Large White (LW; 
n = 6,750) and Landrace (LR; n = 5,010) pigs were 
used. Animals born before 2012 were used as a train-
ing population and animals born in 2013 were used as 
a validation population. The number of animals across 
traits is outlined in Table 1. A complete description of 
the genotype quality control is outlined in Howard et 
al. (2016). Briefly, genotype data was derived from 
the Illumina PorcineSNP60K BeadChip (Illumina Inc.; 
version 1 and 2) and the GGP-Porcine (GeneSeek Inc., 
a Neogen Co., Lincoln, NE). Multiple quality control 
measures were conducted and are described by Howard 
et al. (2016). Genotypes were phased and imputed us-
ing Beagle (version 3; Browning and Browning, 2007). 
After quality control and discarding SNP that were 
poorly imputed, a total of 39,671 and 41,489 autosomal 
SNP for LW and LR, respectively, remained.

Seven litter size and mortality traits including num-
ber born alive (NBA), total number born (TNB), pro-
portion born dead, average litter birth weight (LBW), 
preweaning mortality (PWM), number weaned (NW), 
and average litter wean weight (NWBW) were used in 
the analysis. The TNB phenotype included NBA and 
stillborn and mummified piglets. The proportion born 
dead was calculated as 1 − (NBA/TNB). The LBW was 
calculated as the mean weight of the number of live 
piglets at processing and litters were processed within 
48 h after birth. Traits that were recorded after birth, in-
cluding PWM, NW, and NWBW, are impacted by the 
degree of cross-fostering. Cross-fostering in the cur-
rent data was similar to previous estimates by Putz et al. 
(2015) in a related population. To minimize the effect 
of cross-fostering, only litters having more than 75% 
of the birth sow piglets were used in the analysis. After 
the data edit, 98.0 and 97.7% of the piglets were nursed 
by their original birth sow for LW and LR, respectively. 
The PWM phenotype was calculated as the number of 
piglets that died after 24 h and included pigs euthanized 
at weaning divided by the total number of pigs in the 
litter after the 24-h cutoff. The NWBW was calculated 
as the average weight of the number of piglets weaned. 
All reproductive traits were evaluated as a trait of the 
biological dam, and model [1] was used. The fixed ef-
fects used for each trait are outlined in Table 1.

Two production traits were investigated: BW at 
off-test (Weight) and ADG. The ADG metric was 
measured from birth to off-test. Production traits were 
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evaluated as a trait of the animal, and model [2] was 
used. The fixed effects used for each trait are described 
in Table 1. Across both reproductive and production 
traits, the contemporary group was composed of farm, 
year, and season, and any animal that was within a 
contemporary group smaller than 5 animals was re-
moved from the analysis.

Summary statistics on the length of ROH and 
the unfavorable haplotypes captured were generat-
ed. Prediction accuracy for IIL was compared with a 
whole-genome regression BRR model. For all 9 traits, 
yield deviations were constructed for each trait based 
on the fixed effects outlined in Table 1. For the repro-
ductive traits, an animal may have multiple observa-
tions, and therefore, average yield deviations were 
used and the residuals for a given observation in the 
BRR analysis were weighted according to Garrick et al. 
(2009). The formula used to calculate the weight was

(1 − h2)/(h2 + {[1 + r2 (l − 1)]/l} − h2,

in which h2 refers to the heritability, r2 refers to the re-
peatability, and l refers to the number of records. The 
values used for h2 and r2 are outlined in Table 1 across all 
9 traits. Using BGLR (Perez and de los Campos, 2014), 
a total of 155,000 iterations were run, with the first 5,000 
discarded as burn-in and a thinning rate of 5 iterations. 
Again, for each trait, the EGV values were predicted. 

The accuracy of predicting the phenotype using IIL 
compared with a whole-genome regression model was 
investigated. Also, the relationship between IIL and val-
ues derived from a whole-genome regression model was 
investigated (EGV, EBV and EDD). The prediction ac-
curacy for either IIL or EGV across the 9 traits was deter-
mined in the validation population. The prediction accu-
racy was calculated as the correlation between the IIL or 
EGV and average yield deviation. It was standardized by 
dividing it by the square root of the heritability for each 
trait. The significance of the IIL or genome-wide regres-
sion coefficient was estimated as previously outlined.

Lastly, the correlation between the diagonal and 
the off-diagonal elements of the ILM across traits and 
with pedigree- and genomic-based relationship matri-
ces was estimated. Understanding the correlation be-
tween ILM across traits is important when an ILM is 
used to minimize inbreeding depression across all traits 
in a breeding objective. Any change in the off-diago-
nal ILM value for one trait should ideally result in a 
favorable or negligible change in the off-diagonal ILM 
value for other traits. The ILM was compared with 3 
relationship matrices including a pedigree-based matrix 
(A; Henderson, 1976), the SNPRM, and a ROH-based 
relationship matrix with a 5-Mb cutoff (ROH5RM; 
Howard et al., 2016). To determine the sensitivity of 
fixing the variance components based on the null model 
of no ROH effect, the ASReml program (Gilmour et 

Table 1. The model used, estimated genetic parameters, and the number of animals across traits for the Landrace 
(LR) and Large White (LW) population

