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Abstract

Background: Cardiovascular disorders in general are responsible for 30% of deaths worldwide. Among them, hypertrophic
cardiomyopathy (HCM) is a genetic cardiac disease that is present in about 1 out of 500 young adults and can cause sudden
cardiac death (SCD).

Objective: Although the current state-of-the-art methods model the risk of SCD for patients, to our knowledge no methods are
available for modeling the patient's clinical status up to 10 years ahead. In this paper, we propose a novel ML-based tool for
predicting disease progression for patients diagnosed with HCM in terms of adverse remodeling of heart during a 10-year period.

Methods: The method consists of six predictive regression models that independently predict future values of six clinical
characteristics: left atrial size, left atrial volume, left ventricular ejection fraction, New York Heart Association Functional
Classification (NYHA), left ventricular internal diastolic diameter, and left ventricular internal systolic diameter. We
supplemented each prediction with the explanation that is generated with the Shapely additive explanation (SHAP) method.

Results: The final experiments show that predictive error is lower on 5 out of 6 constructed models with comparison to experts
or consortium of experts. The experiments revealed that semi-supervised learning and the artificial data from virtual patients
helped to achieve even higher predictive accuracies.

Conclusions: By engaging medical experts to provide interpretation and validation of the results, we determined the models'
favorable performance compared to performance of experts for five out of six targets.

(JMIR Preprints 18/05/2021:30483)
DOI: https://doi.org/10.2196/preprints.30483
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Disease progression  of  hypertrophic  cardiomyopathy:  Modeling  using
machine learning

Abstract

Background:  Cardiovascular  disorders  in  general  are  responsible  for  30% of  deaths worldwide.
Among them, hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease that is present in
about 1 out of 500 young adults and can cause sudden cardiac death (SCD).
Objectives: Although the current state-of-the-art methods model the risk of SCD for patients, to our
knowledge no methods are available for modeling the patient's clinical status up to 10 years ahead. In
this  paper,  we  propose  a  novel  ML-based  tool  for  predicting  disease  progression  for  patients
diagnosed with HCM in terms of adverse remodeling of heart during a 10-year period.
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Methods: The method consists of six predictive regression models that independently predict future
values  of  six  clinical  characteristics:  left  atrial  size,  left  atrial  volume,  left  ventricular  ejection
fraction,  New York Heart  Association Functional Classification (NYHA), left  ventricular internal
diastolic diameter, and left ventricular internal systolic diameter. We supplemented each prediction
with the explanation that is generated with the Shapely additive explanation (SHAP) method.
Results: The final experiments show that predictive error is lower on 5 out of 6 constructed models
with comparison to experts (on the average by 0.34) or consortium of experts (on the average by
0.22). The experiments revealed that semi-supervised learning and the artificial data from virtual
patients helped to improve predictive accuracies. The best performing random forest model improved
R2 from 0.3 to 0.6.
Conclusions: By engaging medical experts to provide interpretation and validation of the results, we
determined the models' favorable performance compared to performance of experts for five out of
six targets.

Keywords: hypertrophic cardiomyopathy; disease progression; machine learning; artificial intelligence

Introduction

Background

Recent reviews of machine learning (ML) applications in cardiovascular medicine [1,2] suggest that
the use of ML is on the rise and that is becoming adopted by doctors in their daily practice. ML
applications in cardiology are reflected by augmenting medical practice by contributing to early
diagnosis,  risk stratification and personalized therapeutics.  The examples of such applications  in
other  domains  include  modeling  disease  progression  of  Alzheimer’s  disease  [3,4],  Parkinson’s
disease [5], multiple sclerosis [6], chronic kidney disease [7], chronic liver disease [8] and others. 

Cardiovascular  disorders  in  general  are  responsible  for  30% of  deaths  worldwide.  Among them
specifically, hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which is a cause of
sudden cardiac death (SCD), especially among young adults and athletes [9]. Cardiovascular diseases
represent groups of diseases that can greatly benefit from pre-emptive prediction, prevention and
proactive  management,  thus  this  opens  an  opportunity  for  methods  of  artificial  intelligence  [2].
Disease progression is especially hard to detect in slow progressing diseases, such as the HCM that is
present in about 1 out of 500 young adults [10]. Although HCM has four identified stages [11], HCM
patients can experience a sudden cardiac arrest or the disease can progress slowly over several years.
Currently, the state-of-the-art “HCM Risk-SCD calculator” method for risk stratification of patients
diagnosed with HCM [12] is widely used in practice. Although this method predicts the risk of SCD,
no methods, to our knowledge, are available for modeling the patient's clinical status up to 10 years
ahead.  Detection  of  cardiovascular  risk  for  10  years  ahead  is  important  and  has  been  modeled
recently for atherosclerotic cardiovascular disease [12]. 

