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Abstract 

The intestinal epithelial barrier protects the mucosa of the gastrointestinal (GI)-tract and plays 

a key role in maintaining the host homeostasis. It encompasses several elements that include 

the intestinal epithelium and biochemical and immunological products, such as the mucus 

layer, antimicrobial peptides (AMPs) and secretory immunologlobulin A (sIgA). These 

components are interlinked with the large microbial community inhabiting the gut to form a 

highly sophisticated biological system that plays an important role on many aspects of human 

health both locally and systemically. Like any other organ and tissue, the intestinal epithelial 

barrier is affected by the ageing process. New insights have surfaced showing that critical 

functions, including intestinal stem cell regeneration and regulation of the intestinal crypt 

homeostasis, barrier integrity, production of regulatory cytokines, and epithelial innate 

immunity to pathogenic antigens change across life. Here we review the age-associated 

changes of the various components of the intestinal epithelial barrier and we highlight the 

necessity to elucidate further the mechanisms underlying these changes. Expanding our 

knowledge in this area is a goal of high medical relevance and it will help to define intervention 

strategies to ameliorate the quality of life of the ever-expanding elderly population.
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1. Introduction

Mucosal surfaces cover a vast area of our body, among these the mucosa lining the GI-tract 

represents the primary and largest area of contact (~300m2) with environmental factors and 

antigens. The intestinal epithelial barrier must tackle the daunting task to prevent the 

penetration of macromolecules and potentially pathogenic microorganisms, while ensuring 

nutrients absorption and the monitoring of the luminal contents via a variety of mechanisms 

for both microbe recognition and antigen-sampling (Turner, 2009; France and Turner, 2017). 

These complex and at times seemingly opposing functions require the presence of highly 

specialized cells and structures strategically located along the GI-tract acting in synergy to 

maintain barrier integrity. The intestinal epithelial barrier is formed by several highly integrated 

physical (the epithelium), biochemical (mucus, anti-microbial peptides, AMP) and 

immunological (sIgA) elements. In the past years, a large body of evidence has emerged 

showing that the integrity of the intestinal epithelial barrier is critical for health and disease 

(Choi et al. 2017). Defects in barrier function may lead to chronic immune activation 

contributing to local and systemic diseases including coeliac disease, colorectal cancer, 

inflammatory bowel disease (IBD) and metabolic disorders such as obesity and diabetes 

(Fasano et al. 2000; He et al. 2017; Suenaert et al. 2002; Grivennikov et al. 2012; Araujo et 

al. 2017). Importantly, the loss of barrier integrity appeared to have detrimental consequences 

far beyond the gut. A malfunctioning intestinal epithelial barrier is thought to contribute to the 

pathogenesis of disturbances of the central nervous system (CNS) ranging from Parkinson’s 

(Schwiertz et al. 2018; Clairembault et al. 2015), Alzheimer’s (Köhler et al. 2016), Multiple 

sclerosis (Canara-Lemarroy et al. 2018) and depression (Maes et al. 2013; Stevens et al. 

2018). Elegant experiments in Drosophila (Rera et al. 2012; Gervais and Bardin 2017) have 

shown that alterations of barrier integrity in the gut are strictly associated with age-associated 

metabolic and inflammatory pattern and they represent a reliable marker of “impending” death.

In spite of its central role in maintaining health, our knowledge of the basic events underlying 

the physiological modification of the epithelial barrier in late life is still rather scarce. Recently, 
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experiments involving the use of in vitro developed intestinal organoids, ex-vivo human 

intestinal tissues and laboratory animals brought to the surface new information that shed 

some light on the ageing process in the gut. However, much still remains to be done in this 

area. The identification of the age-associated modifications of the various components of the 

intestinal epithelial barrier, and the underlying mechanisms, is a much needed step required 

to design effective intervention strategies to address an array of late life-related disturbances 

that have a significant impact on health and well-being. 

2. The intestinal crypt: where it all begins

2.1-Introduction to the intestinal stem cell niche

The intestinal epithelium encounters daily a vast amount of material ranging from semi-

digested food to microbes. The latter could be either part of the large microbial community, 

the microbiota, physiologically inhabiting the gut or pathogens that can reach the intestine via 

contaminated food or other sources. Thus, the intestinal epithelium faces a hostile 

environment that leads to constant loss and damage of the epithelial cells. Throughout the 

intestinal tract, the continuous renewal of the epithelium relies on the presence of intestinal 

epithelial stem cells (IESCs) located in a specialized region of the intestinal crypt (Seishima 

and Barker, 2019). The organization of the intestinal epithelium varies according to the 

different geographical areas of the gut that are characterized by distinct functional 

requirements. Therefore, the architecture of the intestinal crypt that houses a dedicated 

population of stem and progenitor cells that self-renew to maintain epithelial function 

throughout life differs between the small and large intestine. In the small intestine, each 

intestinal villus is encircled by at least six crypts of Lieberkühn (Fig. 1A), while in the colon the 

mucosal layer is arranged into crypts individually connected to the flat luminal surface via a 

circular opening (Fig. 1B). During the past few years, the intestinal niche environment and 

some of the critical factors underlying IESC proliferation and crypt homeostasis in the small 
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intestine have been identified and key regulatory events dissected in detail (Greicius and 

Virshup, 2019; Tan and Barker, 2014). The base of the crypt harbours the IESCs that are 

located at the +4 position starting from the bottom of the crypt and above the Paneth cells or 

as crypt base columnar cells (CBC) interspersed between the Paneth cells. Stem cells give 

origin to rapidly dividing transit-amplifying (TA) cells that differentiate into enterocytes 

(absorptive lineage) or enteroendocrine cells, goblet cells, tuft cells and Paneth cells (all 

belonging to secretory lineages). The stem cell niche environment also comprises additional 

cell types that include fibroblasts, myofibroblasts, smooth muscle cells, neural cells, 

endothelial cells, lymphocytes and monocytes (Fig.1). These cells provide secreted factors, 

such as the wingless-related integration site 3 (Wnt3), epidermal growth factor (EGF) and 

bone morphogenetic protein (BMP) signaling factors, such as Noggin, Gremlin and chordin 

that control the proliferation of intestinal epithelial cells.

2.2- Effect of ageing on the IESC.

The use of Drosophila midgut, that closely mimics its mammalian counterpart (Gervais and 

Bardin 2017) and the identification of the IESC-specific marker leucine-rich repeat-containing 

G-protein coupled receptor 5 (Lgr5) in mice (Barker et al. 2007) have helped to shed some 

light on how ageing modifies the intestinal stem cell. Experiments in the Drosophila midgut 

section (Guo et al. 2016) showed that the number of IESCs, identified by the expression of 

the transcription factor escargot (Esg) and the Notch ligand delta (D1) (esg+/Dl+ cells) (Ohlstein 

and Spradling, 2006) increased in ageing. However, this event was paralleled by a decline in 

function (Biteau et al, 2008; Choi et al 2008) and it has been argued that the increase in IESC 

numbers was only apparent and due to an accumulation of mis-differentiated IESC cells 

retaining specific markers. It is possible that environmental factors, such as bacterial infections 

played a significant role in the increase of IESC in ageing flies. This hypothesis is supported 

by the activation of environment-mediated stress responses signalling pathways including the 

c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)38 (MAPK38) and 
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platelet derived growth factor/vascular endothelial growth factor (PDGF/VEGF) (Buchon et al 

2009, Biteau et al. 2008, Choi et al. 2008, Hochmuth et al. 2011; Park et al. 2009). In particular, 

the elevated JNK activity in IESC during ageing might play a role in the loss of intestinal 

homeostasis. Indeed, a finely tuned balance between stress signalling and processes that 

regulate IESC cell proliferation and differentiation, including the interaction between JNK and 

Notch signalling is required to avoid accumulation of mis-differentiated cells. Additional studies 

in Drosophila also revealed that increased proliferation level of IESC was also linked to 

accumulation of damaged proteins and DNA (Park et al. 2012; Na et al. 2013; Park et al. 