 
Breed

 
Trait1

 
Fixed effects2

Genetic parameter3 Animals (records)
h2 r2 Training Validation

LR NBA Parity and CG 0.082 0.149 4,005 (9,416) 1,005 (1,639)
TNB Parity and CG 0.082 0.149 4,003 (9,302) 998 (1,621)
PD Parity and CG 0.085 0.156 4,003 (9,293) 998 (1,621)
LBW Parity, CG, and NBA 0.231 0.284 3,985 (8,648) 988 (1,586)
PWM Parity, CG, and Pig24h 0.115 0.131 3,504 (6,724) 870 (1,330)
NW Parity, CG, and Pig24h 0.102 0.120 3,465 (6,600) 845 (1,280)
NWBW Parity, CG, Pig24h, and NW 0.144 0.211 3,465 (6,600) 845 (1,280)
Weight CG, sex, and age 0.271 – 4,386 (4,386) 993 (993)
ADG CG, sex, and age 0.271 – 4,386 (4,386) 993 (993)

LW NBA Parity and CG 0.115 0.150 5,518 (15,014) 1,232 (2,271)
TNB Parity and CG 0.098 0.142 5,513 (14,673) 1,228 (2,262)
PD Parity and CG 0.086 0.133 5,513 (14,664) 1,228 (2,262)
LBW Parity and CG, NBA 0.241 0.307 5,487 (13,581) 1,188 (2,155)
PWM Parity, CG, and Pig24h 0.074 0.168 4,966 (10,464) 1,102 (1,824)
NW Parity, CG, and Pig24h 0.053 0.115 4,901 (10,259) 1,054 (1,716)
NWBW Parity, CG, Pig24h, and NW 0.144 0.203 4,901 (10,259) 1,054 (1,716)
Weight CG, sex, and age 0.292 – 5,576 (5,576) 1,197 (1,197)
ADG CG, sex, and age 0.291 – 5,576 (5,576) 1,197 (1,197)

1NBA = number born alive; TNB = total number born; PD = proportion born dead; LBW = average litter birth weight; PWM = preweaning mortality; 
NW = number weaned; NWBW = average litter wean weight; weight represents weight at off-test.

2CG = contemporary group (based on farm, year, and season); Pig24h = pigs in the litter after the 24-h cutoff; age refers to off-test age.
3h2 refers to the narrow sense heritability; r2 refers to the repeatability.
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al., 2009), which reestimates variance components for 
each window, was used across breed and traits for the 
windows that were deemed significant by the algorithm.

RESULTS

Simulated Data
A summary of how effectively the algorithm identi-

fied true negative and positive ROH effects across differ-
ent percentiles is outlined in panel 1 of Fig. 2. Because 
the algorithm tests for only the unfavorable direction, 
the percentage of true ROH effects the method identifies 
is expected to be greater than 0 in the negative direction 
and 0 in the positive direction. As illustrated in panel 
1 of Fig. 2, as the true negative unfavorable ROH ef-
fect got larger, a greater proportion of unfavorable ROH 
genotypes was identified by the algorithm. It should be 
noted that, averaged across all scenarios, the frequency 
of highly unfavorable ROH effects was small (1.8%) 
compared with the total number of true negative ROH 

effects. The frequency of incorrectly identified positive 
ROH effects (i.e., false positives) by the algorithm re-
mained relatively flat across all percentiles and was, on 
average, 9.4% (95% confidence interval [CI] 8.7–10.1) 
across all scenarios. As the LD in the population in-
creased and became similar to that of most livestock 
populations, the algorithm was more effective at iden-
tifying unfavorable haplotypes and had a lower false 
positive rate. For example, for true ROH effects with the 
largest negative effect (i.e., less than the 0.05 percentile), 
the algorithm identified, on average, 32.1 (95% CI 28.5–
35.7) and 41.2% (95% CI 36.7–45.9) of the total true 
negative ROH effects across the 3 QTL scenarios for the 
low- and high-LD scenarios, respectively. Conversely, 
for incorrectly identified true ROH effects (i.e., estimat-
ed to be negative but had a true positive effect) with the 
largest positive effect (i.e., greater than the 0.95 percen-
tile), the algorithm identified, on average, 15.3 (95% CI 
13.9–16.7) and 9.6% (95% CI 8.2–10.9) of the total true 
ROH effects across the 3 QTL scenarios for the low- and 
high-LD scenario, respectively.