In  this  paper,  we propose a  novel  ML-based tool  for predicting disease progression for patients
diagnosed with HCM in terms of adverse remodeling of heart during a 10-year period. The method
consists  of  six  contemporaneous  predictive  regression  models  that  independently  predict  future
values of the following six clinical characteristics: left atrial size (LA), left atrial volume (LA_Vol),
left  ventricular  ejection  fraction  (LVEF),  New York  Heart  Association  Functional  Classification
(NYHA), left ventricular internal diastolic diameter (LVIDd), and left ventricular internal systolic
diameter (LVIDs). Each prediction is supplemented with the explanation that is generated with the
Shapely additive explanation (SHAP) method [14]. Comparison between current and future values of
these six parameters, as well as the interpretation of the change, generated by explanation methods,
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can help cardiologists gain insight into the disease progression trend for a given patient. 

Machine learning methods in medicine

ML techniques  are  becoming  frequently  applied  in  medicine  to  improve  prediction  of  disease
progression, extraction of medical knowledge for outcome research, therapy planning and support,
and for the overall patient management [15]. A wide variety of ML approaches turned out to solve
challenging problems in these tasks. For example, diseases such as Alzheimer's disease, Diabetes,
chronic obstructive pulmonary disease (COPD) progress slowly over  the years.  For modeling of
COPD, a Markov model was proposed by  [16], who also included a database of virtual patients.
Their  method  successfully  modeled  progression  trajectories,  showing  that  multiple  progression
trajectories are possible for some diseases.

Further,  a  hybrid  approach for  progression  of  Parkinson’s  disease  [5] was  successfully  used  by
combining a variety of machine learning methods from different families: clustering, dimensionally
reduction  and  incremental  support  vector  regression.  Deep learning was  used  for  predicting  the
Alzheimer's  disease  on  average  about  six  years  in  advance  [20] and  for  modeling  Alzheimer’s
disease progression [4]. Conditional restricted Boltzmann machines were also used for prediction of
disease progression  [3]. The authors simulated patient trajectories using 18 months of longitudinal
data of around 1900 patients and showed that patient-level simulations are feasible using machine
learning and appropriate data.

In cardiology, there were several works addressing disease progression trends related to different
cardiological diseases. With the increase of computational power, machine ML has become a tool to
analyze non-linear dependencies that are present either in relational data or images. Juarez-Orozco et
al. [17] emphasized the advantages of ML, especially of deep learning, in cardiac nuclear imaging,
where ML can aid with ischemia diagnosis and event prognosis. Sardar et al. [18] emphasize the
advantages  of  artificial  intelligence  in  interventional  cardiology,  which  is  promising  to  bring  a
paradigm shift  in  the practice of  medicine by improving real-time clinical  decision  making and
standardizing robotic medical procedures. While focusing on the use of ML in ECG analysis, Elul et
al. [19] also state the crucial disadvantages of ML, which include lack of explanation, relating the
automated  diagnosis  with  medical  knowledge,  and transparency of  system’s  limitations.  In  their
work, the authors proceed to flagging individual predictions, which are irrelevant or not useful. To
summarize,  the mentioned works characterize the AI as a developing tool that, with the synergy
between man and machine, which help transform medical practice and clinical care.

Several other ML approaches also model disease progression well in other medical domains, such as
the kidney disease progression [7]. In this work, nine ML approaches were tested: linear regression,
elastic net regression, lasso regression, ridge regression, support vector machines (SVM), random
forests,  k-nearest  neighbors  (KNN), neural  networks,  and XGBoost.  Similarly,  ML models  were
applied to the problem of disease progression for hepatitis  C virus  [8] for the 5-year prediction
problem using longitudinal data. The authors' conclusion was that the boosted survival tree-based
models using longitudinal data perform better than cross-sectional or linear models. Last but not
least, ML was also used for disease progression and secondary progression detection for multiple-
sclerosis [6]. Several ML models were evaluated for predictions of disease severity in 6 to 10 years,
such as KNN, decision trees, linear regression, and SVM. Support vector machines performed best.

To summarize,  the above overview indicates that the ML models can be successfully applied to
problems  of  predicting  disease  progression,  which  is  also  the  goal  of  this  paper.  In  the  next
subsection, we overview how ML approaches were used in cardiology, specifically for HCM, which
is the focus of this paper.

https://preprints.jmir.org/preprint/30483 [unpublished, peer-reviewed preprint]
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Machine learning for modeling hypertrophic cardiomyopathy

Most ML contributions to cardiovascular medicine focuses on risk stratification of patients. One of
the biggest obstacles for utilizing data for broader variety of ML applications is that data are usually
stored  in  diverse repositories  which are  not  readily utilizable  for  cardiovascular  research due to
various data quality challenges  [2]. Where the data was readily available, different ML algorithms
have been successfully used, such as the Wasserstein generative adversarial networks (GAN) [21],
convolutional neural networks [22,23], deep neural networks [24], and boosted decision trees [25].
Some authors tested multiple models, such as random forests, artificial neural networks, SVM and
Bayesian networks [26], or a combination of J48, naïve Bayes, KNN, SVM, random forest, bagging
and boosting  [27].  Cuocolo  et  al.  [1] overviewed ML methods in  cardiology,  emphasizing  their
successful  applications  for  building  clinical  predictive  models,  for  analyzing  ECG  signals  and
analyzing image data. For the latter problems, the most successful methods were neural networks,
deep neural networks and convolutional networks. Advances in prediction accuracy have also been
made by using deep neural networks to make predictions based on fast large-scale genome-wide
association studies [28].

