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ABSTRACT: 

Forests are widely recognized as essential ecosystems for sequestering carbon and to mitigate the increase of atmospheric carbon 
dioxide, though could lose, or reduce this function under future climatic change. To maintain or improve carbon mitigation and to 
assess species adaptation to climate change small-scale forest monitoring is crucial, especially in Mediterranean forests where warmer 
and drier seasons are expected. Airborne Laser Scanner (ALS) data are efficiently used for defined carbon mapping, but few studies 
have used multi-temporal lidar surveys to evaluate carbon sequestration in Mediterranean forests.  
This study focuses on the forested area of Monte Morello (Florence, Central Italy) which was surveyed by ALS in 2008 and 2015 
with scan densities of 1.5 and 4.4 pulse/m2, respectively. Herein, we compare the multitemporal ALS data with field forest inventory 
plots to estimate growing stock volume (GSV) and carbon sequestration in Mediterranean mixed broadleaved and coniferous forests. 
Independently of laser sampling rate we estimate, using an area-based approach, the forest GSVs and carbon sequestrations for 2008 
and 2015 using random forests and a multiple linear regression model (R2 = 0.9; RMSE% = 17%). Based on the multitemporal maps, 
we derived information related to (i) forest growth, (ii) forest species carbon sequestration, (iii) small-scale forest management. The 
entire study area increased sequestered carbon by 58%, mainly for coniferous mixed forests. Overall, our study describes a well-
suited technique for multitemporal ALS analysis and highlighting the potential of the use of multitemporal ALS data to map forest 
resources for forest management activities. 

1. INTRODUCTION

Forests supply a vast array of forest ecosystem services such as 
timber, recreation, landscape, they store carbon, and regulate the 
water cycle and climate (Eggleston et al., 2006, Vizzarri et al., 
2015). In this context, Sustainable Forest Management (SFM) 
ensures the perpetuation of forest ecosystem services, but 
requires information on several forest variables that must be 
acquired to monitor the state of forest ecosystems and to plan 
specific forest management activities, especially in a climate 
change context. Nowadays, to monitor forest ecosystems, the use 
of spatially explicit forest variables derived integrating remote 
sensing data and field measures are considered essential to 
conduct site-specific sustainable forest management activities.  
Among remote sensing technology, Light Detection And 
Ranging (LiDAR) data collected by Airplane or helicopter 
platforms (i.e., Airborne Laser Scanning, ALS), is considered the 
most useful technology to map forest ecosystems since from laser 
pulse it is possible to model and estimate the 3D structure of 
forests and to easily estimate biophysical forest variables (e.g. 
tree heights, vertical structure, growing stock volume, carbon 
stock) (Dubayah & Drake, 2000; Babcock et al., 2015). In fact, 
in the last decades, many studies demonstrated the utility of ALS 
to monitor forest resources (Nelson, 2013; Kangas et al., 2018). 
Given its proven capabilities in mapping forest variables, the use 
of ALS data is increasing rapidly worldwide (Zolkos et al., 2013), 
and many countries, such as Sweden, Finland, Denmark, invested 
in the wall-to-wall acquisition of ALS data to support forest 
inventory programs. 
Increased availability of ALS data provides an opportunity to 
measure and study forest ecosystem dynamics over time 
(Dubayah et al., 2010). However, despite the potential of using 
multitemporal ALS data to support forest change monitoring, its 
implementation in small-scale sustainable forest management 
activities is still limited (Dassot et al., 2011). 
Zhao et al. (2018), used four multitemporal ALS surveys in 
Scotland for monitoring forest carbon stock, while Cao et al. 
(2016), estimated forest biomass dynamics in subtropical forests. 