Figure 2. Summary of the proportion of runs of homozygosity (ROH) of at least 1 Mb the algorithm captures (panel 1) and the length of the ROH 
the haplotype tags (panel 2) across simulation scenarios by percentile class and whether the algorithm identified the haplotype. In panel 1, the summary 
statistic is the mean and 95% confidence interval, and in panel 2, the summary statistic is the first, second and third quartiles. The simulation scenarios refer 
to the ancestral population scenario simulated. Scenario 1 uses the “Ne1000” parameter in Geno-Diver (Howard et al., 2017), scenario 2 uses the “Ne250” 
parameter in Geno-Diver, scenario 3 uses the “Ne100_Scen1” parameter in Geno-Diver, and scenario 4 uses the “Ne70” parameter in Geno-Diver. The 
ROH percentile class is outlined on the x-axis; the first 4 percentile classes represent quantiles for the true negative effects (i.e., 0.05 represents highly 
negative ROH effects) and the last 4 percentile classes represent quantiles for the true positive effects (i.e., 0.95 represents highly positive effects). The 
y-axis shows to the algorithms summary statistics for the number of true ROH identified out of all true ROH effects within the given quintile. The number 
below negative or positive ROH refers to the percentage of the ROH that the algorithm correctly found out of the all negative or positive true ROH effects. 
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Summary statistics on the length of ROH of at least 
1 Mb tagged by the unfavorable haplotype is outlined 
in panel 2 of Fig. 2. We report the median in this case, 
rather the mean, because the distribution of the length 
of ROH containing a tag haplotype has a heavy tail and, 
therefore, the latter parameter is heavily influenced by 
extreme values. The length of ROH tagged by the iden-
tified haplotypes for the medium-high and high LD sce-
narios was similar across negative percentiles and QTL 
scenarios with a median (first quartile– third quartile) 
of 12.15 Mb (10.07–13.41). The haplotypes identified 
for the low and low-medium LD scenarios across nega-
tive percentiles and QTL tagged longer ROH stretches, 
with a median length of 15.77 Mb (12.23–18.64). The 
results show how the core unfavorable haplotype iden-
tified by the algorithm, which had a median length of 
7.0 kb across scenarios, in reality serves as a proxy for 
a much larger observed ROH segment. The length of 
unfavorable ROH that the algorithm missed was made 
of considerably smaller ROH (median [first quartile–
third quartile]: 5.26 Mb [4.06–5.81]) and was again 
similar across negative percentiles and scenarios. For 
the incorrectly identified true positive ROH effects, it 
should be noted that the length of ROH captured by 
the haplotype gets longer proportional to the true ROH 
effect. Therefore, in general, falsely identified ROH re-
gions were, in our analysis, characterized by being lo-
cally negative around the identified unfavorable haplo-
type. Yet as a result of being part of an extremely large 
ROH, positive QTL effects contained in the long ROH 
genotype made the overall effect positive.

The relationship of IIL with the true genetic sig-
nal, the predictive ability of IIL compared with whole-
genome regression values, and the significance of IIL or 
genome-wide inbreeding regression coefficients are out-
lined in Fig. 3. Panel 1 of Fig. 3 describes the correlation 
between IIL and TGV, TBV, and TDD. Across all QTL 
scenarios, the correlation increased as the LD increased 
for all parameters except TDD. Averaged across QTL 
scenarios, the correlation between IIL and the TGV for 
the low- and high-LD scenario was 0.31 (95% CI 0.29–
0.32) and 0.44 (95% CI 0.42–0.45), respectively. The 
correlation between IIL and TBV was similar to the cor-
relation between IIL and TGV. The average correlation 
between IIL and TDD was 0.002 (95% CI −0.01 to 0.01) 
for all scenarios, which was not unexpected, given the 
fact that the ROH effects are a function of the alternative 
homozygote genotypes and not heterozygous genotypes.

Panels 2 and 3 of Fig. 3 summarize the effectiveness 
of using the IIL algorithm based on its predictive abil-
ity or as a tool to minimize the frequency of unfavor-
able haplotypes in the progeny. As outlined in panel 2 
of Fig. 3, the correlation between IIL and the phenotype 
increased as the level of LD increased in the population. 

Averaged across QTL scenarios, the prediction accuracy 
of IIL was 0.34 (95% CI 0.32–0.36) and 0.49 (95% CI 
0.47–0.52) for the low- and high-LD scenarios, respec-
tively. Similar trends of increasing prediction accuracy 
as LD increased in a population were seen for the whole-
genome prediction values. As well, minor differences 
were found between the prediction accuracy for EGV 
and EBV. Averaged across QTL scenarios, the prediction 
accuracy of EGV was 0.66 (95% CI 0.64–0.67) and 0.82 
(95% CI 0.79–0.84) for the low- and high-LD scenarios, 
respectively. These results are not unexpected because 
the algorithm uses haplotypes that have only an unfavor-
able effect contained within ROH stretches and favor-
able haplotypes are not included in IIL. The correlations 
between IIL and values from the whole-genome regres-
sion model are outlined in Supplemental Fig. S2, panel 1 
(see the online version of the article at http://journalofan-
imalscience.org). Averaged across scenarios, the correla-
tion between IIL and EGV was 0.50 (95% CI 0.49–0.50), 
and in general, as the LD increased, so did the correlation.

The last summary statistic in panel 3 of Fig. 3 
outlines the significance of the regression coefficient 
based on either genome-wide inbreeding metrics or IIL. 
Across all genome-wide inbreeding metrics, the −log 
P-value was similar across all LD scenarios and the sig-
nificance increased in proportion to the number of QTL. 
For example, averaged across scenarios and genome-
wide inbreeding metrics, the average −log P-values 
were 1.12 (95% CI 1.01–1.23) and 1.68 (95% CI 
1.49–1.87) for the scenarios with 250 and 1,000 QTL, 
respectively. The −log P-value for the IIL metric across 
all scenarios was, in all cases, greater and increased as 
the LD in the population increased. Under the high-LD 
scenario, the average −log P-value for the IIL metric 
across QTL scenarios was 21.24 (95% CI 19.37–23.10), 
corresponding to a nominal P-value of 5.96 × 10−10.