2014). These latter events are likely to be brought about by age-associated defects in DNA 

damage repair response (DDR) a key pathway for stem cell protection (Kenyon and Gerson, 

2007; Behrens et al. 2014; Park, 2015). Recently, the generation of genetically engineered 

flies lacking specific DDR-associated genes, such as Mre11, Rad50, Nbs, ATM, ATR, Chk1/2 

informed on the role of defective DDR on IESC. Lack of DDR-associated genes led to early 

ageing as shown by IESC hyper-proliferation, increased centrosome amplification and overall 

affecting fly’s survival (Park et al. 2018). Interesting, sex differences have been reported in 

IESC proliferation and function in ageing (Regan et al. 2016). The gut of ageing female flies 

appeared heavily damaged by excessive IESC proliferation, with disruption of the intestinal 

epithelium occurring as early as 2-3 weeks of age. The progressive morphological 

abnormalities of the intestinal epithelial cells (IECs) eventually led to formation of tumours. In 

contrast, ageing males did show reduced levels of IESC proliferation that ensured absence or 

a delay in the onset of gut abnormalities. However, the low IESC proliferation rate made the 

males more vulnerable than females to intestinal infections. Thus, in spite of being detrimental 

to barrier integrity in ageing, the high proliferative capacity of IESC protected the female flies 

from environmental stress in late life. 

In mammalian, a large panel of experiments concurred that, similarly to what observed in 

Drosophila the ageing process altered the function and regenerative capacity of IESC. The 

identification of the Lgr5 as IESC-specific marker (Barker et al. 2007) and the subsequent 
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development of in vitro grown intestinal organoids (Sato et al. 2009; Sato et al. 2013) made it 

possible to untangle regulatory events taking place at the level of the intestinal epithelial niche.  

In contrast to what previously suggested (Heller 1990; Xiao et al. 2001; Potten et al. 2001), 

the mitotic index declined significantly in ageing (Nalappareddy et al. 2017). This was also 

confirmed by the observation that IESC from mice yielded fewer and less complex intestinal 

organoids compared to their young counterparts (Moorefiled et al. 2017). In addition, 

consistent with reduced mitotic index, specific cell cycle regulators (i.e. CDNK1C) were 

reduced in aged mice (Nalappareddy et al. 2017). Parallel experiments conducted in aged 

Sox9-EGFP reporter mice also showed increased levels of apoptosis in the crypt as shown by 

increased expression of apoptosis-promoting genes such as p53, Sirt7, Max, Bak1 and Bax 

in active IESC (Moorefiled et al. 2017). Overall, these age-associated alterations of the IESC 

proliferative and survival capacity have important consequences for intestinal crypt 

homeostasis, epithelium formation and the overall architecture of the gut. Ageing is indeed 

associated with modifications of the intestinal architecture, including increase in villus height 

(Martin et al. 1998; Holt et al. 1984; Corazza, 1998). In vivo experiments in double transgenic 

TRE-Omomyc;actin-rtTA mice that exhibit decreased cell proliferation in several tissues, 

including the intestine, coupled with mathematical modelling approach have shown that cell 

proliferation within the crypt is the principal driving force for IECs migration along the villi 

(Parker et al. 2017). Indeed, the blocking of IESC proliferation in the crypt via intra-peritoneal 

administration of the cytosine arabinoside (Ara-C) inhibited the progress of IECs along the 

crypt-villus axis. The reduced mitotic rate coupled with increased level of apoptosis of active 

IESC in ageing (Nalappareddy et al. 2017) potentially contributed to the different architecture 

of the ageing gut by reducing the speed at which epithelial cells migrated along the crypt/villus 

axis.

Most important is the notion that the ability to repair an experimentally induced damage to the 

intestinal crypt also diminished in ageing mice (Choi et al. 2018). This was due to the reduced 

intra-crypt motion of IESC. The latter event sets in rapidly in the young intestine after the 
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application of the insult and it allows maintaining the optimal cell organization and spatial 

distribution of IESC within the crypt. Ageing did not affect the number of Lrg5+ crypt as well as 

the total number of Lrg5+ cells (Choi et al. 2018); however, an age-associated decline of the 

Wnt signalling has been reported (Nalappareddy et al. 2017). Experiments in Lgr5-eGFP-

IRES-CreERT2 and Rosa26YFP confetti mice and intestinal organoids showed a decline in the 

expression of Wnt in IESC, Paneth cells and the niche-associated mesenchymal cells. 

Although the mechanisms underlying the down regulation of Wnt signalling in ageing remain 

to be determined, the importance of the loss of Wnt signals (i.e. Wnt3) was confirmed by the 

observation that adding exogenous Wnt3a to organoid cultures restored a young-like 

regenerative potential. 

Furthermore, similarly to all tissue-specific stem cells, the regenerative capacity of the ageing 

IESC is reduced by telomerase attrition. Reduction of telomere length occurs at cell division 

due to the inability to copy the very ends of chromosomes and it represents one of the key 

drivers of ageing (Hao et al. 2005). Ultimately, age-related loss of telomeric DNA triggers 

chronic DDR leading to cell death, apoptosis and an accelerated ageing process (Rudolph et 

al. 1999; Newgard et al. 2013; Steenstrup et al. 2017). Recently, the possibility to generate 

adult tissues with telomeres longer than normal in the absence of genetic modifications gave 

rise to the idea of using a similar approach to rejuvenate tissue in regenerative medicine. The 

presence of a longer telomere delayed the onset of the detrimental effects of age-associated 

telomere attrition and maintained a young-like regenerative capacity of IESC for an extended 

period of life (Varela et al. 2016). Telomere integrity is also under the control of the epigenetics 

dynamics of the telomeric/subtelomeric area. Experiments in telomerase-deficient mice 

(G3Terc-/-) showed that the deletion of the growth arrest and DNA damage-inducible protein 

45 alpha (Gadd45a), critical for epigenetic gene activation via repair-mediated DNA 

demethylation, markedly reduced the DDR and improved the function and regenerative 

capability of IESCs and in so doing extended the life span of G3Terc-/- mice (Diao et al. 2018).
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The accumulation of somatic mutations across life also has a negative impact on IESC 

function. A genome-wide mutation pattern analysis in individuals whose age ranged between 

3 and 87 years determined that IESC, both in the colon and small intestine accumulated 

somatic mutation at a much higher rate compared to a less mitotically active tissue such as 

the liver (Blokzijl et al. 2016). The same study also reported a low inter-individual variation in 

mutation in individuals with very different life styles. The latter observation is important and it 

suggested the incidental effect of exposure to environmental factors has a minimal effect on 

the mutations in IESC throughout life.