HCM is a severe disease for which four stages of its progression have been identified in medical
literature  [11]. The current ML state-of-the-art mostly utilizes only statistical models, such as the
multivariate  regression analysis,  which utilize pre-selected predictor  variables  of known medical
importance. Cardiac magnetic resonance (CMR) images  [29,30] and echocardiographic diagnostics
[31] were  found  to  be  a  good  source  of  important  attributes  for  HCM identification.  Recently,
researchers started proposing ML-based risk stratification for patients diagnosed with to separate
patients into low- and high-risk categories or several categories on a scale [32]. Medical literature is
mostly focused on finding risk factors that identify increased risk of SCD in patients with HCM
[12,33].  A study  [34] presented  the guidelines  used in  risk stratification  for  patients  with HCM
proposed  the  potential  SCD  modifiers.  Maron  et  al.  [35] performed  a  similar  study  on  older
population  and  also  summarized  risk  factors  that  could  prevent  SCD.  The  continuation  of  this
research  [36] aimed  to  develop an  accurate  strategy to  assess  the  reliability  of  SCD prediction
methods in prevention of SCD in patients diagnosed with HCM.

It is important to note that patients with HCM who experience cardiac arrest are not identified by
typical risk markers used in American College of Cardiology or the statistical mathematical risk
model by the European Society of Cardiology [37]. Therefore, new risk factors have been and still
need to be considered and developed to provide additional information to better assess the HCM risk.
In our work, we focus on modeling the future development of HCM by predicting the change in
relevant cardiac parameters for 10-years ahead.

Aims and contributions

Novelties and contributions of this paper include:
 disease  progression system that  comprises  models  for  prediction  of  six  contemporaneous

relevant clinical parameters that are relevant to HCM for 10 years ahead. The system includes
the  implementation  of  the  explanation  methodology  that  provides  interpretability  of
predictive models,

 analysis of predictive performance if training data is extended using semi-supervised learning
or with artificial patient data,

 validation of predictive accuracy with medical experts by comparing machine learning and
human  accuracy  and  by  analyzing  sensibility  of  the  computer-generated  prediction
explanations.
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The aim of this paper is to develop a system capable of detecting a slow progression of HCM based
on longitudinal data.

Methods

Modeling disease progression

In this work, we model the disease progression by predicting six relevant patients’ parameters 10
years in advance. These parameters are indicators of HCM and can be used to determine the stage of
HCM according to the known guidelines [37]. Additionally, a preliminary analysis was performed to
verify the prediction strength of the chosen parameters, validating our choice, as described in the
Section Dataset.  The proposed disease progression system (Figure 1) takes as an input patients’
clinical data and data about their past disease-related events, such as dates of atrial fibrillation or
syncope. The output of the system is a set of six contemporaneous target predictions for parameters:

 Left atrial diameter (LA),
 Left atrial volume (LA_Vol),
 Left Ventricular Ejection Fraction (LVEF),
 Left Ventricular Internal Dimension at end-Diastole (LVIDd),
 Left Ventricular Internal Dimension at end-Systole (LVIDs), and
 New York Heart Association (NYHA) functional classification.

In addition to predictions, the system also generates their explanations, revealing the factors with the
largest impact on the increase or decrease of the six target variables throughout the 10-year period.

We  train  the  proposed  disease  progression  system using  supervised  ML techniques.  To  further
improve the results, we augment the original data using unlabeled data (semi-supervised learning)
and virtual  patients’ data.  We apply the semi-supervised learning using patients without  10-year
follow-ups and generate virtual patients’ data using various techniques for artificial data generation.
The semi-supervised learning first predicts patients' targets using the trained models on labeled data,
so they can be afterwards included into the training dataset. In the following subsections, we describe
the dataset, predictive modeling with supervised models, use of semi-supervised learning and virtual
patient data, and generation of prediction explanations. 

