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Abstract

In this work of thesis, we investigate existence and multiplicity results for
a class of nonlinear elliptic problems. First, we deal with problems involving
the p-Laplacian operator on bounded smooth domains, where a diffusion term
appears into the nonlinearity. For this reason, variational methods cannot be
used. Secondly, we treat existence and multiplicity of weak solutions for (p, q)-
Laplacian equations, as well as for singular p-Laplacian Schrödinger equations, in
the entire RN whose nonlinearity combines a power-type term at critical level with
a subcritical term, involving also nontrivial weights and a positive parameter λ.
This latter case, considered also in a symmetric setting, allows us to use variational
methods, but in the delicate situation of lack of compactness, so that classical
results cannot be directly used, they need to be adapted.
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Introduction

In this work of thesis we investigate existence and multiplicity results to non-
linear elliptic problems involving p-Laplacian operator, 1 < p < N , as well as
(p, q)-Laplacian operator, namely

−∆qu−∆pu = f(x, u,Du) in Ω ⊆ RN , (1)

with N > 1 and 1 < q ≤ p < N , where ∆mu = div
(
|Du|m−2Du

)
, m > 1 and f

is a nonlinearity whose properties will be specified later. We are also interested
in the study of singular p-Laplacian Schrödinger equations in RN , whose model is
strictly related to problem (1) when p = q, but a diffusion term appears.

Typically, elliptic problems of the form (1) come from the study of stationary
solutions of reaction-diffusion systems of the form

ut = div[A(|Du|)Du] + f(x, u,Du),

which naturally arise in a variety of contexts in General Topology, Geometric
Analysis, Functional and Convex Analysis, Game Theory, Mathematical Eco-
nomics, more recently, in life sciences and in other branches of pure and applied
science. None of these fields can be investigated without taking into account non-
linear phenomena. In such applications, the function u describes a concentration,
the first term corresponds to the diffusion with a (generally non-constant) dif-
fusion coefficient A(|Du|), i.e. A = |Du|p−2, p > 1, in the p-Laplacian case or
A = |Du|p−2 + |Du|q−2, p, q > 1, in the (p, q)-Laplacian case, whereas the term f
is the reaction and relates to sources and loss processes. For instance, in chem-
ical and biological applications, the reaction term f has a polynomial form with
respect to the concentration u and eventually to the gradient. More specifically,
the p-Laplacian and the (p, q)-Laplacian appear in many fields such as turbulent
filtrations in porous media, blood flow (p > 2) and in general in non-Newtonian
fluid flow (p 6= 2), fluid mechanics, rheology, material science, nonlinear elasticity,
glaciology and so on.

Our study is directed at two specific prototypes which lead us to completely
different approaches. Precisely, we first consider nonlinearities f depending on the
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gradient, then we treat the case when the reaction f has a polynomial form in u
which involves a critical term, that is

(a) f(x, u, η) = |u|m + C(|u|s + |η|θ), with 0 < p − 1 < s < m < p∗ − 1 and
p− 1 < θ < mp/(m + 1),

(b) f(x, u) = λV (x)|u|k−2u+K(x)|u|p∗−2u, with 1 < k < p∗ and λ > 0,

where p∗ = Np/(N − p) is the critical Sobolev exponent, while the weights K and
V in (b) satisfy natural conditions, specified later.

Consequently, the goal of this thesis is twofold. In case (a) we prove an existence
result for a Dirichlet problem involving the p-Laplacian operator (i.e. q = p)
on a bounded domain, while when we deal with case (b) we are interested in
existence and multiplicity results for (p, q)-Laplacian problems, as well as singular
p-Laplacian Schrödinger equations, in the entire RN .

It is clear that we need to approach the two problems with different techniques
because of the intrinsic nature of each equation considered. Indeed, in case (a) vari-
ational methods cannot be used since the presence of a convection term f typically
destroys the variational structure, even if the variational structure is recovered by
the associated limit problem. While case (b) allows us to base our proofs on varia-
tional methods but in the very delicate situation of loss of compactness. Thus, the
main mathematical interest lies in the fact that some classical theorems of Func-
tional Analysis cannot be directly used for the above problems, but they need to
be adapted. Precisely, the main results of this work of thesis for nonlinearities of
type (a) are contained in [12], while the ones concerning nonlinearities of type (b)
have been proved in [13, 14, 15, 16].

Nonlinearities of the form (a), treated in Chapter 1, were introduced in [39] by
Chipot, Weissler in order to investigate the possible effect of a damping gradient
term on global existence or nonexistence and can also be used to describe the
evolution of the population density of a biological species, under the effect of
certain natural mechanisms. In particular, the gradient term, in the dissipative
form, represents the action of a predator which destroys the individuals during their
displacements (it is assumed that the preys are not vulnerable at rest). For the
Laplacian case, we mention the pioneering paper with gradient terms by Brezis and
Turner [28], and then that by Ghergu and Rădulescu [70] in which the convection
term has the form |∇u|a, 0 < a ≤ 2, see also [51] where a competition between an
anisotropic potential, a convection term |∇u| and a singular nonlinearity is taken
into account. For further details, we refer to the survey [127] and also to [18]
where a destruction term us|Du|θ is introduced leading to a variant model widely
described. Among problems with gradient terms, we mention also [69] (see also
the references therein) for results dealing with coercive p-Laplacian problems and
[71] for singular elliptic equations.
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To obtain the main existence result in a bounded domain Ω, in Chapter 1
we adapt the technique developed by Barrios et al. in [17] for nonlocal elliptic
problems, which is a modification of the classical scaling blow up method for
semilinear problems due to Gidas and Spruck in [73, 74]. The blow up method
is based on a priori estimate deduced by a scaling procedure and on the use of a
Liouville theorem either on the entire RN or in the halfspace RN

+ depending on
whether the limit point of the blow up sequence belongs to the interior or to the
boundary of the domain Ω. When dealing with quasilinear operators, say the p-
Laplacian, the main difficulty in applying the blow up technique relies on the use
of Liouville type theorems in the halfspace, since under rather general hypotheses
they are not common in literature, we mention just some recent contributions
[56, 57, 45, 52, 58, 146]. For this reason, after the work of Gidas and Spruck, a
series of papers have been developed with hypotheses, mainly of geometrical type
on the domain cfr. [10, 41], to avoid the case of the halfspace. In this direction falls
the paper of Ruiz [119] in which rather than assuming geometrical conditions on
the domain, he produces a slight modification of the blow up method by applying
the rescaling argument around a fixed point in Ω, instead of around a sequence of
suitable points of Ω. This new technique avoids the possibility, for the limit point
of the blow up sequence built, to belong to the boundary of Ω, consequently no
Liouville theorem in the halfspace is required. Unfortunately, this tool produces
a restriction of the range of m, due to the use of an Harnack type inequality
by Trudinger [134], precisely m < p∗ − 1, where p∗ = p(N − 1)/(N − p) is the
Serrin exponent with p∗ < p∗. A recent extension of this result to a more general
nonlinearity f can be found in [59], but again Harnack type inequality is used so
that m < p∗ − 1.

In order to improve the range of m up to p∗ − 1, we use the scaling method
in [17], which requires, on one side, ”good” estimates for solutions, both in the
interior and at the boundary, and, on the other side, the use of a Liouville theorem
in the halfspace for the p-Laplacian limit problem with no convection terms, proved
by Zou in [146] some years later than the paper of Ruiz [119].

The second type of nonlinearity, the one whose prototype is (b), is a model for a
reaction which combines a power-type nonlinearity at critical level with a subcrit-
ical term, involving also nonnegative nontrivial weights and a positive parameter
λ.

The proofs of the existence and multiplicity results for problem (1)-(b) make
use of variational methods but in the very delicate situation when ”double” lack of
compactness appears due to the entire space RN and to the presence of the critical
exponent p∗. For this reasons, critical problems in RN represent one of the most
dramatic cases of loss of compactness and have been studied intensively in the last
25 years.
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The first remarkable contributions are the milestone papers for the Laplacian
by Brezis and Nirenberg in [27], Trudinger in [135] and Aubin [8]. Later, the
p-Laplacian case, as well as more general operators, both in bounded sets and
in the entire RN was investigated by many authors, we refer to the pioneering
paper for quasilinear operators by Garćıa Azorero, Peral [9] for bounded sets and
with a parametrical critical nonlinearity without weights, for which they found
two positive values λ0, λ1 such that for λ ∈ (0, λ1) existence of infinitely many
solution holds if 1 < k < p, while existence of a nontrivial solution holds if 1 <
p < k < p∗ provided that λ ≥ λ0. Then, Huang [79] introduced weights in the
critical nonlinearity, the case of exterior domains was treated in [60] by Filippucci,
Pucci, Rădulescu, while Ghoussoub and Robert considered in [72] singular Hardy-
Schrödinger differential operators. Finally the case of double critical nonlinearities
is developed in [61] by Filippucci, Pucci and Robert, [83] by Kang and [93] by Lin,
Li. We refer also to [50], [125], [130], [72] [55], [68] and the references therein.

A further generalization is represented by critical problems for (p, q)-Laplacian.
In this case, in order to discuss the competition between the two terms in the
nonlinearity of type (b), three situations occur, precisely 1 < k < q ≤ p or
1 < q ≤ p < k < p∗ or 1 < q < k < p. The last case, to the best of our knowledge,
is not so much investigated in literature.

Among papers on bounded domains, we mention that by Cherfils and Il’yasov
[38], which is, as far as we know, one of the very few papers dealing with condition
1 < q < k < p but with a subcritical nonlinearity and where, among other results,
they prove existence for λ large, by using a suitable nonlinear spectral analysis.
While for the case p < k < p∗ with singular nonlinearities we refer to [87].

Subcritical problems with q = 2, that is (p, 2)-Laplacian, in bounded domains,
recently was studied by Papageorgiou, Rădulescu, Repovs in [107], [108] and [109],
where they prove existence and multiplicity theorems by using a variational ap-
proach and Morse theory with p > 2. In particular, in [107], they take into
account parametric equations when the parameter λ is close to the principal eigen-
value λ1(p) > 0 of (−∆p,W

1,p
0 (Ω)), while in [108] and [109], the authors consider

equations where the reaction term satisfies particular conditions which imply the
resonance of problem at ±∞ and at 0±. In this direction, we quote also the papers
[112, 110] where a more general operator, given by a certain combination of p and
q-Laplacian, is investigated. For a detailed theory on the subject we refer to the
book [111] by Papageorgiu, Rădulescu, Repovs.

Moving to (p, q)-Laplacian critical problems in the unbounded case, the situa-
tion is fairly delicate. In particular, problem (1)-(b) is treated in [80] and in [102]
for 1 < k < q, while the case p < k < p∗ is treated in [53] without weights for
p, q ≥ 2 and in [36] with K ≡ 1. We refer also to the references therein. Further
multiplicity results of a class of superlinear (p, q)-Laplacian type equations in RN
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can be found in [19].

The common strategy adopted to produce existence and multiplicity results
for these type of problems consists in constructing solutions as critical points of
the energy functional associated to the problem as well as limit functions of Palais
Smale sequences for the same functional, after having developed a careful analysis
of the Palais Smale property for the corresponding functional. This latter standard
and crucial compactness condition is one of the main delicate point, since for
critical problems in all of RN it is often loss, even on bounded domains.

Roughly speaking, the loss of compactness could produce bounded minimizing
sequences that do not converge in a strong enough sense to pass to the limit.
The reason for this is the invariance of RN with respect to translations, which
in turn makes the embedding of H1(RN) into L`(RN) not compact for any `. A
natural attempt to overcome this problem is to try to work in a space of functions
where translations are not allowed. For instance, this is possible if the problem
is also invariant under rotations, so that one can try to work in spaces of radial
functions or in general to use other special function spaces where the compactness
is preserved, such as weighted Sobolev spaces. It appears clear that the presence
of weights produces additional serious problems.

In particular, when lack of compactness is manifest, in order to understand the
consequences of spreading or concentration of mass of Palais Smale sequences, a
key tool is the celebrated concentration compactness principles by Lions [94]-[97],
see also [22], which involve the notion of tight convergence. Roughly speaking,
“tightness” tells that the values of the functions should belong, in a suitable inte-
gral sense, to some compact set, see Lemma I.1 in [94]. Actually, tight convergence
for a sequence of measures is the weak star convergence of measures in the dual
space of bounded functions, which of course is stronger, when the domain is un-
bounded, than the classical weak star convergence. For this reason, the proof of
the tightness property is fairly delicate since often leads to rather cumbersome
and tricky calculations, especially when weights are included in the equation. For
details in this direction, we refer to Subsection 2.1.3 based on the book by Fonseca
and Leoni [63].

As already underlined, a way to recover compactness is to restrict the analysis
to a symmetric setting yielding an improvement of the existence and multiplicity
theorems respect to the non symmetric setting.

In this context, as far as we know, one of the pioneering paper for critical
problems in the entire RN under the symmetric setting, in the sense of symmetry
respect to a subgroup T of orthogonal transformation, is the one by Bianchi,
Chabrowski and Szulkin in [25]. Later, there have been a variety of remarkable
results on T -symmetric solutions, cfr. [21], [81], [79], [137], [32] and the reference
therein. We adapt the approach in [25] for problem (1)-(b) in the last part of
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Chapter 2, whose results are included in the paper [14], extending some theorems
in [25], [79] and [80].

The last chapter of the work of thesis, Chapter 3, deals with solutions both with
negative and with positive energy of a singular p-Laplacian Schrödinger equation
in RN with a nonlinearity of type (b). Solutions of this type are related to the
existence of standing wave solutions for Schrödinger equations of the form

i∂tψ = −∆ψ +W (x)ψ − ϕ(|ψ|2)ψ − κ∆%(|ψ|2)%′(|ψ|2)ψ, (2)

where ψ : R × RN → C, W is a given potential, κ is a real constant and ϕ, %
real functions of essentially pure power forms. This equation has been derived as
models of several physical phenomena corresponding to various types of %. The
semilinear case, corresponding to κ = 0 was studied intensively in [23, 82], by
so called energy methods. Due to a phenomenon called loss of derivatives these
standard methods do not apply to quasilinear equations containing nonlinearities
including derivatives of the second order.

Quasilinear equations of the form (2) appear more naturally in mathematical
physics and have been derived as models of several physical phenomena corre-
sponding to various types of %. The case %(s) = s describes the superfluid film
equation in plasma physics by Kurihura in [86], while if %(s) = (1+s)1/2, equation
(2) models the self-channeling of a high-power ultra short laser in matter, see [37]
and [118]. For applications in plasma physics and fluid mechanics, or in the the-
ory of Heisenberg ferromagnets and magnons we refer to [99] and the references
therein.

Actually, stationary singular p-Laplacian Schrödinger equation in RN with a
nonlinearity of type (b), can be seen as the p-Laplacian case of (1), but with
a diffusion depending on u and a nonlinearity f composed by a gradient term
and a polynomial part of the form (b), roughly a sort of combination between
nonlinearities of type (b) and a generalization of (a).

The theorems given in Chapter 3, contained in paper [16], are a first attempt
in treating these type of problems, indeed, as far as we know, there are only few
results in this direction in literature, such as [122, 5, 142]. For a detailed discussion,
we refer to the Introduction of Chapter 3.

The proof technique, we developed, relays on the use of a suitable change of
variables, which involves a singular function in the case we analyze, giving rise to a
reformulation of the original problem in a ”more comfortable” variational setting.

This work of thesis is divided into three chapters. Let us analyze and discuss
in detail the results of every chapter.

The aim of Chapter 1, motivated by [17], is to establish the existence of positive
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solutions for the problem{
−∆pu = um + h(x, u,Du) in Ω,

u = 0, on ∂Ω,
(3)

where 1 < p < N , Ω ⊆ RN is a bounded smooth domain, the exponent m is such
that

p− 1 < m < p∗ − 1, (4)

the function h : Ω×R×RN → R is nonnegative, continuous such that there exist
positive exponents s and θ with

p− 1 < s < m, p− 1 < θ <
mp

m + 1
(< p) (5)

and a positive constant C so that

h(x, u, η) ≤ C(|u|s + |η|θ) in Ω× R× RN . (6)

Precisely, our main existence theorem, recently appeared in [12], is the follow-
ing.

Theorem 1. Assume (4). Let h ∈ C(Ω × R × RN) be a nonnegative function
verifying (6), with s and θ as in (5).

If 1 < p < 2, suppose that the further conditions hold

2N

N + 1
< p < 2,

1

p− 1
< m < p∗ − 1, s, θ > 1. (7)

Then problem (3) admits at least a positive solution.

To prove Theorem 1 we need to produce suitable estimates, by modifying the
standard scaling method in order to take care of possible singularity of the gradient
on the boundary. As in [17], we achieve this by introducing some suitable weighted
norms which have been already used in the context of second order elliptic equa-
tions (cf. [75]). Dealing with these weighted norms new problems appear since the
scaling needed near the boundary is not the same one as in the interior. Therefore,
first of all, we need pointwise a priori estimates or ”universal bounds”, in the spirit
of [121], for solutions of p-Laplacian elliptic equations which involve the prototype
with nonlinearity of type (a), obtained in [11] thanks to the Doubling Lemma due
to Poláčik, Quittner and Souplet in [114].

After that, we perform a delicate investigation near the boundary, yielding
crucial boundary estimates whose proof is one of the most tricky point since it
requires a cumbersome analysis of several parameters. In addition, the proof of
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the theorem relays also in the construction of opportune barriers for equations
with a singular right-hand side, which are well behaved with respect to suitable
perturbations of the domain. The conclusion follows making use of the powerful
topological method given by the Leray-Schauder degree.

Chapter 2 is devoted to prove multiplicity, that is existence of infinitely many
solutions, and existence results of nontrivial weak solutions of the following non-
linear elliptic problem

−∆pu−∆qu = λV (x)|u|k−2u+K(x)|u|p∗−2u in RN (8)

where 1 < q < p < N , N ≥ 3, the parameter λ is positive, the exponent k is such
that 1 < k < p∗, the weights are nontrivial and satisfy

0 ≤ V ∈ Lr(RN), r =
p∗

p∗ − k
, (9)

and
0 ≤ K ∈ L∞(RN) ∩ C(RN). (10)

The energy functional Eλ associated to (8) is defined in D1,p(RN) ∩ D1,q(RN),
where D1,p(RN) = {u ∈ Lp∗(RN) : Du ∈ Lp(RN)}, and it is given by

Eλ(u) =
1

p

∫
RN
|Du|pdx+

1

q

∫
|Du|qdx− λ

k

∫
RN
V |u|kdx− 1

p∗

∫
RN
K|u|p∗dx. (11)

In Section 2.2 we deal with the less investigated case in which q < k < p,
precisely we obtain the following theorem, appeared in [13].

Theorem 2. Let 1 < q < k < p < N . Assume that V satisfies (9) and furthermore
V > 0 on some open subset ΩV ⊂ RN , with |ΩV | > 0.

Let K verify (10). If ‖K‖∞ is sufficiently small, then there exist λ∗, λ
∗ > 0,

with λ∗ < λ∗, such that, for all λ ∈ (λ∗, λ
∗), problem (8) has infinitely many weak

solutions with (finite) negative energy, that is Eλ(u) < 0.

We observe that condition ‖K‖∞ sufficiently small guarantees that λ∗ < λ∗.

In particular, since λ∗ = C‖V ‖−1
r · ‖K‖

(k−p)/(p∗−p)
∞ , for some C = C(p, k,N) > 0,

then λ∗ →∞ when ‖K‖∞ → 0.
The proof of Theorem 2 is based on concentration compactness principle, on

the use of the truncated energy functional, which needs to be introduced since the
original energy functional is not bounded form below, and the conclusion follows
via the theory of Krasnosel’skii genus, introduced in [85]. As a standard procedure,
we have first to prove the boundedness of (PS)c sequences, c ∈ R, for Eλ, which
is obtained in Lemma 8 for all k such that 1 < k < p∗. Then, we have to face one
of the main difficulties, which consists in verifying the compactness Palais Smale
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condition at level c for Eλ when the values c are negative. To solve this problem,
as described before, we have to prove tight convergence for the sequence (|un|p

∗
)n.

We emphasize that, due to the new condition q < k < p, the qualitative behavior
of Eλ is completely different with respect to the case treated in [36] and in [80].

Then, in Section 2.3, we treat the case k p-superlinear and subcritical. In
particular in [15] we proved the following existence result.

Theorem 3. Assume 1 < q ≤ p < N , p < k < p∗ and that V satisfies (9).
Furthermore, suppose V > 0 on some open subset ΩV ⊂ RN , with |ΩV | > 0. Let
K verify (10). There exist λ∗∗ > 0 such that, for any λ > λ∗∗, problem (8) has at
least one nontrivial nonnegative weak solution with positive (finite) energy.

To prove Theorem 3 we make use of the Mountain Pass Theorem. Thus, in
addition to the boundedness of every (PS)c sequences, c ∈ R, for Eλ, we have to
verify that the energy functional defined in (11) has a Mountain Pass geometry,
bypassing the difficulty given also by the non homogeneity of the (p, q)-Laplacian
operator. Then, the lack of compactness becomes manifest since we are not allowed
to prove that the functional Eλ satisfies the (PS)c condition. Indeed, we have
to deal with only the almost everywhere convergence of (Dun)n in RN , which,
nevertheless is a sufficient property to prove Theorem 3.

Finally Section 2.4 is devoted to the study of existence and multiplicity results
for problem (8) under a symmetric setting, contained in [14]. In particular, we con-
sider a group T ⊂ O(N), where O(N) is the group of orthogonal linear transforma-
tions in RN and we deal with T -symmetric functions, which are functions invariant
respect to every orbit of T , called Tx. We denote with D1,p

T (RN) the subspace of
D1,p(RN) consisting of all T -symmetric functions and XT = D1,p

T (RN)∩D1,q
T (RN).

In particular, we obtain the following theorems, where |T | := infx∈RN , x6=0 |Tx|.

Theorem 4. Assume 1 < k < q ≤ p < N and consider a group T ⊂ O(N). Let V
and K be T -symmetric functions satisfying (9) and (10). Then, there exist λ∗T > 0
such that for all λ < λ∗T problem (8) possesses at least one nontrivial solution in
XT with (finite) positive energy, that is Eλ(u) > 0.

Theorem 5. Assume 1 < q ≤ p < N and 1 < k < p∗. Let V and K be T -
symmetric functions satisfying (9) and (10). If

K(0) = K(∞) = 0 and |T | =∞, (12)

where K(∞) = lim sup|x|→∞K(x), then for all λ > 0 problem (8) possesses in-
finitely many solutions in XT with (finite) positive energy.

Note that Theorem 4 holds for general weights K and any T ⊂ O(N) without
requiring additional assumptions neither on K nor on |T |, while the multiplicity
result in Theorem 5 holds true provided that K and T satisfy (12).
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The proof of Theorem 4 is based on Mountain Pass Theorem. In particular,
when we deal with the compactness property (PS)c for Eλ at positive levels c, the
lack of compactness is recovered by the symmetric setting producing the validity
of the compactness property for every critical levels c below a positive threshold,
an analogous upper bound holds for the parameter λ.

On the other hand, the proof of Theorem 5, in which we weaken an assumption
in [80], is obtained by the use of Fountain Theorem due to Bartsch [20], for which
it is necessary that the Palais Smale condition holds for every c > 0, this is reached
by virtue of assuption (12). In the proof of both theorems a key role is due to the
principle of symmetric criticality by Palais in [106].

In Chapter 3 we study multiplicity results for solutions both with negative and
with positive energy, of the following singular quasilinear Schrödinger equation
with a nonlinearity of type (b), precisely

−∆pu−
α

2
∆p(|u|α)|u|α−2u = λV (x)|u|k−2u+ βK(x)|u|p∗−2u in RN (13)

where 0 < α < 1, β, λ > 0, N ≥ 3, 1 < k < p∗ and now assumption (9) needs to
be strengthen while (10) can be weakened, namely we assume

0 ≤ V ∈ Lr(RN) ∩ C(RN), K ∈ L∞(RN) ∩ C(RN). (14)

To describe in a clearer way our results, we have inserted a positive parameter β
in the critical term of the nonlinearity in (13).

Furthermore, we emphasize that here the weight K can change sign.
Actually, problem (13) is critical and it exhibits a double loss of compactness,

as soon as 0 < α < 1, indeed when α > 1 the corresponding critical exponent in
the nonlinearity is αp∗. For the Laplacian case p = 2, we refer to [1] for a detailed
discussion in this direction, see also [139].

In addition, problems of type (13) are rather delicate to be treated since the
corresponding Euler Lagrange functional

Hλ(u) =
1

p

∫
RN
g(u)p|Du|pdx− λ

k

∫
RN
V |u|kdx− β

p∗

∫
RN
K|u|p∗dx, (15)

include the singular term g at t = 0 because of 0 < α < 1, whose expression will
be given in Section 3.1, which causes the fact that Hλ may be not well defined
in D1,p(RN), so that variational methods cannot directly be applied. A way to
solve this problem is to perform a change of variables, introduced in [42], in order
to manage a ”good” functional in D1,p(RN) which falls in a suitable variational
setting.

The first result we obtain is a multiplicity result for solution of (13) with neg-
ative energy, but under the restriction 2 < k < p < N due the tricky environment
produced by the change of variables, for details cfr. Section 3.1.
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Theorem 6. Let 2 < k < p < N , k/p < α < 1 and V , K satisfies (14),
respectively. Then,

(i) For any λ > 0, there exists β∗S > 0 such that for any 0 < β < β∗S, then
problem (13) has infinitely many weak solutions with (finite) negative energy.

(ii) For any β > 0, there exists λ∗S > 0 such that for any 0 < λ < λ∗S, then
problem (13) has infinitely many weak solutions with (finite) negative energy.

The proof of Theorem 6 relies on the technique used in [13]: concentration
compactness principle, truncation of the energy functional and the theory of genus
by Krasnosel’skii. However, we have to deal with the reformulation of problem
(13) in which new delicate estimates have to be performed due to the appearance
of new terms.

In the next theorem we succeed in removing the upper bound for λ and β given
in Theorem 6 by restricting our attention to the symmetric setting given before
Theorem 4 and by requiring the same additional assumptions on K and T as in
Theorem 4. In particular, the symmetric setting allows us to improve Theorem
6 obtaining the corresponding multiplicity result not only for all λ, β positive,
but also removing the lower bound 2 for k, as it evident in the statement of the
following

Theorem 7. Let 1 < k < p < N , k/p < α < 1 and V and K be T -symmetric func-
tions satisfying (14). If (12) holds, then, for all λ, β > 0 problem (13) possesses
infinitely many weak solutions in D1,p

T (RN) with (finite) negative energy.

The proof of Theorem 7 is similar to that of Theorem 6, with the novelty that
(PS)c property for the functional follows, by virtue of (12) and the advantageous
symmetric setting, for all λ, β > 0 and c ∈ R.

Finally, in the last theorem, we consider solutions with positive energy, here
no additional restrictions on α, p, k appear, indeed the range for α and k is the
largest possible, but nonnegativity of the weight K is assumed.

Theorem 8. Assume 0 < α < 1 and 1 < k < p∗. Let V and K be T -symmetric
functions satisfying (14) and (12), with K nonnegative (nontrivial) in RN . Then
for all λ, β > 0 problem (13) possesses infinitely many solutions in D1,p

T (RN) with
(finite) positive energy.

The main ingredients used in the proof of Theorem 8 is the Fountain Theorem,
which requires the Palais Smale property for the functional for any positive level.
This is in force, as for Theorem 5, by virtue of the crucial assumption (12).
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Chapter 1

Existence results for p-Laplacian

elliptic problems with gradient

terms in bounded domains

The following chapter is devoted to obtain an existence result for problem (3),
recently appeared in [12], which extends previous theorems in [119] and [59].

In particular, in [119] and [59] problem (3) is considered when m satisfies the
stronger restriction, respect to (4), given by m < p∗ − 1, where p∗ is the Serrin
exponent. Of course p∗ < p∗. Indeed in [119], as well as in [59], this stronger
restriction m < p∗ − 1 is mainly due to the use of a Harnack type inequality due
to Trudinger in [134] (cfr. [120], [121]), and in addition to a Liouville theorem for
the inequality −∆pu ≥ um.

As concerns Liouville theorems, it is well known that the critical exponent of
Sobolev embeddings p∗ is optimal for Liouville theorems for elliptic equations of
the type −∆pu = um in RN , u ≥ 0, while p∗ is optimal for Liouville theorems for
elliptic inequalities of the type −∆pu ≥ um in RN , u ≥ 0. For further results in
this direction we refer to Serrin and Zou [121] and Mitidieri and Pohozaev [103].

In our setting, under a weaker assumption than (6), with exponents of the
nonlinearity satisfying (4) and (5), in Theorem 11, given in Subsection 1.2, we
obtain a priori uniform estimates for a suitable weighted norms, taking inspiration
from Barrios et al. in [17], which allow us to prove the main existence result which
enlarge the range of m to m < p∗ − 1 for p > 1.

Actually, in the case 1 < p < 2, we have an additional restriction due only
to the application of the fixed point theorem (cfr. Subsection 1.4), indeed the a
priori estimates in the weighted norm hold for every 1 < p < N . Remaining in the
case 1 < p < 2, we mention the interesting paper by Tan et al. in [131], in which
regularity results for solutions of general p-Laplacian problems with gradient terms
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are developed.
This chapter is divided into four sections. Section 1.1 is composed by three

subsections: Subsection 1.1.1 gives some preliminary results such as pointwise
a priori estimates, while Subsection 1.1.2 contains a Liouville type result for p-
Laplacian equations in the halfspace, with no dependence on the gradient of the
nonlinearity. Finally, the topic of Subsection 1.1.3 is about some main properties
of the distance function from the boundary of an open bounded set. Preparatory
lemmas are stated in Section 1.2, such as uniform estimate for the weighted norm,
so that, the proof of Theorem 1, whose statement is given in the Introduction,
can be performed in Section 1.4 thanks to a suitable version a degree theorem
contained in Subsection 1.1.2.

1.1 Main ingredients

The following section deals with some main definitions and well known classical
results we are going to use throughout Chapter 1.

1.1.1 Pointwise a priori estimates via the doubling lemma

We begin stating pointwise a priori estimates, the main ingredient in the proof
of the existence Theorem 1. These type of estimates, contained in Theorem 3.1 in
[11], here reported for completeness, are called ”universal bounds”, in the sense of
Serrin and Zou in [121], because they are independent of the solutions and do not
need any boundary conditions.

Theorem 9. Let Ω be an arbitrary domain of RN , N ≥ 2. Let

1 < p < N, p− 1 < m < p∗ − 1, 0 ≤ r < m. (1.1)

Assume that f : Ω×R+
0 ×RN → R is a Caratheodory function and that there exist

m1 ∈ (0,m), s and S with

0 ≤ r ≤ S < min

{
m,

(m + 1)(r + 1)

p
− 1

}
,

0 < θ < Θ :=
(m− S)p

m + 1
(< p),

such that

−C1

(
1 + zm1 + zr|η|θ

)
≤ f(x, z, η) ≤ C1

(
1 + zm + zS|η|Θ

)
(1.2)



21

for all x ∈ Ω and for z ≥ 0 and η ∈ RN , with C1 > 0. Suppose that for all x ∈ Ω,
if Ω is bounded,

lim
z→∞,Ω3y→x

z−mf(y, z, z(m+1)/pη) = l(x) ∈ (0,∞) (1.3)

uniformly for η bounded. Moreover, if Ω is unbounded, then assume that (1.3)
holds also for x =∞.

Then there exist C = C(p,N, f) > 0 (independent of Ω and u) such that for
any nonnegative solution u of

−∆pu = f(x, u,Du) in Ω, (1.4)

then holds
u+ |Du|p/(m+1) ≤ C

(
1 + d(x)−p/(m−p+1)

)
in Ω,

where d(x) = dist(x, ∂Ω).

Their proof is based on the well known doubling lemma, Theorem 5.1 in [114],
which roughly is a way to avoid a Liouville theorem in the halfspace. Actually,
the previous result extends Theorem 6.1 proved by Poláčik, Quitter and Souplet
in [114] when p = 2 and r = 0 in (1.1). In particular, the authors in [114]
take into account a nonlinearity depending also on the gradient only when the
Laplace operator is involved, while the p-Laplacian operator is investigated with
nonlinearities not depending on the gradient. As discussed in [114], an important
consequence of results of this kind is that theorems that provide uniform estimates
(in norm) of the solutions are substantially equivalent to Liouville theorems in the
entire RN .

From the theorem above we obtain the following bounds in Ω for all nonnegative
solutions of the equation (1.4) and for its gradient

u(x) ≤ C
(
1 + d(x)−p/(m−p+1)

)
,

|Du(x)| ≤ C
(
1 + d(x)−(m+1)/(m−p+1)

)
= C

(
1 + d(x)−1−p/(m−p+1)

)
.

(1.5)

1.1.2 A Liouville theorem in RN
+

A Liouville theorem in the halfspace represents another key ingredient. Actu-
ally, these type of results, under rather general assumptions, are not common in
literature. We make use of the version a Liouville type theorem in the halfspace
for p-Laplacian elliptic equations proved by Zou in [146], requiring some stringent
conditions for nonlinearities depending on the gradient, which can be removed in
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the subcase when the nonlinearity depends only on u. With this in mind, we shall
apply the theorem of Zou to the limit problem, in which the dependence of the
nonlinearity form the gradient disappears. Precisely, for the equation

−∆pu = g(u) in RN
+ , (1.6)

when g : R → R is a continuous function, the following Liouville type theorem,
Theorem 1.1 in [146], holds.