Finally, the constant host-microbe interaction also plays a role in IESC proliferation. A 

combination of in vivo and ex-vivo studies in mice showed that the intestinal microbes 

promoted monocyte-stem cell interactions; in turn, monocytes via both cytokine secretion and 

cell-to-cell interaction promoted crypt cell proliferation to help maintain gut homeostasis 

(Jeffery et al. 2017; Skoczek et al. 2014). Thus, it is plausible to hypothesize that changes of 

the gut microbiome occurring in ageing might alter the pattern of microbe-derived signals and 

ultimately contribute to the altered IESC proliferative capacity.

3. Cellular, biochemical and immunological intestinal barriers.

3.1 The intestinal epithelium

The epithelial cells emerging from the crypt are organized in a single layer that forms a highly 

selective barrier whose one of the main tasks is to prevent access to macromolecules and 

microbes while allowing a continuous influx of water, ions and nutrients. The integrity of the 

barrier is afforded, in first place by the rather impermeable plasma membrane of the IECs and 

by inter-cellular junctional complexes that seal the paracellular space (Buckley and Turner, 

2018). At the apical domain of the IEC, at the base of the microvilli the plasma membranes of 

adjacent cells are intimately connected (Fig. 2). The tight junctions (TJs) are the most apical 

of the junctional complexes. These are formed by a large array of interlinked proteins that 

include transmembrane and membrane proteins and signalling molecules. TJs display a very 
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complex composition that include more than 40 different proteins (Furuse, 2010). This large 

variety ensures that TJs, in addition to creating a formidable barrier contribute to establish cell 

polarity (Cereijido et al. 1998) and participate in signalling, transcriptional regulation, cell cycle 

(Hernandez et al. 2007; Matter and Balda, 2003, Zihini et al. 2014, Van Itallie and Anderson, 

2006; Tsukita et al. 2008) and vesicles trafficking (Yeaman et al. 2004). The principal TJs 

proteins are claudins, zonula occludens 1 and 2 (ZO1/2), occludin and F‑actin. Just below the 

TJs complexes the proteins E‑cadherin, α‑catenin 1, β‑catenin, catenin δ1 form the adherens 

junction that plays a significant role in the assembly and function of TJs. TJs and adherens 

junction are supported by a perijunctional ring of actin and myosin. Beneath the adherens 

junction, an additional structure, the desmosome participates in the sealing of the paracellular 

space by strengthening the adhesion bonds between adjacent IECs. Similarly to TJs and 

adherens junctions, desmosomes encompass numerous interacting proteins that include 

desmoglein, desmocollin, desmoplakin and keratin filaments (Tariq et al. 2015, Spindler et al. 

2015, Schmidt et al. 1994, Garrod et al. 2008, Ungewiß et al. 2017). 

In the past few years, information on how the integrity of the intestinal barrier changes in 

ageing humans and laboratory animals, has emerged. Studies in rodents and non-human 

primates reported that intestinal permeability increased with age and in some case, alteration 

of the expression of TJ components was observed. Pioneering studies carried out in the 80s 

reported reduced levels of excretion of the tracer polyethylene glycol (PEG) 400 in the urine 

of aged rats compared to their young counterparts, thus suggesting an increased permeability 

to large macromolecules (Hollander et al. 1985; Hollander and Tarnawski, 1985). The same 

authors also observed that the increasing intestinal permeability is a continuous process that 

progresses as the rat ages (Ma et al. 1992). More recent studies have used colonic biopsies 

from non-human primates (baboons) to tackle the issue of permeability in ageing (Tran and 

Greenwood-Van Meerveld, 2013). Aged baboons showed reduced expression of critical TJ 

proteins such as ZO-1, occludin and junctional adhesion molecule-A (JAMA-1) and increased 

permeability to macromolecules, such as horseradish peroxidase (HRP, approx. 44 kDa). In 



11

the terminal ileum of the human small intestine, the TJs expression and intestinal permeability 

displayed a rather different pattern (Man et al. 2015). The expression of zonula occludens-1 

(ZO-1), occludin and JAMA-1 did not vary in healthy elderly (67-77 years old) and overall 

permeability to macromolecules was not affected. However, both humans and baboons 

expressed higher levels of claudin-2. The level of claudin-2 showed a trend towards an 

increase in colonic biopsies of baboons (Tran and Greenwood-Van Meerveld, 2013) whereas 

the increase was significantly more pronounced in biopsies from the terminal ileum of ageing 

humans (Man et al. 2015). In the human ileum, the up-regulation of claudin-2 led to a 

significant decline of transepithelial electric resistance (TEER); a measure of the ionic gradient 

across the intestinal barrier. An additional study in a small number of female vervet monkeys 

suggested that healthy ageing is not associated to a dramatic structural alteration of the colon; 

however, it is accompanied by functional deficit of the intestinal barrier assessed by evaluating 

markers of microbial translocation (Wilson et al. 2018). In the latter report, however, the 

qualitative and quantitative analyses of the various TJ components were not carried out. 

Furthermore, the levels of serum zonulin, an indirect marker of intestinal permeability were 

higher in healthy elderly (≥70 years-old) compared to healthy young individuals (18–30 years-

old) (Qi et al, 2017). Of interest, higher levels of serum zonulin were negatively correlated with 

skeletal muscle strength and habitual physical activity, two indices of physical frailty.

Furthermore, seminal new information on the biological relevance of the integrity of the 

intestinal epithelium in ageing has emerged from studies in Drosophila. The cellular junctions 

found in flies include spot adherens junctions (SAJs), the zonula adherens (ZA), pleated and 

smooth septate junctions (SJs), gap junctions, and hemiadherens junctions (HAJs) (Tepass 

et al. 2001; Izumi and Furuse, 2014). Similarities between Drosophila and vertebrate TJs have 

been observed (Willot et al. 1993; Furuse and Tsukita, 2006). However, up to date studies 

monitoring the effect of ageing on individual components of the TJ complexes in Drosophila 

are lacking. Nonetheless, elegant experiments that utilized a non-invasive assay to determine 

intestinal integrity demonstrated that systemic metabolic alterations, increased levels of 
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inflammation and impending death could be predicted in individual flies based solely on the 

loss of barrier integrity (Rera et al. 2012). 

3.2-The mucus layer

The mucosal surface of the GI-tract is covered by a layer of mucus that plays a critical role in 

protecting the intestinal epithelium (Johansson and Hansson, 2011). Mucus is secreted by 

goblet cells whose number increases along the proximal-distal axis of the gut peaking in the 

colon (MacDermott et al. 1974; Johansson 2012). Mucus contains several major components, 

including mucins (Pelaseyed et al. 2014) that are characterized by mucin domains heavily O-

glycosylated. The structures of the O-glycans present in mucin are diverse and complex, 

consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-

acetyl-galactosamine, galactose and N-acetyl-glucosamine (Bennet, 2012; Bergstrom and Xia 

2013; Brockhausen, 2009; Tailford et al. 2015). Within the mucus layer, two well-separated 

areas could be identified. First, a firm inner layer, mostly bacteria-free is in intimate contact 

with the intestinal epithelium. Second, an outer less firm layer provides a lubricated surface 

for the progression of the luminal contents and a nutritional substrate for certain species of 

commensal microbes (Johansson et al. 2011; Johansson et al.  2008). The critical role of the 

mucus layer has been long neglected; ultimately though, a clear-cut evidence of its importance 

in the protection of the host is provided by the observation that mucus-deficient mice (Muc2-/-

) spontaneously developed severe colitis around 4 weeks of age (Van der Sluis et al. 2006).  