Figure 1: An overview of the proposed disease progression system. The system receives clinical data
and disease-related events of a patient as an input, utilizes virtual patient data and semi-supervised
learning  for  self-improvement,  and  returns  the  predictions  and  their  explanation  for  six  target
variables.
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Dataset

The proposed approach was developed on a dataset that was provided by the University of Florence
as a result of their long-term clinical practice. The dataset included patients who were enrolled over
the last 40 years (Figure 2), 75 % of them after the year 2000. They were followed for an average
duration of about 7 years and ranging up to 37 years. The dataset contains longitudinal clinical data
for 2,318 patients diagnosed with HCM or patients that had an HCM diagnosed relative (1,457 male
and 861 female patients). During the patients' visits, various clinical tests and relevant disease-related
events were recorded. These data include: general data (gender, age, height, weight etc.), genetic data
(detected mutations), clinical tests (echo, Holter monitory, blood test, CMR, stress test), prescribed
medications (type, start date, termination date), and disease-related events (e.g. SCD, heart failure,
transplant, abnormal Holter, pacemaker or implantable cardioverter defibrillator (ICD) implantation
etc.). Echo was the leading diagnostic reference technique that was performed for the vast majority
of patients and thus represents the main source of data. CMR was additionally employed selectively
due to its greater accuracy in measuring volumes. Although echo and CMR were treated separately
and never computationally compared to each other in medical practice, we use the CMR, where
available, as an additional data modality to possibly improve the prediction accuracy. In total, there
were 6,227 events recorded, out of which 4,902 events occurred to patients who were primarily
diagnosed with HCM. The structure of the dataset therefore allows observing how patients’ clinical
characteristics change over time, which is essential for the desired modeling of HCM progression.
The basic patient characteristics are shown below in  (Table 1) for continuous parameters, (Table 2)
for binary parameters and (Table 3) for the remaining parameters. The characteristics are extracted
from  10,318  measurements  made  in  total.  Additionally,  (Table  4)  also  shows  the  missing  data
numbers  and  percentages  for  the  six  selected  target  variables  for  their  role  as  input  or  target
variables.

Figure  2: This figure shows relationship between the amount of labeled and unlabeled data. The
bars  for  Yes  and  No  values  are  stacked,  visually  revealing  the  ratio  between  the  labeled  and
unlabeled data. Note that the rightmost columns do not have 10-year follow up data, as they are
younger than 10 years.

Table 1: Basic characteristics of the patients for basic continuous parameters.

https://preprints.jmir.org/preprint/30483 [unpublished, peer-reviewed preprint]
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Continuous
parameter

Mean Standard deviation Missing % (#)

Age 52.1 (years) 18.6 0.04 (4)
Weight 73.4 (kg) 14.6 23.1(2381)
Height 169 (cm) 10.3 22.0(2273)
BMI 25.6 4.09 23.5(2423)
NYHA 1.69 0.73 9.53(983)

Table 2: Basic characteristics of the patients for basic binary parameters.

Binary
parameters

1-value % (#) 0-value % (#) Missing % (#)

Alcohol 1.0 (yes) (103) 99.0 (no) (10215) 0.0 (0)
Drug 0.2 (yes) (18) 99.8 (no) (10300) 0.0 (0)
Smoking 33.3 (yes) (3437) 66.7 (no) (6881) 0.0 (0)
Pregnancy 4.3 (yes) (443) 95.7 (no) (9875) 24.4 (2515)
Gender 62.0 (male) (6400) 38.0 (female) (3918) 0.0 (0)

Table 3: Basic characteristics for groups of parameters.a

Aggregated #parameters Missing % avg (#)

ECG 9 49.4 (45839)
Echo 26 36.6 (98191)
CMR 10 78.7 (81174)
aThe table shows aggregated statistics for several parameters obtained from the same procedure (CMR = Cardiovascular
magnetic resonance imaging, ECG = electrocardiogram, Echo = echocardiogram).

Table 4: Percent and absolute number of missing values of target variables as class and as input.

LA LVEF NYHA LVIDd LVIDs LA_Vol

n (%) n (%) n (%) n (%) n (%) n (%)

Target
8569
(83.0)

8481
(82.2)

8313
(80.6)

8607
(83.4)

9336
(90.5)

8631
(83.6)

Input
2691
(26.1)

2399
(23.3)

983
(9.5)

2517
(24.4)

5329
(51.6)

3680
(35.7)

First,  we transformed the available dataset into a suitable form for predicting 10-year change in
relevant parameters using machine learning. Similarly, to other real-world datasets, many patients
have most of the clinical tests missing and/or the measurements were not taken for the whole span of
10 years (Figure 2). To address this issue, we preprocessed the data as follows:

1. Forming training examples:  Since not all clinical tests can be done on the same day or
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month, we defined a training example as a set of measurements within a time frame of one
year. Such time frame corresponds to the annual regular visit period of patients and allows
enough time for relevant changes in the observed parameters to become noticeable, as the
disease progresses slowly. If the patient had a certain test performed multiple times within
this time frame, multiple tests were treated as separate measurements. In case that a certain
type of test was not performed in the one-year time frame, the corresponding variables were
recorded as missing. Constructing training examples in this way yields a dataset with 13,386
examples, with 3.9 ± 4.8 examples per patient. 