Theorem 10. Assume that g(z) is continuously differentiable for u > 0 and that
there exist positive constants K > 0, m ∈ (p − 1, p∗ − 1) and r ∈ (0, p∗ − 1) such
that for z > 0

K−1zm ≤ g(z) ≤ Kzm, rg(z) ≥ zg′(z). (1.7)

Then equation (1.6) does not admit any nonnegative nontrivial distributional so-

lutions u ∈ W 1,p
0 (RN

+ ) ∩ C(RN
+ ) vanishing on ∂RN

+ .

Remark 1. Of course when g(z) = zm with m ∈ (p − 1, p∗ − 1), then conditions
(1.7) are trivially verified with K = 1 and r = m.

Liouville results in the halfspace, applied to the limit problem, allow to prove
uniform bounds in a suitable norm for positive solutions of (1.4) when the blow
up technique is developed. Roughly, first we assume the existence of a divergence
sequence of solutions of (1.4) which violates the uniform bound, that is un attaining
their maxima on a point xn in Ω. Then, suitable scaling arguments ”centered” on
xn, produce positive solutions of the limit problem (1.6), either in RN , in the case
in which xn → x0 ∈ Ω up to subsequences, or in the halfspace if xn → x0 ∈ ∂Ω up
to subsequences. Thus, a Liouville theorem gives the required contradiction.

1.1.3 Properties of d(x) = dist(x, ∂Ω)

First of all we refer to the euclidean distance function from the boundary,
defined by d(x) = dist(x, ∂Ω), where Ω ⊂ RN is a nonempty, bounded open
connected set of class C2, say a smooth bounded domain, following [44] (see also
[31]). It is well known that d is a solution of the eikonal equation{

|Du| = 1 in Ω,

u = 0 on ∂Ω,
(1.8)

precisely it is unique in the class of viscosity solutions, as discussed in [44]. For
every ξ ∈ ∂Ω we denote by κi(ξ), i = 1, . . . , N − 1 the principal curvatures of
∂Ω at ξ, and by ν = ν(ξ) the outward normal unit vector of ∂Ω at ξ. Since
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the boundary of Ω is regular, it is possible to extend d outside Ω in such a way
that this extension, called signed distance function form ∂Ω and denoted by ds,
turns out to be of class C2 in a tubular neighborhood of ∂Ω of the following form
Aµ = {x ∈ RN : −δ < ds(x) < δ}, with δ > 0 (cfr. Theorem 4.16 in [44]).
This fact allows to define Dd e D2d on points of ∂Ω. In particular, in Lemma 4.3
in [44], by using also Lemma 3.5 in [113], a relation between the gradient of the
extension of d to the entire RN and the outward normal of ∂Ω is proved. Precisely,
if x ∈ Ω \ Σ, where Σ is the set of those points in Ω where d is not differentiable,
then Dd = λν, λ ≤ 0. Furthermore, in Lemma 4.18 in [44], it is given an explicit
representation of the Hessian matrix D2d of d in x0 ∈ ∂Ω with respect to the
principal coordinate system (cfr. also Remark 4.19 in [44]). Finally, as observed in
[66], it results that −∆d(x) ∼ (N−1)H(ξ) as x→ ∂Ω, where x ∈ Ω, ξ ∈ ∂Ω is the
projection of x on ∂Ω, while H(ξ) stands for the mean curvature at ξ. Therefore,
when the domain Ω is convex we have

−∆d(x) ≥ 0 (1.9)

in a tubular neighborhood of ∂Ω, defined as follows.
Denote, for all positive δ > 0,

Ωδ = {x ∈ Ω : d(x) < δ}.

In particular, it holds the following.

Lemma 1. Let γ ∈ (0, 1). There exist δ > 0 and Cγ > 0 such that

−∆pd(x)γ ≥ Cγd(x)γ(p−1)−p in Ωδ. (1.10)

Proof. Since |Dd| = 1 by (1.8), for γ > 0,

−∆pd(x)γ = γp−1
{

(1− γ)(p− 1)− d(x)∆d(x)
}
d(x)γ(p−1)−p.

Thanks to γ < 1 and the regularity of d in Ωδ, we can choose δ so small that
|d(x)∆d(x)| < ε for all x ∈ Ωδ, ε > 0, and Cγ = (1 − γ)(p − 1) − ε > 0. This
completes the proof.

Note that, by (1.9), when Ω is convex then (1.10) is clearly true in Ω for
every 0 < γ < 1. Moreover, in the special case Ω = BR(0), with R > 0 and
d(x) = dR(x) = dist(x, ∂Ω) = R−|x|, then −∆dR(x) = (N −1)/|x| ≥ 0 in Ω\{0}
and dR(x)γ is a solution of

−∆pdR(x)γ = γp−1

[
p− γ(p− 1)− 1 +

(N − 1)dR(x)

R− dR(x)

]
dR(x)γ(p−1)−p in Ω \ {0},
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so that, not only (1.10) holds for 0 < γ < 1, but also

−∆pdR(x)γ ≥ Aγ dR(x)γ(p−1)−p in (Ωδ)
c, δ =

R

N
,

where Aγ = p− γ(p− 1) > 0 if and only if 0 < γ < p
p−1

(> 1).

1.2 Preliminary lemmas on suitable ”barriers”

and ”scaled domains”

In this section we present some preliminary lemmas on scaled domains based
on weighted norm which involves the distance function from the boundary of an
open bounded set, whose properties are presented in Subsection 1.1.3, namely let
Ω be a smooth bounded domain.

Take ξ ∈ ∂Ω, µ > 0 and define

Ωµ = {y ∈ RN : ξ + µy ∈ Ω}, dµ(y) = dist(y, ∂Ωµ). (1.11)

It is clear that dµ(y) = µ−1d(ξ + µy) from the fact that roughly Ω = ξ + µΩµ, or
equivalently Ωµ = µ−1(Ω − ξ). Furthermore, for dµ(y) the analogous result given
in Lemma 1 holds, namely dµ(y) satisfies

−∆pdµ(x)γ ≥ C ′γdµ(x)γ(p−1)−p in (Ωµ)δ, (1.12)

with C ′γ = µ−pCγ, where Cγ is given in (1.10). In what follows we make use of the
function uµ = u(ξ + µy) defined in Ωµ.

Lemma 2. Let δ > 0 and γ ∈
(
0, 1
)
. If uµ ∈ L∞(Ω) ∩ C(Ω) verifies{

−∆puµ ≤ C1d
γ(p−1)−p
µ in Ωµ,

uµ = 0 on ∂Ωµ,
(1.13)

for some C1 > 0, then

uµ(x) ≤ C2(C3 + ‖uµ‖L∞(Ωµ))d
γ
µ in (Ωµ)δ, (1.14)

for some C2, C3 > 0 only depending on δ, γ and Cγ.
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Proof. We follow the argument of Lemma 6 in [17] which can be applied thanks to
the considerations before the statement of Lemma 2. Let v = Rdγµ, with dµ given
in (1.11) and R > 0 to be specified. Then, thanks to (1.12) and (1.13), we have

−∆pv ≥ C ′γR
p−1dγ(p−1)−p

µ ≥ C1d
γ(p−1)−p
µ ≥ −∆puµ in (Ωµ)δ,

if we choose R > [C1(C ′γ)
−1]1/(p−1). Furthermore, since (∂Ωµ)δ = ∂Ωµ ∪ Aµδ with

Aµδ = {y ∈ Ωµ : d(y, ∂Ωµ) = dµ(y) = δ}, then v ≥ uµ in (∂Ωµ)δ being uµ = 0 = v in
∂Ωµ by (1.13) and the definition of v, furthermore v = Rdγµ ≥ uµ in Aµδ eventually
enlarging R such that R ≥ δ−γ‖uµ‖L∞(Ωµ). Hence, by comparison v ≥ uµ in
(Ωµ)δ, and it is possible to choose R so that (1.14) hold. Thus, take for instance
R = Kδ−γ‖uµ‖L∞(Ωµ) + C, with K ≥ 1 and C ≥ K−1(C1C

−1
γ )1/(p−1) so that

C2 = Kδ−γ and C3 = Cδγ.

Remark 2. It is well known that every distributional solution of{
−∆pu = f in Ω,

u = 0 on ∂Ω,
(1.15)

is of class L∞(Ω) as soon as f ∈ C(Ω) ∩ L∞(Ω), for details see Theorem 6 in the
Appendix in [12]. Furthermore, thanks to classical results by Di Benedetto [49],
Tolksdorf [133], Lieberman [92] it holds the following u ∈ C1,τ

loc (Ω), τ ∈ (0, 1).
Finally we recall that the following Cordes-Nirenberg type estimate

‖u‖C1,τ (BR/2) ≤ C(‖f‖L∞(BR) + ‖u‖L∞(BR)). (1.16)

is valid with a positive constant C = C(N, p), see [30] and also [43].

As in [17], we define for λ ∈ R and u ∈ C(Ω)

‖u‖(λ)
0 = sup

Ω
d(x)λ|u(x)|,

while for u ∈ C1(Ω), set

‖u‖(λ)
1 = sup

Ω

{
d(x)λ|u(x)|+ d(x)1+λ|Du(x)|

}
. (1.17)

We are now ready to give the first estimation for solutions of problem (1.15) in the
norm defined above. Precisely, the next result is a different version of the existence
Theorem 2 in [65].

Lemma 3. Assume γ ∈ (0, 1). Let f ∈ C(Ω), where Ω is a smooth bounded

domain. If ‖f‖(p−γ(p−1))
0 < ∞, then the problem (1.15) admits a unique solution.

Moreover, there exists a positive constant C such that

‖u‖(−γ)
0 ≤ C

(
‖f‖(p−γ(p−1))

0

)1/(p−1)

. (1.18)
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Proof. By Lemma 1, there exist δ > 0 and Cγ > 0 such that (1.10) is verified.
Now, taking inspiration from Theorem 2 in [65], we construct a supersolution of{

−∆pu = Cdγ(p−1)−p in Ω

u = 0 on ∂Ω,
(1.19)

for a suitable constant C > 0. For this aim, we consider the unique solution ψ to
−∆pψ = 1 in Ω,

ψ > 0 in Ω,

ψ = 0 on ∂Ω,

(1.20)

which is well known to exist and to verify ψ ∈ W 1,p
0 (Ω)∩C1,τ (Ω) for some τ ∈ (0, 1).

Moreover, thanks to Hopf’s maximum principle (see [136]), we have that

C1d ≤ ψ ≤ C2d in Ω, (1.21)

for some positive constant C1, C2. We claim that u = ψγ is a supersolution to
(1.19). Indeed, a calculation shows that

−∆pu = γp−1ψγ(p−1)−p[ψ + (p− 1)(1− γ)|Dψ|p].

We now observe that |Dψ|p + ψ > 0 in Ω, being ψ > 0 in Ω and Dψ 6= 0 on ∂Ω
by Hopf’s principle. Since γ < 1, and taking into account (1.21), we obtain that

−∆pu ≥ Cdγ(p−1)−p in Ω, (1.22)

for some positive constant C such that C ≥ Cγ, where Cγ is given by (1.10).
Following now Lemma 3 in [17], we choose a sequence of smooth functions

(φn)n verifying the following condition

0 ≤ φn ≤ 1, φn = 1 in Ω \ Ω2/n and φn = 0 in Ω1/n.

Define fn = fφn and take into account problem{
−∆pu = fn in Ω,

u = 0 on ∂Ω.
(1.23)

Since fn ∈ C(Ω), by a classical result, problem (1.23) has a unique weak solution
un ∈ W 1,p

loc (Ω) ∩ C1,τ
loc (Ω), for some τ ∈ (0, 1). On the other hand,

|fn| ≤ |f | ≤ ‖f‖(p−γ(p−1))
0 dγ(p−1)−p in Ω,
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so that the functions

v+ =
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

u and v− = −
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

u

are sub and supersolution of (1.23) respectively, also by (1.22). Using comparison,
(see [115]), we obtain

−
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

u ≤ un ≤
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

u, (1.24)

which holds in Ω. Now, this bound together with (1.16), Ascoli-Arzelá’s theorem
and a standard diagonal argument allow us to obtain a subsequence, still denoted
by (un)n, and a function u ∈ C(Ω) such that un → u uniformly on compact sets
of Ω. In addition, from (1.24), u verifies in Ω

|u| ≤
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

ψγ ≤
(
C−1‖f‖(p−γ(p−1))

0

)1/(p−1)

dγ,

which shows (1.18). This ends the proof.

Our next estimate concerns the gradient of solutions of (1.15) and it takes
inspiration from Lemma 5 in [17].

Lemma 4. There exists a constant C0 which depends on N and p but not on Ω

such that, for every η ∈ (1, p) and f ∈ C(Ω) with ‖f‖
(
η+p(p−2)
p−1

)

0 < ∞, the unique
solution u of (1.15) verifies

‖Du‖
( η−1
p−1

)

0 ≤ C0(‖f‖
(
η+p(p−2)
p−1

)

0 + ‖u‖
( η−p
p−1

)

0 ). (1.25)

Proof. For the existence and the uniqueness we apply Lemma 3 with γ ∈ (0, 1).
Indeed, f ∈ C(Ω) and p− γ(p− 1) > 0 if and only if γ < p/(p− 1) which is true
since γ < 1. By Remark 3 applied with R = 1 we know that if v solves −∆pv = f
in B1 with v = 0 on ∂B1, then by (1.16) there exists a constant which depends on
N and p such that

‖Dv‖L∞(B1/2) ≤ C
(
‖f‖L∞(B1) + ‖v‖L∞(B1)

)
. (1.26)

Define
u(x) = v(x/R) x ∈ BR,

so that ‖v‖L∞(B1) = ‖u‖L∞(BR) and RDu = Dv, from which we obtain

‖Dv‖L∞(B1) = R‖Du‖L∞(BR).
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Moreover, denoting z = x/R,

∆pu = divx(|Du|p−2Du) =
1

Rp
divz(|Dv|p−2Dv)

so that, since v is a solution of −∆pv = f in B1, we have

‖f‖L∞(B1) = Rp‖f‖L∞(BR).

Thus, u solves −∆pu = f in Ω and BR ⊂⊂ Ω then by (1.26)

R‖Du‖L∞(BR/2) ≤ C
(
Rp‖f‖L∞(BR) + ‖u‖L∞(BR)

)
. (1.27)

Choose a point x ∈ Ω. By applying (1.27) in the ball B = Bd(x)/2 centered at x

and multiplying by d(x)
η−p
p−1 we arrive at

d(x)
η−1
p−1 |Du(x)| ≤ C

(
d(x)

η+p(p−2)
p−1 ‖f‖L∞(B) + d(x)

η−p
p−1 ‖u‖L∞(B)

)
. (1.28)

Finally, we notice that d(x)/2 < d(y) < 3d(x)/2 for every y ∈ B, so that, for
c > 0,

d(x)
η+p(p−2)
p−1 |f(y)| ≤ c d(y)

η+p(p−2)
p−1 |f(y)| ≤ c ‖f‖

(
η+p(p−2)
p−1

)

0 ,

d(x)
η−p
p−1 |u(y)| ≤ c d(y)

η−p
p−1 |u(y)| ≤ c‖u‖

( η−p
p−1

)

0 ,

thus

d(x)
η+p(p−2)
p−1 ‖f‖L∞(B) ≤ c‖f‖

(
η+p(p−2)
p−1

)

0 (1.29)

d(x)
η−p
p−1 ‖u‖L∞(B) ≤ c‖u‖

( η−p
p−1

)

0 . (1.30)

Then, using (1.29) and (1.30) in (1.28) and taking the supremum over B, inequality
(1.25) is obtained.

Remark 3. We point out that the bound for η in the statement of Lemma 4 is
required in view of the application of Lemma 3 in which the parameter γ has to be
taken in (0, 1), see the proof of Theorem 1.

1.3 Uniform estimates for a weighted norm

Before proving the a priori estimate result, we need to choose properly the
parameter σ > 0 such that
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if p ≥ 2

1− p

θ
< σ < 1− 1

θ
, (1.31)

if 1 < p < 2

max
{

1− 2(p− 1)

θ
,
θ − 2(p− 1)

θ − p+ 1

}
< σ < 1− p− 1

θ
. (1.32)

The intervals for σ, given in (1.31) and (1.32), are not trivial thanks to (4), (5)
and the further condition (7) if 1 < p < 2. Let

Eσ = {u ∈ C1(Ω) : ‖u‖(−σ)
1 <∞}, (1.33)

where ‖·‖(−σ)
1 is given by (1.17) when λ = −σ. In the next result, we prove a priori

bounds for solutions of (3) by adapting to the p-Laplacian case the argument in
Lemma 9 in [17].

Theorem 11. Let p − 1 < m < p∗ − 1 and let h be a nonnegative function such
that

h(x, u, η) ≤ C(1 + |u|s + |η|θ), in Ω× R× RN , C > 0, (1.34)

where s and θ satisfy condition (5). Then there exist a constant C > 0 such that
for every positive solution u of (3) in Eσ, with σ > 0 satisfying either (1.31) or
(1.32), we have

‖u‖(−σ)
1 ≤ C.

Proof. Assume that the conclusion of the theorem is not true. Then there exists
a sequence of positive solutions uk of (3) in Eσ, with σ as above, such that

‖uk‖(−σ)
1 = sup

Ω
Mk(x)→∞,

where
Mk(x) = d(x)−σuk(x) + d(x)1−σ|Duk(x)|. (1.35)

Now choose points xk ∈ Ω such that Mk(xk) ≥ supΩ Mk − 1
k

for all k, this can be
done thanks to (1.17). Let ξk be a projection of xk on ∂Ω and rescale uk by setting

vk(y) = µ−σk Mk(xk)
−1uk(z), z = ξk + µky, y ∈ Dk, (1.36)

where µk = Mk(xk)
− m−p+1
p+σ(m−p+1) and Dk = {y ∈ RN : ξk + µky ∈ Ω} according

to the definition (1.11). In particular µk → 0 as k → ∞ since Mk(xk) → ∞ as
k →∞. By (1.36) we have (∂/∂yi)vk(y) = µ1−σ

k Mk(xk)
−1(∂/∂zi)uk(z), from which

we obtain

∆pvk = divy(|Dvk|p−2Dvk) = µ
p−σ(p−1)
k Mk(xk)

−(p−1)∆puk
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so that, since uk is a solution of (3), we have

∆pvk = µ
p+σ(m−p+1)
k Mk(xk)

m−p+1vmk

+ µ
p−σ(p−1)
k Mk(xk)

−(p−1)h(z, µσkMk(xk)vk, µ
σ−1
k Mk(xk)Dvk).

Then, according to the choice of µk, vk is a solution of{
−∆pvk(y) = vk(y)m + hk(y, vk, Dvk) in Dk,

vk(y) = 0 on ∂Dk,
(1.37)

with

hk(y,vk, Dvk) = µ
p−σ(p−1)
k Mk(xk)

1−ph
(
z, µσkMk(xk)vk, µ

σ−1
k Mk(xk)Dvk

)
= Mk(xk)

− mp
p+σ(m−p+1)h

(
z,Mk(xk)

p
p+σ(m−p+1)vk,Mk(xk)

m+1
p+σ(m−p+1)Dvk

)
.

By assumption (1.34) on h, it is trivially seen that hk verifies

0 ≤ hk ≤ CMk(xk)
− pm
p+σ(m−p+1) (1 +Mk(xk)

sp
p+σ(m−p+1)vsk

+Mk(xk)
(m+1)θ

p+σ(m−p+1) |Dvk|θ)
≤ CMk(xk)

−γ(1 + vsk + |Dvk|θ),

(1.38)

for some positive constant C independent of k, where

γ =
pm−max{sp, θ(m + 1)}

p+ σ(m− p+ 1)
> 0, (1.39)

thanks to (5). Moreover, the function vk verifies in Dk

µσkd(ξk + µky)−σvk(y) + µσ−1
k d(ξk + µky)1−σ|Dvk(y)| = Mk(ξk + µky)

Mk(xk)
,

which can be written as follows

dk(y)−σvk(y) + dk(y)1−σ|Dvk(y)| = Mk(ξk + µky)

Mk(xk)
in Dk, (1.40)

by denoting dk(y) := d(y, ∂Dk) = µ−1
k d(ξk + µky). Furthermore, if we define

yk = (xk − ξk)/µk, we have

|yk| = |xk − ξk|µ−1
k = d(xk)µ

−1
k

we obtain by (1.40)

dk(yk)
−σvk(yk) + dk(yk)

1−σ|Dvk(yk)| = 1. (1.41)
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On the other hand, equality (1.40) gives

dk(y)−σvk(y) + dk(y)1−σ|Dvk(y)| ≤ 2 in Dk, (1.42)

by the definition of xk so that Mk(ξk + µky) ≤ supΩMk(x) ≤ Mk(xk) + 1
k
. Next,

uk solves (1.4), with f(x, u, η) = um + h(x, u, η) which satisfies (1.2) with S = 0
and θ < Θ = pm/(m + 1), indeed by (6) we have

0 ≤ um + h(x, u, η) ≤ um + C(1 + us + |η|θ) ≤

{
C1u

m + C|η|θ, if |u| ≥ 1,

C(1 + um + |η|θ), if |u| ≤ 1.

Consequently, Theorem 9 can be applied and, thanks to the estimates in (1.5), we
obtain from (1.35)

Mk(xk) ≤ Cd(xk)
−σ
[
1 + d(xk)

−p/(m−p+1) + d(xk)
]
,

where C is a positive constant independent of k. In turn,

d(xk)µ
−1
k ≤ Cd(xk)

p
p+σ(m−p+1)

[
1 + d(xk)

− p
p+σ(m−p+1) + d(xk)

m−p+1
p+σ(m−p+1)

]
= C

[
1 + d(xk)

ζ1 + d(xk)
ζ2
]
≤ C,

where,

ζ1 =
p

p+ σ(m− p+ 1)
, ζ2 =

m + 1

p+ σ(m− p+ 1)
.

In particular, ζ1, ζ2 > 0, thus d(xk)µ
−1
k ≤ C, from the boundedness of Ω. This

bound immediately entails that, up to subsequences, d(xk) → 0 as k → ∞ since
µk → 0 and xk → x0 ∈ Ω. Thus |yk| = d(xk)µ

−1
k → d ≥ 0 as k → ∞ (in

particular, as noted in [17], the points ξk are uniquely determined at least for
large k), actually x0 ∈ ∂Ω, being d(x0) = 0. Assuming without loss of generality
that the outward unit normal to ∂Ω at x0 is −eN , observing that 0 ∈ ∂Dk since
dk(0) = d(0, ∂Dk) = µ−1

k d(ξk) = 0, by ξk ∈ ∂Ω, we also obtain that Dk → RN
+ for

k →∞.
We claim that d > 0. To show this, notice that from (1.42) is clearly true the

following
vk(y) ≤ 2dk(y)σ, |Dvk| ≤ 2dk(y)σ−1, (1.43)

then from (1.38) we have

0 ≤ hk ≤ CMk(xk)
−γ
[
1 + dk(y)σs + dk(y)θ(σ−1)

]
in Dk.

Consequently, again by (1.43), we obtain

vmk + hk ≤ Cdk(y)θ(σ−1)Lk(y) in Dk,
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where

Lk(y) := dk(y)σm+θ(1−σ) +Mk(xk)
−γ(dk(y)θ(1−σ) + dk(y)σs+θ(1−σ)

)
.

In particular, since Ω is bounded, then dk(y) is bounded in Dk and being all the
exponents of dk in Lk(y) positive, we arrive to

0 ≤ Lk(y) ≤ C
(

1 +Mk(xk)
−γ
)
,

in turn, Lk(y) ≤ C since Mk(xk)→∞ as k →∞ and thanks to (1.39). Thus, we
have

−∆pvk ≤ Cdk(y)−θ(1−σ) in Dk, (1.44)

for k large. Now to use Lemma 2, we need to divide the proof into two cases.
Case p ≥ 2: we apply Lemma 2 with γ = p−(1−σ)θ

p−1
, this can be done by

regularity of vk and since vk verifies (1.44) vanishing at the boundary of Dk. In
particular, γ ∈ (0, 1) by (1.31).

Thus there exists a positive constant C such that

0 ≤ vk(y) ≤ Cdk(y)
p−(1−σ)θ

p−1 when dk(y) < δ, for δ > 0. (1.45)

It remains to consider the case dk(y) ≥ δ. First we observe that

p− (1− σ)θ

p− 1
− σ =

p− θ
p− 1

+ σ
θ − p+ 1

p− 1
> 0 (1.46)

being σ > 0 and p− 1 < θ < p by (5)2.
Using (1.43) and (1.46) we have, when dk(y) ≥ δ

vk(y) ≤ 2dk(y)σ ≤ 2δσ−
p−(1−σ)θ

p−1 dk(y)
p−(1−σ)θ

p−1 ≤ Cdk(y)
p−(1−σ)θ

p−1 . (1.47)

Thus, conditions (1.45) and (1.47) give

0 ≤ vk(y) ≤ Cdk(y)
p−(1−σ)θ

p−1 in Dk, (1.48)

or equivalently ‖vk‖
(− p−(1−σ)θ

p−1
)

0 is bounded. Furthermore, we can use Lemma 4,
with f = vmk + hk in (1.15) and η = (1 − σ)θ provided the following η ∈ (1, p),

‖f‖
(
η+p(p−2)
p−1

)

0 <∞. The first condition is equivalent to (1.31). The latter condition
follows from (1.44), noting that

η + p(p− 2)

p− 1
=
θ(1− σ) + p(p− 2)

p− 1
.
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Then, thanks to (1.48), we have

‖Dvk‖
(

(1−σ)θ−1
p−1

)
0 ≤ C0(‖f‖

(
θ(1−σ)+p(p−2)

p−1

)
0 + ‖vk‖

(
− p−(1−σ)θ

p−1

)
0 )

≤ C(‖f‖
(
θ(1−σ)+p(p−2)

p−1

)
0 + 1) ≤ C,

(1.49)

where in the last inequality we have used (1.44) and that (p− 2)[p− (1− σ)θ] ≥ 0
by σ > 0, θ < p and p ≥ 2.

Therefore, from (1.49) we achieve

|Dvk(y)| ≤ Cdk(y)
1−(1−σ)θ
p−1 in Dk, (1.50)

where C is also independent of k. Replacing inequalities (1.48) and (1.50) in (1.41),
we deduce

1 ≤ Cdk(yk)
β1 , β1 =

p− θ + σ(θ − p+ 1)

p− 1
> 0. (1.51)

Case 1 < p < 2: From (1.44), since 1 < p < 2, we have

−∆pvk(y) ≤ Cdk(y)p−2−θ(1−σ) in Dk, (1.52)

so that now we can apply Lemma 2 to (1.52), by choosing γ = 2 − θ(1−σ)
p−1

. In

particular, γ ∈ (0, 1) is equivalent to

1− 2(p− 1)

θ
< σ < 1− p− 1

θ

that is in force thanks to (1.32). Thus, by regularity of vk, there exists a positive
constant C such that

0 ≤ vk(y) ≤ Cdk(y)2− θ(1−σ)
p−1 when dk(y) < δ, for δ > 0. (1.53)

It remains to take into account the case dk(y) ≥ δ. First we observe that, by (1.32)
and (5)2,

2− θ(1− σ)

p− 1
− σ = 2− θ

p− 1
+ σ

θ − p+ 1

p− 1
> 0 (1.54)

So using (1.43) and (1.54) we have, when dk(y) ≥ δ

vk(y) ≤ 2dk(y)σ ≤ 2δσ−2+
θ(1−σ)
p−1 dk(y)2− θ(1−σ)

p−1 ≤ Cdk(y)2− θ(1−σ)
p−1 . (1.55)

Thus, by (1.53) and (1.55), we achieve

0 ≤ vk(y) ≤ Cdk(y)2− θ(1−σ)
p−1 in Dk, (1.56)
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or equivalently ‖vk‖
(−2+

θ(1−σ)
p−1

)

0 is bounded. Moreover, we can use Lemma 4 with
f = vmk + hk in (1.15) and η = (1− σ)θ(p− 1)− p(p− 2) provided that η ∈ (1, p)

and ‖f‖
(
η+p(p−2)
p−1

)

0 <∞. The early condition requires

1− p

θ
< σ < 1− p− 1

θ
, (1.57)

which is in force by (1.32). The latter condition ‖f‖
(
η+p(p−2)
p−1

)

0 <∞ is a consequence

of (1.44), since η+p(p−2)
p−1

= θ(1− σ). Thus, we obtain

‖Dvk‖((1−σ)θ−p+1)
0 ≤ C0(‖f‖((1−σ)θ)

0 + ‖vk‖((1−σ)θ−p)
0 )

≤ C(1 + ‖vk‖((1−σ)θ−p)
0 ).

(1.58)

Now we apply Lemma 3 choosing f = vmk + hk and γ = p − (1 − σ)θ provided

that γ ∈ (0, 1) and ‖f‖((p−1)(1−σ)θ−p(p−2))
0 <∞. The first condition is equivalent to

(1.57) which is in force thanks to (1.32). The condition ‖f‖((p−1)(1−σ)θ−p(p−2))
0 <∞

is a consequence of the boundedness of Ω and (1.44), namely

f(y)dk(y)(p−1)(1−σ)θ−p(p−2) ≤ Cdk(y)(p−1)(1−σ)θ−p(p−2)−(1−σ)θ ≤ C.

since (p− 2)[(1− σ)θ − p] > 0 by (1.32). Thus, from (1.58) we have

|Dvk(y)| ≤ Cdk(y)p−1−θ(1−σ) in Dk, (1.59)

where C is also independent of k. Replacing inequalities (1.56) and (1.59) in (1.41),
we deduce

1 ≤ C
(
dk(yk)

β2 + dk(yk)
β3
)
, (1.60)

where

β2 = 2− θ(1− σ)

p− 1
− σ, β3 = p− θ + σ(θ − 1).

Now, β2 > 0 by (1.54), while β3 > 0 by (1.32), indeed if θ ≥ 1 the positivity of β2

is trivial, while if 0 < θ < 1 then β3 > 0 follows from 1−(p−1)/θ < (p−θ)/(1−θ).
Consequently, both in Case p ≥ 2 and in Case 1 < p < 2, since all the

exponents of dk(yk) in (1.51) and (1.60) are positive, we obtain that dk(yk) is
bounded away from zero. Observing that 0 ∈ Dk and Dk → RN

+ as k → ∞
we see that |yk| = d(xk)µ

−1
k = dk(yk) also is bounded away from zero, thus,

by passing to a further subsequence yk → y0, where |y0| = d > 0 as claimed.
Note that y0 is in the interior of the halfspace RN

+ . Finally, we can use (1.16)
together with Ascoli−Arzelá′s theorem and a diagonal argument to obtain that
vk → v in C1

loc(RN
+ ), where by (1.41) for d instead of dk, the function v verifies
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d−σv(y0) + d1−σ|Dv(y0)| = 1, for some y0 ∈ RN
+ , hence v is not trivial and, from

d(y, ∂RN
+ ) = yN for y ∈ RN

+ , we have for 0 < yN < δ,

v(y) ≤ C

y
p−(1−σ)θ

p−1

N p ≥ 2,

y
2− θ(1−σ)

p−1

N 1 < p < 2,

so that v ∈ C(RN
+ ) in both cases with v vanishing on the boundary. From the

growth condition (1.38), since vk and Dvk are bounded, hk → 0 as k → ∞, thus,
thanks to (1.37), v satisfies {

−∆pv = vm in RN
+ ,

v = 0 on ∂RN
+ ,

so, by the strong maximum principle for the p-Laplacian (see Theorem 5.3.1 in
[115]) it results v(y) > 0 for all y ∈ RN

+ . This contradicts the Liouville type
Theorem 10 being m < p∗ − 1 and concludes the proof of the theorem.

1.4 Proof of Theorem 1

In the current section we prove Theorem 1, the main existence theorem of
Chapter 1.