In summary, the simulation results highlight that 
the algorithm identified, on average, 41% of the highly 
unfavorable (i.e., 0.05 percentile) ROH effects across 
the QTL scenarios and under the high-LD scenario. 
Moreover, the unfavorable haplotypes were effective at 
tagging a significantly larger ROH region. Under the 
high-LD scenario, which closely resembles most live-
stock situations, the ROH that the haplotype tagged 
had a median length of 12.1 Mb. When combining 
all unfavorable haplotypes based on their probability 
of occurring and the effect of the haplotype being in 
a ROH, a moderate prediction accuracy was achieved. 
Furthermore, the correlation between IIL and the EGV 
was moderate or, more importantly, less than unity in all 
cases. Therefore, a combination of IIL and a genome-
wide genetic value would allow for 2 animals with 
similar genetic values but a different number of unfa-
vorable haplotypes contained within long ROH to be 
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distinguished. The running time for the algorithm aver-
aged across all 12 simulation scenarios was 40.75 min. 
The computations were done on a Dell Precision T3500 
with 2 Intel Xeon X5482 3.20 GHz processors and 24 
GB of RAM using 2 threads.

Swine Data

To determine whether similar results were found 
with real data and to investigate its effectiveness across 
multiple traits, the algorithm was tested with 2 swine 
commercial maternal lines. The significance of the re-
gression coefficient and the predictive ability of IIL 
compared with genome-wide inbreeding metrics is pre-
sented in Table 2. Across both breeds and for the major-
ity of traits except for NBA and TNB in LR, IIL had 
a prediction accuracy greater than 0. Averaged across 
traits within a breed, the average prediction accuracy was 
0.15 (SD 0.13) and 0.20 (SD 0.04) for LR and LW, re-
spectively. Similar to the simulation, the whole-genome 

regression-based EGV resulted in higher prediction ac-
curacies compared with IIL across all traits and breed. 
The prediction accuracy averaged across traits within a 
breed was 0.48 (SD 0.10) and 0.49 (SD 0.17) for LR and 
LW, respectively. Both prediction accuracies were low-
er than what was achieved in the simulation, given the 
lower heritability for most of the traits and the simplified 
assumptions used in the simulation. The correlations be-
tween IIL and values from the whole-genome regression 
model are outlined in the bottom of Supplemental Fig. 
S2, panel 2 (see the online version of the article at http://
journalofanimalscience.org). Averaged across traits 
within a breed, the correlations between the IIL and EGV 
were 0.31 (SD 0.13) and 0.32 (SD 0.06) for LR and LW, 
respectively. A positive correlation (average for LR was 
0.07 [SD 0.06] and for LW was 0.15 [SD 0.07]) was 
estimated between IIL and EDD.

Also outlined in Table 2 is the −log P-value of the 
regression coefficient when genome-wide inbreeding or 
IIL values were included in the model. Averaged across 

Figure 3. Summary (mean and 95% confidence interval) of the correlation between individual inbreeding load (IIL) and the true genetic signal (panel 
1), prediction accuracy for IIL estimates from a Bayesian ridge regression analysis (panel 2),, and significance of the regression coefficient based on either 
a genome-wide inbreeding metrics or IIL (panel 3) across simulation scenarios. TGV = true genotypic value; TBV = true breeding value; TDD = true 
dominance deviation; EGV = estimated genotypic value. In panel 3, “Pedigree” refers to pedigree inbreeding, “Genomic” refers to genomic inbreeding 
based on diagonals of genomic relationship matrix, and “Homozygosity” refers to the proportion of genome that is homozygous. The simulation scenarios 
refer to the ancestral population scenario simulated. Scenario 1 uses the “Ne1000” parameter in Geno-Diver (Howard et al., 2017), scenario 2 uses the 
“Ne250” parameter in Geno-Diver, scenario 3 uses the “Ne100_Scen1” parameter in Geno-Diver, and scenario 4 uses the “Ne70” parameter in Geno-Diver. 
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traits within a breed, the IIL regression coefficient re-
sulted in a higher −log P-value (i.e., lower P-value) 
across both breeds compared with any genome-wide 
inbreeding metric, whereas the pedigree-based inbreed-
ing metric had the lowest −log P-value. Out of the 9 
traits, the regression coefficient was trending toward 
significance (P-value < 0.10) for 6 (LBW, PWM, NW, 
NWBW, weight, and ADG) and 7 (NBA, TNB, LBW, 
NW, NWBW, weight, and ADG) out of the 9 traits for 
LR and LW, respectively. Alternatively, for genome-
wide inbreeding metrics, the regression coefficient for 
the proportion of the genome homozygous, diagonals 
of SNPRM, or pedigree-based inbreeding was trend-
ing toward significance for 3, 2, and 0 traits, respec-
tively, for LR and 4, 2, and 0 traits, respectively, for 
LW. Therefore, in our results, IIL was the parameter that 
more closely aligned with the identification of function-
al inbreeding. It should be noted that no single param-
eter had a consistently higher −log P-value across traits, 
so a combination of genome-wide inbreeding metric 
based on genomic information and the IIL value would 
likely be optimal in breeding applications.