2. Imputation  of  missing  data:  The  missing  values  in  the  dataset,  either  because  of  non-
performed test or the erroneous input of a datum, were imputed either by: copying closest
past  values  (sensible  because  the  progression  of  HCM  is  slow;  used  on  numerical  and
categorical  attributes),  by  imputing  values  of  a  healthy  patient  (sampled  from  normal
distribution; used for numerical attributes), or by imputing mean values where healthy values
were unknown (used on numerical and categorical attributes). Since measurements were not
taken at equidistant time intervals,  we used linear interpolation for computing equidistant
measurement approximations.

We  used  the  formed  training  examples  as  an  input  to  supervised  learning  algorithms.  Prior  to
modeling,  we  evaluated  the  quality  of  attributes,  which  is  important  for  decreasing  learning
complexity,  avoiding overfitting and therefore improving the simplicity  and performance of  ML
methods. To facilitate learning with neural networks, we also scaled the values to the interval [0, 1]
and encoded nominal values using the one-hot-encoding for.
We  used  the  RReliefF  [38],  adaptation  of  ReliefF  feature  selection  algorithm  for  regression
problems. RReliefF calculates how well the feature’s values distinguish between distant labels of
instances that are close to each other and considers feature interactions. We selected 21 out of 112
attributes based on the average rank across all six target variables for further supervised learning.
Feature scores for 21 selected features are shown in (Table 5) along with their average ranks across
six trained predictive models. After removing highly correlated features (such as the feature Weight
that correlates to BSA and Height), the final set of attributes contained all target variables (regardless
of their rank) and of the best performing attributes on the average.

Table 5: Selected attributes using RReliefF.a

Variable name LA LVEF NYHA LVIDd LVIDs LA_Vol avg rank

Anthropometric parameters
Age 0.198 0.194 0.166 0.142 0.166 0.158 1.000
Gender 0.051 0.037 0.043 0.055 0.058 0.022 12.500
Height 0.057 0.064 0.045 0.075 0.051 0.029 9.167
BSA 0.075 0.073 0.053 0.095 0.085 0.045 4.167

Risk factors
Smoking 0.063 0.046 0.052 0.032 0.069 0.082 7.500
Presence  of
hypercholesterolaemia

0.072 0.042 0.052 0.039 0.044 0.056 9.667

History of syncope 0.026 0.036 0.029 0.022 0.029 0.048 20.000
Family history of HCM     0.056 0.060 0.061 0.047 0.052 0.066 5.833
Family history of SCD 0.027 0.051 0.032 0.031 0.051 0.049 14.667

Clinical, ECG and Echo parameters
NYHA 0.011 0.017 0.069 0.007 0.027 0.022 33.000
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Presence  of  atrial
fibrillation

0.055 0.036 0.048 0.018 0.026 0.068 16.333

QRS duration 0.035 0.046 0.029 0.039 0.026 0.039 17.167
IVS 0.043 0.052 0.049 0.041 0.057 0.052 8.167
LA 0.078 0.037 0.036 0.018 0.031 0.070 15.000
LA_Vol 0.055 0.029 0.026 0.012 0.025 0.059 24.000
LVIDs 0.017 0.022 0.027 0.029 0.043 0.031 25.167
LVIDd 0.021 0.017 0.017 0.036 0.044 0.026 27.667
LVEF 0.018 0.051 0.019 0.014 0.050 0.013 27.833

Genetics
Mutation MYBPC3 0.045 0.041 0.039 0.051 0.052 0.059 9.667
Mutation MYH7 0.037 0.044 0.034 0.040 0.066 0.023 14.667
Negative genetics 0.036 0.037 0.027 0.043 0.030 0.031 18.667

aThe table shows RReliefF feature scores and the average ranks for each target variable. Names of ten highest ranked
variables are underlined. (BSA – body surface area, HCM – hypertrophic cardiomyopathy, IVS - interventricular septum,
SCD – sudden cardiac death, LA – left atrium, LA_Vol – left atrium volume, LVIDs - left ventricular internal dimension
in systole, LVIDd - left ventricular internal dimension in diastole, LVEF – left ventricular ejection fraction, NYHA - New
York Heart Association)

Predictive  modeling  with  supervised  and  semi-supervised  machine
learning

To model the relationship between input patient data and target variables, we applied the following
supervised learning algorithms:

 Random  forests [39,40] is  an  ensemble  prediction  model  that  constructs  multiple
randomized  decision  trees.  The  implementations  of  random forest  classifier  in  statistical
package R (library ranger) and Python Scikit-Learn package [41] were used. Each forest used
between 500 and 1500 trees, and the Gini index was used as the attribute splitting rule;

 Gradient  boosting  (XGBoost) [42]:  an  ensemble  of  weak  decision  tree  predictors,
implemented in the open source software library XGBoost;

 Linear regression:  a traditional method of finding a linear dependence between attributes
and the selected target variable;

 Neural networks mimic the architecture and working of brain neurons. We used one input
and  one  output  layer  and  one  or  several  hidden  layers.  In  the  optimization  process,  we
optimized several learning parameters, such as learning rate, number of hidden layers, sizes
of layers, regularization, sample weights, class weights, dropout, and batch normalization.