First, we introduce our setting. Fix σ verifying (1.31), (1.32) then consider the
Banach space Eσ, defined in (1.33), which is an ordered Banach space with norm

‖ · ‖ = ‖ · ‖(−σ)
1 and let P = {u ∈ Eσ : u ≥ 0 in Ω} be the cone of nonnegative

functions whose topology is given by ‖·‖(−σ)
0 . We will assume that h is nonnegative

and verifies the growth condition (6) presented in the statement of Theorem 1,
which obviously is stronger than (1.34) used in Theorem 11 in order to obtain the
uniform a priori estimate. We observe that, from (6) it follows for every v ∈ P
that

h(x, v(x), Dv(x)) ≤ C
[(
‖v‖(−σ)

0

)s
dσs +

(
‖Dv‖(1−σ)

0

)θ
d−(1−σ)θ

]
≤ Cd(x)−(1−σ)θ

[
(‖v‖)sdσs+(1−σ)θ + (‖v‖)θ

]
≤ C(‖v‖)d(x)(σ−1)θ

(1.61)

for every x ∈ Ω, thanks to σs+ (1− σ)θ > 0 and being Ω bounded. In particular,

d(x)(1−σ)θ
[
v(x)m + h(x, v(x), Dv(x))

]
≤ d(x)(1−σ)θ+σm

(
‖v‖(−σ)

0

)m
+ C ≤ C1,

(1.62)
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with C1 > 0, thanks to the positivity of (1−σ)θ+σm. Consequently, we can apply

Lemma 3 with f = vm + h and γ = σ ∈ (0, 1) provided that ‖f‖(p−σ(p−1))
0 < ∞

indeed, from (1.62)

f(x)d(x)p−σ(p−1) ≤ C1d(x)p−σ(p−1)−(1−σ)θ ≤ C

because trivially σ > 0 > θ−p
θ−p+1

. Thus, there exist a unique solution u of{
−∆pu = vm + h(x, v,Dv) in Ω,

u(x) = 0 on ∂Ω,

such that

‖u‖(−σ)
0 <∞. (1.63)

Furthermore, we can use Lemma 4 with f = vm +h in (1.15) and η = p−σ(p−1).
Indeed, η ∈ (1, p) since σ < 1, while to obtain the second assumption of Lemma

4, that is ‖f‖
(
η+p(p−2)
p−1

)

0 = ‖f‖(p−σ)
0 <∞, we observe that being v ∈ P , we have

v(x)md(x)p−σ ≤
(
‖v‖(−σ)

0

)m
d(x)σ(m−1)+p ≤ Cd(x)σ(m−1)+p

and by (1.61)

h(x, v(x), Dv(x))d(x)p−σ ≤ ‖h‖((1−σ)θ)
0 d(x)σ(θ−1)+p−θ ≤ Cd(x)σ(θ−1)+p−θ.

Thus, from the positivity of σ(m−1)+p since m > max{p−1, 1} and σ(θ−1)+p−θ
by (1.31)-(1.32), we achieve that

‖f‖(p−σ)
0 ≤ C, (1.64)

as required. Consequently, Lemma 4 gives ‖Du‖(1−σ)
0 ≤ C(‖f‖(p−σ)

0 + ‖u‖(−σ)
0 ). In

turn, by (1.63) and (1.64), we obtain

‖Du‖(1−σ)
0 <∞. (1.65)

Hence, by (1.63) and (1.65) we have u ∈ Eσ. In this way, we can define the operator
T : P → P by means of u = T (v), in particular, T maps P into P because of the
maximum principle, furthermore nonnegative solutions of (3) in Eσ coincide with
the fixed points of T in P .

We continue by showing a fundamental property of the operator T .

Lemma 5. The operator T : P → P is compact.
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Proof. Proceeding as in [17], we show continuity first: let (vn)n ⊂ P such that
vn → v in Eσ and denote T (vn) = un. In particular, vn → v and Dvn → Dv
uniformly on compact sets of Ω, so that the continuity of h implies

h(·, vn, Dvn)→ h(·, v,Dv) uniformly on compact sets of Ω. (1.66)

Moreover, since vn is bounded in Eσ, similarly as in (1.61) we also have that

h(·, vn, Dvn) ≤ Cd−(1−σ)θ in Ω (1.67)

for a constant C that does not depend on n, and the same is true for v after passing
to the limit. We claim that

sup
Ω

[dλ|h(·, vn, Dvn)− h(·, v,Dv)|]→ 0 as n→∞, (1.68)

for every λ > (1− σ)θ. Indeed, if we take ε > 0 then

dλ|h(·, vn, Dvn)− h(·, v,Dv)| ≤ Cdλ−θ(1−σ) ≤ Cδλ−θ(1−σ) ≤ ε

if d ≤ δ, by choosing a δ small enough. When d ≥ δ,

dλ|h(·, vn, Dvn)− h(·, v,Dv)| ≤ (sup
Ω
d)λ|h(·, vn, Dvn)− h(·, v,Dv)| ≤ ε

just by choosing n ≥ n0 by (1.66) since we are in a compact set. This shows (1.68).
Now we can use Lemma 3, applied with γ = σ ∈ (0, 1) and

f = vmn − vm + h(·, vn, Dvn)− h(·, v,Dv). (1.69)

Note that, from (1.68) with λ = p− σ(p− 1), we have

sup
Ω

[dp−σ(p−1)|h(·, vn, Dvn)− h(·, v,Dv)|]→ 0 as n→∞, (1.70)

since p−σ(p−1) > (1−σ)θ by (1.31), (1.32). Furthermore, by p−σ(p−1)+σm > 0
from m > p− 1, we obtain

dp−σ(p−1)|vmn − vm| ≤ dp−σ(p−1)+σm
(
‖vn − v‖(−σ)

0

)m
≤ C

(
‖vn − v‖(−σ)

0

)m
.

Then, taking the supremum over Ω, we achieve

sup
Ω

[dp−σ(p−1)|vmn − vm|]→ 0 as n→∞. (1.71)

Thus, we get

‖T (vn)− T (v)‖(−σ)
0 ≤ C

[
‖f‖(p−σ(p−1))

0

]1/(p−1)

.
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Now, taking into account (1.70) and (1.71), we have by (1.69)

sup
Ω
d−σ
∣∣∣T (vn)− T (v)

∣∣∣→ 0 as n→∞. (1.72)

Moreover, we can apply Lemma 4 with f as in (1.69) and η = p−σ(p− 1) ∈ (1, p)
since σ < 1. From (1.68) with λ = p− σ we have

sup
Ω

[dp−σ|h(·, vn, Dvn)− h(·, v,Dv)|]→ 0 as n→∞, (1.73)

thanks to p− σ > (1− σ)θ by (1.31), (1.32). Following the same technique to get
(1.71), since p+ σ(m− 1) > 0 from m > max{p− 1, 1}, we arrive to

sup
Ω

[dp−σ|vmn − vm|]→ 0 as n→∞. (1.74)

Therefore, we get

‖D(T (vn)− T (v))‖(1−σ)
0 ≤ C

(
‖f‖(p−σ)

0 + ‖T (vn)− T (v)‖(−σ)
0

)
.

Thus, by reason of (1.72), (1.73) and (1.74), we achieve

sup
Ω
d1−σ

∣∣∣D(T (vn)− T (v)
)∣∣∣→ 0 as n→∞. (1.75)

Combining (1.72) and (1.75), the continuity of the operator T is verified. To prove
compactness, let (vn)n ⊂ P be bounded. Thus, (1.67) holds. By (1.16) we obtain
that for every Ω′ ⊂⊂ Ω the C1,β norm of T (vn) in Ω′ is bounded. Therefore, we
may assume by passing to a subsequence that T (vn) → u in C1

loc(Ω). Following
the same technique above we have

sup
Ω

{
d−σ|T (vn)− u|+ d1−σ|D(T (vn)− u)|

}
→ 0 as n→∞,

which shows compactness. The proof is so concluded.

As last ingredients, the proof of Theorem 1 relies on the use of the following
suitable version of a degree theorem by Krasnosel’skii (cfr. [84, 35] see also [46]).

Theorem 12. Suppose that (E, ‖.‖) is an ordered Banach space with positive cone
P , and U ⊂ P is an open bounded set containing 0. Let ρ > 0 be such that
Bρ(0) ∩ P ⊂ U . Assume K : U → P is compact and satisfies

(a) for every µ ∈ [0, 1), we have u 6= µK(u) for every u ∈ P with ‖u‖ = ρ;
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(b) there exists ψ ∈ P \ {0} such that u − K(u) 6= tψ, for every u ∈ ∂U , for
every t ≥ 0.

Then K has a fixed point in U \Bρ(0).

Finally we are in position to prove Theorem 1, whose statement is given in the
Introduction.

Proof of Theorem 1. Adapting the main ideas in Theorem 2 in [17] and Lemma
3.1 in [101], it is enough to apply Theorem 12 with E = Eσ as a Banach space with

the norm ‖·‖ = ‖·‖(−σ)
1 and with K = T a continous and compact operator, thanks

to Lemma 5. Following the proof of Theorem 2 in [17], assume by contradiction
u = µT (u) for some µ ∈ [0, 1) and u ∈ P . This is equivalent to{

−∆pu = µp(um + h(x, u,Du)) in Ω,

u(x) = 0 on ∂Ω,
(1.76)

By the growth condition (6) on h and µ < 1, we get that f = µ(um + h) can be
bounded by

f(x, u,Du) ≤ Cd(σ−1)θ(‖u‖m + ‖u‖s + ‖u‖θ). (1.77)

Now, we apply Lemma 3 with γ = σ ∈ (0, 1) and f = µ(um + h), such that

‖f‖(p−σ(p−1))
0 <∞ indeed, by (1.77),

f(x, u,Du)dp−σ(p−1) ≤ Cd(σ−1)θ+p−σ(p−1)(‖u‖m + ‖u‖s + ‖u‖θ)
≤ C(‖u‖m + ‖u‖s + ‖u‖θ)

from the positivity of the exponent (σ−1)θ+p−σ(p−1) by (1.31), (1.32). Thus,
Lemma 3 gives the existence of a positive constant C such that

d−σ|u(x)| ≤ C
[
‖f‖(p−σ(p−1))

0

] 1
p−1 ≤ C

(
‖u‖m + ‖u‖s + ‖u‖θ

) 1
p−1
. (1.78)

On the other hand, we use Lemma 4 with f = µ(um + h) in problem (1.76) and

η = p−σ(p−1), provided that η ∈ (1, p) and ‖f‖
(
η+p(p−2)
p−1

)

0 <∞. The first condition
produces σ < 1. From (1.77), we get

f(x, u,Du)dp−σ ≤ Cd(σ−1)θ+p−σ(‖u‖m + ‖u‖s + ‖u‖θ)
≤ C(‖u‖m + ‖u‖s + ‖u‖θ),

(1.79)

because (σ − 1)θ + p− σ > 0 thanks to (1.31),(1.32), so also the second condition
is verified. Hence, Lemma 4 guarantees the existence of a positive constant C such
that

d1−σ|Du(x)| ≤ C
[
‖f‖(p−σ)

0 + ‖u‖(−σ)
0

]
.
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Thus, by reason of (1.78) and (1.79), we have

d1−σ|Du(x)| ≤ C
(
‖u‖m + ‖u‖s + ‖u‖θ + (‖u‖m + ‖u‖s + ‖u‖θ)

1
p−1

)
(1.80)

In turn, using (1.78) and (1.80), by the definition of ‖ · ‖,

‖u‖ ≤ C
(
‖u‖

m
p−1 + ‖u‖

s
p−1 + ‖u‖

θ
p−1 + ‖u‖m + ‖u‖s + ‖u‖θ

)
.

Since m, s, θ > max{p − 1, 1} from (4), (5) and (7), this implies that ‖u‖ > ρ
for some positive ρ. Thus, there are no solutions of u = µT (u) if ‖u‖ = ρ and
µ ∈ [0, 1), so that the proof of (a) is completed.

To check (b), we follow the idea in the proof of Lemma 3.1 in [101]. Take
ψ ∈ P to be the unique solution of the problem (1.20). We claim that there are
no solutions in P of the equation u − T (u) = tψ for t ≥ 0. For this purpose we
note that the last equation is equivalent to{

−∆pu = um + h(x, u,Du) + t in Ω,

u(x) = 0 on ∂Ω.
(1.81)

Take w =
(
t
2

) 1
p−1
ψ, then from the nonnegativity of h(x, u, η) and u, it follows that

−∆pw = t
2
≤ t ≤ −∆pu in Ω and u = w on ∂Ω. Using the comparison lemma (see

[132]), we see that u ≥ w in Ω. Hence

max
Ω

w =
( t

2

) 1
p−1

max
Ω

ψ ≤ max
Ω

u.

Taking ψM = maxΩ ψ > 0 by (1.20), then problem (1.81) admits solution if we

take into account t ≤ 2
(maxΩ u

ψM

)p−1

:= C, consequently for t > C no solutions of

(1.81) can exist. But, if t ≤ C, assumption (1.34) is in force and in turn, thanks
to Theorem 11, the uniform estimate ‖u‖ ≤ M is clearly true for some M > 0.
Thus, Theorem 12 can be applied with U = BM(0) ∩ P and the existence of a
solution in P follows. This solution is positive, by virtue of maximum principle.
This completes the proof.



Chapter 2

Critical (p, q)-Laplacian problems

in RN

In this chapter we treat multiplicity and existence results for an elliptic problem
of (p, q)-Laplacian type involving a critical term, nontrivial nonnegative weights
and a positive parameter λ, whose prototype is given by (8). In particular, the
main results of this chapter are contained in the following recent papers [13, 14, 15].

An important example, widely studied, in which a subcase of problem (8)
appears, is the study of solitary waves or solitons which are special solutions whose
profile remains unchanged under the evolution in time, of the nonlinear Schrödinger
equation see [29], [38] and [129], of the typical form

i∂tψ + ∆ψ + ∆qψ − U(x)ψ + |ψ|k−1ψ = 0, 2 < k < 2∗, (2.1)

where i is the imaginary unit and the function U is the potential. This class of
equations was proposed by Derrick in [48] as a model for elementary particles.
In particular, a function ψ(x, t) = e−iωtu(x) is a standing-wave solution of (2.1),
where ω ∈ R is the energy, if and only if the function u satisfies

−∆u−∆qu+ [U(x)− ω]u = |u|k−1u.

The subcase of (2.1) when q = 2 and a cubic nonlinearity, k = 3, is involved is
called the Gross-Pitaevskii equation.

We work on unbounded domains where the loss of compactness of the Sobolev
embeddings shows up and this is underlined by the presence of the critical expo-
nent in the nonlinearity. Thus, variational techniques are more delicate to apply.
In particular, one of the main common difficulties lies on the application of the
second concentration compactness by Lions [94] which requires the tight conver-
gence of a certain sequence of measures. This property, up to subsequences, follows

41
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immediately if we consider a bounded sequence (un)n in D1,p(Ω) with Ω bounded,
indeed by standard extensions theorems we may assume, without loss of general-
ity that (un)n ⊂ D1,p(RN) and |un|p

∗ ∗
⇀ ν. Contrarily, in the case of a bounded

sequence (un)n in D1,p(RN), to obtain the tight convergence, we need to perform
a deeper study.

Moreover, technical difficulties arise in applying usual elliptic methods for exis-
tence of weak solutions of (8), due to the fact that the operator is not homogeneous
and to the presence of nontrivial weights.

In Chapter 2, we denote withX the reflexive Banach spaceD1,p(RN)∩D1,q(RN),
where D1,p(RN) = {u ∈ Lp∗(RN) : Du ∈ Lp(RN)}, endowed with the norm

‖u‖ := ‖u‖X = ‖u‖D1,p(RN ) + ‖u‖D1,q(RN ) = ‖Du‖p + ‖Du‖q (2.2)

and ‖ · ‖p is the Lp norm in RN . Furthermore, we denote by S the Sobolev’s
constant, i.e

S = inf

{‖Du‖pp
‖u‖pp∗

: u ∈ D1,p(RN), u 6= 0

}
. (2.3)

We recall that the value S is achieved in D1,p(RN), for details we refer to Appendix
A in [61].

While the setting which characterizes Section 2.4 is described as follows. Con-
sider a group T ⊂ O(N), where O(N) is the group of orthogonal linear transfor-
mations in RN . Precisely, we assume that the weights V and K are T -symmetric
(or T -invariant), where for a T -symmetric function f : Ω → RN we mean that
f(τx) = f(x) for all τ ∈ T and x ∈ Ω, with Ω an open T -symmetric (or T -
invariant) subset of RN , that is if x ∈ Ω, then τx ∈ Ω for all τ ∈ T . In particular,
denoting with |Tx| the cardinality of a T -orbit Tx := {τx|τ ∈ T} with |T∞| := 1
and, necessarily, |T0| = 1, then we set

|T | := inf
x∈RN , x6=0

|Tx|.

For example, even functions are T -symmetric functions with T = {id,−id}, thus
|T | = 2, and radially symmetric functions are T -symmetric functions if T = O(N),
thus |T | =∞.

We denote withD1,p
T (RN) the subspace ofD1,p(RN) consisting of all T -symmetric

functions, in turn XT = D1,p
T (RN) ∩D1,q

T (RN).
This chapter is divided into four sections. Section 2.1 is composed by four

subsections: Subsections 2.1.1 and 2.1.2 concern, respectively, the analysis of the
regularity of the energy functional associated to the problem and the property of
boundedness of any (PS)c sequence for the energy functional common to all situa-
tions. Then, Subsection 2.1.3, sheds light on concentration compactness principle
by Lions, up to the principle at infinity developed by Chabrowski in [34], with a
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special attention to the property of tightness and the role of symmetry. Finally,
Sections 2.1.4 is about some main tools used in our results, such as the The-
ory of Genus by Krasnosel’skii, the Mountain Pass and the Fountain Theorems.
The last three Sections are dedicated to the proofs of the main results for critical
(p, q)-Laplacian problems in RN . In particular, the topic of Section 2.2 is the mul-
tiplicity result in the p-sublinear and q-superlinear case for solutions with negative
energy contained in [13], while Section 2.3 consists of an existence result in the
p-superlinear case via the Mountain Pass Theorem included in [15]. Finally, the
existence and multiplicity results under a symmetric setting in [14] are investigated
in Section 2.4.

2.1 Preliminaries and tools

This section deals with the main tools needed in the proofs of existence and
multiplicity results Theorems 2-5, whose statements are given in the Introduction.

2.1.1 Regularity of the energy functional

We will start by the analysis of the energy functional associated to our problem
(8). Of course, the functional Eλ defined in (11) is well defined in X, indeed if
u ∈ X, by Hölder’s inequality with the exponents r = p∗/(p∗ − k), r′ = p∗/k, we
have

Eλ(u) ≤ 1

p
‖u‖p +

1

q
‖u‖q +

λ

k
‖V ‖r‖u‖kp∗ +

1

p∗
‖K‖∞‖u‖p

∗

p∗ <∞,

thanks to (9) and (10).
The proof of the regularity of Eλ is almost standard, but for completeness we

include it. Obviously, it is enough to study the regularity of the functionals

Ĵ(u) =

∫
RN
V |u|kdx and Ĥ(u) =

∫
RN
K|u|p∗dx. (2.4)

First, we analyze the regularity of Ĵ .

Lemma 6. If V ∈ Lr
(
RN
)
, then Ĵ is weakly continuous on D1,p(RN). Moreover,

Ĵ is continuously differentiable and Ĵ ′ : D1,p(RN)→ [D1,p(RN)]′ is given by

Ĵ ′(u)ψ = k

∫
RN
V |u|k−2uψdx, (2.5)

for all ψ ∈ D1,p(RN).
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Proof. Let (un)n ∈ D1,p(RN) such that un ⇀ u inD1,p(RN), thus un ⇀ u in Lp
∗
(RN)

and (un)n is bounded in D1,p(RN), in Lp
∗
(RN) and also (|un|k)n in Lp

∗/k(RN) since
we have ‖|un|k‖p∗/k = ‖un‖kp∗ . Furthermore, by the compactness of the embedding,
up to subsequences,

un → u in Ls(ω), ω b RN , 1 ≤ s < p∗.

Consequently, by using an increasing sequence of compact sets whose union is RN

and a diagonal argument, we also have

un(x)→ u(x) a.e. in RN . (2.6)

In turn, by Hölder’s inequality, ‖V |un|k‖1 ≤ C‖V ‖r < ∞ by (9) so that using
Lebesgue dominated convergence Theorem we have

Ĵ(un) =

∫
RN
V |un|kdx→

∫
RN
V |u|kdx = Ĵ(u),

namely, weak continuity holds. In order to prove Ĵ ∈ C1 it is enough to show that
Ĵ has continuous Gâteaux derivative. Let u, ψ ∈ D1,p(RN) and 0 < |t| < 1, it
follows

Ĵ(u+ tψ)− Ĵ(u)

t
=

∫
RN
V
|u+ tψ|k − |u|k

t
dx, (2.7)

By the mean value Theorem there exists λ ∈ (0, 1) such that∣∣|u+ tψ|k − |u|k
∣∣

t
= k|u+ λtψ|k−1|ψ| ≤ k

(
|u|k−1|ψ|+ |ψ|k

)
.

We now use Hölder’s inequality twice with exponents r, p∗/(k− 1), p∗ and r, p∗/k
respectively, so that∫

RN
V
(
|u|k−1|ψ|+ |ψ|k

)
dx ≤ ‖V ‖r‖ψ‖p∗

(
‖u‖k−1

p∗ + ‖ψ‖k−1
p∗

)
.

that is V
(
|u|k−1|ψ| + |ψ|k

)
∈ L1(RN), thus, by letting t → 0 in (2.7), thanks

to the Lebesgue dominated convergence Theorem, we have that Ĵ is Gâteaux
differentiable and (2.5) holds with ′ in the Gâteaux sense.

In order to check the differentiability of Ĵ , it remains to prove continuity of
the Gâteaux derivative. Let un → u in D1,p(RN) then un → u in Lp

∗
(RN), thus

there exists U ∈ Lp∗(RN) such that |un(x)| ≤ U(x) a.e. in RN . For simplicity let
W (u) = V |u|k−2u and we show that W (u) ∈ L(p∗)′(RN), indeed

|W (u)|(p∗)′ = |V |(p∗)′ |u|(k−1)(p∗)′ ≤ |V |r + |u|p∗ ,
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where in the last inequality we have applied Young’s inequality with exponents
r/(p∗)′ and (p∗ − 1)/(k − 1). Thus, for c > 0, we have

|W (un)−W (u)|(p∗)′ ≤ c(|W (un)|(p∗)′+|W (u)|(p∗)′) ≤ c
(
|V |r+|U |p∗+|u|p∗

)
∈ L1(RN),

so that by Lebesgue dominated convergence Theorem, we get

lim
n→∞

∫
RN
|W (un)−W (u)|(p∗)′dx = 0 (2.8)

since, W (un(x))→ W (u(x)) a.e. in RN , by continuity of W .
Finally, by Hölder’s inequality, for all ψ ∈ D1,p(RN), we have

|
(
Ĵ ′(un)− Ĵ ′(u)

)
ψ| ≤ k

∫
RN
|W (un)−W (u)||ψ|dx ≤ k‖W (un)−W (u)‖(p∗)′‖ψ‖p∗ ,

consequently,

‖Ĵ ′(un)− Ĵ ′(u)‖[D1,p(RN )]′ ≤ C‖W (un)−W (u)‖(p∗)′ → 0

as n → ∞ thanks to (2.8). Actually, we have proved that for every sequence
un → u in D1,p(RN), there is a subsequence respect to which Ĵ ′ is sequentially
continuous, from this it is an elementary exercise to conclude that Ĵ ′ is sequentially
continuous in all of [D1,p(RN)]′. In turn, Ĵ ∈ C1.

Analogously, it holds the following.

Lemma 7. If K ∈ L∞(RN), then Ĥ is continuously differentiable in D1,p(RN)
and its derivative Ĥ ′ : D1,p(RN)→ [D1,p(RN)]′ is given by

Ĥ ′(u)ψ = p∗
∫
RN
K|u|p∗−2uψdx,

for all ψ ∈ D1,p(RN).

Finally, using the continuity of the embedding D1,p(RN) ↪→ Lp
∗
(RN), so that

if un → u in X, that is un → u D1,p(RN) and in D1,q(RN), then

un → u in Lp
∗
(RN), Dun → Du in Lp(RN) and in Lq(RN).

Since the first two terms of Eλ are norms with exponents p, q > 1, and thanks to
Lemmas 6 and 7, then immediately Eλ ∈ C1(X), with E ′λ : X → X ′ defined by

E ′λ(u)ψ =

∫
RN
|Du|p−2DuDψdx+

∫
RN
|Du|q−2DuDψdx

− λ
∫
RN
V |u|k−2uψdx−

∫
RN
K|u|p∗−2uψdx.

(2.9)
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for all u, ψ ∈ X.
A weak solution of problem (8) is a function u ∈ X such that

E ′λ(u)ψ = 0 for all ψ ∈ X,

that is u is a critical point of the functional Eλ or equivalently, by (2.9), u satisfies
the weak formulation of problem (8), namely∫

RN
|Du|p−2DuDψdx+

∫
RN
|Du|q−2DuDψdx

= λ

∫
RN
V |u|k−2uψdx+

∫
RN
K|u|p∗−2uψdx

(2.10)

for all ψ ∈ X.
In the case of results under a symmetric setting, we restrict the energy func-

tional Eλ in XT , the space of T -symmetric functions. Thus, a critical point u ∈ XT

of Eλ is not necessarily a solution of problem (8). For this reason, we have to take
into account the following principle due to Palais in [106], knows in the literature
as the principle of symmetric criticality, cfr. also [111], which states the following

for all ϕ ∈ C1(W,R) and G-invariant if u is a critical

point of ϕ restricted to Σ then u is a critical point of ϕ,
(PSC)

where G is a group acting on the Banach spaceW and Σ = {u ∈ W : gu = u, g ∈ G}.
Roughly speaking, this principle says that for every G-invariant C1 functional ϕ,
then Σ is a natural constraint for ϕ. For completeness, we report Theorem 5.6.27
in [111] which guarantees the validity of condition (PSC) in our setting.

Theorem 13. If W is a Banach space and G is a compact topological group acting
on W , then the (PSC) holds.

Remark 4. Often Lie groups arise as subgroups of certain larger Lie groups. For
example, the orthogonal group O(N), which is a compact, but not connected, Lie
group, is a subgroup of the general linear group of all invertible matrices. Hence,
every T ⊂ O(N) subgroup, being closed, is a compact Lie group, for further details
we refer to Section 1.2 in [105]. Thus, applying to Theorem 13 with G = T ,
W = X and Σ = XT , any critical point of Eλ in XT is also a weak solution of (8)
in X.

From the Remark above, we get that u ∈ XT satisfies problem (8) if and only
if (2.10) holds for all ψ ∈ X.
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2.1.2 Boundedness of Palais Smale sequences

Let us briefly give the well known definitions of (PS)c sequence and the (PS)c
condition for a given functional.

Definition 1. Let Y be a Banach space and E : Y → R be a differentiable
functional. A sequence (un)n ⊂ Y is called a (PS)c sequence for E if E(un) → c
and E ′(un)→ 0 as n→∞. Moreover, we say that E satisfies the (PS)c condition
if every (PS)c sequence for E has a converging subsequence in Y .

In the next result, we prove a remarkable property of (PS)c sequences for the
functional Eλ defined in (11). We point out that here the value k satisfies a very
general assumption.

Lemma 8. Assume 1 < k < p∗, 1 < q ≤ p. Let (9) and (10) be verified and let
(un)n ⊂ X be a (PS)c sequence for Eλ for all c ∈ R. Then (un)n is bounded in X.

In particular, if 1 < k < p and c < 0, it holds

‖un‖p∗ ≤ C∗λ
1/(p−k), C∗ =

[
N(p∗ − k)

Skp∗
‖V ‖r

]1/(p−k)

, (2.11)

where S is the Sobolev’s constant.

Proof. Let (un)n ⊂ X be a (PS)c sequence for Eλ for all c ∈ R namely, by Definition
1,

Eλ(un) = c+ o(1), E ′λ(un) = o(1) as n→∞,
so that |E ′λ(un)(un)| ≤ ‖un‖ for n large. Now we divide the proof in two cases.

Case 1 < k < p: by (2.9), thanks to (2.3) and Hölder’s inequality with expo-
nents r and r′ we have

c+ o(1) + o(1)‖un‖ = Eλ(un)− 1

p∗
E ′λ(un)un

≥
(

1

p
− 1

p∗

)
‖Dun‖pp +

(
1

q
− 1

p∗

)
‖Dun‖qq

− λ
(

1

k
− 1

p∗

)
S−k/p‖V ‖r‖Dun‖kp

(2.12)

where we have used that V ∈ Lr(RN) and ‖u‖p∗S1/p ≤ ‖Du‖p for all u ∈ D1,p(RN).
Consequently, writing explicitly ‖ · ‖ given in (2.2), we get

c+ ‖un‖D1,q − c2‖un‖qD1,q ≥ c1‖un‖pD1,p − λc3‖un‖kD1,p − ‖un‖D1,p , (2.13)

where c1, c2, c3 are positive constants independent of n. From (2.13) it immediately
follows that (‖un‖)n should be bounded, indeed, if there exists a subsequences
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(un)n such that ‖un‖D1,q → ∞ and (‖un‖D1,p)n bounded, then by letting n → ∞
in (2.13) we obtain a contradiction since the left hand side goes to −∞, being q > 1
while the right term is bounded. Again, up to subsequences, if ‖un‖D1,p → ∞ as
n→∞ and (‖un‖D1,q)n is bounded, then by letting n→∞ in (2.13) we obtain a
contradiction since the right hand side goes to ∞, being p > 1 and p > k, while
the left term is bounded. Finally if ‖un‖D1,p , ‖un‖D1,q → ∞, up to subsequences,
then the left hand side of (2.13) goes to −∞ while the right goes to ∞. This last
contradiction concludes the proof of the first case.

Case p ≤ k < p∗: arguing as in (2.12), with 1/p∗ replaced by 1/k, since
K(x) ≥ 0 in RN , we obtain

c+ ‖un‖D1,q − c′2‖un‖
q
D1,q ≥ c′1‖un‖

p
D1,p − ‖un‖D1,p , (2.14)

where c′1, c
′
2 are positive constants independent of n. From (2.14), using a similar

argument as in the first case, it follows that (‖un‖)n should be bounded in X.
To obtain (2.11), it is enough to observe that using the boundedness of (un)n,

from (2.12), being c < 0, it follows, for n large, that

1

N
‖Dun‖pp − λ

(
1

k
− 1

p∗

)
S−k/p‖V ‖r‖Dun‖kp ≤ 0,

so that

‖Dun‖p−kp ≤ λS−k/p
N(p∗ − k)

kp∗
‖V ‖r,

which yields (2.11) by virtue of Sobolev’s inequality and for 1 < k < p.
Thus, the proof is completed.

We end this subsection giving the following convergence result, that is Lemma
2.7 in [89], used in proving the (PS)c property for the energy functional.

Lemma 9. Let Ω be an open set in RN and ζ, β positive numbers. Suppose
a(x, ξ) ∈ C(Ω× RN ,RN) such that

1. ζ|ξ|s ≤ a(x, ξ)ξ for all (x, ξ) ∈ Ω× RN ;

2. |a(x, ξ)| ≤ β|ξ|s−1 for all (x, ξ) ∈ Ω× RN ;

3. (a(x, ξ)− a(x, η))(ξ − η) > 0 for x ∈ Ω and ξ, η ∈ RN , ξ 6= η.

Consider (un)n, u ∈ W 1,s(Ω), s > 1, then Dun → Du in Ls(Ω) if and only if

lim
n→∞

∫
Ω

(
a(x,Dun(x))− a(x,Du(x))

)(
Dun(x)−Du(x)

)
dx = 0.
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2.1.3 Concentration compactness principles and the role

of symmetry

In this subsection we shed light on concentration compactness principles by
Lions and on the property of tightness, which plays an important role in Lions’s
principles.

As soon as the papers by Lions in [94] and [96] appeared, the concentration com-
pactness principles in the calculus of variations have been widely used by many
authors to examine the behaviour of weakly convergent sequences in Sobolev’s
spaces in situations where the lack of compactness occurs either due to appear-
ance of a critical Sobolev exponent or due to the unboundedness of a domain.
The application of these principles helps to find level sets of a given variational
functional for which the Palais Smale condition holds.

The first concentration compactness principle is known as the locally compact
case, Lemma I.1 in [94], and the second concentration compactness principle is
known as critical or non compact case, Lemma I.1 in [96].

Before stating the first concentration compactness lemma, we recall, for com-
pleteness, some well known notions, following [63]. Let Y be a locally compact
Hausdorff space and let M(Y,R) be the space of all finite signed Radon measures
(cfr. Definitions 1.5, 1.166 and 1.55 in [63]). In this setting, we have

(C0(Y ))′ = M(Y,R),

where C0(Y ) is the space of all continuous functions that vanish at infinity or,
equivalently, it is the completion of Cc(Y ), i.e. the space of all functions whose
support is compact, relative by the supremum norm ‖ · ‖∞. First, we recall the
definition of the (standard) convergence of measures, also called in some works,
[96], [97] and [104], weak convergence of measures.

Definition 2. A sequence of measures (µn)n ∈ M(Y,R) converges (standard or
weakly) to a measure µ ∈M(Y,R), that is µn ⇀ µ, if for every ϕ ∈ C0(Y )∫

Y

ϕdµn →
∫
Y

ϕdµ, as n→∞.

Equivalently, the (standard or weak) convergence of measures is the weak star
convergence of measures respect to (C0(Y ))′.

Now, let Cb(Y ) be the space of real bounded functions defined in Y and we
report the definition of tight convergence of measures in the same setting as above.

Definition 3. A sequence of measures (µn)n ∈ M(Y,R) converges tightly to a

measure µ ∈M(Y,R), that is µn
∗
⇀ µ, if for every ϕ ∈ Cb(Y )∫

Y

ϕdµn →
∫
Y

ϕdµ, as n→∞.
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Equivalently, the tight convergence of measures is the weak star convergence respect
to (Cb(Y ))′.

Remark 5. It is known that the dual spaces of Cc(Y ) and C0(Y ) coincide, up
to isomorphisms, while (Cb(Y ))′ is larger. Thus, the tight convergence is stronger
than the (standard or weak) convergence of measures, unless Y is compact, since
in this case C0(Y ) = Cc(Y ) = Cb(Y ), so that (Cb(Y ))′ is still the set of signed
Radon measures. Of course if Y is only bounded, the above equalities hold for Y .
If Y is unbounded, then the dual of Cb(Y ) is the space of regular finitely additive
signed measures (see Sections 1.3.3 and 1.3.4 in [63]).