Very little is known on the structure and function of mucus in ageing but in the past few years 

some information has surfaced. It would appear that the effects of the ageing process on the 

production of mucus varied according to the geographical location in the gut. The thickness of 

the gastric and duodenal mucus layer did not change with age in normal, healthy individuals 

(Newton et al. 2000). This suggested that the mechanical protection afforded by the mucus 

layer, at least in these two locations, is not affected by ageing. In addition, the ileum of aged 

mice showed a slight increase in the number of goblet cells/villus that displayed larger mucin 

granules indicative of an increase in mucus abundance (Tremblay et al. 2017). Also, others 
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observed that the overall number of goblet cells in the ileal Peyer’s patches (PPs) of ageing 

mice remained unchanged (Kobayashi et al. 2013). In other areas of the GI-tract the effects 

of ageing on the mucus layer are more pronounced. In both wild type mice and transgenic 

Ercc1−/Δ7 mouse model of accelerated ageing, the thickness of the colonic mucus layer 

decreased compared to their young counterparts (van Beek et al. 2016). The same report 

demonstrated that the mucus thickness could be restored in ageing by supplementation with 

a specific lactobacillus strain, thus reinforcing the notion of a direct link between intestinal 

microbes and goblet cells activity. Also, it appeared that the age-associated reduction of the 

thickness of the mucus layer in mice is influenced by the sex of the host with males being 

significantly more affected by the ageing process compared to females (Elderman et al. 2017). 

Of significance, the thinning of the mucus in ageing was paralleled by changes on the 

microbiota composition and immunity (Sovran et al. 2019). 

The effects of ageing on the chemical composition of the mucus, and in particular its 

glycosylation pattern is another important aspect that remains to be thoroughly addressed. 

Microbes adhere to mucins O-glycans via mucus-binding protein (MUB), a large multi-repeat 

cell-surface adhesins found in bacteria inhabiting the GI tract. Yet, glycans embedded in the 

mucus layer represent a nutritional substrate for a variety of gut microbes (Gusils et al. 2004; 

Johansson 2011). Taken together these observations imply that glycans-mediated 

interaction/binding between the mucus layer and gut bacteria is a key step in the selection and 

maintenance of the local microbiota. To this end, it is worth reporting that the adhesion of 

certain microbial species to mucus declined in ageing (Ouwehand et al. 1999; He et al. 2001a; 

He et al. 2001b). This notion is of potential significance. First, change in protein glycosylation 

is an important factor in ageing (Krištić et al. 2014; Miura and Endo, 2016). Second, one could 

speculate that age-associated changes in the glycosylation pattern of mucins might be a factor 

contributing to the alterations of the microbiota profile observed in the elderly (O'Toole and 

Jeffery, 2015). Furthermore, the phospholipid composition of the mucus layer also rapidly 

changes during the very early stages of life (Okuyama et al. 1998); however, up to date no 

information is available on this aspect of the mucus chemistry during ageing. 
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More recently, it has become apparent that the role of the mucus layer extended beyond its 

protective role and it included distinct regulatory properties that contributed to shape the 

immunological properties of anti-inflammatory intestinal DCs (Shan et al. 2013). 

Overall, these observations pointed to a pivotal role exerted by the mucus layer in the 

protection of the intestinal epithelium and in shaping both the immunological 

microenvironment and optimal habitat for a healthy microbiota. Changes of the mucus 

thickness and chemical structure during ageing have the potential to alter the intestinal 

environment with important consequences on the microbial community and inflammation of 

the gut. 

3.3- Anti-microbial peptides (AMPs)

Antimicrobial peptides (AMPs) represent the first line of defence to combat infections at the 

host-microbe interface in the gut (Maróti et al. 2011). They are small (six to 100 amino acids), 

cationic and amphipathic peptides that display broad-spectrum activity against bacteria, fungi, 

parasites and viruses (Peters et al. 2010). Their role though, is not confined to fighting off 

pathogens, they also contribute to the regulation of intestinal homeostasis by controlling the 

abundance and profile of the gut microbiota (Bevins et al. 2011). AMPs disrupt bacterial 

membranes and they can be toxic to mammalian cells as well; for this reason their expression 

must be kept under the strict control of both transcriptional and post-translational mechanisms. 

Information has been collected in the past few years on age-associated changes of the 

production of AMPs in mice and more recently in Drosophila. In ageing humans the production 

of AMPs by peripheral mononuclear blood cells (PBMC) is preserved (Castañeda-Delgado, 

2013); however, currently the evidence of fluctuation of intestinal levels of AMPs in the elderly 

is not available.

In mice, it has been observed that the expression of important Paneth cell-derived AMPs, such 

as -defenins and lysozyme declined with age; in contrast, other AMPs including regenerating 

islet-derived protein 3 beta (RegIIIB) and gamma (RegIIIG) as well as -defensins 1, 
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angiogenin-4 and resistin-like molecule β (RELMβ) were significantly up-regulated in ageing 

(Tremblay et al. 2017). The exact mechanism underlying the age-related up-regulation of 

AMPs is not clear. It has been hypothesized that the accumulation of pathogenic insults 

throughout life might lead to a chronic activation status. Furthermore, it has been suggested 

that the problem might be linked to a defective immuno-regulation. A cell-intrinsic deficiency 

to terminate, but not initiate, inflammatory response to pro-inflammatory Toll-like receptor 

(TLR) stimulation that preceded manifestations of immunosenescence was described in both 

aged mice (Pattabiraman et al. 2017) and aged male, but not female Drosophila (Zerofsky et 

al. 2005). 

A large number of experiments on intestinal AMPs in ageing have been performed in the fly 

Drosophila. This model harbours seven distinct families of inducible AMPs expressed 

systemically in the body fat or in the epithelial barrier. The expression of these AMPs is 

regulated by both TLR signalling and the immune deficiency (IMD) pathways, the latter 

pathway being specific for the expression of AMPs in the midgut section of the fly (Lemaitre 

and Hoffmann 2007). Other AMPs expressed in the Drosophila midgut are regulated by either 

the transcription factors Drosophila Forkhead box O (dFOXO) or Forkhead (FKH) (Buchon et 

al. 2009; Varma et al. 2014). In addition, in ageing flies, the production of AMPs appeared 

significantly up-regulated; the age-associated overexpression of the AMP drosomycin highly 

correlated with the loss of the intestinal barrier integrity (Rera et al. 2012). Interestingly, the 

genetically induced over-expression of specific AMPs in the midgut of Drosohila, including 

Drosocin and Cecdoprin A1 significantly extended the lifespan of the fly (Loch et al. 2017). 

The induced constitutive expression of these AMPs limited the intestinal stress response, 

regenerative and immune activity; these events were thought to be brought about by AMP-

mediated reduction of bacterial challenges throughout life.