Some researchers underline that to use multitemporal ALS data 
efficiently many practical problems need to be overcome as the 
availability of ancillary ground data coherent with the 
multitemporal ALS acquisition, effects of variation in ALS 
sampling, and the analysis methods used to elaborate ALS data 
and to model forest variables (Næsset, 2009; Zhao et al., 2011). 
Most forest biophysical variables, such as biomass and carbon 
stock, can be estimated by ALS via correlative models, requiring 
paired forest inventory data for model calibration (Næsset et al., 
2005). 
This study aims to assess the utility of multitemporal ALS data 
for tracking forest and carbon dynamics in a Mediterranean study 
area. An emphasis is on evaluating and improving multitemporal 
ALS methods to measure forest changes over time at grid levels, 
including biomass change, and carbon stock. To do so we 
acquired two ALS data from surveys executed in 2008, and 2015, 
over a Mediterranean mixed broadleaf and coniferous forest. The 
ALS data were combined with field plots data acquired in 2014 
and used to quantify forest changes at grid levels. We also 
estimated biomass and carbon stock over time, using ancillary 
data to calibrate ALS models.  

2. MATERIALS

2.1 Study area 

The study was carried out in Monte Morello, a forest area located 
near Florence's urban area in Central Italy (43°85’ N, 11°23’ E). 
Specifically, the study area corresponds to the overlapping forest 
area of two ALS surveys, for a total of 1465 ha. The area is 
characterized by a typical Mediterranean climate, with rainfall 
concentrated in spring and autumn and dry summer. Elevation 
ranges between 600 m and 700 m a.s.l. The dominant species are 
conifers (Cupressus sempervirens L., Pinus nigra Arn.) that 
originated from reforestation programmes of the last century, and 
oaks (Quercus cerris L., Quercus ilex L., Quercus pubescens L.) 
(Bottalico et al., 2017) (Fig. 1). 
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Figure 1. Study area. 

2.2 Field plot data 

Local forest inventories were carried out using a tessellated 
stratified sampling scheme (Barabesi and Franceschi, 2011) 
based on a 0.4 × 0.4 km grid. In each of the 41 grid units, a point 
was randomly selected among the forest area, constructing a 
sample of 41 points. A 13-m radius circular plot was established 
with a center at each sampling points. The plot coordinates were 
recorded using a GNSS receiver. Diameters at breast height 
(DBH, 1.30 m) were measured for all living trees with DBH ≥ 
2.5 cm, for all callipered tree the height (H) was also recorded 
(Bottalico et al., 2017). In each field plot, the GSV was calculated 
by aggregating tree total GSV, estimated at tree level from 
species-specific allometric equations (Tabacchi et al., 2011). 

2.3 Forest map 

The CORINE Land Cover (CLC) project of the European 
Environment Agency, consists of a land cover map; it is based on 
a nomenclature system of 44 classes produced by 
photointerpretation of high-resolution satellite imagery. CLC 
uses a minimum mapping unit of 25 hectares. For this study, we 
acquired the CLC map for the reference year 2018, which for 
Italy provides an IV level of detail that can be assimilated to the 
forest types. 

2.4 ALS data and processing 

The first ALS survey available for the study area was carried out 
in winter 2008 with an ALS ALTM (Airborne Laser Terrain 
Mapper) Gemini sensor that operated at a flight height of 3000 m 
a.s.l. The sensor recorded two echoes per pulse with an average
density of approximately 0.7 points/m2. The second flight was
carried out in May 2015 with a RIEGL LMS-Q680i laser scanner. 
The flying altitude was 1100 m above terrain level. Full-
waveform ALS data were registered and discretized to a point
density of 10 points/m2. Standard pre-processing with LAStools
(Isenburg, 2017) was used to remove noise in the ALS data and
ALS echoes were classified as ground/non-ground. The relative
heights above ground for echoes classified as non-ground were
calculated and used to construct a canopy height model (CHM)
with a spatial resolution of 1 m using the adaptive triangulated
irregular network algorithm (Axelsson, 2000). For each plot, 54
echo-based and metrics were calculated (Hawryło et al., 2020)
using the package lidR for R (Russell et al., 2020). The study area 
was tessellated into 23×23m pixels whose size mimicked the area 
of the field plots measured in the field. As for the field plots, 54
ALS metrics were calculated for each pixel.

3. METHODS

We combined ALS metrics and field data to derive forest 
variables for both ALS surveys, examining the temporal change. 