Now we are ready to present the first concentration compactness lemma, Lemma
I.1 in [94].

Lemma 10. Let (ρn)n be a sequence in L1(RN) satisfying

ρn ≥ 0 in RN ,

∫
RN
ρndx = Λ,

where Λ > 0 is fixed. Indeed, up to a subsequence, one of the following three
situations hold:

(a) (Compactness) There exists a sequence (yn)n in RN such that ρn(·+ yn) is
tight that is for any ε > 0 there exists 0 < Rε <∞ for which∫

BRε (yn)

ρn(x)dx ≥ Λ− ε for all n ∈ N large.

(b) (Vanishing) For all R > 0 there holds

lim
n→∞

(
sup
y∈RN

∫
BR(y)

ρn(x)dx

)
= 0.

(c) (Dichotomy) There exists ` ∈ (0,Λ) such that for any ε > 0 there exist
R > 0, (Rn)n, with R < Rn → ∞, (yn)n in RN , n0 ≥ 1 such that for n ≥ n0, it
holds ∣∣∣∣∫

BR(yn)

ρn(x)dx− `
∣∣∣∣ < ε∣∣∣∣∫

RN\BRn (yn)

ρn(x)dx + `− Λ

∣∣∣∣ < ε∣∣∣∣∫
Dn

ρn(x)dx

∣∣∣∣ < ε, Dn = BRn(yn) \BR(yn).
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Theorem 1.208 (Prohorov) in [63], reported below, gives a sufficient condition
to obtain the tight convergence for a sequence of bounded Borel measures.

Theorem 14. Let Y be a metric space and let (µn)n be a sequence of bounded
Borel measure. Assume that for all ε > 0 there exists a compact set Kε ⊂ Y such
that

sup
n

[µn(Y \Kε)] ≤ ε. (2.15)

Then there exist a subsequence (µnk)k ⊂ (µn)n and a Borel measure µ such that

µnk
∗
⇀ µ.

Remark 6. From Proposition 1.202 in [63], any sequence of bounded measures
admits a subsequence which converges in the sense of Definition 2. Thus, from
Theorem 14, to obtain the tight convergence in the sense of Definition 3, we need,
in addition to the boundedness of the sequence, that for all ε > 0 there exists a
compact set Kε such that (2.15) holds. From Lemma 10, the compactness condition
(a) assert that, for the translated measures µn := ρn(yn + ·) condition (2.15) is
satisfied, therefore, the sequence of translated measures (µn)n admits a subsequence
which converges tightly.

Prohorov’s Theorem, as pointed out in [104], was used by Lions in [94] to
characterize the property of tightness through the following definition.

Definition 4. A sequence (ρn)n ∈ L1(RN) is called tight if for every ε > 0 there
exists R > 0 such that∫

RN\BR(0)

|ρn|dx < ε, for every n ∈ N.

The convergence of measures (ρndx)n is called convergence tight if (ρn)n is a tight
sequence.

The second concentration compactness principle, Lemma I.1 in [96] stated be-
low, roughly speaking, regards a possible concentration of a weakly convergent
sequence at finite points, precisely

Lemma 11. Assume Ω ⊂ RN a domain, 1 ≤ p < N . Let (un)n be a bounded
sequence in D1,p(Ω) converging weakly to some u and such that |Dun|p ⇀ µ and

either |un|p
∗
⇀ ν if Ω is bounded or |un|p

∗ ∗
⇀ ν if Ω is unbounded, where µ, ν are

bounded nonnegative measures on Ω. Then there exist some at most countable set
J such that

(i) ν = |u|p∗ +
∑

j∈J νjδxj , νj ≥ 0,
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(ii) µ ≥ |Du|p +
∑

j∈J µjδxj , µj ≥ 0,

(iii) Sν
p/p∗

j ≤ µj,
∑
j∈J

ν
p/p∗

j <∞,

where (xj)j∈J are distinct points in Ω, δx is the Dirac-mass of mass 1 concentrated
at x ∈ Ω and S is the Sobolev’s constant.

In the unbounded case, no concentration at infinity or, equivalently, tightness
can be proved either directly, by the definition, or indirectly using the first concen-
tration compactness principle, by showing that vanishing and dichotomy cannot
occur.

In some situations, the proof of the not validity of dichotomy often leads
to rather cumbersome and tricky calculations. To get rid of these difficulties,
Chabrowskii shows for the Laplacian case how one can avoid the use of the first
concentration compactness principle by applying a version at infinity of the sec-
ond principle, cfr. Proposition 2 in [34], see also Bianchi et al. in [25]. Later
Ben-Naoum et al. in [22] obtain the following result to p-Laplacian, Proposition
3.3 in [22].

Proposition 1. Let (un)n be a bounded sequence in D1,p(RN) and define

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|p
∗
dx, µ∞ = lim

R→∞
lim sup
n→∞

∫
|x|>R

|Dun|pdx. (2.16)

Then, the quantities ν∞ and µ∞ exist and satisfy

lim sup
n→∞

∫
RN
|un|p

∗
dx =

∫
RN
dν + ν∞, (2.17)

lim sup
n→∞

∫
RN
|Dun|pdx =

∫
RN
dµ+ µ∞, (2.18)

Sνp/p
∗

∞ ≤ µ∞, (2.19)

where ν and µ are as in (i) and (ii) in Lemma 11 and such that (iii) is valid.

For completeness, we give here the key point of the proof of (2.17) following [22].
From the boundedness of a sequence (un)n in D1,p(RN), up to subsequence, it is
guaranteed the existence of a bounded positive measures ν, µ such that (|un|p

∗
dx)n

and (|Dun|pdx)n converge weakly in the sense of measures respectively to ν and
µ. Thus,

lim sup
n→∞

∫
RN
|un|p

∗
= lim

n→∞

∫
RN∩{|x|≤R}

|un|p
∗

+ lim sup
n→∞

∫
RN∩{|x|>R}

|un|p
∗

= lim
n→∞

∫
RN∩{|x|≤R}

dν + lim sup
n→∞

∫
RN∩{|x|>R}

|un|p
∗ →

∫
RN
dν + ν∞, R→∞,
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where ν∞ is given in (2.16)1, while Lemma 11 is applied in the bounded set given
by Ω = RN ∩ {|x| ≤ R}. Similarly, (2.18) is clearly true.

To sum up, in order to prove Palais Smale condition at a certain level set for
a given variational functional, we need to reject concentration both around points
and at infinity, i.e. proving that νj = ν∞ = 0, for all j, in the spirit of the
first concentration compactness principle by Lions and concentration compactness
principle at infinity by Ben-Naoum et al., respectively.

Now we discuss the role of symmetry in the second concentration compactness
principle. It is well known that the embedding H1

0 (Ω) ↪→ Lq(Ω) is compact pro-
vided that Ω ⊂ RN is a bounded domain and q is subcritical, i.e. 1 < q < 2∗. This
kind of compactness plays a very important role in the study of nonlinear partial
differential equations as well as in the study of nonlinear elliptic equations and
it assures the Palais Smale condition. However, when spaces are invariant under
the action of some noncompact groups, the compactness of the embedding breaks
down. For example, the embedding H1(RN) ↪→ Lq(RN) with 2 < q < 2∗ is no
more compact because of the action of translations. Even if Ω is bounded, the
embedding H1

0 (Ω) ↪→ L2∗(Ω) is not compact because of the action of dilations.
At the same time, it is well known that the presence of symmetries has usually

the effect of producing additional solutions. Indeed, if the embedding is restricted
on the subspace with full symmetry, it recovers the compactness. For example,
the radially symmetric subspace H1

r (RN) ⊂ H1(RN) is embedded compactly in
Lq(RN) with 2 < q < 2∗, and for the case where Ω is an annulus, the radially
symmetric subspace H1

r (Ω) of H1
0 (Ω) is embedded compactly in L2∗(Ω). Thus, the

presence of the full symmetry saves the necessity of concentration compactness
principle at infinity.

In the setting of the invariance by a group of orthogonal transformation of
RN , as remarked in [97] Section 3.2 and in [98], the situation is quite easier for
minimization problems. Namely, the first concentration compactness principle,
under suitable symmetric condition, yields that dicothomy cannot occur. Thus we
have either vanishing or compactness and, usually, the property of vanishing can
be easily overcome so, in general, it remains compactness, called also tightness.

There have been a variety of papers such as [21, 79, 81] and [137] in which
the author proposes a version of the concentration compactness lemma with a
nonnegative nontrivial and T -symmetric weight K 6≡ 1 in the critical term of the
nonlinearity. In particular, in Lemma 4.3 in [137], the author requires, among
other conditions, for a sequence (un)n ⊂ D1,p

T (RN), that

K|(un − u)|p∗ ⇀ γ, (2.20)

with γ is a positive bounded measure. As discussed in Remark 4.6 in [137], con-
dition (2.20) is stronger than the usual condition |un − u|p∗ ⇀ ν and, defining
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γ∞ in the same way as ν∞, we have γ(x) = K(x)ν(x) for every x ∈ RN and
γ∞ ≤ K(∞)ν∞. Thus γ and ν concentrate at the same points if K > 0. Further,
if there exists lim|x|→∞K(x) = K(∞), then γ∞ = K(∞)ν∞.

2.1.4 Classical theorems

Now we recall briefly the definition of the genus inspired by [6]. Let Y be a
real Banach space and let

Σ = {A ⊂ Y \ {0} | A closed and symmetric u ∈ A⇒ −u ∈ A} .

Let A ∈ Σ, the genus of A, say γ (A), is defined as the smallest integer N such that
there exists Φ ∈ C

(
Y,RN\ {0}

)
such that Φ is odd and Φ (x) 6= 0 for all x ∈ A.

We set γ (∅) = 0 and γ (A) =∞ if there are no integers with the above property.
The main properties of genus are listed in the following proposition.

Proposition 2. Let A,B ∈ Σ, then

a) If there exists f ∈ C(A, Y ) odd, then γ(A) ≤ γ(f(A));

b) If A ⊂ B then γ(A) ≤ γ(B);

c) If there exists an odd homeomorphism between A and B, then γ(A) = γ(B);

d) If SN−1 is the unit sphere in RN then γ(SN−1) = N ;

e) γ(A ∪B) ≤ γ(A) + γ(B);

f) If γ(B) <∞ then γ(A \B) ≥ γ(A)− γ(B);

g) If A is compact then γ(A) < ∞. Moreover, there exists a δ > 0 such that
γ(A) = γ(Nδ(A)), where Nδ(A) = {x ∈ Y : d(x,A) ≤ δ};

h) If W is a subspace of X with codimension k and γ(A) > k then A∩W 6= ∅.

Remark 7. In particular, as emphasized by Struwe in Observation 5.5 in [128],
if A ∈ Σ is a finite collection of antipodal pairs ui and −ui, then γ(A) = 1.

For completeness, we recall the classical Deformation Lemma (see [117]).

Lemma 12. Let Y be a Banach space and consider f ∈ C1(Y,R), satisfying the
(PS)c condition. If c ∈ R and N is any neighborhood of

Kc,f := {u ∈ Y : f(u) = c, f ′(u) = 0} ,

then there exist η(t, u) = ηt(u) ∈ C([0, 1] × Y, Y ) and constants ε > ε > 0 such
that



55

1. η0(u) = u for all u ∈ Y ;

2. ηt(u) = u for all u /∈ f−1 [c− ε, c+ ε];

3. ηt(u) = u is a homeomorphism of Y onto Y , for all t ∈ [0, 1];

4. f(ηt(u)) ≤ f(u) for all t ∈ [0, 1] and for all u ∈ Y ;

5. η1(f c+ε\N) ⊂ f c−ε, where f c = {u ∈ Y : f(u) ≤ c}, for all c ∈ R;

6. if Kc,f = ∅, η1(f c+ε) ⊂ f c−ε;

7. if f is even, ηt is odd in u.

Let us introduce the following version of the Mountain Pass Theorem by Am-
brosetti and Rabinowitz in [7], whose statement takes into account also the Eke-
land’s Variational Principle.

Theorem 15. Let (V, ‖.‖V ) be a Banach space and take into account F ∈ C1(V ).
We assume that

(i) F (0) = 0,
(ii) There exist ζ, R > 0 such that F (u) ≥ ζ for all u ∈ V , with ‖u‖V = R,
(iii) There exists v0 ∈ V such that lim supt→∞ F (tv0) < 0.

Let t0 > 0 be such that ‖t0v0‖V > R and F (t0v0) < 0 and let

c := inf
γ∈Γ

sup
t∈[0,1]

F (γ(t)),

where
Γ := {γ ∈ C0([0, 1], V ) / γ(0) = 0 and γ(1) = t0v0}.

Then, there exists a Palais Smale sequence at level c, that is a sequence (un)n ⊂ V
such that

lim
n→∞

F (un) = c and lim
n→∞

F ′(un) = 0 strongly in V ′.

We want to end this section with the Fountain Theorem, needed to prove the
multiplicity result in the symmetric setting. First, we remind some well known
basic definitions.

Definition 5. Let G a topological group and (Y, ‖ · ‖) a normed vector space. An
action of G on Y is a continuous map G × Y → Y such that (g, y) 7→ gy and

(1) ey = y, for all y ∈ Y ;

(2) h(gy) = (hg)y, for all y ∈ Y , h, g ∈ G;
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(3) the map y 7→ gy is linear for every g ∈ G.

The action of G is isometric if ‖gy‖ = ‖y‖, for all y ∈ Y , g ∈ G.

Definition 6. Let f : Df → R, where Df ⊂ R and it is G-invariant. Then f is
G-equivariant if f(gy) = gf(y) for all g ∈ G and y ∈ Df .

The Fountain Theorem states that, under suitable assumptions, an invariant
functional has infinitely many critical values. This result depends on the notion
of admissible action introduced by Thomas Bartsch in [20].

Definition 7. Assume that a compact group G acts diagonally on W k, that is

g(v1, . . . , vk) := (gv1, . . . , gvk)

where W is a finite dimensional space and W k is the product space of W repeated
k times. This action of G is admissible if every continuous G-equivariant map
∂U → W k−1 has a zero, where U is an open bounded invariant neighborhood of 0
in W k with k ≥ 2.

Remark 8. The Borsuk-Ulam Theorem in [143] says that the antipodal action of
G := Z/2 on W = R is admissible.

Before presenting the Fountain Theorem, we describe the setting.

(A1) The compact group G acts isometrically on the space M =
⊕

j∈NMj, which
is a Banach space, where the spaces Mj are G-invariant and there exists a
finite dimensional space W such that, for every j ∈ N, Mj ' W and the
action of G on W is admissible.

From the decomposition of the Banach space M in (A1), we define Ym and
Zm as follows

Ym :=
m⊕
j=0

Mj, Zm :=
∞⊕
j=m

Mj (2.21)

and set
Bm := {u ∈ Ym : ‖u‖ ≤ ρm} , Nm = {u ∈ Zm : ‖u‖ = rm}

where ρm > rm > 0.
Now we are ready to establish the Fountain Theorem developed by Bartsch in

1992 in the following version, Theorem 3.6 in [143].

Theorem 16. Under assumption (A1). Let ϕ ∈ C1(M,R) be an invariant func-
tional. If, for every m ∈ N, there exists ρm > rm > 0 such that
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(A2) am = maxu∈Ym,‖u‖=ρm ϕ(u) ≤ 0,

(A3) bm = infu∈Zm,‖u‖=rm ϕ(u)→∞, m→∞,

(A4) ϕ satisfies the (PS)c condition for every c > 0,

where Ym and Zm as in (2.21). Then ϕ has an unbounded sequence of critical
values.

Remark 9. We will apply Theorem 16 with G = Z/2, M = XT so that, since XT

is a separable Banach space (see [24] page 44), there is a linearly independent se-
quence (ej)j such that the decomposition in (A1) holds with Mj = Xj := span {ej}.
Note that Xj are trivially G-invariant and isomorphic to R. Thus, using Remark
8, condition (A1) is satisfied with W = R.
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2.2 A Multiplicity result in the p-sublinear and

q-superlinear case

In this section we are interested in proving a multiplicity result for nontrivial
weak solutions with negative energy in X of problem (8), when 1 < q < k < p < N ,
by using variational methods and concentration compactness principles.

We recall that a first serious problem on unbounded domains is the loss of
compactness of the Sobolev’s embeddings, which renders variational techniques
more delicate.

A strategy to prove multiplicity of solutions of (8), is to apply the result of
multiple critical points for the energy functional Eλ associated to (8), given by
(11). In particular, we make use of the classical result by Rabinowitz in [117] for
even functionals, so that 0 is a critical point and critical points occur in antipo-
dal pairs. Under further conditions, the functional possesses additional critical
points. Precisely, we apply Theorem 1.9 in [117] in which the Krasnosel’skii genus
is involved with its properties. A fundamental step in the proof of Theorem 2,
whose statement is given in the introduction, is to verify of a standard and crucial
compactness condition (PS)c for Eλ, for c < 0. This is a delicate point, indeed
for critical problems in all of RN this compactness condition is often loss, as it is
already discussed in the Introduction. This section is mostly based on the recent
work [13].

In Section 2.2.1 we give a first proof of tightness by the first concentration
compactness principle due to Lions stated in Section 2.1.3. The validity of the
(PS)c property for the energy functional is proved in Section 2.2.2 where a second
proof of tightness is performed, while the truncated functional is introduced in
Section 2.2.3 and its properties are listed. Finally, the proof of Theorem 2 is
developed in Section 2.2.4.

2.2.1 A proof of tightness via the first concentration com-

pactness principle

As pointed out in Section 2.1.3, in order to apply Lemma 11, we need the
property of tightness, that is |un|p

∗ ∗
⇀ ν, with ν bounded nonnegative measure.

This property, up to subsequences, follows immediately in bounded domains. Con-
trarily, in the case of a bounded sequence (un)n in D1,p(RN), to obtain the tight
convergence, we have in general almost three possibilities: verifying directly Def-
inition 3, passing through the first concentration compactness principle by Lions
avoiding two possible behaviours, or using a version at infinity of the second princi-
ple, namely Proposition 1. In the following lemma, taking inspiration in [130], we
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show the validity of tightness using the first concentration compactness principle,
that is Lemma 10 in Subsection 2.1.3.

Lemma 13. Let 1 < q < p. Assume that V and K satisfy (9) and (10). Define,
for 1 < k < p,

λ
∗

:= S(p∗−k)/(p∗−p) k

N

(
p∗

p∗ − k

)k/p(
p

p− k

)(p−k)/p
1

‖V ‖r‖K‖(p−k)/(p∗−p)
∞

,

where S is the Sobolev’s constant. If c < 0 and either p < k < p∗ and λ ∈ (0,∞)
or

1 < k < p and λ ∈ (0, λ
∗
), (2.22)

then every (PS)c sequence for Eλ, (un)n, for Eλ is such that, up to subsequences,

νn = |un|p
∗
dx

∗
⇀ ν,

where ν is a bounded nonnegative measure.

Proof. Let (un)n be a (PS)c sequence for Eλ. Thus, as n→∞,

1

p
‖Dun‖pp +

1

q
‖Dun‖qq −

λ

k

∫
RN
V |un|kdx−

1

p∗

∫
RN
K|un|p

∗
dx = c+ on(1) (2.23)

and

‖Dun‖pp + ‖Dun‖qq − λ
∫
RN
V |un|kdx−

∫
RN
K|un|p

∗
dx = ‖un‖on(1), (2.24)

where on(1)→ 0 as n→∞ and ‖ · ‖ is the norm given in (2.2). Using Lemma 8,
the sequence (un)n is bounded in X. By Banach Alaoglu Theorem, since X is a
reflexive space, there exists u ∈ X such that, up to subsequences, un ⇀ u in X,
and the following hold

un ⇀ u in Lp
∗
(RN), un ⇀ u in Lq

∗
(RN),

Dun ⇀ Du in Lp(RN), Dun ⇀ Du in Lq(RN).

un → u in Ls(ω), ω b RN , 1 ≤ s < p∗.

Consequently, by using an increasing sequence of compact sets whose union is RN

and a diagonal argument, we also have (2.6). Consider the auxiliary sequence of
functions (zn)n, zn(x) ≥ 0 in RN for all n ∈ N, given by

zn(x) = |Dun(x)|p + |Dun(x)|q + |un(x)|p∗ + λV (x)|un(x)|k.
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Define ηn = zndx. We claim that ηn converges tightly to a bounded nonnegative
measure η on RN , that is, zn

∗
⇀ η. First, we prove that there is Λ > 0 such that

lim
n→∞

∫
RN
zn(x)dx = Λ > 0 as n→∞. (2.25)

Indeed, by weak convergence, the sequences (‖Dun‖p)n, (‖un‖p∗)n, (‖Dun‖q)n are
bounded so that, by the Bolzano-Weiestrass Theorem, up to subsequences, there
exist L, M , Q ≥ 0 such that

L = lim
n→∞

‖Dun‖pp, M = lim
n→∞

‖un‖p
∗

p∗ , Q = lim
n→∞

‖Dun‖qq. (2.26)

Actually L,M > 0. Indeed, using (9), (10) and Hölder’s inequality with exponents
r and p∗/k, we have

Eλ(un) ≥ 1

p
‖Dun‖pp −

λ

k
‖V ‖r‖un‖kp∗ − ‖K‖∞‖un‖

p∗

p∗ .

Hence, if M = 0, then, by letting n→∞, thanks to obtain that (2.23), we arrive to
0 ≤ L/p ≤ c < 0 which is a contradiction. Thus, M > 0 and Sobolev’s inequality
gives L > 0.

The continuity of the functional J in Lp
∗
(RN), J given in Lemma 6, implies

the existence of the following limit

lim
n→∞

∫
RN
V |un|kdx =: H. (2.27)

Clearly H ≥ 0. We claim that H > 0. Multiplying (2.23) by p∗ and then sub-
tracting (2.24), we obtain, as n→∞,(
p∗

p
−1

)
‖Dun‖pp+

(
p∗

q
−1

)
‖Dun‖qq−λ

(
p∗

k
−1

)∫
RN
V |un|kdx = cp∗+‖un‖on(1).

By letting n→∞, since (un)n is bounded in X, we get(
p∗

p
− 1

)
L+

(
p∗

q
− 1

)
Q− λ

(
p∗

k
− 1

)
H = cp∗,

since p, q, k < p∗, λ > 0, L > 0 and Q ≥ 0, necessarily H > 0 being c < 0.
Consequently, condition (2.25) holds with Λ = L+Q+M+λH > 0. We can apply
Lemma 10 to the sequence (zn)n. Hence, up to a subsequence, three situations can
occur: Compactness, Vanishing or Dichotomy. In particular, thanks to Theorem
14 (cfr. Remark 6), Compactness is equivalent to tightness so that we have to
exclude Vanishing and Dichothomy for the sequence (zn)n.
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We immediately see that Vanishing cannot occur. Indeed from (2.25), we can
assume that there exists R1 ∈ (0,∞) such that

∫
BR1

(0)
zn(x)dx ≥ Λ/2 > 0, in turn

(b) in Lemma 10 fails.
To prove that Dichotomy cannot hold, we argue by contradiction and we assume

that there exists ` ∈ (0,Λ) such that for all ε > 0, there exist R > 0, ` ∈ (0,Λ),
(Rn)n, with R < Rn →∞ and (yn)n in RN such that, for all n large, we get∣∣∣∣∫

BR(yn)

zn(x)dx− `
∣∣∣∣ < ε,∣∣∣∣∫

RN\BRn (yn)

zn(x)dx + `− Λ

∣∣∣∣ < ε,∣∣∣∣∫
Dn

zn(x)dx

∣∣∣∣ < ε, Dn = BRn(yn) \BR(yn).

(2.28)

Let ϕ ∈ C∞c (RN) be such that 0 ≤ ϕ ≤ 1 in RN , ϕ|B1(0) ≡ 1 and ϕ|B2(0)c ≡ 0. We
define u1

n = ϕ1
nun and u2

n = (1− ϕ2
n)un, where

ϕ1
n(x) := ϕ

(
x− yn
R

)
, ϕ2

n(x) := ϕ

(
x− yn
Rn

)
,

for all x ∈ RN and all n ∈ N. Then, Supp(u1
n) = {x ∈ RN : |x − yn| ≤ 2R}

and Supp(u2
n) = {x ∈ RN : |x − yn| ≥ Rn} are disjoint sets for every n ∈ N. In

addition, dist
(
Supp(u1

n), Supp(u2
n)
)
→∞. In particular, it follows∫

RN
|Du1

n|p dx =

∫
BR(yn)

|Dun|p dx+

∫
Dn

[
|ϕ1
n|p|Dun|p + |u1

n|p|Dϕ1
n|p
]
dx

and∫
RN
|Du2

n|p dx =

∫
RN\B2Rn (yn)

|Dun|p dx+

∫
Dn

[
(1− ϕ2

n)p|Dun|p + |u2
n|p|Dϕ2

n|p
]
dx.

So that, by (2.28) and the facts that ‖Dϕ1
n‖∞ ≤ c/R, ‖Dϕ2

n‖∞ ≤ c/Rn, this yields∫
RN
|Du1

n|p dx =

∫
BR(yn)

|Dun|p dx+ oε(1),

∫
RN
|Du2

n|p dx =

∫
RN\B2Rn (yn)

|Dun|p dx+ oε(1),

where oε(1) → 0 as ε → 0. Similar formulas hold for
∫
RN |Du

i
n|qdx, i = 1, 2.

Furthermore, by Hölder’s inequality and (2.28), we get∫
RN
V |u1

n|kdx =

∫
BR(yn)

V |un|kdx+ oε(1),
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RN
V |u2

n|kdx =

∫
RN\B2Rn (yn)

V |un|kdx+ oε(1).

Similar formulas hold for
∫
RN K|u

i
n|p
∗
dx, i = 1, 2. Consequently, (2.23), (2.24),

(2.28) give, respectively,

2∑
i=1

(
1

p
‖Duin‖pp +

1

q
‖Duin‖qq −

λ

k

∫
RN
V |uin|kdx

− 1

p∗

∫
RN
K|uin|p

∗
dx

)
= c+ on(1) + oε(1),

(2.29)

and

2∑
i=1

(
‖Duin‖pp + ‖Duin‖qq − λ

∫
RN
V |uin|kdx−

∫
RN
K|uin|p

∗
dx

)

=
2∑
i=1

‖uin‖on(1) + oε(1)

(2.30)

where we first let n → ∞ and then ε → 0. As above, eventually passing to
subsequences, there exist nonnegative limits αi, βi, i = 1, 2, defined by

αi = lim
n→∞

∫
RN
V |uin|kdx and βi = lim

n→∞

∫
RN
K|uin|p

∗
dx.

Now, replacing the values of αi, βi in (2.30) we obtain as n→∞
2∑
i=1

(
‖Duin‖pp + ‖Duin‖qq

)
=

2∑
i=1

(
λαi + βi + ‖uin‖on(1)

)
+ oε(1).

Multiplying (2.29) by q and p, respectively, and then subtracting (2.30), both
evaluated in uin, we obtain

2∑
i=1

‖Duin‖pp =
2∑
i=1

(
λ
p(q − k)

k(q − p)

∫
RN
V |uin|k +

p(q − p∗)
p∗(q − p)

∫
RN
K|uin|p

∗
dx

+ ‖uin‖on(1)

)
+ c

qp

q − p
+ oε(1)

and

2∑
i=1

‖Duin‖qq =
2∑
i=1

(
λ
q(p− k)

k(p− q)

∫
RN
V |uin|k −

q(p∗ − p)
p∗(p− q)

∫
RN
K|uin|p

∗
dx

+ ‖uin‖on(1)

)
+ c

pq

p− q
+ oε(1),
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from which we deduce, for n→∞ e since ‖uin‖ is bounded,

2∑
i=1

‖Duin‖pp =
2∑
i=1

(
λ
p(q − k)

k(q − p)
αi +

p(q − p∗)
p∗(q − p)

βi

)
+ c

qp

q − p
+ on(1) + oε(1) (2.31)

and

2∑
i=1

‖Duin‖qq =
2∑
i=1

(
λ
q(p− k)

k(p− q)
αi −

q(p∗ − p)
p∗(p− q)

βi

)
+ c

pq

p− q
+ on(1) + oε(1), (2.32)

as ε→ 0. In particular, since q < p and using that the left hand side is nonnegative,
then (2.31) and (2.32) give, respectively,

c ≤
(

1

q
− 1

p∗

)
(β1 + β2)− λ

(
1

k
− 1

q

)
(α1 + α2), (2.33)

and

c ≥ β1 + β2

N
− λ
(

1

k
− 1

p

)
(α1 + α2). (2.34)

If q < p < k < p∗, then (2.33) is trivial, while (2.34) cannot occur since c < 0 but
the right hand side is positive being p < k. This contradiction proves that, in this
case, Compactness holds.

We claim that inequality (2.34) cannot occur also when 1 < k < p, so that we
have covered both cases q < k < p and 1 < k ≤ q < p. At this aim note that, from
(2.28), it follows either α1 = 0 or α2 = 0 depending whether (yn)n is unbounded or
not. Indeed, if (yn)n is unbounded then Supp(u1

n) reduces to the empty set when
n→∞, consequently, from∫

BR(yn)

V |un|kdx ≤ ‖V ‖Lr(BR(yn))‖un‖kp∗ ≤ C‖V ‖Lr(BR(yn)), (2.35)

where C is the constant obtained from the boundedness of the (PS)c sequence and
thanks to the continuity of the embedding of D1,p(RN) in Lp

∗
(RN), then, thanks

to (9) we can apply Lebesgue dominated convergence Theorem to the function
χBR(yn)V

r, obtaining

α1 = lim
n→∞

∫
RN
V |u1

n|kdx = lim
n→∞

∫
BR(yn)

V |un|kdx

≤ C lim
n→∞

‖V ‖Lr(BR(yn)) = 0

by virtue of |BR(yn)| → ∅ when n→∞ since yn →∞.
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On the other hand, if (yn)n is bounded, then arguing as above and noting that
in this case Supp(u2

n) becomes the empty set for n→∞, we get α2 = 0.
First, consider the case α2 = 0, of course α1 > 0 since

α1 + α2 + o(1) = lim
n→∞

∫
RN
V |un|kdx = H > 0.

From (2.30) with i = 2, by the definition of β2 and Sobolev’s inequality we get, as
in [130],

β2 + oε(1) = lim
n→∞

{
‖Du2

n‖pp + ‖Du2
n‖qq
}
≥ lim

n→∞
‖Du2

n‖pp

≥ S lim
n→∞

‖u2
n‖

p
p∗ ≥ Sβ

(N−p)/N
2 ‖K‖−(N−p)/N

∞ ,

yielding
β2 ≥ SN/p‖K‖−(N−p)/p

∞ . (2.36)

Inserting (2.36) in (2.34) and using that β1 ≥ 0, we have

c ≥ SN/p

N‖K‖(N−p)/p
∞

− λα1

(
1

k
− 1

p

)
(2.37)

which is a contradiction since c < 0 while the right hand side is nonnegative if λ
satisfies (2.22)2 thanks to

α1 ≤ α1 + α2 ≤ ‖V ‖r lim
n→∞

‖un‖kp∗ ≤ λk/(p−k)‖V ‖p/(p−k)
r

[
N(p∗ − k)

Sp∗k

]k/(p−k)

,

where we have used Sobolev’s inequality and (2.11). In the case α1 = 0, we can
repeat the argument above to reach the required contradiction. The proof of the
claim is so concluded, in other words, Compactness is clearly true also in case
(2.22).

Consequently, the first concentration compactness principle guarantees that
there exists a sequence (yn)n in RN such that zn(· + yn) is tight in the sense of
Lemma 10, that is for arbitrary ε > 0 there exists R = R(ε) ∈ (0,∞) with∫

RN\BR(yn)

zn(x)dx < ε, (2.38)

so that ∫
RN\BR(yn)

V |un|kdx < ε (2.39)

from the definition of (zn)n. It must be that (yn)n is a bounded sequence otherwise
if yn →∞ then

lim
n→∞

∫
|x−yn|<R

V |un|kdx = 0,
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thus, combining the above limit with (2.39), we arrive to

lim
n→∞

∫
RN
V |un|kdx = 0,

contradicting H > 0 in (2.27).
Hence, we can replace yn by 0 in (2.38) to obtain the tightness of zn. Moreover,

since ∫
RN\BR

|un|p
∗
dx ≤

∫
RN\BR

zn(x)dx < ε

where BR is the ball centered at the origin and radius R, we obtain the tightness
of |un|p

∗
. Finally, we define for all n ∈ N the measure νn = |un|p

∗
dx on RN which

is nonnegative, bounded since M > 0, and such that verifies all the assumptions
of Theorem 14 thus, it admits a subsequence which converges tightly (cfr. Remark

6) to ν, a bounded non negative measure on RN , that is νn
∗
⇀ ν as claimed. The

proof is so complete.

2.2.2 On the Palais Smale property for negative levels

Now we establish sufficient conditions for the energy functional Eλ, defined
in (11), to satisfy the Palais Smale property. In particular, the proof of following
lemma is one of the most delicate parts in obtaining the final multiplicity theorem.