The best hyper parameters of the above algorithms were tuned using the Bayesian optimization and
random search implemented in keras-tuner [43]. 

Semi-supervised learning and virtual patients

Semi-supervised  learning  is  increasingly  used  in  medicine  especially  for  the  medical  image
segmentation [44–46]. This approach allows labeling a large amount of unlabeled data using only a
small portion of labeled data. The majority (i.e., 83.9% averaged over 6 target variables) of patients'
data  did  not  have  records  for  the  follow-up after  10  years.  These  unlabeled  data  were  used  as
examples for semi-supervised learning, producing a teacher model. The unlabeled examples were
labeled with the supervised learning predictive model (see previous section) and added to the training
set. After that, a new model (also called a student model) was trained and kept if it achieved better
performance on the test set as the teacher model.

To further improve the results of semi-supervised learning, we utilized artificially generated data
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(i.e.,  virtual  patients).  Virtual  data  generation  can  sometimes  replace  experiments  in  biomedical
experiments on animals [47]. Specifically in cardiovascular modeling patient-specific virtual patient
modeling recently made major progress in improving diagnoses [48]. We evaluated the performance
and appropriateness of several virtual patient data generators for this task, such as the generator
based on the multivariate normal and log-normal distribution (MVND, log-MVND) [49], and non-
parametric  methods  using  supervised  tree  ensembles,  unsupervised  tree  ensembles,  RBF-based
neural  networks  [50],  and  Bayesian  networks  [51].  As  the  final  data  generator,  we  chose  the
unsupervised tree ensembles, which exhibited the highest level of agreement between the real and
the  virtual  distributions,  computed  with  the  Kolmogorov-Smirnoff  goodness-of-fit  statistical  test
[52]. We generated 10,000 virtual patient examples with 20 most important features, listed in Dataset
section. 

Explanation of the predictive model

Supervised ML models often exhibit a black-box nature, meaning that they can model data but not
provide the explanation for the contained knowledge as well as the reasoning used in predictions.
This  means  that  the  model  lacks  transparency  and  interpretability.  To  address  this,  explanation
methods provide justification for each prediction and assess features with the highest impact  [53].
This  is  very  important  in  risk-sensitive  ML  application  areas,  such  as  medicine,  where  the
predictions of ML models need to be understood as they may represent a basis for further medical
interventions.

In our work we applied the explanation method SHAP (SHapley Additive exPlanations) [14] that is
model-agnostic  method,  generating  explanation  for  different  ML models  in  a  unified  form.  The
method  uses  theoretically  sound  concepts  of  Shapley  values  from cooperative  game  theory  for
computing  contributions  of  each  individual  attribute  value  and  of  each  attribute  overall.  The
generated  explanations  visualize  the  most  relevant  attributes  that  contributed  to  higher  or  lower
prediction  values.  The explanations  can  be computed either  for  a  single patient’s  predictions  or
summarized over all patients to discover more general relationships between attributes and model’s
predictions.

Results

Models’ comparison

To evaluate and compare the performance of six predictive models, we used stratified 10-fold cross-
validation. For each of the six predictive problems, four different regression models were evaluated
(linear regression - LR, random forest - RF, gradient boosted trees – GB, and neural networks - NN).
The following parameters were varied in tests:

 application of semi-supervised learning (denoted with S),
 adding virtual patients' data into the learning dataset (denoted with VP),
 use of all 112 features (denoted with All) or only the subset of 21 best features (denoted with

Subset)
 interpolation of data-points so that measurements were equidistant (denoted with I). 

In  all,  28  different  combinations  of  the  above  parameters  were  used  in  experiments.  Some
combinations were omitted due to limitations (e.g. VP generators cannot generate data for all 112
attributes, so VP was evaluated only with the subset of attributes) or excessive time complexity (e.g.,
the use of virtual patients with neural networks).
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Performance of predictive models
To compare the accuracy of the obtained models, we computed the following four metrics: mean
absolute error (MAE), root mean squared error (RMSE), and two variations of the relative root mean
squared  error  (RRMSEmean and  RRMSEconst).  Mean  absolute  error  (MAE)  measures  the  average
absolute difference between prediction and true value over all examples in the test set. Root mean
squared error (RMSE) addresses the issue that the squared values of MSE are hard to interpret.
RRMSE measures a relative ratio between the obtained model and the baseline model. We computed
two variations  of  the  RRMSE with  two different  baseline  models:  mean predictor  and constant
predictor. With RRMSEmean we compared the performance of the obtained model to the model that
returns the mean of the target variable over all patients (mean predictor), while with the RRMSEconst

we compared the obtained model to the model that assumes that the value of the target variable will
remain constant/unchanged over the 10-year period (constant predictor).