We used area-based ALS metrics at grid levels (23×23m coherent 
with field survey) as independent variables and field data as 
dependent variables to evaluate the accuracy of multiple 
modelling strategies and to estimate biomass and carbon 
dynamics. 

3.1 GSV dynamics estimation 

Carbon sequestration and its change were estimated from the 
GSV values predicted through regression models by relating 
field-based volume with ALS metrics. 
We tried two model techniques (i) multiple linear regression 
model (MLR), and (ii) the random forests (RF) (Breiman et al., 
2001). MLR techniques entail the use of model: 

yi = β0 + β1 x1i + … + βp xpi + εi (1) 

where i indexes sample units, yi denotes the single response 
variable, p≥1 denotes the number of predictor variables, j =1, …, 
p indexes the predictor variables, β j is the respective regression 
coefficient, and εi denotes a random residual term assumed to be 
distributed N (0, σi2). The model was optimized by comparing all 
possible combinations of all numbers of predictors with 
coefficients estimated using ordinary least squares.  
RF is a decision tree algorithm and nowadays is among the most 
popular ensemble methods for classifying and predicting forest 
variables (Breiman, 2001). Its effectiveness is supported both 
empirically and theoretically, especially due to its reliance on not 
just one decision tree but an ensemble of trees as a strategy to 
improve model robustness. Specifically, RF uses a randomly 
chosen subset of predictors at each splitting node. RF was 
optimized by selecting the combination of predictor variables and 
parameter values (ntree and mtry) that minimized the root mean 
square error (RMSE) calculated using the leave-one-out (LOO) 
cross validation technique (McRoberts et al., 2015). The model 
fitting and optimization phase was performed using the 
randomForest package within R. 
The most accurate models derived by MLS and RF were used to 
predict the GSV for all 23×23m grid cells of the study area to 
produce a 23×23m resolution GSV map for 2015. The same 
models were also used to predict the GSV using as predictor the 
2008 ALS metrics. Negative GSV predictions were set to 0 in 
both years (Chirici et al., 2020). For each method, we calculated 
the coefficient of determination (R2) between the measured and 
predicted values, the root mean square error (RMSE), the relative 
RMSE (RMSE%) and the mean absolute error (MAE). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

𝑛𝑛� (2) 

𝑅𝑅𝑀𝑀𝑅𝑅 = ∑ |(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)|𝑛𝑛
𝑖𝑖=1 𝑛𝑛�  (3) 

where 𝑦𝑦�𝑖𝑖 and 𝑦𝑦𝑖𝑖 are respectively the predicted and ground 
reference values of GSV for the ith sample plot and n is the 
number of plots. The RMSE% were calculated as the percentage 
of the average ground reference value of GSV. 

3.2 Carbon sequestration 

For every CLC forest typology, starting from GSV estimation, 
the amount of aboveground forest biomass (t ha-1) was estimated, 
for every forest typology, through the species-specific 
relationships presented in Federici et al. (2008). Finally, we 
calculated carbon sequestration, defined as the rate of change in 
forest carbon stock. Forest carbon stock was simply converted 
from aboveground biomass, derived by ALS metrics, using a 
generic scaling factor of 0.5 (Zhao et al., 2018); therefore, carbon 
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sequestration was obtained as the change in total tree biomass in 
each pixel per year, scaled by 0.5. Positive values of carbon 
sequestration indicated sinks associated with carbon 
accumulation from natural growth, while negative were carbon 
sources due to various disturbances. 

4. RESULTS

Both imputation methods produced comparable results with only 
limited differences. Independently of the parameter used for 
evaluating the results, RF achieved the greatest accuracy. R2 
ranged between 0.89 and 0.91; RMSE between 38.3 m3 ha− 1 and 
38.7 m3 ha− 1; and RMSE% between 17.0% and 17.1% (Fig 2). 

Figure 2. Scatterplots of GSV observations versus predictions 
for both the imputation approaches. R2, RMSE, RMSE%, and 
MAE are based on LOO-CV during the optimization phase. 