Lemma 14. Let 1 < k < p. If c < 0 then there exists λ̂∗ > 0 such that Eλ satisfies
(PS)c condition for all λ ∈ (0, λ̂∗], where λ̂∗ is defined as follows

λ̂∗ = S(p∗−k)/(p∗−p) kp∗

N(p∗ − k)
· 1

‖V ‖r · ‖K‖(p−k)/(p∗−p)
∞

. (2.40)

Proof. Let (un)n be a (PS)c sequence for Eλ, clearly (un)n is bounded in X by
Lemma 8. Furthermore, since λ̂∗ < λ

∗
, then Lemma 13 implies that there exists

u ∈ X such that, up to subsequences, we get

(I) un ⇀ u in X,

(II) Since Dun ⇀ Du in Lp(RN) and Dun ⇀ Du in Lq(RN), then the sequence
of measures (|Dun|pdx+ |Dun|qdx)n is bounded, thus we have

|Dun|pdx+ |Dun|qdx ⇀ µ,

(III) Analogously,
|un|p

∗
dx ⇀ ν,
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where µ, ν are bounded nonnegative measures on RN . As in Proposition 1 applied
to (un)n, there exist at most countable set J , a family (xj)j∈J of distinct points
in RN and two families (νj)j∈J , (µj)j∈J ∈]0,∞[ such that (2.17) and (2.18) hold
where δx is the Dirac-mass of mass 1 concentrated at x ∈ RN , with ν∞, µ∞ defined
in (2.16) and νj, µj satisfy

ν = |u|p∗ +
∑
j∈J

νjδxj (2.41)

µ ≥ |Du|p + |Du|q +
∑
j∈J

µjδxj

where δx is the Dirac-mass of mass 1 concentrated at x ∈ RN , with νj and µj
satisfying

Sν
p/p∗

j ≤ µj,
∑
j∈J

ν
p/p∗

j <∞. (2.42)

Take a standard cut-off function ψ ∈ C∞c (RN), such that 0 ≤ ψ ≤ 1 in RN , ψ = 0
for |x| > 1, ψ = 1 for |x| ≤ 1/2. For each index j ∈ J and each 0 < ε < 1, define

ψε(x) := ψ

(
x− xj
ε

)
.

Since E ′λ(un)ψ → 0 for all ψ ∈ X being (un)n a (PS)c sequence, choosing ψ = ψεun
in (2.9) we have, as n→∞∫

RN
un(|Dun|p−2 + |Dun|q−2)DunDψεdx = λ

∫
RN
V |un|kψεdx

+

∫
RN
K|un|p

∗
ψεdx−

∫
RN

(|Dun|p + |Dun|q)ψεdx+ o(1).

(2.43)

Since un ⇀ u in D1,p(RN), by (I), using the weak continuity of Ĵ proved in Lemma
6, we get

lim
n→∞

∫
RN
V |un|kψεdx =

∫
RN
V |u|kψεdx. (2.44)

Consequently, using (II), (III) and (2.44) in (2.43), we obtain

lim
n→∞

(∫
RN
un|Dun|p−2DunDψεdx+

∫
RN
un|Dun|q−2DunDψεdx

)
= λ

∫
RN
V |u|kψεdx+

∫
RN
Kψεdν −

∫
RN
ψεdµ.

(2.45)
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From Hölder’s inequality, we have∣∣∣∣∫
RN
un|Dun|p−2DunDψεdx

∣∣∣∣ ≤ ‖Dun‖p−1
p

(∫
RN
|un|p|Dψε|pdx

)1/p

≤ ‖un‖p−1

(∫
Bε(xj)

|un|p|Dψε|pdx

)1/p

.

(2.46)

Furthermore, since D1,p(ω) ↪→↪→ Lp(ω) for ω bounded set in RN , being p < p∗,
then taking for instance ω = Bε(xj), we have, up to subsequences, un → u in
Lp(ω) so that there exists w2 ∈ Lp(ω) such that |un(x)| ≤ w2(x) a.e. in ω. Thus,
|un(x)Dψε(x)| ≤ Cw2(x) a.e. in ω, as well as in RN , and in turn, Lebesgue
dominated convergence Theorem gives

|unDψε| → |uDψε| in Lp(RN). (2.47)

Consequently, passing to the limit for n→∞ in (2.46), using the boundedness of
(un)n, Hölder’s inequality with exponents N/(N − p) and N/p, we obtain, thanks
to (2.47),

lim
n→∞

∣∣∣∣∫
RN
un|Dun|p−2DunDψεdx

∣∣∣∣ ≤ C

(∫
Bε(xj)

|u|p|Dψε|pdx

)1/p

≤ C

(∫
Bε(xj)

|u|p∗dx

)1/p∗ (∫
Bε(xj)

|Dψε|Ndx

)1/N

≤ C

(∫
Bε(xj)

|u|p∗dx

)1/p∗

,

(2.48)

where in the last inequality we have used the properties of ψε. Similarly, by
replacing p with q, we gain

lim
n→∞

∣∣∣∣∫
RN
un|Dun|q−2DunDψεdx

∣∣∣∣ ≤ C

(∫
Bε(xj)

|u|q∗dx

)1/q∗

.

In turn, by letting ε → 0 and then n → ∞, being u ∈ Lp
∗
(RN) ∩ Lq∗(RN), we

obtain∫
RN
un|Dun|p−2DunDψεdx→ 0,

∫
RN
un|Dun|q−2DunDψεdx→ 0, (2.49)

and, arguing as in (2.35), since V |u|k ∈ L1(RN), we have∫
RN
V |un|kψεdx ≤

∫
Bε(xj)

V |un|kdx→ 0 as ε→ 0.
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Hence, from (2.45), if ε→ 0 we deduce

K(xj)νj = µj. (2.50)

Now combining (2.50) and (2.42), we have

S ≤ K(xj)ν
p/N
j . (2.51)

The inequality above establishes that the concentration of the measure ν can
occur only at points where K(xj) > 0. Consequently, from (2.42)1 and (2.50) the
measure µ can concentrate at points in which the measure ν can. Hence the set
XJ := {xj : j ∈ J} does not contain the points xj which are zeros for K.

Let J1 := {j ∈ J : K(xj) > 0}, we claim that J1 = ∅ and we proceed by
contradiction. From (2.51), it follows,

νj ≥
(

S

K(xj)

)N/p
≥
(

S

‖K‖∞

)N/p
, j ∈ J1. (2.52)

To prove the claim, we show that (2.52) cannot occur for λ belonging to a suitable
interval. Indeed, if (2.52) is valid, then |J1| < ∞ being ν a bounded measure,
indeed, from (2.17), we get, thanks to (2.52),

∞ >

∫
RN
dν = ‖u‖p

∗

p∗ +

∫
{xj}

∑
j∈J1

νjδxjdx ≥ ‖u‖
p∗

p∗ +

(
S

‖K‖∞

)N/p
|J1|. (2.53)

On the other hand, q < p forces 1/q − 1/p∗ > 1/N and using that 0 ≤ ψε ≤ 1,
thanks to (2.11), we get

0 > c+ o(1)‖un‖ ≥
1

N

∫
RN

(
|Dun|p + |Dun|q

)
ψεdx− λ

p∗ − k
kp∗

‖V ‖r‖un‖kp∗

≥ 1

N

∫
Bε(xj)

(
|Dun|p + |Dun|q

)
dx − (C∗)

k p
∗ − k
kp∗

‖V ‖rλp/(p−k),

so that, letting n→∞ and using (II), (2.50) and (2.52), we arrive to

0 > c ≥ 1

N
µj − Cλp/(p−k) ≥ 1

N
SN/p‖K‖(p−N)/p

∞ − Cλp/(p−k), (2.54)

where

C =

(
N

S

)k/(p−k)(‖V ‖r(p∗ − k)

kp∗

)p/(p−k)

.

If λ ∈ (0, λ̂∗], then (2.54) produces the required contradiction, so that J1 = ∅,
concluding the proof of the claim.
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It remains to show that the concentration of ν cannot occur at infinity. It is
clear that ν∞ and µ∞ defined in (2.16) both exist and are finite.

Let R > 0, take another cut off function ψR ∈ C∞(RN) such that 0 ≤ ψR ≤ 1 in
RN , ψR(x) = 0 for |x| < R and ψR(x) = 1 for |x| > 2R. Then, from E ′λ(un)ψ → 0
for all ψ ∈ X as n → ∞ being (un)n a (PS)c sequence, choosing ψ = ψRun in
(2.9), we get∫

R<|x|<2R

un
(
[Dun|p−2 + |Dun|q−2

)
DunDψRdx = λ

∫
|x|>R

V |un|kψRdx

+

∫
|x|>R

K|un|p
∗
ψRdx−

∫
|x|>R

(
|Dun|p + |Dun|q

)
ψRdx+ o(1),

(2.55)

as n→∞. Similarly to the proof of (2.48), we have

lim sup
n→∞

∣∣∣∣∫
RN
un|Dun|p−2DunDψRdx

∣∣∣∣ ≤ C

(∫
R<|x|<2R

|u|p∗dx
)1/p∗

,

and

lim sup
n→∞

∣∣∣∣∫
RN
un|Dun|q−2DunDψRdx

∣∣∣∣ ≤ C

(∫
R<|x|<2R

|u|q∗dx
)1/q∗

,

so that, using that u ∈ Lp∗(RN) ∩ Lq∗(RN), from (2.55) we obtain

lim
R→∞

lim sup
n→∞

{
λ

∫
RN
V |un|kψRdx+

∫
RN
K|un|p

∗
ψRdx

}
= µ∞. (2.56)

Furthermore, we have

lim
R→∞

lim sup
n→∞

∫
RN
V |un|kψRdx

≤ lim
R→∞

lim sup
n→∞

‖V ‖Lr(|x|>R)‖un‖kLp∗ (|x|>R) = 0,
(2.57)

being (un)n bounded in Lp
∗
(RN) and by definition of ν∞, we gain

lim
R→∞

lim sup
n→∞

{∫
RN
K|un|p

∗
ψRdx

}
≤ ‖K‖∞ν∞. (2.58)

Thanks to (2.19), (2.56), (2.57) and (2.58) we have so obtained

‖K‖∞ν∞ ≥ µ∞ ≥ Sνp/p
∗

∞ .

Reasoning as above, we deduce that concentration at infinity cannot occur if we
take λ ∈ (0, λ̂∗].
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Consequently

lim
n→∞

∫
RN
|un|p

∗
dx =

∫
RN
|u|p∗dx.

Furthermore, since un(x)→ u(x) a.e. in RN from (2.6), then Brezis Lieb Lemma
in [26], implies

lim
n→∞

∫
RN
|un − u|p

∗
dx = 0,

thus

lim
n→∞

∫
RN
K|un|p

∗−1|un − u|dx = 0, (2.59)

since (un)n is bounded in X and

0 ≤
∫
RN
K|un|p

∗−1|un − u|dx ≤ ‖K‖∞‖un‖p
∗−1
p∗

(∫
RN
|un − u|p

∗
dx

)1/p∗

.

A similar argument shows that

lim
n→∞

∫
RN
V |un|k−1|un − u|dx = 0. (2.60)

Now we define

< Ap(u), ϕ >=

∫
RN
|Du|p−2DuDϕdx,

for all u, ϕ ∈ X. Using (2.9) with ψ = un − u, we have

lim
n→∞

[
< Ap(un), un − u > + < Aq(un), un − u >

− λ
∫
RN
V |un|k−2un(un − u)dx−

∫
RN
K|un|p

∗−2un(un − u)dx

]
= 0,

so that, by (2.59) and (2.60),

lim
n→∞

[
< Ap(un), un − u > + < Aq(un), un − u >

]
= 0. (2.61)

Using the monotonicity of Aq, see [67], we have

< Ap(un) + Aq(u), un − u > ≤ < Ap(un) + Aq(un), un − u >,

thus, applying the limsup to both terms and using (2.61) we get

lim sup
n→∞

[
< Ap(un), un − u > + < Aq(u), un − u >

]
≤ 0 (2.62)
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Since un ⇀ u in D1,q(RN), then < Aq(u), un − u >→ 0 as n → ∞, in turn (2.62)
gives

lim sup
n→∞

< Ap(un), un − u >≤ 0. (2.63)

On the other hand, using the monotonicity of Ap and the definition of weak con-
vergence, we obtain, thanks to (2.63),

0 ≤ lim sup
n→∞

< Ap(un)− Ap(u), un − u >= lim sup
n→∞

< Ap(un), un − u >≤ 0

which gives

lim
n→∞

< Ap(un)− Ap(u), un − u >= 0. (2.64)

The same argument holds for Aq. Thus, by virtue of Lemma 9 applied with
a(x, ξ) = |ξ|p−2ξ, condition (2.64) is equivalent to

lim
n→∞

∫
RN
|D(un − u)|pdx = 0, lim

n→∞

∫
RN
|D(un − u)|qdx = 0,

that is the strong convergence in Lp(RN) and in Lq(RN) of the sequence (Dun)n. In
turn, by Sobolev Gagliardo Niremberg’s inequality, we obtain the required prop-
erty, namely Eλ satisfies (PS)c condition for every c < 0. This completes the
proof.

2.2.3 The role of the truncated functional E∞

In what follows, we will define E∞, the truncated functional of Eλ, whose main
feature is to be bounded from below, indeed this property fails for Eλ. With the
help of E∞, which satisfies the (PS)c condition, we are able to obtain the desired
behavior of Eλ when ‖u‖ is small.

First, by Hölder’s and Sobolev’s inequalities we have, for all u ∈ X,

Eλ(u) ≥ 1

p
‖u‖pD1,p − λc1‖u‖kD1,p − c2‖u‖p

∗

D1,p .

where c1 = S−k/p‖V ‖r/k and c2 = S−p
∗/p‖K‖∞/p∗.

Define, for all 1 < k < p, the function h(t) = tp/p − λc1t
k − c2t

p∗ in R+
0 and

write

h(t) = tkĥ(t), ĥ(t) := −λc1 +
1

p
tp−k − c2t

p∗−k, (2.65)
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in turn ĥ(0) < 0, ĥ(t) → −∞ as t → ∞ and ĥ′(t) > 0 for t > 0 close to 0. Thus,
there exists T > 0 such that

ĥ′(T ) = 0, T =

[
p− k

c2p(p∗ − k)

]1/(p∗−p)

.

If we have ĥ(T ) > 0, then there exist T0 and T1, with 0 < T0 < T < T1 such that
ĥ(T0) = ĥ(T1) = 0. Let

λ∗ =
k(p∗ − p)
p(p∗ − k)

(
p∗(p− k)

p(p∗ − k)

)(p−k)/(p∗−p)

· S(p∗−k)/(p∗−p)

‖V ‖r · ‖K‖(p−k)/(p∗−p)
∞

, (2.66)

then the following is clearly true if λ < λ∗,

ĥ(T ) = (p∗ − p)
(
p− k
c2

)(p−k)/(p∗−p)(
1

p(p∗ − k)

)(p∗−k)/(p∗−p)

− λc1 > 0,

so that, since h(T0) = h(T1) = 0, being h(t) = tkĥ(t), we have

h(t) > 0 in (T0, T1), h(t) ≤ 0, in [0, T0] ∪ [T1,∞),

cfr. Figure 2.1.

Figure 2.1: h(t)

In particular, we have λ∗ < λ̂∗, with λ̂∗ given in (2.40), since

kp∗

N(p∗ − k)
>
k(p∗ − p)
p(p∗ − k)

(
p∗(p− k)

p(p∗ − k)

)(p−k)/(p∗−p)

which is equivalent to

1 >
N(p∗ − p)

p∗p

(
p∗(p− k)

p(p∗ − k)

)(p−k)/(p∗−p)

,
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but N(p∗ − p)/p∗p = 1, hence the above inequality reduces to the inequality
p∗(p− k)/p(p∗ − k) < 1 which trivially holds, being p∗ > p.

Next, take a cutoff function τ ∈ C∞(R+
0 ), nonincreasing and such that τ(t) = 1

if 0 ≤ t ≤ T0 and τ(t) = 0 if t ≥ T1. We consider, for all 1 < k < p, the truncated
functional

E∞(u) =
1

p
‖Du‖pp +

1

q
‖Du‖qq −

λ

k

∫
RN
V |u|kdx− τ (‖u‖D1,p)

p∗

∫
RN
K|u|p∗dx

and define

h(t) =
1

p
tp − λc1t

k − c2t
p∗τ(t), t ∈ R+

0 ,

then h(t)→∞ as t→∞ and h(t) ≥ h(t) for all t ≥ 0 so that

h(t) = h(t) in (0, T0), h(T0) = h(T0) = 0,

h(t) ≥ h(t) > 0 in (T0, T1), h(T1) > 0,
(2.67)

furthermore, h(t) > 0 in (T1,∞) since, for t ≥ T1, it holds h(t) = tkκ(t) with
κ(t) = 1

p
tp−k − λc1 which is strictly increasing and positive in (T1,∞), cfr. Figure

2.2.

Figure 2.2: h(t)

Thus, E∞(u) ≥ h (‖u‖D1,p) for all u ∈ X and

Eλ(u) = E∞(u) if 0 ≤ ‖u‖D1,p ≤ T0. (2.68)

Furthermore, by the regularity both of τ and of Eλ we get E∞(u) ∈ C1(X,R).

Lemma 15. Let E∞ be the truncated functional of Eλ.

(a) If E∞(u) < 0, then ‖u‖D1,p < T0 and Eλ(v) = E∞(v) for all v in a small
enough neighborhood of u.
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(b) For all λ ∈ (0, λ∗), E∞(u) satisfies the (PS)c condition for c < 0.

Proof. We prove (a) by contradiction. If ‖u‖D1,p ∈ [T0,∞), by the above analysis
we see that

E∞(u) ≥ h (‖u‖D1,p) ≥ 0.

This contradicts E∞(u) < 0, thus ‖u‖D1,p < T0 and the last part of (a) is a
consequence of the continuity of E∞ and (2.67)1.

About claim (b), if c < 0 and (un)n ⊂ X is a (PS)c sequence for E∞, then
we may assume that E∞(un) < 0 and E ′∞(un) → 0 as n → ∞. By (a), we have
‖un‖D1,p < T0, so that E∞(un) = Eλ(un) and E ′∞(un) = E ′λ(un). By Lemma 14,

since λ∗ < λ̂∗, Eλ satisfies (PS)c condition for c < 0, thus there is a convergent
subsequence (un)n in X. In other words, E∞ satisfies (PS)c condition for every
c < 0. The proof is complete.

2.2.4 Proof of Theorem 2

We now come to the main subject of the current chapter, the proof of the
existence Theorem 2, whose statement is given in the Introduction.

Proof of Theorem 2. Let Kc = Kc,E∞ = {u ∈ X : E∞(u) = c, E ′∞(u) = 0}
and take m ∈ N+. For 1 ≤ j ≤ m define

cj = inf
A∈Σj

sup
u∈A

E∞(u)

where

Σj = {A ⊂ X\ {0} : A is closed in X, −A = A, γ(A) ≥ j} .

We claim that

−∞ < cj < 0 for all j ≥ 1. (2.69)

To reach the claim it is enough to prove that for all j ∈ N, there is an εj = ε(j) > 0
such that

γ(E−εj∞ ) ≥ j, where Ea
∞ = {u ∈ X : E∞(u) ≤ a} with a ∈ R. (2.70)

Let Ω ⊂ RN , |Ω| > 0, be a bounded open set in which V > 0, eventually Ω ⊂ ΩV

where ΩV is given in the hypothesis. Extending functions u in D1,p
0 (Ω) by 0 outside

Ω, where D1,p
0 (Ω) is the closure of C∞0 (Ω) in the norm ‖u‖D1,p

0 (Ω) = ‖Du‖Lp(Ω), then

u ∈ D1,p(RN) and we can assume that D1,p
0 (Ω) ⊂ X. Let Wj be a j-dimensional
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subspace of D1,p
0 (Ω). For every v ∈ Wj with ‖v‖D1,p

0 (Ω) = 1, from the assumptions

of V it is easy to see that there exists a dj > 0 such that∫
Ω

V |v|kdx ≥ dj. (2.71)

Since Wj is a finite-dimensional space, all the norms in Wj are equivalent. Thus,
we can define

aj = sup
{
‖Dv‖qq : v ∈ Wj, ‖v‖D1,p

0 (Ω) = 1
}
<∞,

bj = sup
{
‖v‖p

∗

p∗ : v ∈ Wj, ‖v‖D1,p
0 (Ω) = 1

}
<∞.

(2.72)

On the other hand, for t ∈ (0, T0), by (2.68) and since K(x) ≥ 0 in RN , we arrive
to

E∞(tv) = Eλ(tv) =
1

p
tp +

tq

q
‖Dv‖qq −

λtk

k

∫
Ω

V |v|kdx− tp
∗

p∗

∫
Ω

K|v|p∗dx,

for every v ∈ Wj with ‖v‖D1,p
0 (Ω) = 1. Now we obtain, thanks to (2.71) and (2.72),

E∞(tv) ≤ tq
(
aj
q
− λdj

k
tk−q +

1

p
tp−q

)
, t ∈ (0, T0).

Figure 2.3: η(t)

Let
η(t) = c3 − λ

c4

k − q
tk−q +

c5

p− q
tp−q,

with positive constants given by c3 = aj/q, c4 = dj(k − q)/k and c5 = (p − q)/p,
cfr. Figure 2.3.
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We prove first that there exists T ∗ > 0 such that for all λ > 0

η′(T ∗) = 0, η(t) ≥ η(T ∗) in (0, T ∗). (2.73)

First, we observe that η(0) = c3 > 0, η(t) → ∞ when t → ∞ and η′(t) < 0
when t → 0+, since η′(t) = tk−q−1

(
−λc4 + c5t

p−k) and p > k. Moreover, from
η′(t)/tk−q−1 is strictly increasing, we deduce that there exists a unique T ∗ > 0
such that η′(T ∗) = 0, with T ∗ minimum for η, precisely T ∗ = (λc4/c5)1/(p−k) and

η(T ∗) = c3 − λ(p−q)/(p−k)

(
cp−q4

ck−q5

)1/(p−k)
p− k

(k − q)(p− q)
.

In particular, η(T ∗) < 0 if and only if λ > λ∗, where

λ∗ =
c

(k−q)/(p−q)
5

c4

(
c3(k − q)(p− q)

p− k

)(p−k)/(p−q)

=

(
aj

q(p− k)

)(p−k)/(p−q)

p(q−k)/(p−q) k(p− q)
dj(k − q)(k−q)/(p−q) .

It holds λ∗ < λ∗, with λ∗ defined in (2.66), if

‖K‖∞ <p∗
(

S

p∗ − k

)(p∗−k)/(p−k)(
q

aj

)(p∗−p)/(p−q)(
1− k

p

)(p∗−q)/(p−q)

·
(

dj(p
∗ − p)

(p− q)‖V ‖r

)(p∗−p)/(p−k)

(k − q)(k−q)(p∗−p)/(p−q)(p−k),

(2.74)

say for ‖K‖∞ sufficiently small.
Finally, we prove that T ∗ ∈ (0, T0) if λ < λ∗. From h(t) ≤ Eλ(tv) ≤ tqη(t) for

all t > 0 and v ∈ Wj with ‖v‖D1,p
0

= 1, we deduce h(T ∗) < 0 so that T ∗ ∈ (0, T0)

or T ∗ > T1. Assume by contradiction that T ∗ > T1, then T ∗ > T or equivalently,
using the explicit values of T ∗ and T ,

λ >

[
Sp
∗/p p∗(p− k)

‖K‖∞p(p∗ − k)

](p−k)/(p∗−p)
k(p− q)
dj(k − q)p

.

Since λ < λ∗, then

S−k/p
‖V ‖r
dj

<
k − q
p− q

· p
∗ − p
p∗ − k

< 1, (2.75)

but, by (2.71), we have dj ≤ ‖V ‖r‖v‖kp∗ ≤ S−k/p‖V ‖r being ‖v‖D1,p
0

= 1, so that

(2.75) produces the required contradiction since S−k/p‖V ‖r/dj ≥ 1. Consequently,
T ∗ ∈ (0, T0).
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Thus, (2.73) is verified for T ∗ ∈ (0, T0) and with η(T ∗) < 0 if λ ∈ (λ∗, λ
∗),

consequently

E∞(T ∗v) ≤ −εj < 0, εj = −(T ∗)qη(T ∗).

Denote ST ∗ =
{
v ∈ X : ‖v‖D1,p

0 (Ω) = T ∗
}
, then ST ∗ ∩Wj ⊂ E

−εj
∞ . By Proposition

2,

γ(E−εj∞ ) ≥ γ(ST ∗ ∩Wj) = j,

which proves (2.70). Consequently, E
−εj
∞ ∈ Σj, in turn

cj ≤ sup
u∈E

−εj
∞

E∞(u) ≤ −εj < 0.

Furthermore, E∞ is bounded from below, hence cj > −∞ (that is why we take
into account E∞ instead of Eλ), thus the proof of claim (2.69) is concluded.

By [40] and [117], it follows from (2.69) that cj, j ∈ N, is a critical value for
E∞. Then, from Lemma 15, we see that E∞ satisfies the (PS)cj condition for all
cj < 0 and this implies that Kcj is a compact set, hence γ(Kcj) <∞ by virtue of
Proposition 2.

We claim that, if for some j ∈ N there is an i ≥ 1 such that if

c = cj = cj+1 = · · · = cj+i, then γ(Kc) ≥ i+ 1. (2.76)

In particular, as a consequence of Remark 7 (cfr. Lemma 5.6 Chapter II in [128]),
if γ(Kc) > 1 then Kc is infinite.

The proof is almost standard, but for completeness we enclose it. We proceed
by contradiction. If γ(Kc) ≤ i, there exists a closed and symmetric set U with
Kc ⊂ U and γ(U) ≤ i, since c < 0, we can also assume that the closed set U ⊂ E0

∞.
Using Lemma 12-(5), there is an odd homeomorphism η : [0, 1]×X → X such that
η1(Ec+δ

∞ \U) ⊂ Ec−δ
∞ for some δ ∈ (0,−c). From definition of c = cj+i, there exists

an A ∈ Σj+i for which supu∈AE∞(u) < c+δ. Thus, from (2) and (5) of Proposition
12, respectively, we get

η1(A\U) ⊂ η1(Ec+δ
∞ \U) ⊂ Ec−δ

∞ ,

which means

sup
u∈η1(A\U)

E∞(u) ≤ c− δ. (2.77)

But Proposition 2-(a),(b) and (f) being γ(U) <∞ and since A\U is closed, reveals
that

γ(η1(A\U)) ≥ γ(η1(A\U)) ≥ γ(A\U) = γ(A\U) ≥ γ(A)− γ(U) ≥ j.



78

Hence η1(A\U) ∈ Σj, so that by definition of cj and thanks to (2.77),

c = cj ≤ sup
u∈η1(A\U)

E∞(u) = sup
u∈η1(A\U)

E∞(u) ≤ c− δ.

This contradiction proves claim (2.76).
To complete the proof, we observe that for all j ∈ N+, we have

Σj+1 ⊂ Σj and cj ≤ cj+1 < 0.

If all cj are distinct, then γ(Kcj) ≥ 1, so that Kcj 6= ∅ and thus (cj)j is a sequence
of distinct negative critical values of E∞, thus a sequence of solutions with negative
energy is obtained, as required.

If for some j0, there exists an i ≥ 1 such that

c = cj0 = cj0+1 = · · · = cj0+i,

from (2.76) we have γ(Kcj0
) ≥ i + 1 > 1, which shows that Kcj0

has infinitely
many distinct elements. Also in this case we arrive to a sequence of solutions with
negative energy.

By Lemma 15, then Eλ(u) = E∞(u) for every u ∈ X such that E∞(u) < 0, so
that the functional Eλ, being even, possesses at least m pairs of critical nonzero
points of with negative critical values. Therefore, problem (8) has at least 2m
weak nontrivial solutions with negative energy. This completes the proof.
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2.3 An Existence result in the p-superlinear and

subcritical case

In this section, whose main results are contained in [15], we prove existence
of nontrivial weak solutions in X of the nonlinear elliptic problem (8) when the
parameters satisfies the following ranges

1 < q ≤ p < N, p < k < p∗. (2.78)

In our situation, we have to face with the loss of compactness, in the sense
that (PS)c fails at certain levels and, hence, not all Palais Smale sequences for the
functional contain some convergent subsequences.

Note that the presence of weights in our problem (8) produces several difficul-
ties, even to prove that the solution obtained is non trivial, we cannot use results
such as Lemma I.1 in [95], Proposition 2.5 in [53] and Lemma 2.8 in [62], which are
classical tools in this framework when weights are not involved. Regularity results
for solutions of problem (8), in the subcase of the p-Laplacian, are developed in
[116].

We mention here some papers in which the concentration compactness principle
is combined with the Mountain Pass Theorem in order to obtain existence results.
Precisely, [88] for the Laplacian, [64], [76], [130], [125] for the p-Laplacian, [38]
for the (p, q)-Laplacian but for a subcritical nonlinearity and [4] for more general
operators.

A classical approach to prove existence of solutions of (8), is to construct them
as critical points of the energy functional (11) via the Mountain Pass Theorem of
Ambrosetti and Rabinowitz, see [7] and [117]. This is exactly the technique used
to prove our main existence result, one of the hardest part in its proof is devoted
to a careful analysis of the behavior of Palais Smale sequences to understand the
consequences of spreading or concentration of mass. In particular, while in the
case 1 < q < k < p, treated in Subsection 2.2, the principal obstacle to this
careful analysis can be found in proving tightness for 1 < k < p, in this section
the main difficulty relies on the fact that assumption (2.78) does not allow to
prove the validity of (PS)c condition for the functional Eλ defined in (11), a well
known crucial property to obtain Theorem 2. Thus, it is not possible to apply
the same technique used in Section 2.2, but we had to take different directions
that give us a weaker condition which nevertheless guarantees the existence of a
weak solution using Mountain Pass Theorem. Indeed, after the proof of tightness,
developed in Subsection 2.3.1, which is valid for every Palais Smale sequences at
any level c below a certain positive threshold, using arguments derived from [36],
we conclude that the nonnegative critical point for Eλ, obtained by the Mountain
Pass Theorem, is the non trivial one.
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In particular, in Subsection 2.3.2 we verify the validity of the Mountain Pass
geometry as well as the proof of almost everywhere convergence of the gradient.
Finally, the proof of Theorem 3 is developed in Subsection 2.3.3.

2.3.1 Tightness in the p-superlinear case

As discussed in the Introduction, we do not manage to get the (PS)c property
for Eλ, defined in (11), thus the direct proof of tight convergence is crucial and it
is given in the following Lemma.

Lemma 16. Assume 1 < q ≤ p < k < p∗ and let λ ∈ (0,∞). Suppose that V and
K satisfy (9) and (10) respectively. If

0 < c < c :=
SN/p

N‖K‖(N−p)/p
∞

, (2.79)

then every (PS)c sequence, (un)n ⊂ X, for Eλ is such that, up to subsequences,

νn = |un|p
∗
dx

∗
⇀ ν,

where ν is a bounded nonnegative measure.

Remark 10. The case c < 0 of Lemma 16 is treated in Lemma 13 in Subsection
2.2.1, whose proof is inspired on an argument based on Swanson and Yu [130].

Proof of Lemma 16. We follow the proof of Lemma 13 in Subsection 2.2.1, but
adapted to the new case. Let (un)n ⊂ X be a (PS)c sequence. Then we can repeat
word on word the proof of Lemma 13 up to the setting of L,M,Q ≥ 0 in (2.26).
We have to prove again that there exists Λ > 0 such that (2.25) holds.

As a consequence of (2.23), being c > 0, necessarily L+Q > 0.
The continuity of the functional J in Lp

∗
(RN), whose J is given in Lemma 6,

implies (2.27). Clearly H ≥ 0 by (9), we claim that H > 0. If H = 0, then (2.24)
would imply,

lim
n→∞

∫
RN
K|un|p

∗
dx = L+Q. (2.80)

Consequently, from (2.23) being q ≤ p, we get

c =
L

p
+
Q

q
− L+Q

p∗
>
L+Q

N
, (2.81)

equivalently, since c satisfies (2.79),

L+Q < cN <
SN/p

‖K‖(N−p)/p
∞

. (2.82)
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Since K is non trivial and verifies (10), we have

‖un‖p
∗

p∗ ≥
1

‖K‖∞

∫
RN
K|un|p

∗
dx,

so that

‖un‖pp∗ ≥ ‖K‖−p/p
∗

∞

(∫
RN
K|un|p

∗
dx

)p/p∗
(2.83)

Furthermore, using Sobolev’s inequality, (2.80) and (2.83), we gain

L+Q ≥ L ≥ S lim
n→∞

‖un‖pp∗

≥ S‖K‖−p/p∗∞ lim
n→∞

(∫
RN
K|un|p

∗
dx

)p/p∗
= S‖K‖−p/p∗∞ (L+Q)p/p

∗
,

which is equivalent to L + Q ≥ SN/p‖K‖−(N−p)/p
∞ contradicting (2.82). Thus,

H > 0.
Consequently, condition (2.25) holds with Λ = L+Q+M + λH > 0, then we

can apply Lemma 10 to the sequence (ρn)n = (zn)n as in Lemma 13 whose proof
is still valid up to (2.37), that is c ≥ c, which is a contradiction since p < k < p∗

and c satisfies (2.79).
Then we arrive to the conclusion of the Lemma as in the proof of Lemma 13

but with M ≥ 0. The proof is complete.