3.4- Immunoglobulin A (sIgA)

The presence of sIgA is the hallmark of mucosal surfaces. The main function of sIgA is to 

prevent the penetration of mucosal barriers via the immune exclusion of antigens and 
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pathogens (Stokes et al. 1975; Wijburg et al. 2006; Hapfelmeier et al. 2010). However, they 

also play a critical role at the host-microbe interface in the gut for establishing and maintaining 

the intestinal microbiota community (Macpherson and McCoy, 2013; Okai et al. 2016; Planer 

et al. 2016) and control entry of IgA-coated antigens via antigen-sampling M cells (Rey et al. 

2004). Together, these activities prevent infections via mucosal surfaces and contribute to 

regulate the intestinal immune homeostasis by limiting the generation of pro-inflammatory 

response. The IgA production initiates within the PPs of the organized gut-associated 

lymphoid tissue (O-GALT) (Craig and Cebra, 1971). The PPs harbour the cells and signals 

required to create the appropriate immunological environment for antigen-specific B cells to 

undergo IgA isotype switching (MacPherson et al. 2000) and express the surface molecules 

required for the B cell homing to distant mucosal sites (Mora et al. 2006). These signals include 

the transforming growth factor- (TGF-, CD103+ DC-secreted retinoic acid (RA) and 

interleukin 6 (IL- 6) (Agace et al. 2012). Currently, limited information is available on the effects 

of ageing on the intestinal factors that are critical for optimal IgA responses. For instance, RA 

signalling pathways was impaired in circulating PBMC (Feart, et al. 2005) but this analysis 

was not extended to the intestinal immune system. 

So far, conflicting results have been reported on the magnitude of IgA-mediated responses in 

ageing. Levels of intestinal IgA to an oral antigen (i.e. cholera toxin, CT) declined with age in 

rodents and non-human primates (McDonald et al. 2011; Schmucker et al. 1988; Taylor et al. 

1992). This could be attributed to age-associated defects in antigen presentation (Moretto et 

al. 2008; Vora et al. 2016) and T helper cell activity (Nicoletti, 1994; van der Geest et al. 2014, 

Carvalho et al. 2011; Daniels et al. 1988). However, the chronic low level of inflammation, or 

inflammageing typical of the ageing organism also contributed to dampen antibody responses 

by damaging the B cell development (Bulati et al. 2017). Indeed, the implementation of 

strategies to reduce inflammation, such as adoptive transfer of adipose mesenchymal stem 

cell from young donors restored a young-like CT-specific sIgA antibody response in aged mice 

(Tsuruhara et al. 2017). In contrast, others have observed that the IgA antibody response in 

ageing remained unchanged or even increased in both mice (Santiago et al. 2008; Haq and 
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Szewczuk, 1991; Arranz et al. 1992; Senda et al. 1988) and humans (de Bruijn et al. 1999). 

Accumulation of circulating IgA in ageing did not appear related to changes in the expression 

of the polymeric immunoglobulin receptor (poly-IgR) which was unaffected by ageing (Taylor 

et al. 1992; Daniels et al. 1998). In the past, investigation of the systemic antibody response 

showed that the magnitude of antibody production to a microbial component in ageing mice 

ranged from increased to reduced depending on the antigen utilized and the genetic make-up 

of the host (Nicoletti and Cerny, 1991). It is then possible that the same pattern applies to the 

magnitude of intestinal IgA responses. However, it is important to highlight that even 

antibodies from ageing mice of a “high responder” mouse strain failed to afford protection 

against lethal infection with S. pneumoniae when passively transferred into young mice 

(Nicoletti et al, 1993). In such a case, the antibody repertoire of aged mice displayed an 

increased heterogeneity of the variable heavy and light chains (VH/VL) gene repertoire and a 

much reduced antibody affinity to the bacterial epitope phosphorylcholine (Nicoletti et al. 

1991). This would suggest that the process of affinity maturation/selection of antigen-specific 

clones is impaired in ageing. An additional study showed that in the mucosal immune system, 

ageing did not affect the process of hypermutation (Howards et al. 2006). However, in the 

same study, the analysis of the dynamics of the germinal centre selection process uncovered 

that in ageing mice a decrease in the extent of selection occurred in the germinal centres of 

mucosal tissue. Together, these data suggested that changes in the structure (quality) rather 

than the quantity of the antibody response is of significance in late life. More recently, a high 

throughput sequencing analysis (Lindner et al. 2012) showed that the repertoire diversity of 

intestinal sIgA increased in ageing mice, ultimately though, the protective capacity of the sIgA 

antibody response during ageing remains to be determined.  

Finally, ageing also affected the expression of B cell homing-relevant molecules. Reduced 

levels of mucosal addressin cell adhesion molecule 1 (MadCAM-1) in the lamina propria (LP) 

and sub-mucosa venules 4b7 integrin on PMBCs (Thoreaux et al. 2000) were reported. The 

latter observation suggested that impaired homing of IgA-producing plasma cells rather than 
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a reduction of their overall number might underpin reduced sIgA responses in ageing 

(Schmucker et al. 2003).

4. Specialized epithelial function: monitoring the luminal contents via antigen 

sampling.

In addition to providing a formidable barrier to unwanted visitors and macromolecules the 

intestine has also evolved strategies to carry out the important task of allowing the intestinal 

immune system to constantly monitor the luminal contents. The activity of antigen-sampling is 

mainly carried out by membranous (M) cells (Nicoletti, 2000; Ohno, 2015). These cells are 

interspersed among conventional absorptive IECs and are strategically located within the 

follicle associated epithelium (FAE) of PPs, the inductive sites of the mucosal immune 

responses. In this way, luminal material is delivered directly to areas controlled by immune 

cells that distinguish between innocuous microbes or potentially harmful pathogens and 

undertake the appropriate course of action. 

In the proximity of the PPs, the intestinal crypt presents two distinct axes of cell proliferation, 

migration and differentiation. While during the migration along the crypt villus axis emerging 

cells differentiate into IECs, goblet, enteroendocrine cells and Tuft cells, cells exiting the crypt 

zone on the FAE side of the crypt move onto the dome of the follicle, acquiring features of 

IECs and M cells (Barker, 2014) (Fig 1A). In the past, conflicting results on M cell activity in 

ageing were reported. M cell up-take and transport of microparticles were apparently 

unaffected or even increased in ageing (LeFevre et al. 1978; Simon et al. 1994). Instead, more 

recently, conclusive evidence showed that ageing does have a detrimental effect on M cell 

numbers, maturation and activity (Kobayashi et al. 2013), thus leading to a deficiency in their 

ability to transcytose particles across the FAE. The authors showed that the number of FAE 

cells expressing the M cell specific marker glycoprotein 2 (GP2)+ M cells were reduced in 

ageing mice. Also, ageing significantly affected the functional maturation of M cells. First, the 

number of Spi-B+ cells that play a critical role in M cell maturation are reduced within the FAE 

of aged mice. Second, the functional differentiation of M cells also depends on CCR6+ CD11c+ 
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B cells that are recruited within the PPs by the chemokine CCL20. Age-associated decline of 

CCL20 levels in the FAE resulted in a decreased influx of CCR6+ B cells; this in turn affected 

M cell maturation. Ultimately, M cell-mediated sampling in ageing appeared affected also by 

the reduction of the size of the FAE area overlying individual follicles (Kobayashi et al. 2013), 

but not of the total number of intestinal PPs (Kawanishi and Kiely, 1989). Within this context, 

it is important to highlight that the down-regulation of antigen sampling via M cells might 

contribute to impaired development of oral tolerance to protein in older mice (Kato et al. 2003). 