Of the 54 available predictors considered during the optimization 
phase, only 10 variables were selected by both the models. In 
terms of the usefulness of the predictors, the percentile values of 
point height variables were the most frequently selected, zq20, 
zq45 and zq75 for the MLS model and, zq70, zq75, zq85, qz90, 
zq95 for RF. In both the models the standard deviation of point 
heights (zsd) and the 75 percentile values of point heights were 
also selected. The other variables that were selected at least once 
were the maximum value of point heights (zmax) and the 
cumulative percentage of returns from the second height layers, 
considering the height measures divided into 10 equal intervals 
(zcum2). RF optimization involved 300 regression trees. 
Considering these limited differences in models results the easier 
MLR model was selected for the following estimation phase. The 
MLR model was used to predict GSV for each one of the 27,701 
23×23m resolution forest grid cells in the study area. GSV 
predictions ranged between 0 and 598m3 ha− 1 with a standard 
deviation of 98.0 m3 ha− 1 for 2015, while in 2008, GSV 
predictions ranged between 0 and 588m3 ha− 1 with a standard 
deviation of 90.7 m3 ha− 1. 

Figure 3. Dynamics in carbon storage over the study period. 

The estimated aboveground forest biomass in the grid cells had 
values that ranged between 0 and 550 t ha-1 with a standard 
deviation of 73 t ha-1 for 2008 and between 0 and 574 t ha-1 with 

a standard deviation of 68 t ha-1 for 2015. Next, forest carbon 
stock maps were derived for both years. The carbon stored 
between the two surveys was in total 15195 t, while the carbon 
sources due to various disturbances were 11539 t, for net sink of 
3656 t (Fig. 3). 

5. DISCUSSION

In our work we used data from two ALS surveys, to estimate the 
stored forest carbon and its dynamics in a study area in central 
Italy. We observed an increase in total carbon storage of 58%, 
mainly for coniferous mixed forests with 2133 t sequestered (3.54 
t ha-1; 0.44 t ha-1 y-1). On the other hand, most of the losses were 
mainly in broadleaves mixed forests with 590 t lost (1.62 t ha-1; 
0.20 t ha-1 y-1). 
The results we achieved demonstrate the usefulness of 
multitemporal ALS data to monitor forest GSV and carbon stock 
changes, which is crucial to support sustainable forest 
management, conservation in the Mediterranean area. Although 
RF was found to be the most accurate method, only small 
differences in prediction accuracies were found with the multiple 
linear regression (Chirici et al., 2020). 
Despite the potential usefulness of ALS data to support 
sustainable forest management is well documented by a vast 
number of studies, a wall-to-wall ALS coverage in Italy is not 
available yet (59% of Italian forests) and only a very limited 
portion of forests are covered by multitemporal data (33% of 
Italian forests) (D'Amico et al., 2021). This limit the application 
of the methodology we presented in this contribution over large 
areas. Moreover, for our study, the lack of field data collected 
close in time to the first ALS survey, can be considered a limiting 
factor in verifying the effectiveness of the 2008 GSV estimation 
(Næsset et al., 2005). However, we demonstrated that also in 
Mediterranean forests, where more changes are expected due to 
climate change effects (Ogaya & Peñuelas, 2021), the use of 
multitemporal ALS data can be considered as the best way to 
spatially estimate forest dynamics.  

6. CONCLUSION

Two main conclusions can be drawn from this work. Firstly, ALS 
data are confirmed as a reliable and efficient source of 
information for modeling carbon stock, even in complex 
Mediterranean forest areas. Secondly, the capability of ALS data 
to accurately predict forest carbon storage allows the use of 
simple parametric models, indeed both the tested modeling 
approaches predicted GSV with comparable results. 
Overall, for ecological and environmental monitoring, the use of 
ALS data is expected to be further increased. The role of LiDAR 
technology (from aerial or terrestrial surveys) will be even more 
essential in supporting research and management activities, such 
as those related to carbon science forest degradation, biodiversity 
conservation, and land use. Under this point of view, Italy is still 
waiting for a complete ALS wall-to-wall coverage, that will have 
to be updated regularly to facilitate the prediction of forest 
variables and their trends in space and time with greater accuracy 
(Chirici et al., 2020). 
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