2.3.2 Mountain Pass geometry and the lack of the Palais

Smale property for the energy functional

In Subsection 2.1.4 we have introduced the Mountain Pass Theorem. In this
subsection we first check that the functional Eλ, defined in (11), satisfies a Moun-
tain Pass geometry through the following lemma.

Lemma 17. Assume 1 < q ≤ p < k < p∗.Then, the functional Eλ verifies the
hypotheses of the Mountain Pass Theorem.

Proof. From the observations in Subsection 2.1.1, Eλ ∈ C1(X) and, clearly condi-
tion (i) of Theorem 15 is satisfied since Eλ(0) = 0. Using Hölder’s inequality with
exponents r and r′, Sobolev’s inequality, since q ≤ p and K ∈ L∞(RN), we get

Eλ(u) ≥ c1‖u‖p − λc2‖u‖k − c3‖u‖p
∗

= ‖u‖p(c1 − λc2‖u‖k−p − c3‖u‖p
∗−p),
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where c1 = 1/p, c2 = S−k/p‖V ‖r/k and c3 = S−p
∗/p‖K‖∞/p∗ are positive con-

stants. Let us define h(t) = tp(c1 − λc2t
k−p − c3t

p∗−p), for t ≥ 0. It is easy to see
that, since p < k < p∗, there exists t1 > 0 such that h(t) > 0 for all t ∈ (0, t1].
Therefore, there exist ζ, R > 0 with R small enough, so that Eλ(u) ≥ ζ > 0
whenever ‖u‖ = R. Thus, condition (ii) of Theorem 15 is satisfied.

Now, let u ∈ X \ {0} such that u ≥ 0. Then, for any t > 0, we have

Eλ(tu) =
tp

p
‖Du‖pp +

tq

q
‖Du‖qq −

tk

k

∫
RN
V ukdx− tp

∗

p∗

∫
RN
Kup

∗
dx. (2.84)

Since p < k < p∗ and K ≥ 0 nontrivial, we get Eλ(tu) → −∞ as t → ∞. Thus,
let tu > 0 be such that Eλ(tu) < 0 for all t ≥ tu and ‖tuu‖ > R. So the proof of
(iii) is concluded.

Consider

Γu := {γ ∈ C0([0, 1], X) / γ(0) = 0 and γ(1) = tuu},

and we define cu as in (2.119). Then the hypotheses of Theorem 15 are satisfied.
This ends the proof.

In what follows we make use of the following standard inequality.

Remark 11. For all x, y ∈ RN with |x|+ |y| 6= 0, there exists a constant C(s) > 0
such that

< |x|s−2x− |y|s−2y, x− y > ≥ C(s)

{
|x−y|2

(|x|+|y|)2−s , if 1 ≤ s < 2,

|x− y|s, if s ≥ 2.

Note that differently from Section 2.2, condition p < k < p∗ does not allow us
to prove that the functional Eλ satisfies the (PS)c condition. In particular, the
main problem lies in the proof that the atomic part of the measure ν in (2.41)
is zero, how it happens if 1 < k < p. For this reason, in the following Lemma
we have to face both the case when the atomic part of ν is zero and when it is
not zero. This latter case produces the convergence of (Dun)n in Lp and Lq of a
subset of RN , not in the entire RN as it occurs in Section 2.2. Consequently, only
convergence a.e. of (Dun)n arise but not strong convergence in Lp and Lq. Thus,
we have to deal with the almost everywhere convergence to prove the existence of
a solution of (8).

Lemma 18. Assume 1 < q ≤ p < k < p∗. Let (un)n ⊂ X be a (PS)c sequence
with c satisfying (2.79). Then, there exists a nonnegative function u ∈ X such
that, up to subsequence,

Dun(x)→ Du(x) a.e. in RN . (2.85)
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Proof. Let (un)n be a (PS)c sequence with c satisfying (2.79). Now we follow word
for word Lemma 14 up to the finiteness of J1 proved in (2.53).

Thus, from (2.53), there exist a finite natural number s = |J1| of indices i ∈ J1

such that (2.52) holds for all xi with i = 1, . . . , s.

First, we take into account the case in which s > 0. Take a standard cut-off
function ψ ∈ C∞c (RN), such that 0 ≤ ψ ≤ 1 in RN , ψ = 0 for |x| > 1, ψ = 1 for
|x| ≤ 1/2 and consider ε0 > 0 such that

{x1, . . . , xs} ⊂ B1/2ε0 , Bε0(xi) ∩Bε0(xj) for i 6= j.

Define

Ψε(x) := ψ(εx)−
s∑
i=1

ψ

(
x− xi
ε

)
for all 0 < ε < ε0. Thus,

Ψε(x) =

{
0, if x ∈

⋃s
i=1Bε/2(xi),

1, if x ∈ Aε,

where Aε := B1/2ε \
⋃s
i=1Bε(xi). Now, let

Pn :=< |Dun|p−2Dun − |Du|p−2Du+ |Dun|q−2Dun − |Du|q−2Du,Dun −Du > .

Using Remark 11, we immediately get Pn ≥ 0. Fix δ, ε > 0 with 0 < ε < δ < ε0.
Then, since Aδ ⊂ Aε, we get Ψε ≡ 1 in Aδ by the definition of Ψε, so that∫

Aδ

Pndx =

∫
Aδ

PnΨεdx ≤
∫
Aε

PnΨεdx ≤
∫
RN
PnΨεdx.

Thus, by (2.9), we gain

∫
Aδ

Pndx ≤
∫
RN

(|Dun|pΨε − |Dun|p−2ΨεDunDu)dx

+

∫
RN

(|Du|pΨε − |Du|p−2ΨεDunDu+ |Dun|qΨε)dx

+

∫
RN

(|Du|qΨε − |Dun|q−2ΨεDunDu− |Du|q−2ΨεDunDu)dx

(2.86)



84

that is∫
Aδ

Pndx ≤ E ′λ(un)(unΨε)− E ′λ(un)(uΨε)

−
∫
RN
|Dun|p−2DunDΨεundx−

∫
RN
|Dun|q−2DunDΨεundx

+

∫
RN
|Dun|p−2DunDΨεu dx+

∫
RN
|Dun|q−2DunDΨεu dx

− λ
∫
RN
V |un|k−2unuΨεdx−

∫
RN
K|un|p

∗−2unuΨεdx

+

∫
RN
|Du|pΨεdx+

∫
RN
|Du|qΨεdx−

∫
RN
|Du|p−2ΨεDunDudx

−
∫
RN
|Du|q−2ΨεDunDudx+ λ

∫
RN
V |un|kΨεdx+

∫
RN
K|un|p

∗
Ψεdx.

(2.87)

Being (un)n ⊂ X a (PS)c sequence for Eλ, from Lemma 8 (un)n is bounded, thus
we obtain

E ′λ(un)(unΨε), E
′
λ(un)(uΨε)→ 0, (2.88)

as n→∞. Then, similarly to the proof of (2.49) in Lemma 14, using the properties
of Ψε and the boundedness of (un)n, we have∫

RN
|Dun|p−2DunDΨεundx→ 0,

∫
RN
|Dun|q−2DunDΨεundx→ 0, (2.89)

and∫
RN
|Dun|p−2DunDΨεu dx→ 0,

∫
RN
|Dun|q−2DunDΨεu dx→ 0, (2.90)

as n→∞ and ε→ 0. Thus, using (2.88)-(2.90), (2.87) becomes∫
Aδ

Pndx ≤λ

[∫
RN
V |un|kΨεdx−

∫
RN
V |un|k−2unuΨεdx

]
+

∫
RN
K|un|p

∗
Ψεdx−

∫
RN
K|un|p

∗−2unuΨεdx

+

∫
RN
|Du|pΨεdx−

∫
RN
|Du|p−2ΨεDunDudx

+

∫
RN
|Du|qΨεdx−

∫
RN
|Du|q−2ΨεDunDudx+ on(1),

(2.91)

as n→∞. We proceed by defining the following functional

f(v) :=

∫
RN

(|Du|p−2 + |Du|q−2)DuDvΨεdx
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for every v ∈ X. Since f is clearly bounded in X, recalling that u ∈ X, we have∫
RN

(|Du|p−2+|Du|q−2)DuDunΨεdx→
∫
RN

(|Du|p−2+|Du|q−2)|Du|2Ψεdx, (2.92)

as n→∞. Hence, from (2.92), (2.91) turns into∫
Aδ

Pndx ≤λ

[∫
RN
V |un|kΨεdx−

∫
RN
V |un|k−2unuΨεdx

]
+

∫
RN
K|un|p

∗
Ψεdx−

∫
RN
K|un|p

∗−2unuΨεdx+ on(1).

(2.93)

Again by the boundedness of (un)n in Lp
∗
(RN) and un → u a.e. in RN by (2.6),

thus, being

‖|un|p
∗−2un‖(p∗)′ = ‖un‖p

∗−1
p∗ , ‖|un|k‖p∗/k = ‖un‖kp∗ , ‖|un|k−2un‖p∗/(k−1) = ‖un‖k−1

p∗ ,

applying Lemma 20, we get

|un|p
∗−2un ⇀ |u|p

∗−2u in L(p∗)′(RN), |un|k ⇀ |u|k in Lp
∗/k(RN),

|un|k−2un ⇀ |u|k−2u in Lp
∗/(k−1)(RN).

Therefore, we gain∫
RN
V |un|kΨεdx,

∫
RN
V |un|k−2unuΨεdx→

∫
RN
V |u|kΨεdx (2.94)

as n → ∞, where in the second integral we have used that V ∈ Lr(RN) and the
facts that |un|k−2un ∈ Lp

∗/(k−1)(RN) and u ∈ Lp∗(RN). Moreover, we have∫
RN
K|un|p

∗−2unuΨεdx→
∫
RN
K|u|p∗Ψεdx, (2.95)

as n→∞. Moreover, from (I), it follows that∫
RN
K|un|p

∗
Ψεdx→

∫
RN
K|u|p∗Ψεdx, (2.96)

as n→∞. Now, replacing (2.94)-(2.96) in (2.93), we arrive to

lim
n→∞

∫
Aδ

Pn ≤ 0,
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thus, since Pn ≥ 0, we can see

lim
n→∞

∫
Aδ

Pn = 0,

for every δ > 0 such that ε < δ < ε0. From Remark 11 applied first with p and
then with q, we have that Pn can be divided in two nonnegative terms, thus, we
get

lim
n→∞

∫
Aδ

< |Dun|p−2Dun − |Du|p−2Du,Dun −Du > dx = 0, (2.97)

and

lim
n→∞

∫
Aδ

< |Dun|q−2Dun − |Du|q−2Du,Dun −Du > dx = 0. (2.98)

Now we consider (2.97), since the same conclusions follow for (2.98) when p is
replaced with q. By virtue of Lemma 9 applied with a(x, ξ) = |ξ|t−2ξ first with
t = p then with t = q, we obtain

Dun → Du in Lp(Aδ) ∩ Lq(Aδ).

Thus, up to subsequences, we get

Dun(x)→ Du(x) a.e. in Aδ.

Taking 0 < εm < δm < ε0 and letting εm, δm → 0 as m→∞, it holds Aδm → RN

as m→∞. Then (2.85) is satisfied in the case in which s > 0.
As regards the case where s = 0, that is νj = 0 for all j ∈ J , it is enough

to take Ψε(x) := ψ(εx) and Aδ := B1/2δ and repeat the argument above. This
completes the proof.

From now on we denote, for each λ > 0,

cλ := inf
u∈X\{0}

max
t≥0

Eλ(tu). (2.99)

Remark 12. Obviously, cλ ≥ cu, where cu is defined in (2.119), since Eλ(tu) < 0
for u ∈ X \ {0} and t large by the structure of Eλ. Actually, cu = cλ (see also
Theorem 4.2 in [143]).

In the following lemma we point out the relationship between c and cλ defined
in (2.79) and (2.99), respectively.

Lemma 19. There exists λ∗∗ > 0 such that for all λ > λ∗∗ it holds

0 < cλ < c.
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Proof. Clearly, from the definition of cu given in (2.119), then cu ≥ ζ and, by
Remark 12, we have cλ = cu > 0 for all u ∈ X \ {0}. We emphasize that ζ
might depend on λ, but it is always positive. We take the open set ΩV where V is
positive. Let u0 ∈ X \ {0} with support in ΩV such that u0 ≥ 0. Since

Eλ(tu0) =
tp

p
‖Du0‖pp +

tq

q
‖Du0‖qq − λ

tk

k

∫
RN
V uk0 dx−

tp
∗

p∗

∫
RN
Kup

∗

0 dx

≤ tp

p
‖Du0‖pp +

tq

q
‖Du0‖qq − λ

tk

k

∫
RN
V uk0 dx,

for all t ≥ 0, we have Eλ(tu0) → −∞ as t → ∞ and Eλ(tu0) → 0+ as t → 0+ .
Thus, there exists tλ > 0 such that

max
t≥0

Eλ(tu0) = Eλ(tλu0).

In particular, we get

0 =
d

dt

[
Eλ(tu0)

]
t=tλ

=tp−1
λ ‖Du0‖pp + tq−1

λ ‖Du0‖qq − λtk−1
λ

∫
RN
V uk0 dx

− tp
∗−1
λ

∫
RN
Kup

∗

0 dx,

or, equivalently,

λ

∫
RN
V uk0 dx =

‖Du0‖pp
tk−pλ

+
‖Du0‖qq
tk−qλ

− tp
∗−k
λ

∫
RN
Kup

∗

0 dx, (2.100)

for every λ > 0. Since the support of u0 is contained in ΩV , the left hand side of
(2.100) is positive and it goes to ∞ if λ → ∞. Thus, also the right hand side of
(2.100) must go to∞ if λ→∞. Hence, being q ≤ p < k < p∗, necessarily tλ → 0+

as λ→∞. From Eλ(tλu0)→ 0+ as tλ → 0+ or equivalently when λ→∞, we can
conclude that there exists λ∗∗ > 0 such that

max
t≥0

Eλ(tu0) = Eλ(tλu0) <
SN/p

N‖K‖(N−p)/p
∞

= c.

By the definition of c, we get cλ < c for all λ > λ∗∗. This ends the proof.
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2.3.3 Proof of Theorem 3

Before proving Theorem 3, whose statement is given in the Introduction, we re-
call a result following from Brezis Lieb Lemma, that is Theorem 1 in [26], combined
with the Banach Alaoglu’s Theorem (see Remark (iii) of [26]).

Lemma 20. Let 1 < p < ∞ and let (un)n ⊂ Lp(RN) be a bounded sequence
converging to u ∈ Lp(RN) almost everywhere. Then, un ⇀ u (weakly) in Lp(RN).

Note that condition u ∈ Lp(RN) follows by Fatou’s Lemma.
We are now ready to prove the existence result, that is Theorem 3, which covers

the p-superlinear subcritical case.
Proof of Theorem 3. From Lemma 17 the energy functional Eλ, defined in (11),

satisfies the assumptions of Lemma 15, thus there exists a Palais Smale sequence
(un)n ⊂ X for Eλ at level cu = cλ, as pointed out in Remark 12, that is

Eλ(un)→ cλ, E ′λ(un)ϕ→ 0 as n→∞ (2.101)

for all ϕ ∈ X. By Lemma 19, there exists λ∗∗ > 0 such that 0 < cλ < c for every
λ > λ∗∗. Furthermore, according to Lemmas 8 and 18, there exists a nonnegative
function u ∈ X such that

un ⇀ u in X, un → u a.e. in RN , Dun → Du a.e. in RN .

Using Lemma 20, we obtain the following convergences

|Dun|p−2Dun ⇀ |Du|p−2Du in [Lp
′
(RN)]N ,

|Dun|q−2Dun ⇀ |Du|q−2Du in [Lq
′
(RN)]N ,

up
∗−1
n ⇀ up

∗−1 in L(p∗)′(RN), uk−1
n ⇀ uk−1 in Lp

∗/(k−1)(RN).

(2.102)

Then, from (2.102), for every ϕ ∈ X we have∫
RN
|Dun|p−2DunDϕdx→

∫
RN
|Du|p−2DuDϕdx∫

RN
|Dun|q−2DunDϕdx→

∫
RN
|Du|q−2DuDϕdx∫

RN
Kup

∗−1
n ϕdx→

∫
RN
Kup

∗−1ϕdx,

∫
RN
V uk−1

n ϕdx→
∫
RN
V uk−1ϕdx.

(2.103)

Thus, letting n → ∞ in (2.101)2 and by (2.103), we have E ′λ(u)ϕ = 0 for all
ϕ ∈ X, that is u is a solution of (8). We know that u ≥ 0 by (2.6) and un ≥ 0.
We claim that u 6≡ 0. Recalling the definition of L and Q in (2.26), as in (2.81),
we get

cλ =
L

p
+
Q

q
− L+Q

p∗
=
L

N
+Q

(
1

q
− 1

p∗

)
≥ L+Q

N
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that is
cλN ≥ L+Q. (2.104)

As in Lemma 16, being (un)n a (PS)cλ sequence, necessarily L + Q > 0 and we
obtain

S(L+Q)p/p
∗ ≤ ‖K‖p/p∗∞ (L+Q),

that is

L+Q ≥ SN/p

‖K‖(N−p)/p
∞

. (2.105)

Thus, from (2.105) in (2.104), we gain

cλ ≥
SN/p

N‖K‖(N−p)/p
∞

= c

which is a contradiction, since cλ < c. The proof is so concluded.
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2.4 Existence and multiplicity results in a sym-

metric setting

In the current section we are interested in nontrivial weak solutions of the same
nonlinear elliptic problem analyzed in the previous two sections, but in the space
of T -symmetric functions, namely{

−∆pu−∆qu = λV (x)|u|k−2u+K(x)|u|p∗−2u, in RN

u ∈ XT .
(2.106)

The results of this section are contained in [14]. The energy functional associated
to problem (2.106) and given in (11), now is defined in XT , namely Eλ : XT → R.
To find critical points of Eλ, by standard variational methods, we first find levels
of Eλ for which the Palais Smale condition holds in XT . According to the principle
of symmetric criticality, see Section 1.1, any critical point of Eλ in XT is also a
T -symmetric solution of (8) in X.

As discussed in the Introduction, the ”double” lack of compactness, due to the
entire space RN and also to the fact that D1,p(RN) is not compactly embedded
in Lp

∗
(RN), can be recovered in a symmetric setting, as discussed by Lions in

[97], where the author explains how the invariance of functionals by symmetries
fits in the situation of minimization problems and the concentration compactness
principle.

In this section, inspired by [25], we restrict our attention to the symmetric
setting described at the end of Section 2 and we prove that, if V and K are
T -symmetric with |T | < ∞, then the Palais Smale condition is valid for Eλ at
levels c below a certain threshold with λ sufficiently small. Consequently, using
Mountain Pass Theorem of Ambrosetti and Rabinowitz, see [7] and [117], we show
an existence result. Besides, if |T | =∞ and additional conditions on the weight K
hold, the energy functional Eλ satisfies the Palais Smale condition for all c ∈ R so
that Fountain Theorem can be applied to obtain the existence of infinitely many
solutions for (2.106), as well as T -symmetric solutions of (8), with positive energy.

Note that, the symmetric assumptions on the weights permit to have T -symmetric
solutions, for details see the proof of Theorem 1 in [81].

In closing, we point out that Theorem 4 extends previous results contained in
Sections 3 and 4 in [25] for Laplacian, while Theorem 5 extends Theorem 1.2 in
[80] and Theorem 3 in [79] for the p-Laplacian.

This section is divided into three subsections. In Subsection 2.4.1 we prove
some standard results concerning (PS)c sequences for Eλ but using some helpful
properties of the symmetric setting, then in Subsection 2.4.2 we verify the Moun-
tain Pass geometry and, consequently, we prove the existence results, Theorems 4.
Finally, the multiplicity results, Theorem 5, is developed in Section 2.4.3.
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2.4.1 On the Palais Smale property for positive levels

In this section we will focus on the validity of the (PS)c condition for the en-
ergy functional Eλ, the point where the usefulness of symmetry becomes manifest.
Indeed in Section 2.2 we prove such a property only for negative levels, while in
the following Lemma we prove it for levels in an left half line with positive end.

Lemma 21. Let 1 < k < p and

K(0) > 0, K(∞) > 0, |T | <∞ (2.107)

Suppose

λ < λ
∗
T :=

(
SN/p

NC∗
C

)(p−k)/p

=
pp∗S[N(p∗−k)]/pp∗

N‖V ‖r
· C

(p−k)/p

p∗ − k
·
(

k

p− k

)(p−k)/p

, (2.108)

where

C = min

{
|T |

‖K‖(N−p)/p
∞

,
1

K(0)(N−p)/p ,
1

K(∞)(N−p)/p

}
. (2.109)

Assume that V and K are T -symmetric and verifies respectively (9) and (10). If

c < cTλ :=
SN/p

N
C− λp/(p−k)C∗ = C∗((λ

∗
T )p/(p−k) − λp/(p−k)), (2.110)

where

C∗ =

(
N

S

)k/(p−k)(
p∗ − k
pp∗

‖V ‖r
)p/(p−k)

p− k
k

. (2.111)

Then, the functional Eλ satisfies (PS)c condition in XT with c as in (2.110).

Proof. Let (un)n ⊂ XT be a (PS)c sequence for Eλ, clearly (un)n is bounded in X
by Lemma 8, thus it is bounded also in XT and, by Banach-Alaoglu’s Theorem,
there exists u ∈ XT such that, up to subsequences, we get

(I) un ⇀ u in XT ,

and (II), (III) as in the proof of Lemma 14 which we follow until (2.53).
Since q ≤ p forces 1/q − 1/p∗ ≥ 1/N , we have

Eλ(un)− 1

p∗
E ′λ(un)un ≥

1

N

∫
RN

(
|Dun|p+|Dun|q

)
dx−λp

∗ − k
kp∗

∫
RN
V |un|k. (2.112)

First, we consider points xj 6= 0. In particular, since the functions un are T -
symmetric, then also ν and µ have to be T -symmetric measures. This means that
if xj 6= 0 is a singular point of ν, so is τxj for each τ ∈ T and the mass of ν
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concentrated at τxj is the same for each τ ∈ T . Thus, letting n → ∞ in (2.112),
since (un)n is a (PS)c sequence by Lemma 8 and using (II), we have

c+ o(1) ≥ 1

N

∫
RN
|Du|pdx+

|T |
N

∫
RN

∑
j∈J1

µjδxjdx− λ
p∗ − k
kp∗

‖V ‖r‖u‖kp∗

≥ S

N
‖u‖pp∗ +

|T |SN/p

N‖K‖(N−p)/p
∞

− λp
∗ − k
kp∗

‖V ‖r‖u‖kp∗ ,

where we have used Sobolev’s inequality, (2.50) and (2.52). Let f(t) = c1t
p−λc2t

k,
with c1 = S/N and c2 = (p∗ − k)‖V ‖r/(kp∗). The function f attains its absolute
minimum, for t > 0, at the point t0 = [(λkc2)/(c1p)]

1/(p−k), so that

f(t) ≥ f(t0) = −λp/(p−k)C∗,

where C∗ given in (2.111). Thus, it holds

c+ o(1) ≥ |T |SN/p

N‖K‖(N−p)/p
∞

− λp/(p−k)C∗, (2.113)

which contradicts (2.110). Note that the right hand side of (2.113) is nonnegative
since (2.108) is true.

On the other hand, if xj = 0, similarly as before, since |T0| = 1, we get

c ≥ SN/p

NK(0)(N−p)/p − λ
p/(p−k)C∗.

which again contradicts (2.110), so that J1 = ∅, concluding the proof of the claim.
It remains to show that the concentration of ν cannot occur at infinity. It is

clear that ν∞ and µ∞ defined in (2.16) both exist and are finite. Given ε > 0, we
find R0 = R0(ε) > 0 such that for every R ≥ R0 we have∫

|x|>R
K|un|p

∗
dx ≤

∫
|x|>R

(K(∞) + ε)|un|p
∗
dx. (2.114)

Consequently, since (un)n ⊂ Lp
∗
(RN) and ε arbitrarily small, we deduce

0 ≤ lim
R→∞

lim sup
n→∞

∫
|x|>R

K|un|p
∗
dx ≤ K(∞)ν∞. (2.115)

On the other hand, following the proof of Lemma 14 in Subsection 2.2.2 we get

µ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

K|un|p
∗
dx. (2.116)
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In turn,
K(∞)ν∞ ≥ µ∞. (2.117)

Now, following the same idea as before but using |T∞| = 1, (2.42) in Lemma 14
and (2.117), we obtain

c+ o(1) ≥ SN/p

NK(∞)(N−p)/p − λ
p/(p−k)C∗,

which contradicts (2.110), thus concentration at infinity cannot occur.
Consequently,

lim
n→∞

∫
RN
|un|p

∗
dx =

∫
RN
|u|p∗dx.

From (I), un ⇀ u in Lp
∗
(RN), thus, by the compactness of the embedding,

un → u in Ls(ω), ω b RN , 1 ≤ s < p∗.

Consequently, by using an increasing sequence of compact sets whose union is RN

and a diagonal argument, we also have (2.6).
From (2.6), then Brezis Lieb Lemma in [26], implies

lim
n→∞

∫
RN
|un − u|p

∗
dx = 0.

Thanks to the monotonicity of the following operator

< Ap(u), ϕ >=

∫
RN
|Du|p−2DuDϕdx,

for all u, ϕ ∈ XT , and by virtue of Lemma 9 applied first with a(x, ξ) = |ξ|p−2ξ
and then with a(x, ξ) = |ξ|q−2ξ, following all steps in Lemma 14, we have

lim
n→∞

∫
RN
|D(un − u)|pdx = 0, lim

n→∞

∫
RN
|D(un − u)|qdx = 0.

In turn, by Sobolev Gagliardo Niremberg’s inequality, we obtain the required prop-
erty, namely Eλ satisfies (PS)c condition in XT for every c < cTλ . The proof is
complete.

Remark 13. We point out that the property of T -symmetry of the limit function u
of the Palais Smale sequence (un)n can be easily deduced from (2.6) if (un)n ⊂ XT ,
cfr. [81] where Banach-Alaoglu’s Theorem is applied in the entire X.

In the following result we study the effect of the validity of assumption (12) for
the Palais Smale property for the energy functional Eλ.
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Corollary 1. Let the assumptions of Lemma 21 hold except for (2.107) and assume
1 < k < p∗. If (12) holds, then the functional Eλ satisfies (PS)c condition in XT

for every c ∈ R.

Proof. We only give a sketch of the proof because it is analogous to that of Lemma
21. Let (un)n ⊂ XT be a (PS)c sequence for Eλ. Now we follow the proof of Lemma
21 word by word up to (2.53). Assuming that xj 6= 0 is a singular point of ν that
is νj = ν(xj) > 0, so is τxj, for each τ ∈ T and, being ν is T-symmetric, we obtain
that the mass of ν concentrated at τxj is the same for each τ ∈ T , namely

ν(τxj) = νj > 0 for all τ ∈ T.

As |T | =∞, the sum in (iii) of Lemma 11 is infinite, which is a contradiction.
On the other hand, by (2.50) and (12) we have µ0 = 0. Thus, thanks to

0 ≤ Sν
p/p∗

j ≤ µj for all j, we get ν0 = 0. The next step of the proof consists in
showing that concentration of ν cannot occur at infinity. Proceeding as in Lemma
21, we have (2.114) and (2.115) from which, since K(∞) = 0 is valid by (12), we
obtain

lim
R→∞

lim sup
n→∞

∫
|x|>R

K|un|p
∗
dx = 0.

Thus, from (2.116), we have µ∞ = 0 and, from (2.19), we obtain ν∞ = 0. There-
fore, the functional Eλ satisfies (PS)c condition in XT for every c ∈ R. This
completes the proof.

Remark 14. If (2.107) and (12) fail, then Lemma 21 continues to be valid with
(2.109) properly modified, precisely for |T | <∞ with either

C = min{|T | · ‖K‖(p−N)/p
∞ ,max{K(0), K(∞)}(p−N)/p} if K(0)2 +K(∞)2 > 0

or
C = |T | · ‖K‖(p−N)/p

∞ if K(0) = K(∞) = 0;

while for |T | =∞ with

C = max{K(0), K(∞)}(p−N)/p if K(0)2 +K(∞)2 > 0.

2.4.2 Proof of Theorem 4

Before proving our existence result under a symmetric setting, Theorem 4,
whose statement is given in the Introduction, we check that the functional Eλ,
defined in (11), satisfies the Mountain Pass geometry.
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Lemma 22. Let 1 < k < p and λ∗ defined in (2.66), that is

λ∗ =
k(p∗ − p)
p(p∗ − k)

(
p∗(p− k)

p(p∗ − k)

)(p−k)/(p∗−p)

· S(p∗−k)/(p∗−p)

‖V ‖r · ‖K‖(p−k)/(p∗−p)
∞

.

Assume either 1 < k < q and λ < λ∗ or q < k < p and λ > 0.

Then, the functional Eλ verifies the hypotheses of the Mountain Pass Theorem
in XT .

Proof. Clearly Eλ ∈ C1(XT ) with Eλ(0) = 0 so that condition (i) of Theorem 15 is
satisfied. For the proof of condition (iii), we refer to Lemma 17 since k, q, p < p∗.
Following the proof of Lemma 17, we gain

Eλ(u) ≥ c1‖u‖p + c2‖u‖q − λc3‖u‖k − c4‖u‖p
∗
, (2.118)

where c1 = 1/p, c2 = 1/q, c3 = S−k/p‖V ‖r/k and c4 = S−p
∗/p‖K‖∞/p∗ are positive

constants. Now we divide the proof in two cases.

Case q < k < p. From (2.118), we obtain

Eλ(u) ≥ c2‖u‖q − λc3‖u‖k − c4‖u‖p
∗

= ‖u‖q(c2 − λc3‖u‖k−q − c4‖u‖p
∗−q).

Let g(t) = tq(c2− λc3t
k−q − c4t

p∗−q), for every t ≥ 0. Since q < k < p∗ and c2 > 0,
there exists t1 > 0 such that g(t) > 0 for all t ∈ (0, t1]. Thus, there exist ζ, R > 0
with R small enough, so that Eλ(u) ≥ ζ > 0 for every u so that ‖u‖ = R. Thus,
condition (ii) of Theorem 15 is satisfied.

Case 1 < k < q. From (2.118), we obtain

Eλ(u) ≥ c1‖u‖p − λc3‖u‖k − c4‖u‖p
∗

= ‖u‖k(c1‖u‖p−k − λc3 − c4‖u‖p
∗−k).

Arguing as in Subsection 2.2.3 with the functions h and ĥ defined in (2.65), there
exists T0, T1 > 0 such that h(t) > 0 for all t ∈ (T0, T1). Therefore, there exist
ζ, R > 0 with R ∈ (T0, T1), so that Eλ(u) ≥ ζ > 0 whenever ‖u‖ = R. Thus,
condition (ii) of Theorem 15 is satisfied.

Hence, in both cases we can consider

Γu := {γ ∈ C0([0, 1], XT ) / γ(0) = 0 and γ(1) = tuu},

and

cTu := inf
γ∈Γu

sup
t∈[0,1]

Eλ(γ(t)). (2.119)

Then the hypotheses of Theorem 15 are satisfied. This ends the proof.
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From now on we denote, for each λ > 0,

cTλ := inf
u∈XT \{0}

max
t≥0

Eλ(tu). (2.120)

The observation in Remark 12 remains to be valid.

Lemma 23. Let cTλ and cTλ defined in (2.110) and (2.120), respectively. Suppose
1 < k < q. Then, there exists λ∗T > 0 such that

0 < cTλ < cTλ < cT :=
SN/p

N
C

for all λ < λ∗T , with C given in (2.109).

Proof. Trivially cTλ < cT being λ > 0. Clearly, from the definition of cTu given in
(2.119), then cTu ≥ ζ and, by Remark 12, we have cTλ = cTu > 0 for all u ∈ XT \{0}.
We emphasize that ζ might depend on λ, but it is always positive. We take the
open set ΩV where V is positive. Let u0 ∈ XT \ {0} with support in ΩV such that
u0 ≥ 0. Replacing u = u0 in (2.84) we have Eλ(tu0)→ −∞ as t→∞.

From (2.84), following the idea in the proof of Lemma 17, for λ < λ∗ given in
(2.66) there exists tλ = T > 0 such that

max
t≥0

Eλ(tu0) = Eλ(tλu0).

In particular, we get

0 =
d

dt

[
Eλ(tu0)

]
t=tλ

=tp−1
λ ‖Du0‖pp + tq−1

λ ‖Du0‖qq

− λtk−1
λ

∫
RN
V uk0 dx− t

p∗−1
λ

∫
RN
Kup

∗

0 dx,

or, equivalently,

λ

∫
RN
V uk0 dx = tp−kλ ‖Du0‖pp + tq−kλ ‖Du0‖qq − t

p∗−k
λ

∫
RN
Kup

∗

0 dx, (2.121)

for every λ > 0. Since the support of u0 is contained in ΩV , the left hand side of
(2.121) is positive and it goes to 0+ as λ→ 0+. Thus, also the right hand side of
(2.121) must go to 0+ if λ → 0+. Hence, being 1 < k < q ≤ p < p∗, necessarily
tλ → 0+ as λ → 0+. From Eλ(tλu0) → 0+ as tλ → 0+ or equivalently when
λ → 0+, we can conclude that there exists λ∗T > 0, with λ∗T < min{λ∗T , λ∗} given
in (2.108) and (2.66) such that for all λ < λ∗T

max
t≥0

Eλ(tu0) = Eλ(tλu0) < cTλ , (2.122)

being cTλ > 0 for all λ < λ
∗
T . Furthermore, by the definition of cTλ , we get cTλ < cTλ

for all λ < λ∗T . This completes the proof.
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Remark 15. The case q < k < p is not covered in Lemma 23 because of some
considerable difficulties. Indeed, for the validity of (2.122), we need in (2.121)
that tλ → 0. This last condition, when q < k < p, occurs only if λ → ∞.
Unfortunately, condition (2.108), which is necessary to the positivity of cTλ required
in (2.110), forces λ to be small.