Other factors play a role on the development of fully operational M cells, such as the cytokine 

macrophage migration inhibitory factor (MIF) (Man et al. 2008) and receptor activator of NF-

κB ligand (RANKL) (Knoop et al. 2009). Currently though, the effects of ageing on these 

soluble factors and the potential consequences on M cell biology/activity remain to be 

determined. 

Furthermore, additional strategies for antigen sampling in the gut have been observed. First, 

a small number of functional villous-associated M cells have been described (Jang et al. 2004). 

Second, although its biological relevance has been recently questioned (Man et al. 2017; 

Regoli et al. 2017) it has been observed that LP-CX3CR1+ macrophages contributed to antigen 

sampling by sending cellular extensions between IECs (Rescigno et al. 2001). Third, colonic 

and small intestine goblet cells can deliver antigens to LP-CD103+ DCs (McDole et al. 2012). 

Currently it is not known whether these routes for antigen-sampling are impaired in ageing. 

5. Inflammatory balance in the gut

5.1- Pro-inflammatory cytokines and barrier integrity. 

Intestinal levels of pro-inflammatory cytokines, in particular TNF, IL-1, IFN and IL-6 tend 

to increase with age. This observation has a direct bearing on barrier integrity; indeed, all 

these cytokines affect intestinal permeability by modulating the expression of TJ proteins. 

Experimental evidence stemming from investigation on the aetiology of inflammatory bowel 

disease revealed that IL-1β, TNF-α, or IFN-γ directly affected barrier integrity and intestinal 

permeability by TJ remodelling at the level of the perijunctional actomyosin cytoskeleton. This 
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event was linked to an increase of myosin light chain kinase (MLCK) gene and protein 

expression (Al-Sadi et al. 2012; Al-Sadi et al. 2013; Ma et al. 2005; Al-Sadi et al. 2016; Wang 

et al. 2005) (Fig. 2). Indeed, the inhibition of MLCK expression or kinase activity prevented the 

cytokine–driven TJ remodeling and the ensuing increase of the intestinal permeability. The 

cytokine IL-6 also increased the permeability to small molecules via the activation of JNK 

signalling cascade (Al-Sadi, 2014; Suzuki et al. 2009). The JNK-mediated activation of AP-1 

resulted in AP-1 binding sequence targeting the claudin-2 promoter region, leading to a 

subsequent increase in claudin-2 gene transcription and protein production. In the small 

intestine of ageing humans, the up-regulation of claudin-2, a TJ protein that promotes the 

formation of pores that allows the paracellular movement of  molecules with radii less than 4Å 

(Van Itallie, 2008) led to a significant decline of transepithelial electric resistance (TEER) (Man 

et al. 2015). Currently, there is no evidence linking the claudin-2 mediated increase in 

permeability to solutes to age-related disturbances of the GI-tract although the overexpression 

of claudin-2 has been reported in colitis (Heller et al. 2005). In the latter case, IL-13 and IL-17 

appeared to be the governor of claudin-2 overexpression (Heller et al. 2005, Fujino et al. 

2003). However, in healthy humans both in vitro and ex-vivo experiments demonstrated that 

the addition of IL-6 blocking antibody completely abolished the age-associated increase of 

claudin-2 mediated permeability. Thus, at least in the ageing human small intestine, claudin-

2 up-regulation is triggered solely by IL-6 (Man et al. 2015). 

5.2- Contribution of IECs to gut inflammageing

Most of the studies on cytokine levels in the ageing gut fell short of identifying the cellular 

source of the inflammatory cytokines. Then, the question remains as to what extent IECs 

contribute to the imbalanced inflammatory pattern in ageing.

The IECs are the bricks of the intestinal barrier but their role is not limited to separating 

microbes from the inside of the body. The constant and finely tuned dialogue between the 

microbiota, IECs and the underlying immune cells is central to the regulation of intestinal 

immune homeostasis and early responses to pathogens (Allaire et al. 2018). IECs express a 
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variety of pattern-recognition receptors (PRRs) including members of the TLR family and the 

nucleotidebindingoligomerization domain (NOD)-like receptors (NLRs) (Artis, 2008; Gribar et 

al. 2008). The differential and finely tuned expression of these receptors enable the IECs to 

discriminate between commensal and pathogenic bacteria (Neish et al, 2000; Kelly et al. 2004; 

Artis 2008). 

At steady state, in the presence of commensal microbes, IECs produce anti-inflammatory 

molecules that include thymic stromal lymphopoietin (TSLP) (Rimoldi et al. 2005) and 

transforming growth factors (TGF- (Zeuthen et al. 2008). These cytokines shape the 

properties of local anti-inflammatory DCs and help the generation of T regulatory cells (Tregs) 

(Ilev et al. 2009) and in so doing, they prevent exaggerated inflammatory responses and 

regulate the gut microbiota (Bauché and Marie, 2017). In contrast, the presence of pathogenic 

bacteria triggers the production of pro-inflammatory responses such as CCL20, IL-8 and IL-6 

(Mowat, 2003) required to clear the infection. In turn, immune cell-derived cytokines modulate 

a variety of functions and cytokine production by IECs (Man et al. 2008; Andrews et al. 2018; 

Regoli et al. 2018).  

Up to date, the pattern of IEC-derived cytokine at steady state in ageing is not known, nor is 

the level of expression of most of the IEC-associated PRRs. Recently though, it has emerged 

that in aged humans the profile of cytokines production by IECs in response to microbial 

challenge varies according to the type of microbial challenge. Small intestine biopsies from 

healthy humans of different ages showed that IEC production of IL-8 in response to flagellin, 

a component of both commensal and pathogenic microbes, significantly declined in the elderly 

(67-77 years old) compared to younger individuals (Man et al. 2015). Importantly, neither the 

expression nor the distribution of the flagellin-specific TLR5 changed in IECs from ageing 

biopsies. This strongly suggested an age-associated alteration of the intracellular signalling 

pathways that follows the engagement of flagellin with TLR5. IL-8 was one of the first 

examples of IEC-derived immune mediators produced in the very early stages of infection in 

the gut (Eckmann et al. 1993; Eckman et al. 1995); thus, it is likely that reduced levels of this 

cytokine contribute to the increased susceptibility to pathogen infections in ageing. However, 
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it would appear that the ageing process does not affect all IEC-derived cytokines equally. 

Epithelial challenge of human biopsies with a different antigenic stimulus (i.e. probiotic 

mixture) triggered a similar production of TNF by IECs from biopsies of individuals of different 

ages (Man et al. 2015). 

Accumulating evidence also showed that components of the inflammasome are highly 

expressed in IECs. Experimental evidence obtained on freshly-isolated IECs and in situ 

staining demonstrated the expression of a variety of inflammasome components in IECs that 

included NAIPs (NAIP1, 2, 5, and 6 in mice; hNAIP in humans), NLRC4, NLRP1, NLRP6, 

AIM2, caspase-1, caspase-4(-11), ASC, and IL-18 (Sellin et al. 2015). IECs face an 

environment overloaded with microbe/pathogen-associated molecular patterns (M/PAMPs) 

and, most relevant to inflammasome expression, damage-associated molecular patterns 

(DAMPs) that dramatically increase in ageing (Kapetanovic et al.  2015). High levels of these 

molecules in ageing leads to a condition known as “garb-ageing” (Franceschi et al. 2017) and 

the ensuing activation of the inflammasome. Furthermore, the involvement of the 

inflammasome in the inflammageing of the GI-tract could be inferred by the overexpression of 

IL-1, a hallmark of both the ageing colon (Tran and Greenwood-Van Meerveld, 2013) and 

inflammasome activation (Deng et al. 2019).