An ideogram of regions of the genome where 
an unfavorable haplotype was identified by the algo-
rithm across the 9 traits for the 2 lines is depicted in 
Supplemental Fig. S3 and S4 (see the online version 
of the article at http://journalofanimalscience.org). 
Regions of the genome with long unfavorable stretches 
of homozygosity were observed across multiple traits/
line. Conversely, other regions did not appear to har-
bor unfavorable stretches of homozygosity. The num-
ber of regions that have an unfavorable effect across at 
least 4 of the 9 traits is outlined in Table 3 and regions 
were placed into categories based on the relationship 
between the traits. A summary of the regions and the 
least squares mean difference between an animal in a 
ROH versus non-ROH across both breeds is outlined 
in Supplemental Table S2 (see the online version of the 
article at http://journalofanimalscience.org). A total of 4 
and 13 regions were found that had at least 1 produc-
tion and reproduction trait associated with a unfavor-
able haplotype in LR and LW, respectively. A total of 
3 regions across both breeds were associated with only 
reproductive traits. Summary statistics on the median 
ROH length that the unfavorable haplotype tagged and 
the average frequency of the ROH genotype across 
traits and breeds is outlined in Supplemental Table S3 
(see the online version of the article at http://journalo-
fanimalscience.org). The average median length of the 
unfavorable haplotype across trait and breeds was 1.56 
and 1.54 Mb for LR and LW, respectively. Similarly to 
what was found in the simulated data, the unfavorable 
haplotype tagged a larger ROH of 9.55 and 9.12 Mb 
averaged across traits within LR and LW, respectively, 

corresponding to (averaged across traits) 172 and 156 
SNP for LR and LW, respectively.

Lastly, the correlation between the diagonals and 
off-diagonals of the ILM for each trait and genome-wide 
relationship matrices is presented in Supplemental Fig. 
S5 and S6 (see the online version of the article at http://
journalofanimalscience.org) for LR and LW, respec-
tively. As shown by the lower diagonal of each matrix, 
correlations between the off-diagonal elements of the 
ILM across all traits and genome-wide relationships are 
all favorably correlated. Any change in the off-diagonal 
ILM value for one trait would result in a similar (in the 
favorable direction) or negligible change in the other 
traits. The average off-diagonal elements across traits for 
LR had an absolute correlation of 0.23, 0.28, and 0.34 for 
A, SNPRM, and ROH5RM, respectively. Slightly lower 
correlations were found for LW, and averaged across 
traits, the absolute correlation was 0.14, 0.20, and 0.21 
for A, SNPRM, and ROH5RM, respectively. In general, 

Table 2. The significance of inbreeding regression coef-
ficient across multiple inbreeding metrics and the predic-
tion accuracy of the individual inbreeding load (IIL) and 
estimated genotypic value (EGV) from whole-genome 
Bayesian ridge regression across traits for Landrace (LR) 
and Large White (LW) populations

 
 
 
Breed

 
 
 

Trait1

Regression on adjusted  
phenotype −log(P-value)2

Prediction 
accuracy

Pedigree
inbreeding

Genomic
inbreeding

Proportion
homozygous

 
IIL

 
EGV

 
IIL

LR NBA 0.66 0.49 0.69 0.00 0.44 −0.05
TNB 0.87 0.68 0.23 0.53 0.42 −0.09
PD 0.15 0.00 1.42 1.94 0.53 0.15
LBW 0.45 2.24 1.34 15.24 0.65 0.33
PWM 0.29 1.54 0.8 2.94 0.40 0.17
NW 0.21 1.01 0.49 4.00 0.42 0.22
NWBW 2.14 0.66 4.36 2.51 0.64 0.22
Weight 0.53 4.52 2.93 3.24 0.40 0.17
ADG 0.58 4.54 2.84 4.00 0.39 0.18
Average 0.65 1.74 1.68 3.82 0.48 0.15

LW NBA 0.62 0.15 0.12 4.14 0.45 0.24
TNB 0.98 0.40 0.21 2.56 0.42 0.19
PD 0.54 1.35 1.97 1.94 0.38 0.13
LBW 2.18 1.11 4.07 10.25 0.77 0.24
PWM 2.11 0.33 1.37 2.09 0.36 0.18
NW 1.71 0.12 0.00 2.91 0.29 0.25
NWBW 0.00 0.78 2.56 3.46 0.79 0.17
Weight 0.69 5.70 6.14 5.99 0.48 0.18
ADG 0.73 5.76 6.09 4.77 0.48 0.17
Average 1.06 1.74 2.50 4.23 0.49 0.20

1NBA = number born alive; TNB = total number born; PD = proportion 
born dead; LBW = average litter birth weight; PWM = preweaning mortal-
ity; NW = number weaned; NWBW = average litter wean weight; weight 
represents weight at off-test.