Finally, we are ready to prove Theorem 4 by using Mountain Pass Theorem.
Proof of Theorem 4. From Lemma 22 the energy functional Eλ, defined in (11),

satisfies the assumptions of Theorem 15, thus there exists a Palais Smale sequence
(un)n ⊂ XT for Eλ at level cTλ , that is

Eλ(un)→ cTλ , E ′λ(un)ϕ→ 0 as n→∞,

for all ϕ ∈ XT . By Lemma 23, there exists λ∗T > 0 such that 0 < cTλ < cT for
every λ < λ∗T . Furthermore, according to Lemma 21, there exists a nonnegative
function u ∈ XT such that un → u in D1,p

T (RN) that is u is a critical point of Eλ
in XT . By Remark 4, the function u is a critical point of Eλ in X. In particular,
u ≥ 0 follows from un ≥ 0 and a pointwise convergence in (2.6). Moreover, u 6≡ 0
since Eλ(u) = cTλ > 0. The proof of Theorem 4 is so concluded.

2.4.3 Proof of Theorem 5

In this Subsection we give the proof of the multiplicity results under a symmet-
ric setting, Theorem 5, whose statement is given in the Introduction. In particular,
the proof is based on the use of Fountain Theorem, that is Theorem 16.

Proof of Theorem 5. It is enough to apply Theorem 16 with G = Z/2 and
M = XT . As outlined in Remark 9, assumption (A1) is verified. Obviously Eλ is
even by definition and Eλ ∈ C1(XT ). By Corollary 1, the functional Eλ satisfies
the (PS)c condition for every c ∈ R, so assumption (A4) of Theorem 16 holds.
Since 0 6≡ K ≥ 0 in RN and K ∈ C(RN), there exists an open subset ΩK of RN

with K > 0 in ΩK . By the T -symmetry of K, then ΩK is T -symmetric, thus we
can define D1,p

T (ΩK) ∩D1,q
T (ΩK). By extending functions in D1,p

T (ΩK) ∩D1,q
T (ΩK)

by 0 outside ΩK we can assume D1,p
T (ΩK) ∩ D1,q

T (ΩK) ⊂ XT . Assume Ym be
an increasing sequence of subspaces of D1,p

T (ΩK) ∩ D1,q
T (ΩK) with dim(Ym) = m,

m ∈ N. Thus, there exists a constant εm > 0 such that for all v ∈ Ym with ‖v‖ = 1
we have ∫

RN
K|v|p∗dx ≥ εm. (2.123)

On the other hand,

Eλ(u) ≤ 1

p
‖u‖p +

1

q
‖u‖q − 1

p∗

∫
RN
K|u|p∗dx. (2.124)
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Therefore, if u ∈ Ym, u 6= 0, writing u = ρmv with ρm = ‖u‖ and v ∈ Ym such that
‖v‖ = 1, from (2.123) and (2.124) we get

Eλ(u) ≤ 1

p
ρpm +

1

q
ρqm −

εm
p∗
ρp
∗

m ≤ 0

for sufficiently large ρm, since q ≤ p < p∗. This proves (A2) of Theorem 16.
It remains to prove (A3). To this aim, define

βm := sup
u∈Zm,‖u‖=1

(∫
RN
K|u|p∗dx

)1/p∗

, (2.125)

and

ϑm := sup
u∈Zm,‖u‖=1

(∫
RN
V |u|kdx

)1/k

,

where Zm is given in (2.21). It is clear that 0 ≤ βm+1 ≤ βm, because holds that
dimZm+1 < dimZm, so that βm → β0 ≥ 0. Then, for every m ≥ 1 there exists a
um ∈ Zm such that ‖um‖ = 1 and(∫

RN
K|um|p

∗
dx

)1/p∗

≥ β0

2
. (2.126)

Since XT is a reflexive and separable Banach space, Banach-Alaoglu’s Theorem
gives the existence of u ∈ XT such that, up to subsequences, um ⇀ u in XT ,
with u ∈

⋂∞
j=1 Zm. By the Second Intersection Theorem in [77], since (Zm)m is a

decreasing sequence of bounded, closed non-empty sets whose diameter converges
to 0 from its definition, we have that

⋂∞
j=1 Zm has exactly one point, that is

u = 0, in other words um ⇀ 0 in XT . Thus, |um|p
∗
dx ⇀ 0 and |Dum|pdx ⇀ 0.

Applying Proposition 1, there exists ν, ν∞, µ, µ∞ such that (2.17) and (2.18)
hold. An argument similar to the one used in proving Corollary 1 shows that
the concentration of ν cannot occur at any x 6= 0, at 0 and ∞, thus um → 0 in
Lp
∗
(RN). Consequently, from (10) we have∫

RN
K|um|p

∗
dx→ 0, as m→∞,

which implies, thanks to (2.126), that β0 = 0 and βm → 0 as m → ∞. From
um ⇀ 0 in XT , by the weak continuity of the functional defined in (2.4)1, we get
ϑm → 0 as m→∞. Now we divide the proof in two cases:

Case 1 < k < p. For every u ∈ Zm, since λ > 0, by Hölder’s inequality with
exponents r = p∗/(p∗ − k) and r′ = p∗/k, Sobolev’s inequality, we get

Eλ(u) ≥ 1

p
‖u‖pD1,p −

λC

k
‖u‖kD1,p −

1

p∗

∫
RN
K|u|p∗dx, (2.127)



99

where C = ‖V ‖rS−kp/p
∗
. Thanks to the definition of βm in (2.125) we can write∫

RN
K|u|p∗dx = ‖u‖p∗

∫
RN
K
|u|p∗

‖u‖p∗
dx ≤ ‖u‖p∗βp∗m (2.128)

thus, by (2.127) and (2.128), we have

Eλ(u) ≥ 1

p
‖u‖pD1,p −

λC

k
‖u‖kD1,p −

βp
∗
m

p∗
‖u‖p∗ . (2.129)

Taking ‖u‖D1,p sufficiently large, say ‖u‖D1,p ≥ R for R large, then

λC

k
‖u‖kD1,p ≤

1

2p
‖u‖pD1,p . (2.130)

Now, we choose

rm =

(
p∗

p2p+2βp
∗
m

)1/(p∗−p)

,

then rm →∞ as m→∞, since βm → 0, as m→∞. If we take ‖u‖ = rm > 0 by
the definition of ‖ · ‖ either ‖u‖D1,p or ‖u‖D1,q is not less than rm/2. Without loss
of generality, let ‖u‖D1,p ≥ rm/2 and using (2.130) with R = rm/2 in the inequality
(2.129) we obtain

Eλ(u) ≥ 1

p
‖u‖pD1,p−

1

2p
‖u‖pD1,p−

βp
∗
m

p∗
‖u‖p∗ ≥ 1

2p

‖u‖p

2p
− β

p∗
m

p∗
‖u‖p∗ =

1

p2p+2
rpm →∞,

as m→∞.
Case p < k < p∗. Let u ∈ Zm. Using∫

RN
V |u|kdx = ‖u‖k

∫
RN
V
|u|k

‖u‖k
dx ≤ ‖u‖kϑkm.

and (2.128), we get

Eλ(u) ≥ 1

p
‖u‖pD1,p −

λϑkm
k
‖u‖k − βp

∗
m

p∗
‖u‖p∗ . (2.131)

Let

rm = min

{(
ε

βp
∗
m

)1/(p∗−p)

,

(
ε

ϑkm

)1/(k−p)}
, (2.132)

where ε > 0 is chosen such that(
λ

k
+

1

p∗

)
ε <

1

2p+1p
. (2.133)
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Since βm, ϑm → 0 as m → ∞, it follows that rm → ∞ as m → ∞. Take
‖u‖ = rm > 0, then without loss of generality we can assume that ‖u‖D1,p ≥ rm/2,
thus, from (2.131), we obtain

Eλ(u) ≥ rpm

[
1

2pp
− λϑkm

k
rk−pm − βp

∗
m

p∗
rp
∗−p
m

]
≥ rpm

[
1

2pp
−
(
λ

k
+

1

p∗

)
ε

]
≥ 1

2p+1p
rpm →∞, as m→∞,

where in the last two inequalities we have use (2.132) and (2.133), respectively.
Thus, we choose ρm > rm in both cases, so that condition (A3) is verified and

applying Theorem 16, the energy functional Eλ has unbounded sequence of critical
values in XT . By Remark 4, Eλ has unbounded sequence of critical values in X.
The proof of Theorem 5 is so concluded.



Chapter 3

Singular quasilinear Schrödinger

equations with critical exponent

in RN

In this chapter we investigate multiplicity results for nontrivial weak solutions
in D1,p(RN) of the following singular quasilinear Schrödinger problem involving a
critical term given by (13), namely

−∆pu−
α

2
∆p(|u|α)|u|α−2u = λV (x)|u|k−2u+ βK(x)|u|p∗−2u in RN

when 0 < α < 1. It is clear that any solution of (13) is also a solution of

−
[
1+

αp

2
|u|p(α−1)

]
∆pu = κ|u|p(α−1)−2u|Du|p+V (x)|u|k−2u+K(x)|u|p∗−2u in RN ,

with κ = αp(α−1)(p−1)/2. For this reason, as it is emphasized in the Introduction,
problem (13) can be seen as a p-Laplacian problem with a diffusion and with a
nonlinearity which is a combination between a nonlinearities depending on the
gradient and one of type (b).

The case α = 2 has been studied extensively recently, we mainly refer to
[100, 123, 126] for existence results, while the authors in [140] obtain multiplicity
results for problem (13) with p = 2 provided that the critical or the subcritical
terms in the nonlinearity are small enough. Actually, the critical exponent is 22∗

since, for α > 1, the critical exponent is exactly α2∗, cfr. [139].
The main difference between the cases α > 1 and 0 < α < 1 is that in the first

case the term ∆(|u|α)|u|α−2u is degenerate at u = 0, while in the latter it becomes
singular at u = 0. In literature, the most studied case is the degenerate one.

101
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More in detail, the case 0 < α < 1 is treated in bounded domains in [90] and
in RN in [138, 139], while the case 1 < α 6= 2 can be found in RN in [99, 1, 3, 144],
see also the references therein.

Moving to the p-Laplacian case, to best of our knowledge, only papers dealing
with degenerate case, α > 1, can be found in literature, we mention [124, 142, 47].
Thus our results are a first attempt, in investigating the singular case.

The main problem which appears in dealing with this type of problems relays on
the fact that there is no natural functions space for the associated energy functional
to be well defined. Thus an appropriate change of variables allows to study the
problem in the ”right” functions space. Consequently, in order to manage the new
functional, we need to investigate all the properties of the function,singular at 0,
involved in the change of variables.

This chapter is divided into three Sections. In Section 3.1 we describe in
detail the change of variables which guarantees the well posedness of the energy
functional, then the validity of the (PS)c property is shown in Section 3.2. The
truncated functional is described in Section 3.3 together with its properties which
are crucial in the proof of Theorem 6, developed in Section 3.4. Finally, Theorems
7 and 8, characterized by the symmetric setting, are proved in Section 3.5.

3.1 Reformulation of the problem

The preliminary results used in the multiplicity theorems of Chapter 3 are most
stated in Section 2.1, except the adjustment of the variational setting.

In particular, the Euler Lagrange functional related to problem (13) is defined
in (15), namely

Hλ(u) =
1

p

∫
RN
g(u)p|Du|pdx− λ

k

∫
RN
V |u|kdx− β

p∗

∫
RN
K|u|p∗dx,

where

g(t) =

[
1 +

αp

2
|t|p(α−1)

]1/p

, t ∈ R \ {0}, 0 < α < 1. (3.1)

Due to the appearance of the singular term g, since limt→0 g(t) =∞, the functional
Hλ may be not well defined in D1,p(RN), so we can not apply variational methods
to deal directly with (15). For example, from [122], if we consider

ue(x) = |x|(p−N)/2p, x ∈ RN
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then ue ∈ D1,p(RN) but |Due|α−1+p /∈ L1(RN). To overcome this difficulty, follow-
ing the idea in [138] and [142], we make a change of variables, as follows

v = G(u) =

∫ u

0

g(z)dz. (3.2)

In particular, the function g is an even function in R \ {0} and t = 0 is a singular
point. Moreover, g is decreasing in R+ and increasing in R−, moreover it holds

lim
t→0

g(t) =∞, lim
|t|→∞

g(t) = 1. (3.3)

For any α > 0 and t ∈ R, we have

|G(t)| ≤
∫ |t|

0

(
1 +

α

21/p
yα−1

)
dy = |t|+ 1

21/p
|t|α

Thus, G is well defined in R. Moreover, G is a strictly increasing function, being
g ≥ 1, and such that G(0) = 0 and lim|t|→∞G(t) = ∞ and it is a continuous
function so that we can define G−1, an invertible, odd and C1 function .

Thus, after the change of variables described above, the energy functional Hλ

can be written by the following functional

Fλ(v) :=
1

p

∫
RN
|Dv|pdx− λ

k

∫
RN
V |G−1(v)|kdx− β

p∗

∫
RN
K|G−1(v)|p∗dx, (3.4)

for v ∈ D1,p(RN). The proof of the regularity of Fλ takes the following steps,
starting by the properties of g and G. Especially, the following properties hold.

Lemma 24. Let 0 < α < 1. Then, it holds

a) lims→0
|G−1(s)|α
|s| = 21/p;

b) lims→∞
|G−1(s)|
|s| = 1;

c) |G−1(s)| ≤ |s|, for every s ∈ R;

d) α− 1 < g′(t)t
g(t)
≤ 0, for every t ∈ R;

e) α|s| < |G−1(s)g(G−1(s))| ≤ |s|, for every s ∈ R;

f) |G−1(s)| > |G−1(1)s|, for every |s| ≥ 1;

g) ℘−1
g(t)
≤ (℘−1)g(t)−tg′(t)

g2(t)
< ℘− α for every t ∈ R and ℘ ≥ 1.
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Proof. Since G−1 is odd, we only consider the case s ≥ 0. To prove a) and b) it
is enough to use the change variables s = G(t) and the properties of G. Indeed,
Hospital’s rule gives

lim
t→0+

tα

G(t)
= α lim

t→0+

tα−1

g(t)
= α21/p lim

t→0+

tα−1

αtα−1
= 21/p,

where we have used also that

g(t) ∼ α

21/p
tα−1, as t→ 0 (3.5)

being 0 < α < 1. While

lim
t→∞

t

G(t)
= lim

t→∞

1

g(t)
= 1,

by (3.3) and since 0 < α < 1. Now, by t = G−1(s) we get easily a) and b).
Condition c) follows since g(t) > 1 for all t > 0, thus G(t) =

∫ t
0
g(z)dz ≥ t for

every t ≥ 0. To prove d), since g is decreasing in R+ and positive, we have

0 ≥ g′(t)t

g(t)
= (α− 1) · αptp(α−1)

2 + αptp(α−1)
≥ α− 1,

being 0 < α < 1. To get e), multiply d) by g(t) > 0 and integrate so that

(α− 1)G(t) <

∫ t

0

{
[g(z)z]′ − g(z)

}
dz = g(t)t−G(t), t > 0.

In turn, inequality e) follows taking s = G(t). Now, to obtain f), take(
G−1(s)

s

)′
=
s(G−1(s))′ −G−1(s)

s2
=
s− g(G−1(s))G−1(s)

s2g(G−1(s))
> 0,

from e). Thus, by the strict monotonicity of the function G−1(s)/s in R+, we
obtain G−1(s) > G−1(1)s for s ≥ 1, yielding f) by virtue of symmetry. Lastly, to
prove g), it is enough to multiply d) by −1/g(t) and then add (℘−1)/g(t) so that

℘− 1

g(t)
≤ (℘− 1)g(t)− tg′(t)

g2(t)
<
℘− α
g(t)

,

yielding g) thanks to α < 1 ≤ ℘ and g ≥ 1.

Remark 16. By Lemma 24-a), we get

G−1(s) ∼ 21/αp|s|1/α, as s→ 0. (3.6)
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From (3.5) and (3.6), we obtain

G−1(s)g(G−1(s)) ∼ 21/αps1/α · α

21/αp
s(α−1)/α = αs→ 0,

as s→ 0+. Thus we can assume G−1(0)g(G−1(0)) = 0 and also by Hospital’s rule

[G−1(s)g(G−1(s))]′|s=0 = lim
s→0+

G−1(s)g(G−1(s))

s
= α.

On the other hand, for s 6= 0, we have

[G−1(s)g(G−1(s))]′ = 1 +
G−1(s)g′(G−1(s))

g(G−1(s))
∈ (α, 1) (3.7)

thanks to Lemma 24-d). Moreover, for any v ∈ D1,p(RN)

D[G−1(v)g(G−1(v))] =

[
1 +

G−1(v)g′(G−1(v))

g(G−1(v))

]
Dv (3.8)

so, by using (3.7), we obtain

α|Dv| ≤ |D[G−1(v)g(G−1(v))]| ≤ |Dv|. (3.9)

In addition, since g ≥ 1, then we have

|DG−1(v)| = |Dv|
g(G−1(v))

≤ |Dv|. (3.10)

Thus, for any v ∈ D1,p(RN) we have G−1(v)g(G−1(v)), G−1(v) ∈ D1,p(RN). Be-
sides, for α > 0 and p > 1 using (3.10), (3.7) and (3.8), we have

α|DG−1(v)|p ≤ α|Dv|p = |Dv|p−2αDv ·Dv

≤ |Dv|p−2

[
1 +

G−1(v)g′(G−1(v))

g(G−1(v))

]
Dv ·Dv

= |Dv|p−2D[G−1(v)g(G−1(v))] ·Dv.

(3.11)

A key ingredient in our discussion is disclosed in the next crucial lemma.

Lemma 25. Assume vn ⇀ v in D1,p(RN), then

G−1(vn) ⇀ G−1(v), in D1,p(RN) (3.12)
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Proof. Clearly, (vn)n is bounded in D1,p(RN), so that by (3.10) we have that
G−1(vn) ∈ D1,p(RN) is bounded. Using Eberlain Smulian’s Theorem, there ex-
ists a subsequence (G−1(vnk))k and w ∈ D1,p(RN) such that G−1(vnk) ⇀ w in
D1,p(RN) and, by a diagonal argument, there is a subsequence (G−1(vnkj ))j such

that G−1(vnkj ) → w a.e. in RN . Using the same diagonal argument on (vn)n, we

get vn → v a.e. in RN . Since G−1 ∈ C∞, we have G−1(vn) → G−1(v) a.e. in RN ,
so G−1(v) = w a.e. in RN . We have so obtained that

(W) for every sequence (vn)n in D1,p(RN) with vn ⇀ v, there is a subsequence
(unk)k such that G−1(vnk) ⇀ G−1(v) in D1,p(RN).

From this we immediately conclude the validity of (3.12), indeed if this is not
true, then there exists φ̄ ∈

[
D1,p(RN)

]′
such that

lim
n→∞

[
φ̄(G−1(vn))− φ̄(G−1(v))

]
6= 0.

In other words, there exists ε0 > 0 and (vnk)k ∈ D1,p(RN) such that∣∣φ̄(G−1(vnk))− φ̄(G−1(v))
∣∣ ≥ ε0,

but this contradiction concludes the proof of (3.12) since, (vnk)k is a sequence with
vnk ⇀ v such that it does not satisfy (W).

In order to prove the regularity of Fλ, we need to analyze the regularity of the
following functionals

J(v) =

∫
RN
V |G−1(v)|kdx and H(v) =

∫
RN
K|G−1(v)|p∗dx. (3.13)

In particular, the following holds.

Lemma 26. If V ∈ Lr
(
RN
)
, then J(v) is weakly continuous on D1,p(RN). More-

over, J is continuously differentiable and ′ : D1,p(RN) → [D1,p(RN)]′ is given by
(2.5), for all ψ ∈ D1,p(RN).

Proof. Our argument is similar to Lemma 2.2 in [140].
For any v ∈ D1,p(RN), by Remark 16, also G−1(v) ∈ D1,p(RN) ⊂ Lp

∗
(RN), so

by Hölder inequality with exponents r = p∗/(p∗ − k) and r′ = p∗/k we have

‖V |G−1(v)|k‖1 ≤ ‖V ‖r‖G−1(v)‖kp∗ (3.14)

This implies that J is well defined. Let (vn)n ∈ D1,p(RN) such that vn ⇀ v
in D1,p(RN), thus by Lemma 25, also G−1(vn) ⇀ G−1(v) in D1,p(RN) so that
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G−1(vn) ⇀ G−1(v) in Lp
∗
(RN). Then, (G−1(vn))n is bounded in Lp

∗
(RN) and

(|G−1(vn)|k)n is bounded in Lp
∗/k(RN). Furthermore, by the compactness of the

embedding,

G−1(vn)→ G−1(v) in Ls(ω), ω b RN , 1 ≤ s < p∗.

Consequently, by using an increasing sequence of compact sets whose union is RN

and a diagonal argument, we also have

G−1(vn(x))→ G−1(v(x)) a.e. x ∈ RN .

In turn, by (3.14) and using Lebesgue dominated convergence Theorem we have

J(vn) =

∫
RN
V |G−1(vn)|kdx→

∫
RN
V |G−1(v)|kdx = J(v),

namely, weak continuity holds.
In order to prove J ∈ C1 it is enough to show that J has continuous Gâteaux

derivative on D1,p(RN).
For simplicity let G = G−1, then consider v, ψ ∈ D1,p(RN) and 0 < |t| < 1, so

that
J(u+ tψ)− J(u)

t
=

∫
RN
V
|G(v + tψ)|k − |G(v)|k

t
dx. (3.15)

Using the mean value theorem, there exists λ ∈ (0, 1) such that∣∣|G(v + tψ)|k − |G(v)|k
∣∣

|t|
= k|G(v + tλψ)|k−1|G′(v + tλψ)||ψ|

≤ c|v + tλψ|k−1|ψ| ≤ c
(
|v|k−1|ψ|+ |ψ|k

)
,

with c > 0, thanks to Lemma 24-(c), the fact that 0 ≤ G′(s) =
(
G−1

)′
(s) ≤ 1

being g ≥ 1 and, at the end, the elementary inequality (a + b)r ≤ C(ar + br), for
r > 0, C > 0 and a, b > 0.

By applying Hölder’s inequality twice with exponents r, p∗, p∗/(k − 1) and r,
p∗/k, we get∫

RN
V (x)

(
|v|k−1|ψ|+ |ψ|k

)
dx = ‖V ‖r ‖ψ‖p∗

(
‖v‖k−1

p∗ + ‖ψ‖k−1
p∗

)
.

The right hand side of the above inequality is in L1(RN). Consequently, by letting
t→ 0 in (3.15), from the Lebesgue dominated convergence theorem, J is Gâteaux
differentiable and

J
′
(v)ψ = k

∫
RN
V (x)|G(v)|k−2G(v)G′(v)ψdx,
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that is (2.5). Now it remains to prove continuity of Gâteaux derivative. Assume
that vn → v in D1,p(RN) then G(vn) → G(v) in D1,p(RN). By continuity of the
embedding D1,p(RN) ↪→ Lp

∗
(RN), we have G(vn) → G(v) in Lp

∗
(RN). Let us

define W (v) = kV |G(v)|k−2G(v)G′(v). We claim that W ∈ L(p∗)′(RN) arguing
similarly as in [85], page 30, where in our case p1 = p∗ and p2 = (p∗)′. From the
smoothness of G and Lemma 24-c), we have

|W (v)| ≤ k|VG(v)k−2G(v)| ≤ cV |v|k−1,

where c > 0. Now, following essentially the proof of Lemma 1 in [13], we can

conclude that J
′

is sequentially continuous in [D1,p(RN)]′. Hence J ∈ C1.

Similarly, it holds the following.

Lemma 27. If K satisfies (14)2, then H is continuously differentiable in D1,p(RN)

and its derivative H
′
: D1,p(RN)→ [D1,p(RN)]′ is given by

H
′
(v)ψ = p∗

∫
RN
K
|G−1(v)|p∗−2G−1(v)

g(G−1(v))
ψdx,

for all v, ψ ∈ D1,p(RN).

Using the continuity of the embedding D1,p(RN) ↪→ Lp
∗
(RN), letting vn → v

in D1,p(RN), then by Lemma 25, also G−1(vn)→ G−1(v) in D1,p(RN) and

G−1(vn)→ G−1(v) in Lp
∗
(RN), DG−1(vn)→ DG−1(v) in Lp(RN).

By Lemmas 6 and 7, then Fλ ∈ C1(D1,p(RN)) and F ′λ : D1,p(RN) → (D1,p(RN))′

is given by

F ′λ(v)ψ =

∫
RN
|Dv|p−2DvDψdx− λ

∫
RN
V
|G−1(v)|k−2G−1(v)

g(G−1(v))
ψdx

− β
∫
RN
K
|G−1(v)|p∗−2G−1(v)

g(G−1(v))
ψdx.

(3.16)

for all v, ψ ∈ D1,p(RN).
Thus, v ∈ D1,p(RN) is a (weak) solution of problem (13) if

F ′λ(v)ψ = 0 for all ψ ∈ D1,p(RN),

Clearly, (weak) solutions of (13) are exactly critical points of the Euler–Lagrange
functional Hλ, or equivalently Fλ, associated with (13). Moreover, every critical
point of Fλ correspond to a solution of the following equation

−∆pv = λV
|G−1(v)|k−2G−1(v)

g(G−1(v))
+ βK

|G−1(v)|p∗−2G−1(v)

g(G−1(v))
.
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3.2 On Palais Smale sequences

This section is devoted to the study on properties of (PS)c sequences for the
functional Fλ defined in (3.4). We start from the boundedness of every (PS)c
sequences, as in Lemma 8 in Subsection 2.1.2, in which a useful inequality holds
only in the case 1 < k < p.

Lemma 28. Assume 1 < k < p∗. Let (14) be verified and let (vn)n ⊂ D1,p(RN)
be a (PS)c sequence for Fλ for all c ∈ R. Then (vn)n is bounded in D1,p(RN).

In particular, if 1 < k < p and c < 0, it holds

‖vn‖p∗ ≤ C∗λ
1/(p−k), C∗ =

[
N(p∗ − k)

Skp∗
‖V ‖r

]1/(p−k)

, (3.17)

where S is the Sobolev’s constant.

Proof. The proof is similar to the one of Lemma 8, but we have to consider the
change of variables. Let (vn)n ⊂ D1,p(RN) be a (PS)c sequence of Fλ for all c ∈ R
that is, using Definition 1,

Fλ(vn) = c+ o(1), F ′λ(vn)ψ = o(1)‖ψ‖ as n→∞,

for every ψ ∈ D1,p(RN). Now take ψ = G−1(vn)g(G−1(vn)) as a test function,
since ψ ∈ D1,p(RN) thanks to Remark 16, and using (3.9), we have

o(1)‖ψ‖ = F ′λ(vn)(G−1(vn)g(G−1(vn)))

≤ ‖Dvn‖pp − λ
∫
RN
V |G−1(vn)|kdx− β

∫
RN
K|G−1(vn)|p∗dx

(3.18)

Now we disjoin the proof in two cases.

Case 1 < k < p: using (3.18), thanks to Lemma 24-c), Sobolev’s and Hölder’s
inequalities with exponents r and r′ we get

c+ o(1) + o(1)‖vn‖ = Fλ(vn)− 1

p∗
F ′λ(vn)(G−1(vn)g(G−1(vn)))

≥
(

1

p
− 1

p∗

)
‖Dvn‖pp − λ

(
1

k
− 1

p∗

)
S−k/p‖V ‖r‖Dvn‖kp

(3.19)

where we have used that V ∈ Lr(RN) and ‖v‖p∗S1/p ≤ ‖Dv‖p for all v ∈ D1,p(RN).
Thus, since k < p < p∗, following Lemma 4 in [13], we conclude that ‖Dvn‖p should
be bounded.
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Case p ≤ k < p∗: arguing as in (3.19), with 1/p∗ replaced by 1/k, since
K(x) ≥ 0 in RN , we obtain

c+ o(1) + o(1)‖vn‖ = Fλ(vn)− 1

k
F ′λ(vn)(G−1(vn)g(G−1(vn)))

≥
(

1

p
− 1

k

)
‖Dvn‖pp − β

(
1

p∗
− 1

k

)∫
RN
K|vn|p

∗
dx ≥

(
1

p
− 1

k

)
‖Dvn‖pp.

The conclusion follows from Lemma 4 in [13], as well as the proof of inequality
(3.17).

In what follows we make use of the lemma below.

Lemma 29. Let g,G be defined respectively in (3.1), (3.2). Then, for any a, b ∈ R
and ℘ > 2, it holds∣∣∣∣ |G−1(a)|℘−2G−1(a)

g(G−1(a))
− |G

−1(b)|℘−2G−1(b)

g(G−1(b))

∣∣∣∣|a− b|
≤ (℘− α)

[∣∣G−1(a)−G−1(b)
∣∣℘−1|a− b|

+ |G−1(b)|℘−2
∣∣G−1(a)−G−1(b)

∣∣|a− b|].
(3.20)

Proof. Applying Lagrange Theorem to the function |t|℘−2t/g(t) in the interval
[G−1(a), G−1(b)], we have∣∣∣∣ |G−1(a)|℘−2G−1(a)

g(G−1(a))
− |G

−1(b)|℘−2G−1(b)

g(G−1(b))

∣∣∣∣
= |w|℘−2

∣∣∣∣(℘− 1)g(w)− wg′(w)

g2(w)

∣∣∣∣∣∣G−1(a)−G−1(b)
∣∣, (3.21)

where w = ϑG−1(a) + (1− ϑ)G−1(b) for a certain ϑ ∈ (0, 1). Then, it follows

|w|℘−2 ·
∣∣G−1(a)−G−1(b)

∣∣
≤
∣∣∣∣ϑ(G−1(a)−G−1(b)

)
+G−1(b)

∣∣∣∣℘−2∣∣G−1(a)−G−1(b)
∣∣

≤
∣∣G−1(a)−G−1(b)

∣∣℘−1
+
∣∣G−1(b)

∣∣℘−2∣∣G−1(a)−G−1(b)
∣∣

(3.22)

Now, using Lemma 25-g) and (3.22) in (3.21), we get (3.20).

The following lemma guarantees the validity of (PS)c condition for the func-
tional Fλ. We point out that in the proof no assumptions on the sign of the weight
K are needed.

Unfortunately, here it appears the restriction k > 2, which forces p > 2, due to
application of Hölder’s inequality which requires p∗/(k − 2) > 1.
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Lemma 30. Suppose (14). Let 2 < k < p and c < 0. Then

(i) For any λ > 0, there exists β̂∗S > 0 defined as follows

β̂∗S =
α

‖K‖∞

(
kp∗

λN‖V ‖r(p∗ − k)

)p2/(N−p)(p−k)

S(p∗−k)/(p−k) (3.23)

such that for every β ∈ (0, β̂∗S], then Fλ satisfies (PS)c condition.

(ii) For any β > 0, there exists λ̂∗S > 0 defined as follows

λ̂∗S = S(p∗−k)/(p∗−p) kp∗

N(p∗ − k)
· 1

‖V ‖r
·
(

α

β‖K‖∞

)(p−k)/(p∗−p)

, (3.24)

such that for every λ ∈ (0, λ̂∗S], then Fλ satisfies (PS)c condition.

Proof. We partially refer to the proof of Lemma 8 in [13], taking into account the
change of variables. Let (vn)n be a (PS)c sequence, by Lemma 28, then (vn)n is
bounded inD1,p(RN) and by Banach-Alaoglu’s Theorem, there exists v ∈ D1,p(RN)
such that, up to subsequences, we get vn ⇀ v in D1,p(RN). By Lemma 25, follows
that G−1(vn) ⇀ G−1(v) in D1,p(RN) and thus (G−1(vn))n is bounded in D1,p(RN).
Applying in Proposition 1, there exist µ, ν, ν∞, µ∞ bounded nonnegative measures
on RN such that

lim sup
n→∞

∫
RN
|G−1(vn)|p∗dx =

∫
RN
dν + ν∞, (3.25)

and

lim sup
n→∞

∫
RN
|DG−1(vn)|pdx =

∫
RN
dµ+ µ∞. (3.26)

Moreover, there exists at most countable set J , a family (xj)j∈J of distinct points
in RN and two families (νj)j∈J , (µj)j∈J ∈]0,∞[ so that

ν = |G−1(v)|p∗ +
∑
j∈J

νjδxj , νj ≥ 0, µ ≥ |DG−1(v)|p +
∑
j∈J

µjδxj , µj ≥ 0,

and

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|G−1(vn)|p∗dx, µ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

|DG−1(vn)|pdx,

satisfying
Sν

p/p∗

j ≤ µj, Sνp/p
∗

∞ ≤ µ∞. (3.27)
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Take a standard cut-off function ψ ∈ C∞c (RN), such that 0 ≤ ψ ≤ 1 in RN , ψ = 0
for |x| > 1, ψ = 1 for |x| ≤ 1/2. For each index j ∈ J and each 0 < ε < 1, define

ψε(x) := ψ

(
x− xj
ε

)
.