We summarized (Table 6) the performance of the best preforming predictive models (RF, LR, GB,
NN) and parameters (S, VP, all/subset)  for each target variable.  We can see that top performing
regression models are RF and GB for all target variables. We achieved the best results by applying
semi-supervised learning (S) for all target variables and using virtual patients (VP) for five out of six
target variables. For all targets, the best results were obtained by learning from a subset of 21 most
important features. The values of both RRMSE metrics reveal that the model perform better than the
baseline models (their values are lower than 1.0), with model for the LA target achieving the lowest
predictive error.

Table 6: Comparison of the best performing models for each target variable.

Target Model and parameters MAE RMSE RRMSEmean RRMSEconst

LA RF: S+VP+subset 3.4 4.73 0.54 0.46
LA_Vol RF: S+VP+subset 18.4 26.73 0.56 0.47
LVEF GB: S+subset 4.92 6.73 0.67 0.61
LVIDd RF: S+VP+subset 3.53 5.26 0.68 0.64
LVIDs RF: S+VP+subset 3.42 4.81 0.66 0.56
NYHA RF: S+VP+subset 0.39 0.5 0.67 0.66

To further  evaluate  the  contribution  of  different  data  augmentation  strategies,  we compared the
results on different patients sets: original (all features), subset of best features, virtual patients (VP),
semi-supervised learning (S), and the combination of the latter two (S + VP). The obtained results,
shown for the best performing Random Forest model, are shown in (Figure 3), which compares the
R2 metrics for each individual target parameter. The additional detailed results for the other models
are  given in  (Multimedia  Appendix  1).  The obtained results  reveal  the  benefits  of  reducing the
feature space, as well as applying the used data augmentation methods.
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Figure  3:  The plotted  results  for  R2 statistic  for  each target  variable  using  different  sets  (input
parameters). Note that VP, S and S + VP are used on feature subsets.

In  the  following  subsection,  we  apply  the  explanation  methodology  that  helps  to  interpret  the
computed predictions and their contributing feature values.

Explanation of predictions

To augment  the  output  of  prediction  models,  we  applied  the  method  SHAP (SHapley  Additive
exPlanations) [14] for computing explanations of individual predictions. The explanation of a single
prediction consists of relevant textual, graphical and numerical data that allows understanding of the
relationships between the features of the patient and the model’s prediction. It also consists of a list
of the most relevant features that influenced the prediction along with their contribution values that
define if the feature value either supports the predicted value or opposes it.  The direction of the
impact (i.e. sign of the contribution value) is denoted using different colors.

An example of generated explanation for the prediction for target LA (Figure 4) is presented below.
Features’ contributions are sorted in the descending order, and the graph contains only the features
for which the sum of their contributions reflects 95% of the difference between the initial parameter
value  and  the  predicted  value  after  10  years.  The  green  and  red  bars  thus  denote  positive  and
negative  contributions  of  the  impact  for  individual  feature  values,  respectively,  showing  the
contributing factors to the increase or decrease of the LA value. We can see that the features "LA",
"Atrial  fibrillation",  "Age",  "Mutation  MYBPC3",  and  "LVIDs"  contributed  to  the  increase  of
predicted  value  for  LA over  time,  while  “LA_Vol”  and  “Mutation  MYH7”  contributed  to  the
decrease of predicted value for LA. Because the overall increasing impact was more prominent, the
final  predicted  value  (51.34)  was  higher  than  the  baseline  prediction,  which  is  also  the  current
patients' value of LA (46.00). Larger magnitudes of the features' contributions correspond to larger
changes in the prediction value. For example, “LA” contributed the most (approximately 30%) to the
increase in the predicted value.
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Figure 4: An example of explanation of prediction for target variable LA

Validation with medical experts

Besides  evaluation  of  prediction  models  with  statistical  measures  conducted  in  two  previous
sections, we engaged medical experts to provide further interpretation and validation of the results.
First, we compare the accuracy of predictive models with the accuracy of human experts, which was
obtained by using a survey (Multimedia Appendix 2). Second, we check if prediction explanations
are sensible and consistent with experts' medical knowledge about HCM.

We prepared a questionnaire for medical experts and distributed it to several medical universities and
cardiology clinics. The questionnaire included data about complete medical cases (measurements,
events,  and  medications  data)  for  ten  patients,  and  the  experts  were  asked  to  study  them  and
complete the following two tasks:

1. to predict the magnitude of the 10-year change in the six studied clinical parameters (LA,
LA_vol, LVEF, LVIDd, LVIDs, and NYHA) and mark it on a discrete scale from -3 to 3,
where -3 and 3 represented the biggest possible decrease and increase, respectively. Possible
magnitudes of change were represented using discrete intervals, as the prediction of an exact
value is a difficult task that does not take place in medical practice;

2. to evaluate if the statements generated from the explanation (for example: "The current value
of parameter “LA” will cause a decrease of the LA") are true or false. For each patient, six
such statements were generated, covering the features with the highest contribution. More
specifically, the questionnaire included evaluation questions for 6 parameters that contribute
to change in LA, 4 for LA_vol, 5 for LVEF, 6 for LVIDd, 7 for LVIDs, and 4 for NYHA.