In contrast to the limited information available on the immunoregulatory properties of IECs in 

ageing, a large number of reports have shown that the microbiota composition changes with 

age (O’Toole and Jeffery, 2015). This notion was preceded by the hypothesis that the 

appearance or expansion of different bacterial species underpinned the imbalance between 

pro-and anti-inflammatory cytokines in gut and trigger inflammageing (Guigoz et al. 2008). 

Although an extensive review of the age-associated change of the gut microbiota, and its 

consequences on the host-microbe cross-talk, is beyond the scope of this review, it is 

important to address aspects of the evolution of the interaction between the epithelial barrier 

and microbiota in ageing and the potential effects on barrier integrity and local and systemic 

disturbances in late life. 
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6. Host-microbe interface in the gut: a strategic target to improve health in the elderly?

The composition of the gut microbiota in health and disease is, these days, a topic of 

exceptional interest for the scientific community. In ageing in particular, the important role of 

gut microbiota is highlighted by the notion that in centenarians the “longevity adaptation” is 

characterized by the enrichment in health-associated gut microbes (Biagi et al, 2016; Biagi et 

al. 2017; Kong et al, 2016; Kong et al 2019; Deng et al, 2019). However, how does the 

interaction between the gut microbiota and the host evolve across life? The ageing process is 

an important model for the study of the effects of the microbiota on the local and systemic 

changes occurring in the elderly. In the murine model, the adoption of strategies to minimize 

confounders and increase data quality for studies on the gut microbiota established that the 

intrinsic, environment-independent ageing is itself a driver of the gut microbiome composition 

(Miyoshi et al. 2018). The observation that mice from the same colony and subjected to the 

same environmental conditions (i.e. housing, diet, temperature, humidity, etc.) showed an 

age-dependent drift of their microbiota profile (Langille et al. 2014; Conley et al. 2016) also 

lends support to this conclusion. Then, it would appear that the ageing process triggers major 

changes that profoundly alter the intestinal environment. These include altered cytokine 

balance and immunological profile, different expression of PPRs, impaired nutrient absorption 

and hormonal status. In turn, these changes create the habitat favourable for the expansion 

and establishment of different microbial species. However, this seems to be in contrast with 

the observation that, in some instances the change of the microbiota composition appeared 

to precede the age-related alterations of the intestinal epithelial barrier. In mice, the passive 

transfer of microbiota from aged mice triggered local and systemic inflammageing in young 

recipients (Fransen et al. 2017) and in the fly Drosophila distinct shift in the profile of midgut 

microbiota in ageing affected intestinal function and drove mortality (Clark et al. 2015). The 

latter study carried out a detailed analysis of the kinetics of microbiota changes in Smurf flies, 

so called for the presence of non-absorbable blue dye within the body tissues and outside the 

GI-tract due to loss of barrier integrity (Rera et al. 2012). The authors reported that microbiota 
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dysbiosis preceded and predicted the age-dependent onset of intestinal barrier failure. The 

loss of barrier integrity was then followed by a second and more significant change of the 

microbiota composition (Clark et al. 2015). Then, the question on how the interaction between 

the components of the intestinal epithelial barrier and the microbiota change/evolve during 

ageing remains to be answered. Yet, how do these changes occurring at the host-microbe 

interface (Fig. 3) affect resistance to diseases in the ageing organism? The answers to these 

questions lay in the dynamics of host-microbe cross-talk based on the continuous exchange 

of signals required to establish and maintain intestinal homeostasis. 

The intricate reciprocal control and regulation of the epithelial barrier function and microbiota 

composition is epitomized by the outcome of the cross-talk between IEC-associated NLRP6 

inflammasome and microbial metabolites. A variety of microbiota-derived metabolites 

including taurine, histamine, spermine modulate the activity of the NLRP6 inflammasome, 

which in turn regulates the host-microbe interface via the production of IL-18 and the 

downstream expression of AMPs (Elinav et al. 2011; Levy et al. 2015). Ultimately, the 

microbiota and IEC-inflammasome loop plays an important role in determining the local 

microbiota profile. This was further confirmed by the observation that inflammasome-deficient 

mice “physiologically” harboured an aberrant microbiota community (Elinav et al. 2013). 

Furthermore, the impact of microbiota on IECs also extended to metabolic and barrier 

functions. Microbe-derived short-chain fatty acids (SCFAs) are important sources of energy 

for IECs and modulate oxygen absorption and the secretion of factors, such as hypoxia-

inducible factor (HIF) that improves barrier function (Kelly et al. 2015). The microbial 

metabolite indole also has an impact on barrier function through the nuclear receptor subfamily 

1 group I member2 (NR1I2) (Venkatesh et al. 2014). Thus, the disruption at any level of the 

intricate IEC-microbe interaction in ageing could lead to the development of an intestinal 

environment supportive of an expansion of certain microbial species and inflammatory 

imbalance.

Ultimately, understanding the dynamics of the evolution of host-microbe interaction at the 

mucosal interface in the gut across life and its potential role in the age-associated loss of 
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barrier integrity is key to provide information to design novel intervention strategies to improve 

the life span and ameliorate the quality of life of the elderly. Experiments in C. elegans and 

Drosophila have shown that the intervention on the intestinal barrier held the potential to 

promote longevity (Libina et al. 2003; Rera et al. 2013). Since most of the genetic factors 

involved in defining the lifespan are conserved in all vertebrates (Kenyon, 2010) it is then 

plausible to foresee that interventions aiming to restoring the integrity of the gut barrier could 

be beneficial to elderly humans as well. Yet, dysfunctions of the intestinal epithelial barrier 

have been associated to devastating age-related neurodegenerative diseases (Köhler et al. 

2016; Clairembault et al. 2015) and behavioural disorders (Maes et al. 2013, Pearson-Leary 

et al. 2019). Then, the possibility to halt or delay the progression of these diseases in ageing 

and improve the overall quality of life including the psychological well-being of the elderly by 

targeting the gut barrier is certainly very appealing. In the past, optimistic expectations were 

placed on probiotic-, prebiotic- and symbiotic-based therapeutic approaches to restore barrier 

integrity and combat intestinal and systemic inflammation. Although full of promises, until now 

this approach has not been extremely successful (Bron et al. 2017). Recently though, the 

success of microbiota transplant (MT) as a highly effective cure for C. difficile infection (Leffler 

and Lamont, 2015) and the promises of MT on the treatment of certain intestinal and systemic 

pathologies (Bouri and Hart, 2018; Vrieze et al. 2012; Borody and Khoruts, 2011) have laid 

the foundation to hypothesize a microbiota-based strategy to intervene on barrier integrity. 