Since F ′λ(vn)φ → 0 for all φ ∈ D1,p(RN) being (vn)n a (PS)c sequence, choosing
φ = G−1(vn)g(G−1(vn))ψε in (3.16) we have, as n→∞

o(1)‖vn‖ = F ′λ(vn)(G−1(vn)g(G−1(vn))ψε)

=

∫
RN
|Dvn|p−2Dvn ·D[G−1(vn)g(G−1(vn))]ψεdx

+

∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·Dψεdx

− λ
∫
RN
V |G−1(vn)|kψεdx− β

∫
RN
K|G−1(vn)|p∗ψεdx

≥ α

∫
RN
|DG−1(vn)|pψεdx

+

∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·Dψεdx

− λ
∫
RN
V |G−1(vn)|kψεdx− β

∫
RN
K|G−1(vn)|p∗ψεdx.

(3.28)

where in the last inequality we have used (3.11).

By the fact that G−1(vn) ⇀ G−1(v) in D1,p(RN), and by the weak continuity
of J , given in (3.13), proved in Lemma 26, we get

lim
n→∞

∫
RN
V |G−1(vn)|kψεdx =

∫
RN
V |G−1(v)|kψεdx. (3.29)

Consequently, using (3.25), (3.26) and (3.29), we obtain from (3.28)

lim
n→∞

(∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·Dψεdx

)
≤ λ

∫
RN
V |G−1(v)|kψεdx+ β

∫
RN
Kψεdν − α

∫
RN
ψεdµ.

(3.30)
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By using Lemma 24-e), we get∣∣∣∣∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·Dψεdx

∣∣∣∣
≤
∫
RN
|Dvn|p−1|vn||Dψε|dx ≤ ‖Dvn‖p−1

p

(∫
RN
|vn|p|Dψε|pdx

)1/p

= ‖vn‖p−1

(∫
Bε(xj)

|vn|p|Dψε|pdx

)1/p

.

(3.31)

where we have used Hölder’s inequality. Arguing as above and using the compact-
ness of the immersion D1,p(ω) ↪→↪→ Lp(ω) for ω = Bε(xj), since p < p∗, then,
up to subsequences, vn → v in Lp(ω) so that there exists w2 ∈ Lp(ω) such that
|vn(x)| ≤ w2(x) a.e. in ω. and |vn(x)Dψε(x)| ≤ Cw2(x) a.e. in ω, as well as in RN .
In turn, Lebesgue Theorem gives |vnDψε| → |vDψε| in Lp(RN). Passing to the
limit for n → ∞ in (3.31), using the boundedness of (vn)n in D1,p(RN), Hölder’s
inequality with exponents N/(N − p) and N/p, we get

lim
n→∞

∣∣∣∣∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2DvnDψεdx

∣∣∣∣
≤ C

(∫
Bε(xj)

|v|p|Dψε|pdx

)1/p

≤ Cmeas(Bε(xj))
1/N

(∫
Bε(xj)

|v|p∗dx

)1/p∗

,

(3.32)

where in the last inequality we have used the properties of Dψε. In turn, by letting
ε→ 0 and then n→∞, being v ∈ Lp∗(RN), we obtain∫

RN
G−1(vn)g(G−1(vn))|Dvn|p−2DvnDψεdx→ 0. (3.33)

Moreover, using the properties of ψε, and the boundedness of (|G−1(vn)|k)n in
Lp
∗/k(RN), as ε→ 0, we have∫

RN
V |G−1(v)|kψεdx ≤

∫
Bε(xj)

V |G−1(v)|kdx ≤ C‖V ‖Lr(Bε(xj)) → 0. (3.34)

Hence, from (3.30), if ε→ 0 we deduce

βK(xj)νj ≥ αµj. (3.35)
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This latter inequality establishes that concentration of the measure µ cannot occur
at points in which K(xj) ≤ 0. Indeed, in this case, from (3.35), follows that µj = 0
and νj = 0 from (3.27)1. Thus, the measures ν and µ cannot concentrate when K
is nonpositive. Consequently, setting XJ := {xj : j ∈ J}, it does not contain any
points xj in which K is non positive. Define J2 := {j ∈ J : K(xj) > 0}, we claim
that J2 = ∅. Combining (3.27)1 and (3.35), we arrive to

νj ≥
(

αS

βK(xj)

)N/p
≥
(

αS

β‖K‖∞

)N/p
, j ∈ J2. (3.36)

To prove the claim, we show that (3.36) cannot occur for λ or β belonging to a
suitable interval.

As in [13], assumption (3.36) forces that |J2| < ∞. Now, being (vn)n a (PS)c
sequence, choosing again G−1(vn)g(G−1(vn))ψε as a test function in (3.16), then
using (3.9), (3.33) and that 0 ≤ ψε ≤ 1, we have, for n→∞,

0 > c+ o(1)‖vn‖ = Fλ(vn)− 1

p∗
F ′λ(vn)(G−1(vn)g(G−1(vn)))ψε

≥ 1

p

∫
RN
|Dvn|pdx−

λ

k

∫
RN
V |G−1(vn)|kdx

− 1

p∗

∫
RN
|Dvn|p−1

∣∣D[G−1(vn)g(G−1(vn))
∣∣ψεdx

− 1

p∗

∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·Dψεdx

+
λ

p∗

∫
RN
V |G−1(vn)|kψεdx

≥ 1

N

∫
RN
|Dvn|pψεdx− λ

p∗ − k
kp∗

∫
RN
V |G−1(vn)|kψεdx

≥ 1

N

∫
RN
|Dvn|pψεdx− λ

p∗ − k
kp∗

‖V ‖r‖vn‖kp∗ ,

(3.37)

where in the last inequality we used Lemma 24-c) and Hölder’s inequality. Now,
thanks to (3.10) and (3.17), from (3.37), we get

0 > c+ o(1)‖vn‖ = Fλ(vn)− 1

p∗
F ′λ(vn)(G−1(vn)g(G−1(vn)))ψε

≥ 1

N

∫
Bε/2(xj)

|DG−1(vn)|pdx − (C∗)
k p
∗ − k
kp∗

‖V ‖rλp/(p−k),

where C∗ is given in (3.17), so that, letting n → ∞, ε → 0 and using (3.27) and
(3.36), we arrive to

0 > c ≥ 1

N
µj − Cλp/(p−k) ≥ c1

(
β‖K‖∞

)(p−N)/p − c2

(
‖V ‖rλ

)p/(p−k)
,
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where

c1 =
SN/p

N
α(N−p)/p, c2 =

(
N

S

)k/(p−k)(
p∗ − k
kp∗

)p/(p−k)

.

To obtain the required contradiction we need to have

c1 ≥ c2

(
β‖K‖∞

)(N−p)/p(‖V ‖rλ)p/(p−k)
. (3.38)

Consequently, since k < p < N , if we choose any β > 0, then there exists λ̂∗S,

defined in (3.24), such that for every λ ∈ (0, λ̂∗S], inequality (3.38) is verified.

Similarly, for any λ > 0 fixed, there exists β̂∗S, defined in (3.23), such that for

every β ∈ (0, β̂∗S], inequality (3.38) holds. Thus J2 = ∅, concluding the proof of
the claim.

On the other hand, following the idea of Chabrowski in [34] and Ben-Naoum
et. al in [22], also a possible concentration at infinity is refused.

Indeed, take another cut off function ψR ∈ C∞(RN) such that 0 ≤ ψR ≤ 1
in RN , with ψR(x) = 0 for |x| < R and ψR(x) = 1 for |x| > 2R. Then, from
F ′λ(vn)φ → 0 for all φ ∈ D1,p(RN) as n → ∞, being (vn)n a (PS)c sequence,
choosing φ = G−1(vn)g(G−1(vn))ψR in (3.16), we have, as in (3.28), as n→∞

o(1)‖vn‖ = F ′λ(vn)G−1(vn)g(G−1(vn))ψR

≥ α

∫
RN
|DG−1(vn)|pψRdx

+

∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·DψRdx

− λ
∫
RN
V |G−1(vn)|kψRdx− β

∫
RN
K|G−1(vn)|p∗ψRdx.

(3.39)

Similarly to the proof of (3.32), we have

lim sup
n→∞

∣∣∣∣∫
RN
G−1(vn)g(G−1(vn))|Dvn|p−2Dvn ·DψRdx

∣∣∣∣
≤ C

(∫
R<|x|<2R

|v|p∗dx
)1/p∗

→ 0, R→∞,

being v ∈ Lp∗(RN). So that from (3.39) we obtain

lim
R→∞

lim sup
n→∞

{
λ

∫
RN

V |G−1(vn)|kψRdx+ β

∫
RN

K|G−1(vn)|p
∗
ψRdx

}
≥ αµ∞. (3.40)

Furthermore, as for (3.34), we have

lim
R→∞

lim sup
n→∞

∫
RN
V |G−1(vn)|kψRdx

≤ lim
R→∞

lim sup
n→∞

‖V ‖Lr(|x|>R)‖G−1(vn)‖kLp∗ (|x|>R) = 0,
(3.41)
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being (|G−1(vn)|k)n bounded in Lp
∗/k(RN). Thus, by (14)2 and the definition of

ν∞, we gain

lim
R→∞

lim sup
n→∞

{∫
RN
K|G−1(vn)|p∗ψRdx

}
≤ ‖K‖∞ν∞. (3.42)

Using (3.41) and (3.42) in (3.40), thanks to (2.19), we have so obtained

β‖K‖∞ν∞
α

≥ µ∞ ≥ Sνp/p
∗

∞ that is ν∞ ≥
(

αS

β‖K‖∞

)N/p
.

Reasoning as above, either for β fixed and λ ∈ (0, λ̂∗S] or taking λ > 0 and

β ∈ (0, β̂∗S] the concentration at infinity cannot occur, that is ν∞ = µ∞ = 0.
Consequently (3.25) gives

lim
n→∞

∫
RN
|G−1(vn)|p∗dx =

∫
RN
|G−1(v)|p∗dx.

Furthermore, since G−1(vn)(x) → G−1(v)(x) a.e. in RN from (2.6), then Brezis
Lieb Lemma in [26], implies

lim
n→∞

‖G−1(vn)−G−1(v)‖p∗ = 0. (3.43)

Using (3.16) with vn − v as test function we have,

o(1)‖vn − vm‖ = [F ′λ(vn)− F ′λ(v)](vn − v)

=

∫
RN

[
|Dvn|p−2Dvn − |Dv|p−2Dv

]
D(vn − v)dx

− λ
∫
RN

[
|G−1(vn)|k−2G−1(vn)

g(G−1(vn))
− |G

−1(v)|k−2G−1(v)

g(G−1(v))

]
V (vn − v)dx

− β
∫
RN

[
|G−1(vn)|p∗−2G−1(vn)

g(G−1(vn))
− |G

−1(v)|p∗−2G−1(v)

g(G−1(v))

]
K(vn − v)dx

(3.44)

Applying Lemma 29 with a = vn, b = v, ℘ = p∗ and Hölder’s inequality we have,
if n→∞∫

RN

∣∣∣∣ |G−1(vn)|p∗−2G−1(vn)

g(G−1(vn))
− |G

−1(v)|p∗−2G−1(v)

g(G−1(v))

∣∣∣∣|K||vn − v|dx
≤ ‖K‖∞(p∗ − α)

∫
RN

[∣∣G−1(vn)−G−1(v)
∣∣p∗−1|vn − v|

+ |G−1(v)|p∗−2
∣∣G−1(vn)−G−1(v)

∣∣|vn − v|] dx
≤ ‖K‖∞(p∗ − α)

[
‖G−1(vn)−G−1(v)‖(p∗−1)/p∗

p∗ ‖vn − v‖p∗

+ ‖G−1(v)‖(p∗−2)/p∗

p∗ ‖G−1(vn)−G−1(v)‖p∗‖(vn − v)‖p∗
]
→ 0,

(3.45)
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by (3.43). Moreover, using again Lemma 29 with a = vn, b = v, ℘ = k > 2 and
Hölder’s inequality we have taking n→∞∫

RN

∣∣∣∣ |G−1(vn)|k−2G−1(vn)

g(G−1(vn))
− |G

−1(v)|k−2G−1(v)

g(G−1(v))

∣∣∣∣|V ||vn − v|dx
≤ (k − α)

∫
RN

[
|V |
∣∣G−1(vn)−G−1(v)

∣∣k−1|vn − v|

+ |V ||G−1(v)|k−2
∣∣G−1(vn)−G−1(v)

∣∣|vn − v|] dx
≤ (k − α)

[
‖V ‖r‖G−1(vn)−G−1(v)‖(k−1)/p∗

p∗ ‖vn − v‖p∗

+ ‖V ‖r‖G−1(v)‖(k−2)/p∗

p∗ ‖G−1(vn)−G−1(v)‖p∗‖(vn − v)‖p∗
]
→ 0,

(3.46)

So that, from (3.45) and (3.46) in (3.44), we get

lim
n→∞

∫
RN

[
|Dvn|p−2Dvn − |Dv|p−2Dv

]
·(Dvn −Dv)dx = 0,

using the standard inequality |ξ − ζ|p ≤ c
(
ξ|p−2ξ − |ζ|p−2ζ

)
·
(
ξ − ζ

)
for ξ, ζ ∈ RN

and p ≥ 2, we arrive to

lim
n→∞

∫
RN
|D(vn − v)|pdx = 0,

that is the strong convergence in Lp(RN) of the sequence (Dvn)n. Finally, by
Sobolev Gagliardo Niremberg’s inequality, we obtain the required property, namely
Fλ satisfies (PS)c condition for every c < 0. The proof is now complete.

In the proofs of Theorems 7 and 8 to get the Palais Smale property for the
energy functional Fλ we make use of the following corollary in which assumption
(12) has a crucial role, as in Corollary 1 in Chapter 2.

Corollary 2. Let 1 < p < N and 1 < k < p∗. If (12) holds, then the functional
Fλ satisfies (PS)c condition in D1,p

T (RN) for every c ∈ R.

We do not enclose the proof since it is essentially the same as for Corollary 1
in [14], taking into account the change of variables v = G(u).
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3.3 The truncated functional F∞

In this section properties of the truncated functional F∞ of Fλ, for all 1 < k < p,
are discusses, such as its boundedness from below, differently than Fλ.

Taking Lemma 24-c), Hölder’s and Sobolev’s inequalities we have, by (3.4), for
all v ∈ D1,p(RN),

Fλ(v) ≥ 1

p
‖v‖pD1,p − λc1‖v‖kD1,p − βc2‖v‖p

∗

D1,p .

where c1 = S−k/p‖V ‖r/k and c2 = S−p
∗/p‖K‖∞/p∗ are positive constants.

Define h(t) = tp/p − λc1t
k − βc2t

p∗ in R+
0 . Following Subsection 2.2.3, write

h(t) = tkĥ(t), where ĥ(t) := −λc1 + 1
p
tp−k − c2βt

p∗−k. Since ĥ(0) < 0, ĥ(t)→ −∞
as t→∞ and ĥ′(t) > 0 for t > 0 close to 0, then, there exists T > 0 such that

ĥ′(T ) = 0, T =

[
p− k

βc2p(p∗ − k)

]1/(p∗−p)

.

ĥ(T ) = (p∗ − p)
(
p− k
βc2

)(p−k)/(p∗−p)(
1

p(p∗ − k)

)(p∗−k)/(p∗−p)

− λc1,

For β fixed, if λ < λ
∗
S, where λ

∗
S is defined as follows

λ
∗
S =

C

‖V ‖r · (β‖K‖∞)(p−k)/(p∗−p) , (3.47)

or for λ fixed, if β < β
∗
S, with β

∗
S defined below

β
∗
S =

1

‖K‖∞
·
(

C

‖V ‖rλ

)(p∗−p)/(p−k)

, (3.48)

where

C = S(p∗−k)/(p∗−p)k(p∗ − p)
p(p∗ − k)

(
p∗(p− k)

p(p∗ − k)

)(p−k)/(p∗−p)

then we get ĥ(T ) > 0 and so h(T ) > 0. Thus, there occur T0 and T1, with
0 < T0 < T < T1 such that h(T0) = h(T1) = 0 and

h(t) > 0 in (T0, T1), h(t) ≤ 0, in [0, T0] ∪ [T1,∞),

see cfr. Figure 2.1.
Next, take a cutoff function τ ∈ C∞(R+

0 ), nonincreasing and such that

τ(t) = 1 if 0 ≤ t ≤ T0 and τ(t) = 0 if t ≥ T1.
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and define the truncated functional

F∞(v) =
1

p
‖Dv‖pp −

λ

k

∫
RN

V |G−1(v)|kdx− β τ (‖v‖D1,p)

p∗

∫
RN

K|G−1(v)|p∗dx. (3.49)

Now take

h(t) =
1

p
tp − λc1t

k − βc2t
p∗τ(t), t ∈ R+

0 ,

following [13], it holds h(t)→∞ as t→∞ and h(t) ≥ h(t) for all t ≥ 0 so that

h(t) = h(t) in (0, T0), h(T0) = h(T0) = 0, h(t) ≥ h(t) > 0 in (T0, T1), h(T1) > 0,

moreover, h(t) > 0 in (T1,∞) since, for t ≥ T1, we have h(t) = tkκ(t) with
κ(t) = 1

p
tp−k − λc1 which is a strictly increasing and positive function in (T1,∞),

cfr. Figure 2.2.
Furthermore, we have F∞(v) ≥ h (‖v‖D1,p) for all v ∈ D1,p(RN) and

Fλ(v) = F∞(v) if 0 ≤ ‖v‖D1,p ≤ T0. (3.50)

Furthermore, by the regularity both of τ and of Fλ, we have F∞ ∈ C1(D1,p(RN),R).
Before proving the following lemma which states the validity of the (PS)c con-

dition for the truncated energy functional F∞, define λ∗S := min{λ̂∗S, λ
∗
S} and

β∗S := min{β̂∗S, β
∗
S}, where λ̂∗S, β̂

∗
S, λ

∗
S, β

∗
S are defined respectively in (3.24), (3.23),

(3.47), (3.48).

Lemma 31. Let F∞ be the truncated functional of Fλ.

(a) If F∞(v) < 0, then ‖v‖D1,p < T0 and Fλ(u) = F∞(u) for all u in a small
enough neighborhood of v.

(b) For all λ > 0, there exists β∗S > 0 such that if β ∈ (0, β∗S), then F∞ satisfies
the (PS)c condition for c < 0.

(c) For all β > 0, there exists λ∗S > 0 such that if λ ∈ (0, λ∗S), then F∞ satisfies
the (PS)c condition for c < 0.

We do not include the proof of the lemma above. It is actually enough to follow
proof of Lemma 9 in [13], taking into account the change of variables v = G(u).

Remark 17. The existence of a positive maximum for the function h, yielding the
presence of T0, T1 zeros for h used to define the cutoff function τ , is essentially
guaranteed by the fact that λ or β is small enough because of the validity of Lemma
30. Obviously, as we will see in Section 3.5, the truncated energy functional can
be defined even if h is nonpositive.
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3.4 Proof of Theorem 6

This Section is dedicated to the proof of the multiplicity result for negative
energy, that is Theorem 6, whose statement is given in the Introduction, which is
based on the theory of genus by Krasnosel’skii contained in Subsection 2.1.4.

Proof of Theorem 6. Define Kc = Kc,F∞ = {u ∈ X : F∞(u) = c, F ′∞(u) = 0}
and take m ∈ N+. For 1 ≤ j ≤ m let

cj = inf
A∈Σj

sup
u∈A

F∞(u)

with

Σj = {A ⊂ X\ {0} : A is closed in X, −A = A, γ(A) ≥ j} .

As in Subsection 2.2.4, our claim consists in proving that −∞ < cj < 0 for
all j ≥ 1, to do that it is enough to prove that for all j ∈ N, there exists an
εj = ε(j) > 0 such that

γ(F−εj∞ ) ≥ j, where F a
∞ = {u ∈ X : F∞(u) ≤ a} with a ∈ R. (3.51)

Let ΩV ⊂ RN , |ΩV | > 0, be a bounded open set where V > 0. Extending functions
u in D1,p

0 (ΩV ) by 0 outside ΩV , where D1,p
0 (ΩV ) is the closure of C∞0 (ΩV ) in the

norm ‖u‖D1,p
0 (ΩV ) = ‖Du‖Lp(ΩV ). Take Wj a j-dimensional subspace of D1,p

0 (ΩV ),

thus all the norms in Wj are equivalent. For every v ∈ Wj with v 6= 0, we write
v = rjw with w ∈ Wj and ‖w‖D1,p

0 (ΩV ) = 1, from the assumptions on V , there

exists a dj > 0 such that ∫
ΩV

V |w|k/αdx ≥ dj.

By Lemma 24-a), for ε > 0 sufficiently small there exists σ = σ(ε) > 0 such that
for every |t| ≤ σ, then

|G−1(t)| ≥ 1

21/k
|t|1/α. (3.52)
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On the other hand, for rj ∈ (0, T0), so that ‖v‖ < T0, by (3.50) and (3.52) we
arrive to

F∞(v) = Fλ(v) =
1

p

∫
ΩV

|Dv|pdx− λ

k

∫
ΩV

V |G−1(v)|kdx− β

p∗

∫
ΩV

K|G−1(v)|p∗dx

=
1

p
rpj −

λ

k

∫
ΩV

V

(
1

2
|v|k/α + |G−1(v)|k − 1

2
|v|k/α

)
dx− β

p∗

∫
ΩV

K|G−1(v)|p∗dx

≤ 1

p
rpj −

λ

2k
djr

k/α
j − λ

k

∫
{|v|<σ}∩ΩV

V

(
|G−1(v)|k − 1

2
|v|k/α

)
dx

− λ

k

∫
{|v|≥σ}∩ΩV

V

(
|G−1(v)|k − 1

2
|v|k/α

)
dx− β

p∗

∫
ΩV

K|G−1(v)|p∗dx

≤ 1

p
rpj −

λ

2k
djr

k/α
j − λ

k

∫
{|v|≥σ}∩ΩV

V |G−1(v)|kdx

+
λ

2k

∫
{|v|≥σ}∩ΩV

V |v|k/α − β

p∗

∫
ΩV

K|G−1(v)|p∗dx

≤ 1

p
rpj −

λ

2k
djr

k/α
j +

λ

2k

∫
{|v|≥σ}∩ΩV

V |v|k/α−p∗+p∗ +
β

p∗
‖K‖∞

∫
ΩV

|v|p∗dx

≤ 1

p
rpj −

λ

2k
djr

k/α
j +

λ

2k
σk/α−p

∗
∫

ΩV

V |v|p∗ +
β

p∗
‖K‖∞

∫
ΩV

|v|p∗dx

≤ 1

p
rpj −

λ

2k
djr

k/α
j +

(
λ

2k
σk/α−p

∗‖V ‖L∞(ΩV ) +
β

p∗
‖K‖∞

)∫
ΩV

|v|p∗dx

≤ r
k/α
j

[
1

p
r
p−k/α
j − λ

2k
dj + Cr

p∗−k/α
j

]
,

with

C = S−1

(
λ

2k
σk/α−p

∗‖V ‖L∞(ΩV ) +
β

p∗
‖K‖∞

)
,

and by virtue of Lemma 24-c), the fact that V ∈ C(RN), α > k/p∗ and by
S‖v‖p∗ ≤ ‖v‖ = rj.

Consequently, for every v ∈ Wj, v 6= 0, we can choose rj ∈ (0, T0) sufficiently
small so that, since α > k/p > k/p∗, we obtain

F∞(v) ≤ −εj < 0.

Letting Srj =
{
v ∈ D1,p(RN) : ‖v‖D1,p

0 (ΩV ) = rj

}
, then Srj ∩ Wj ⊂ F

−εj
∞ . By

Proposition 2,
γ(F−εj∞ ) ≥ γ(Srj ∩Wj) = γ(Sj−1) = j,

which proves claim (3.51). Thus, from F
−εj
∞ ∈ Σj, we obtain

cj ≤ sup
u∈F

−εj
∞

F∞(v) ≤ −εj < 0.
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Furthermore, since F∞ is bounded from below, we get cj > −∞, thus the proof of
claim (3.51) is concluded.

The last part of the proof follows as in [13].

3.5 Proofs of Theorems 7 and 8

In this section we restrict our attention on the symmetric setting and we prove
Theorems 7 and 8, whose statements are given in the Introduction, for solutions
with negative energy and positive energy, respectively. In particular, the symmet-
ric setting allows us to improve Theorem 6 obtaining the corresponding multiplic-
ity result but with 1 < k < p < N and for all λ, β positive, as it evident in the
statement of Theorem 7.

Being in a symmetric setting, Remark 13 is valid in D1,p
T (RN) and we need to

apply the principle of symmetric criticality due to Palais, described in Subsection
2.1.1, which states that v is critical point of Fλ, if it is a critical point of the same
functional restricted on D1,p

T (RN). For further details we refer to [14].
We now come to the proof of the multiplicity results with negative energy in a

symmetric setting, that is Theorem 7.
Proof of Theorem 7. It is enough to apply the same methods used in the proof

of Theorem 6, but now assumption (12) allows us to remove the bounds from above
for λ and β and the lower bound 2 for k and p.

First observe that the (PS)c condition for the functional Fλ follows, by virtue
of (12), if 1 < k < p < N , for all λ, β > 0 and c ∈ R from Corollary 2, instead of
Lemma 30.

Concerning the construction of the truncated energy functional F∞ in (3.49)
according to the definition in (3.49), we start observing that now the function
h(t) = tp/p − λc1t

k − βc2t
p∗ introduced in Section 3.3, which is negative and

strictly decreasing in a right neighborhood of 0, could remain always negative.
Indeed, differently from Lemma 30, λ and β can be as large as we want.

Thus, in order to connect h for small t, with tp/p− λc1t
k for large t, or equiv-

alently to build the truncated function h̄, defined in Section 2.2.3, we need to
consider two points 0 < P0 < P1, not necessarily zeros of h, in the definition of
the cutoff function. Precisely let τ1 ∈ C∞(R+

0 ), nonincreasing and such that

τ1(t) = 1 if 0 ≤ t ≤ P0 and τ1(t) = 0 if t ≥ P1.

For the case P0, P1 zeros of h we refer to Figures 2.1 and 2.2 with T0 = P0 and
T1 = P1, while for the case h(P0), h(P1) < 0, possible behaviours of h and h̄ are
contained in Figure 3.1 and 3.2, respectively.
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In light of this, conditions (b)-(c) in Lemma 31 become the same and assure
that

F∞(v) =
1

p
‖Dv‖pp −

λ

k

∫
RN
V |G−1(v)|kdx− β τ1 (‖u‖D1,p)

p∗

∫
RN
K|G−1(v)|p∗dx.

satisfies the (PS)c condition for any λ, β > 0 and c < 0.

Figure 3.1: h(t)

Figure 3.2: h(t)

The final part of the proof follows from the proof of Theorem 6 contained in
Section 3.4.

Now we show the proof of our multiplicity result for solutions with positive
energy in the symmetric setting, namely Theorem 8, whose statement is given in
the Introduction. The proof is based on the use of Fountain Theorem, that is
Theorem 16.
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Proof of Theorem 8. We apply Theorem 16 with G = Z/2, M = D1,p
T (RN).

Since D1,p
T (RN) is a separable Banach space, using the same argumentation in

Remark 9 in Chapter 2, assumption (A1) is verified.

The functional Fλ ∈ C1(D1,p
T (RN)) is even by definition and, from Corollary

2, the functional Fλ satisfies the (PS)c condition for every c ∈ R, so assumption
(A4) of Theorem 16 is valid.

Since 0 6≡ K ≥ 0 in RN and K ∈ C(RN), there exists an open subset ΩK of
RN with K > 0 in ΩK . By the T -symmetry of K, then ΩK is T -symmetric, thus
we can define D1,p

T (ΩK). By extending functions in D1,p
T (ΩK) by 0 outside ΩK we

can assume D1,p
T (ΩK) ⊂ D1,p

T (RN). Assume (Ym)m be an increasing sequence of
subspaces of D1,p

T (ΩK) with dim(Ym) = m. Thus there exists a constant εm > 0
such that for all z ∈ Ym with ‖z‖ = 1 we have∫

RN
K|z|p∗dx =

∫
ΩK

K|z|p∗dx ≥ εm. (3.53)

On the other hand, if v ∈ Ym, v 6= 0, then we can write v = ρmω with ω ∈ Ym
such that ‖ω‖ = 1, so that ρm = ‖v‖. By Lemma 24-b), there exists M > 0
large enough, such that |G−1(t)| ≥ p−1/p∗|t| for |t| ≥M , so that, thanks to Lemma
24-c), (3.53) and since K,V ≥ 0, the following holds

Fλ(v) =
1

p
ρpm −

λ

k

∫
ΩK

V |G−1(v)|kdx

− β

p∗

∫
ΩK

K

[
1

p
|v|p∗ + |G−1(v)|p∗ − 1

p
|v|p∗

]
dx

=
1

p
ρpm −

λ

k

∫
ΩK

V |G−1(v)|kdx− β

pp∗

∫
ΩK

K|v|p∗dx

− β

p∗

∫
{|v|>M}∩ΩK

K

[
|G−1(v)|p∗ − 1

p
|v|p∗

]
dx

− β

p∗

∫
{|v|≤M}∩ΩK

K|G−1(v)|p∗dx +
β

pp∗

∫
{|v|≤M}∩ΩK

K|v|p∗dx

≤ 1

p
ρpm −

λ

k

∫
ΩK

V |G−1(v)|kdx− β

pp∗

∫
ΩK

K|v|p∗dx

+
β

pp∗

∫
{|v|≤M}∩ΩK

K|v|p∗dx

≤ 1

p
ρpm +

λ

k

∫
ΩK

V |v|kdx− β

pp∗

∫
ΩK

K|v|p∗dx

+
β

pp∗
‖K‖∞Mp∗−k

∫
ΩK

|v|kdx,
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that is

Fλ(v) ≤ 1

p
ρpm + Cρkm −

βεm
pp∗

ρp
∗

m ≤ 0

for sufficiently large ρm, since k, p < p∗. This proves (A2) of Theorem 16.
Condition (A3) follows exactly as in [14], taking into account the properties of

v. Then applying Theorem 16, the energy functional Fλ has unbounded sequence
of critical values in D1,p

T (RN). Thus Fλ has unbounded sequence of critical values
in D1,p

T (RN). Theorem 8 is so proved.
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[30] X. Cabré and L. Caffarelli, Fully nonlinear elliptic equations, Amer.
Math. Soc. Colloquium Publications, 43, American Mathematical Society,
Providence, RI, 1995, VI, 104 pages.

[31] L. Caffarelli and M. Crandall, Distance functions and almost global
solutions of eikonal equations, Comm. Partial Differential Equations, 35,
(2010), 391–414.

[32] J. Chabrowski, On the existence of G-symmetric entire solutions for semi-
linear elliptic equations, Rend. Circ. Mat. Palermo, 41, (1992), 413–440.

[33] J. Chabrowski, On multiple solutions for the nonhomogeneous p-Laplacian
with a critical Sobolev exponent, Differential Integral Equations, 8, (1995),
705–716.



130

[34] J. Chabrowski, Concentration-compactness principle at infinity and semi-
linear elliptic equations involving critical and subcritical Sobolev exponents,
Calc. Var. Partial Differential Equations, 3, (1995), 493–512.

[35] K. C. Chang, Methods of nonlinear analysis. Monographs in Mathematics.,
Springer-Verlag, New York, 2005.

[36] M. F. Chaves, G. Ercole and O. Miyagaki, Existence of a nontrivial
solutions for a (p, q)-Laplacian and p critical exponent in RN , Bound. Value
Probl., 236, (2014).

[37] X. L. Chen and R. N. Sudan, Necessary and suffcient conditions for self-
focusing of short ultraintense laser pulse, Phys. Review Letters, 70, (1993),
2082–2085.

[38] L. Cherfils and Y. Il’yasov, On the stationary solutions of generalized
reaction diffusion equations with (p, q)-Laplacian, Commun. Pure Appl. Anal.,
4, (2005), 9–22.

[39] M. Chipot and F. B.Weissler, Some blow up results for a nonlinear
parabolic problem with a gradient term, SIAM J. Math. Anal., 20, (1989),
886–907.

[40] D. C. Clark, A variant of the Ljusternik-Schnirelmann theory, Indiana
Univ. Math. J., 22, (1972), 65–74.
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[64] J. Garćıa Azorero and I. Peral Alonso, Multiplicity of solutions for
elliptic problems with critical exponent or with a nonsymmetric term, Trans.
Amer. Math. Soc., 323, (1991), 877–895.
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[112] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovs, Ground
state and nodal solutions for a class of double phase problems, Z. Angew.
Math. Phys., 71, (2020), Paper No. 15, 15 pp.

[113] G. Pisante, Sufficient conditions for the existence of viscosity solutions for
nonconvex Hamiltonians, SIAM J. Math. Anal., 36, (2004), 186–203.
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