2As a reference, a P-value of 0.10, 0.05, and 0.01 is equivalent to a 
negative log P-value of 2.30, 3.0, and 4.6, respectively.
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the correlations between the IIL values across traits and 
genome-wide inbreeding metrics were similar to the 
off-diagonals and the majority of them were in the same 
direction. In some instances, the correlations between 
the values were antagonistic. For example, the SNPRM-
based genome-wide inbreeding and IIL values for LR 
across all traits were antagonistic, although the correla-
tions between the genome-wide inbreeding metrics were 
much lower compared with the off-diagonal elements.

DISCUSSION

The objective of this study was to implement a strat-
egy to identify haplotypes within long ROH that tag an 
IBD segment due to recent inbreeding. Haplotypes with-
in ROH were targeted because previous results obtained 
through simulation by Keller et al. (2011) have shown 
that ROH-based genome-wide inbreeding metrics have 
a higher association with the recessive mutation load 
compared with pedigree- or SNP-by-SNP–based in-
breeding metrics. The rationale behind the proposed al-
gorithm stems from previous research investigating the 
phenotypic effect of a region being in a ROH (Pryce et 
al., 2014; Howard et al., 2015; Saura et al., 2015). One 
of the major pitfalls of previously used methods is that 
they assume that any ROH genotype within a region of 
interest has an unfavorable effect, which is most likely 
not the case. Instead, the unfavorable effect is likely due 
to a single unique ROH genotype, with the remaining 
ones resulting in no unfavorable effect. As a result, the 
identification of the unique ROH genotype associated 
with an unfavorable phenotype allows for the region to 
be more effectively managed across time. The primary 
outcome of the proposed algorithm is a list of unfavor-
able haplotypes. Multiple algorithms already exist to 
manage unfavorable mutations or haplotypes within 
breeding programs so that the ones identified by the 
algorithm could be easily incorporated into previously 
developed pipelines (Kinghorn, 2011; Cole, 2015).

Within the algorithm, multiple aggregation steps 
are implemented to confine the unfavorable haplotype 

to the core of the observed ROH genotype in a way 
that is consistent across individuals. As result of the 
aggregation step, each haplotype serves as a tag for a 
much larger ROH segment. In this regard, the data pre-
sented confirm that the aggregation steps are successful 
in identifying tag haplotypes contained within a much 
larger ROH genotype. Across both swine breeds and in 
the simulated data set, the median length of the ROH 
the haplotype tagged was greater than 9 Mb and the 
tag haplotype was around 1 Mb. Furthermore, simula-
tion results highlighted that the true ROH effects that 
were not identified were shorter ROH (5.26 Mb) than 
the ones that were identified (13.96 Mb). The ability 
to capture short IBD regions depends on the marker 
density as described by Ferenčaković et al. (2013), and 
the marker density used in the current study might not 
be sufficient to effectively capture these short IBD re-
gions. The impact of the density was not investigated 
here to limit the number of scenarios generated, yet its 
impact should be considered in the future. Lastly, the 
simulation highlighted how, in some cases, the algo-
rithm incorrectly identified true positive ROH effects 
that were characterized as being much longer than cor-
rectly identified negative ROH effects. The distribution 
of the length of ROH has a heavy tail, and therefore, 
the frequency of long ROH is low, but long ROH do 
exist within the genome across individuals. These in-
correctly identified true positive ROH regions were lo-
cally negative around the tagged unfavorable haplotype, 
but because they were longer than average ROH, their 
combined effect was ultimately positive.

We investigated the ability of the algorithm to iden-
tify unfavorable haplotypes and their potential use. The 
frequency at which ROH occur within the genome had 
a large impact on the ability of the algorithm to iden-
tify unfavorable haplotypes. Medium-high and high LD 
scenarios have LD patterns similar to those observed in 
livestock species. Under these premises, the algorithm 
was effective at capturing unfavorable genomic regions. 
The proportion of highly unfavorable ROH genotypes 
(i.e., <0.05 percentile) that the algorithm captured under 
the high-LD scenario varied across QTL scenarios. As 
the number of QTL increased, the proportion of ROH 
genotypes captured decreased. The average proportion 
of highly unfavorable ROH genotypes the algorithm 
captured was 0.52 (95% CI 0.42–0.62), 0.39 (95% CI 
0.32–0.46), and 0.33% (95% CI 0.27–0.39) for the sce-
narios with 250, 500, and 1,000 QTL, respectively. The 
prediction accuracy based on real data (average 0.17 
[SD 0.10]) was roughly half of what was observed with 
the simulated data (mean of 0.49 [95% CI 0.47–0.52] 
in the high-LD scenario), although across the majority 
of traits, IIL had a prediction accuracy that was greater 
than 0. A prediction accuracy near 0 was observed in LR 

Table 3. Summary of the number of haplotypes that dis-
played unfavorable effects across multiple (i.e., >4) traits 
for Landrace (LR) and Large White (LW) populations
Breed Type of trait1 Number of haplotypes
LR Production and reproduction 4