The recent advances in the development of more economical, safer and more patient-friendly 

way for MT administration (Petrof et al, 2013; Zhang, 2013) are important steps towards the 

definition of this strategy. The identification of a “defined flora” including a selected panel of 

intestinal microbes that can deliver the same health-promoting effects as MT could also 

contribute to increase the safety and the feasibility of this approach. The microbiota-based 

therapy could be integrated by the adoption of dietary interventions aiming to avoid food 

components with detrimental effects on barrier integrity while including dietary components 

that restore it (Nicoletti, 2015; Arújo et al. 2017; Gleeson, 2017).
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7. Concluding remarks    

We are living in an ageing world. However, the extra years of life are often accompanied by 

an increase of a wide array of ailments and the number of people suffering from age-

associated disturbances is increasing rapidly. The result of this is a poor quality of life for 

millions of people worldwide and astronomical socio-economic costs (Lee and Mason, 2017). 

Recent advances in medical sciences have brought to the surface the critical role of the 

intestinal epithelial barrier in health and disease. However, although significant progress has 

been made in understating the basic biology of the various components of the intestinal 

epithelial barrier, many of the mechanisms underlying its functional decline in ageing remain 

unknown. In particular, the age-associated alteration of the signalling network operating at the 

mucosal interface and interlinking the gut microbiota, the intestinal epithelium and the 

underlying immune system still harbours many unsolved mysteries. We believe that given the 

potential role of intestinal barrier dysfunctions on the onset of important disorders in ageing, 

future investigation in this area is highly needed. Expanding our knowledge in this area is a 

goal of very high medical and socio-economic relevance and it will help us to progress from 

“adding extra years to life” to “adding quality to the extra years of life” for this ever-increasing 

demographic segment of modern societies.
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Legends

Figure 1. Renewal of the intestinal epithelium: the intestinal crypt. The architecture of the 

intestinal crypt that houses dedicated populations of stem and progenitor cells that self-renew 

to maintain epithelial function throughout life differs between the small and large intestine. The 

small intestine (A) is the main site for nutrient absorption and the presence of villi and microvilli 

ensures a large surface area for such a critical task. In the colon (C), the flat surface is 

specialized in absorption of water leading to the formation of faeces. In the small intestine 

each villus is encircled by at least six crypts of Lieberkühn, while in the colon the mucosal 

layer is arranged into multiple crypts connected to the flat luminal surface via circular openings. 

The continuous renewal of the epithelium relies on intestinal epithelial stem cells Lgr5+ (Leu-

rich repeat-containing G protein-coupled receptor 5-expression) located in specialized regions 

of the intestinal crypt. In the small intestine (B) Lgr5+ cells, or crypt base columnar cells (CBC) 

are interspersed among Paneth cells at the bottom of the crypt and divide to give origin to 

proliferating transit-amplifying (TA) cells that ultimately differentiate into the absorptive 

(enterocytes) or secretory (enteroendocrine, Tuft and Goblet cells) lineages. The +4 stem cells 

that occupy the fourth position counting from the bottom represent a reservoir of stem cells 

that can replace injured CBC. In the proximity of the Peyer’s patches (PPs) the cells emerging 

from the crypt and moving onto the follicle-associated epithelium (FAE) of the PPs also include 

the membranous (M) cells specialized in antigen sampling. In the colonic crypt (C), the Lgr5+ 

cells occupy the bottom of the crypt that generate TA cells that, similarly to the small intestine 

give origin to the various epithelial cells (D), although the proportion of each cell type varied 

according to the area of the gut. The epithelial turnover is completed in 3-5 days in the small 

intestine and 5-7 days in the colon. The intestinal crypt niche is completed by mesenchymal 

and immune cells that provide important signals for cell proliferation and differentiation. In 

ageing, several changes occurred to the intestinal crypt, affecting cell proliferation, migration 

and epithelium formation. 
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Figure 2. Intestinal barrier integrity in ageing. An electron micrograph of the intestinal 

epithelium (A) and detail of the intercellular junctional complex (inset). The intestinal 

epithelium is formed by a single layer of enterocytes (E) provided with well-organized 

microvilli (mV) that prevent the adhesion of microbes to the apical domain of the 

epithelial cells. Intercellular junctional complexes (arrow heads) seal the paracellular 

space. At the base of the mV the plasma membrane of adjacent enterocytes (inset) is in 

intimate contact at the tight junction (TJ) level. Here, claudins, zonula occludens (ZO-1), 

occluding and F-actin filament interact to form a highly integrated complex. Just below 

the TJ complex the proteins E‑cadherin, α‑catenin 1, β‑catenin, catenin δ1 form the 

adherens junction (AJ) a structure important for the assembly and function of TJs. Both 

TJs and AJs are supported by a perijunctional ring of actin and myosin. Beneath the AJ, 

the desmosome (DE) participates in the sealing of the paracellular space by 

strengthening the adhesion bonds between adjacent IECs. Similarly to the TJs and AJ, 

the DE encompasses numerous interacting proteins that include desmoglein, 

desmocollin, desmoplakin and keratin filaments. In ageing, increased levels of the 

inflammatory cytokines IL-1β, TNF-α, or IFN-γ can directly affect barrier integrity and 

intestinal permeability by TJ remodelling at the level of the perijunctional actomyosin 

cytoskeleton by triggering myosin light chain kinase (MLCK) activity. Age-associated 

increase of intestinal levels of IL-6 impaired barrier function via the JNK-mediated 

activation of AP-1 that target the claudin-2 promoter region. The up-regulation of claudin-

2 affects barrier function by de novo formation of pores that allows the paracellular 

movement of molecules with radii less than 4Å.

Figure 3. Gut-microbe interaction in ageing: impact on local and systemic 

homeostasis. An array of modifications occur at the host-microbe interface in the gut 

during ageing that involve several key components of the intestinal epithelial barrier. 

These age-associated alterations are likely to contribute to local and systemic 
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inflammageing. In young individuals the tight junction (TJs) complexes seal the intestinal 

epithelial cells (IECs) to provide a barrier to microbes and macromolecules. Also, at 

steady state intestinal epithelial cells secrete anti-inflammatory cytokines, such as 

thymic stromal lymphopoietin (TSLP) and transforming growth factors (TGF-) that help 

maintain intestinal (mucosal) and systemic immune homeostasis, thus creating the 

optimal environment for a proper gut-brain axis communication. The advance of age is 

paralleled by changes in the composition of the microbiome with a decline of microbial 

diversity. This event is accompanied by the thinning of the mucus layer in certain areas 

of the gut exposing the intestinal epithelium to an increase barrage of microbial stimuli. 

In both humans and laboratory animals, the integrity of the epithelial barrier appears 

compromised with the advancing of age by the reduced/modified expression of key tight 

junction (TJs) proteins leading to a leaky gut. The continuous influx of microbes and their 

products, in turn triggers a sustained chronic production of pro-inflammatory cytokines 

that further contribute to disrupt barrier integrity and increase intestinal permeability. In 

addition, the activation of IEC-associated components of the inflammasome might 

contribute to exacerbate local inflammation while at the same time directly participating 

to the age-associated change of the microbiota composition. Alteration of intestinal and 

systemic homeostasis has a significant impact on the finely tuned gut-brain axis 

communication. Ultimately, this could lead to the decline of functions of the central 

nervous system (CNS) with severe consequences on cognition and behavior. All these 

events are strongly interlinked; however, currently their exact sequence is not clear and 

the question of “what is causing what” remains unanswered. Disentangling this intricate 

scenario is a challenging goal of very high medical relevance in order to devise 

strategies to improve the physical, neurological and psychological well-being of the 

elderly.     