Reproduction 3
LW Production and reproduction 13

Reproduction 3

1The type of trait refers to a production trait (i.e., weight at off-test and aver-
age daily BW gain from birth to off-test) or a reproductive trait (i.e., number 
born alive, total number born, proportion born dead, average litter birth weight, 
preweaning mortality, number weaned, and average litter wean weight).
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for NBA and TNB, which may be due to multiple fac-
tors including purging of unfavorable ROH genotypes 
due to strong selection for initial litter size within the 
line as well as a smaller data set than the one used in the 
LW population. In our study, whole-genome regression-
based EGV resulted in a moderate predictive ability (av-
erage across trait and breed: 0.48 [SD 0.14]). The use of 
a whole-genome regression method to benchmark the 
algorithm was used to illustrate the limitations of the al-
gorithm. The algorithm tests for only regions contained 
in longer ROH resulting in an unfavorable phenotype 
and should be used in conjunction with other methods to 
increase the overall genomic variability and limit the ac-
cumulation of inbreeding. Importantly, a moderate posi-
tive correlation between IIL and EGV was observed in 
the simulated (mean of 0.54 [95% CI 0.53–0.56] in the 
high-LD scenario) and swine (average 0.31 [SD 0.10]) 
data sets. Therefore, the combination of the 2 metrics 
could allow for a breeder to more effectively manage the 
risks associated with sire or mate selection. As a result, 
a breeder is able to more effectively evaluate the trade-
off between the genetic value of the progeny and un-
desirable side effects associated with inbreeding. Lastly, 
the use of the algorithm along with methods to identify 
lethal mutations/haplotypes (VanRaden et al., 2011) 
would allow breeders to comprehensively manage ge-
nomic diversity and recessive load in a population.

The 2 maternal lines used in this study have been 
under intense selection for multiple generations, which 
has potentially resulted in high and heterogeneous lev-
els of homozygosity across the genome. This has been 
recently investigated by Howard et al. (2016), who es-
timated the proportion of the genome in a ROH of at 
least 5 Mb to be 0.17 and 0.19% for LR and LW, re-
spectively. Furthermore, nearly all chromosomes across 
both breeds contained regions of the genome with high 
levels of ROH. Under this premise, it is likely that the 
impact of genome-level homozygosity would be re-
gressed toward 0, because homozygosity in some re-
gions of the genome would no longer be unfavorable. 
This result is partially verified by the ideogram outlined 
in Supplemental Fig. S3 and S4 (see the online ver-
sion of the article at http://journalofanimalscience.org), 
whereby some regions of the genome have unfavorable 
haplotypes spread across multiple traits and other do 
not have any unfavorable regions. The impact of hap-
lotypes contained within a ROH for regions that were 
significant across multiple traits can be quite large. For 
example, an animal homozygous for a tag haplotype on 
SSC9 (28.9–30.6) within the LR breed would be pre-
dicted to have 1.66 fewer pigs born alive, 1.32 fewer 
total pigs born, and 4.0% more pigs born dead and the 
litter would be, on average, 0.07 kg smaller than an ani-
mal that was not homozygous for the tag haplotype.

In general, the genetic diversity of a population is 
managed through the relationship of the parents based 
on the expectation that the inbreeding in the progeny 
is equal to half of the coancestry between the parents 
(Falconer and Mackay, 1996). As previously discussed, 
because inbreeding depression is heterogeneous across 
the genome, a measure that has a higher relationship 
with the genetic load of an individual may serve as a 
better metric to manage the degree of inbreeding de-
pression that exists within a population. Therefore, lin-
ear mixed models (i.e., model [1] or model [2] outlined 
in the Materials and Methods section) that included ei-
ther genome-wide inbreeding metrics or the IIL value 
in predicting a phenotype were evaluated and the corre-
sponding −log P-value was estimated for each specific 
inbreeding regression coefficient. Across all simulated 
scenarios and, on average, across both swine breeds, 
the significance of the regression coefficient for the IIL 
value was higher compared with any other genome-
wide metric. Yet for some traits, genome-wide metrics 
were more significant. When both the genome-wide in-
breeding metric with the highest significance and the 
IIL were included in the model, similar significance 
values remained. This highlights how genome-wide in-
breeding and IIL metrics are capturing different signals. 
Based on our results, a combination of a genome-wide 
relationship matrix and an ILM could be useful in effec-
tively managing the risks associated with choosing an 
individual/mating combination. Future research should 
look at the long-term benefits of including the ILM in 
mating designs in terms of diversity and genetic load. 
Also, methods to incorporate multiple metrics includ-
ing the genetic value, genetic diversity, lethal mutations, 
and the unfavorable haplotypes from the algorithm into 
an index value should be developed.

Breeding objectives are, in the near totality of cases, 
composed of several economically important traits, and 
therefore, the relationship between the ILM across traits 
is of importance. For the 2 breeds investigated, the off-
diagonal values across all traits resulted in a favorable 
or negligible change across all traits. Therefore, the use 
of the ILM for a given trait would result in a favorable 
increase or negligible change in the phenotype of the 
remaining traits. Furthermore, based on genome-wide 
relationship metrics (i.e., pedigree or genomic), the 
off-diagonal elements are favorably correlated with off-
diagonal elements of the ILM across traits and breeds. 
Therefore, as one changes the ILM values in the favor-
able direction, the relationship across mating pairs is re-
duced, which is desirable and expected. Future research 
should investigate methods to combine ILM across traits 
in the breeding objective. In general, the diagonal values 
had trends similar to the off-diagonal values across traits 
and relationship matrices. One of the major differences 
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between the 2 values was related to an antagonistic rela-
tionship for LR between diagonals of SNPRM and the 
IIL values across all traits. The inbreeding correlations 
had a much lower correlation than off-diagonals ele-
ments and even more so within the LR breed.

In the present study, variance components were not 
reestimated for each window in Stage 2, which may have 
impacted the t-statistic. We used ASReml, which does re-
estimate the variance components for each window, to 
determine the sensitivity of fixing variance components. 
The difference between the t-statistic from the algorithm 
and the one from ASReml is outlined in Supplemental 
Table S4 (see the online version of the article at http://
journalofanimalscience.org). Across all breeds and traits, 
the differences between the 2 were negligible. In addi-
tion, across all breeds and traits, the t-statistic from the 
algorithm gave a conservative estimate compared with 
the ones derived from ASReml. The proposed algorithm 
may tag short haplotypes that have a lower probability 
of being true IBD segments than long ones. This can be 
minimized with the use of sequence information, which 
has greater power to correctly identify short IBD seg-
ments of the genome (Bosse et al., 2012). Averaged 
across traits, the proportion of ROH genotypes that were 
below 1, 2, and 3 Mb for LR (LW) was 2.0 (1.7), 8.3 
(8.4), and 16.0% (16.2), respectively. The algorithm 
trapped short ROH genotypes (albeit at a low frequen-
cy). Further improvements of the algorithm in the future 
should focus on reducing the frequency of trapping short 
ROH. Lastly, the optimal window size, rate at which the 
window size is reduced, and empirical t-statistic cutoff is 
likely to be dependent on the genotype density and popu-
lation. The current study investigated the effectiveness of 
identifying unfavorable ROH genotypes in the context 
of medium-density genotype information because it is 
the density traditionally used in genetic evaluations. The 
optimal window size across different marker panel densi-
ties or sequence information should be refined based on 
the population studied and genotype density used.

Previous studies have investigated ROH effects by 
accounting for the additive genotypic value of the re-
gion in the model by either including SNP contained 
within the region investigated (Pryce et al., 2014) or 
using phenotypes that have been corrected for the addi-
tive effect (Howard et al., 2015). When using a separate 
model for each window, the simulation and swine data 
sets have illustrated that the ROH tagging haplotype 
can span many megabase pairs and is variable across 
animals within and across windows. Therefore, the 
number of SNP to include before and after the haplo-
type in the model to account for the additive effect for a 
given region is difficult to determine. More important-
ly, the independence between additive and dominance 
effects in the classical treatment (Falconer and Mackay, 

1996) is, to an extent, a convenient artifact that allows 
orthogonality of the additive and dominance estimates. 
In reality, and as outlined in Huang and Mackay (2016), 
depending on the parameterization of the model, the 
variance explained by either additive, dominance or 
epistasis can be rearranged and placed more heavily 
into any of the 3 categories. This is chiefly due to the 
fact that 3 effects are, in a real situation, nonorthogonal 
to each other, so that the variance from a particular ef-
fect can be “consumed” by another effect. This is an 
important point because additivity and dominance are 
2 intrinsically inseparable terms and if an allele is dom-
inant over another (a ≠ 0, d ± a), there must be additive 
homozygous effects (a ≠ 0; Huang and Mackay, 2016). 
The nonorthogonal relationship between additive and 
dominance effects has been confirmed with real data 
(Wellmann and Bennewitz, 2011, 2012). The nonor-
thogonal relationship was also observed in the cur-
rent simulation study. The correlation between IIL and 
TDD was essentially 0 across all scenarios, although a 
positive correlation (0.14) was observed between IIL 
and the EDD. Under this premise, the ability to effi-
ciently estimate the additive and dominance effect and 
their potential interactions for QTL that are at a low 
frequency is severely reduced. Lastly, the application 
of the associated haplotypes identified in mating plans 
when correcting for the additive effect is even more 
complex due to a lack of clear interpretation between 
the combined additive and ROH effect for a window. 
Therefore, in our analysis, priority was given to esti-
mating the genotypic value of ROH segments that are 
susceptible to displaying reduced performance based 
on the combined genotypic value of the given segment. 
Based on this premise, we make no attempt to try to 
understand the number of mutations present within the 
ROH, the degree of epistasis that occurs, or the inheri-
tance pattern of QTL within the segment.

Conclusions

An algorithm that identifies unfavorable haplotypes 
contained within a ROH that results in reduced pheno-
typic performance was developed. Across simulated and 
real data sets, the unfavorable haplotype tags a much 
larger ROH region that has a high probability of being 
IBD and as a result of recent inbreeding due to its length. 
Furthermore, the accuracy of prediction for the majority 
of the traits was greater than 0. On the real swine data sets, 
multiple haplotypes were identified that had a consistent 
unfavorable effect across multiple traits. The use of this 
algorithm and the associated haplotypes allows breed-
ing programs to more effectively identify unfavorable 
regions, and mating programs can be used to minimize 
the frequency of ROH occurring in the next generation.
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