The  questionnaire  was  fully  completed  by  13  experts  with  16  ± 8  years  of  experience.  In  the
following subsections, we present the analysis of the answers.

https://preprints.jmir.org/preprint/30483 [unpublished, peer-reviewed preprint]



JMIR Preprints Pi?ulin et al

Validation of prediction accuracy

To compare the prediction accuracy between the experts and the machine learning model, we first
discretized  the  model's  predictions  into  discrete  intervals,  so  that  they  can  be  compared  to  the
discrete intervals,  predicted by the experts.  We performed the discretization using bins of width
0.25σ,  where  σ  was the standard deviation of  the variable.  Further,  we calculated the following
prediction errors:

 mean prediction error of the discretized model prediction (denoted with MD),
 mean prediction error made by individual medical expert (denoted with E),
 mean prediction error of the consortium prediction (i.e., the average prediction of all doctors')

(denoted with C),
We can see that the mean prediction error of the discretized model MD (Table 7) is the lowest for all
target variables except for LA. The mean errors of consortium predictions C are lower than the
predictions of individual experts for all parameters, which indicates that the mutual consolidation of
different doctors'  opinions reduced the error of their  joint predictions. The consortium prediction
error also turned out to be the lowest for the parameter LA and thus better than the error of the
machine learning model.

Table 7: The mean absolute error of the discretized model predictions (MD), individual experts (E)
and the entire consortium (C). The lowest achieved errors are denoted with italics.

Target/Prediction Model (MD) Expert (E) Consortium (C)
NYHA 0.30 ± 0.48 0.84 ± 0.69 0.56 ± 0.34
LA 1.70 ± 0.82 1.69 ± 0.97 1.66 ± 0.70
LA_vol 1.00 ± 0.82 1.25 ± 0.98 1.13 ± 0.63
LVIDd 0.80 ± 0.63 1.09 ± 0.91 1.00 ± 0.77
LVIDs 0.50 ± 0.71 1.02 ± 0.86 0.88 ± 0.68
LVEF 0.90 ± 0.88 1.32 ± 0.90 1.28 ± 0.79

Validation of model explanation

To validate the generated model explanations, we analyzed the agreement of experts with generated
statements  about  features'  influence  in  two  steps.  First,  we  calculated  the  agreement  ratio  for
individual features that were included in the questionnaire, grouped by each of six target variables.
Secondly, we calculated the overall agreement of experts with the explanation for each of the six
target parameters, based on the agreement data about all features that contribute to their prediction.

The results (Table 8) of the analysis provide the ratio of agreement between different parameters for
each target variable, as well as their overall agreement. The highest agreement ratio was achieved for
target  attributes  NYHA (1.00),  LA_vol  (0.75)  and  LVIDd  (0.67).  The  last  column  (Average
agreement)  summarizes  the  results  across  all  used  features.  The  results  that  are  shown  in  the
decreasing order of the last column, show that the majority of the experts agree especially with the
explanations for targets NYHA (average agreement of 0.73) and LVIDd (average agreement of 0.52).
By  comparing  (Table  7)  and  (Table  8),  we  consistently  see  that  the  experts  least  agreed  with
explanations for target  LA, for which the predictive model achieved larger error than individual
experts  or the entire consortium. In cases  where the predictive model  achieved better  predictive
accuracy than the experts (Table 7) and the agreement of the experts with explanation is lower (Table
8) ( e.g. for LVEF, LA_vol and LVIDs), there are three possible explanations:

 the generated explanation might indeed provide incorrect information,
 the  generated  explanation  might  explain  novel  relationships  between  features  and  target

parameters that have not been observed or documented so far,
 it was hard for the experts to evaluate the claims in the questionnaire about the influence of
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particular features, as these tasks deviate from the established medical practice and require
the experts to rely on their subjective experience.

For establishing the reasons for imperfect agreement between the explanation and the experts, further
investigation is therefore required. We can conclude that the results provide some evidence that the
generated prediction explanation might provide a complementary view at the prediction of HCM-
related parameters. Such explanations might represent a tool that the experts could consult while
making their decisions.

Table 8: Agreement ratios between experts and prediction explanation for parameters that contribute
to predicting each target variable. Names of parameters with agreement higher than 50% are

emphasized with italic. The last two columns provide summary statistics.

Summary

Target variable and parameters Expert agreement

Ratio of agreed
features

from at least
50% of experts

Average
agreement

NYHA
LA 0.77
Age 0.77 1.00 (4/4) 0.73
LA_Vol 0.62
Atrial fibrillation 0.77

LVIDd
BSA 0.15
Gender 0.85
LVIDd 0.65 0.67 (4/6) 0.52
QRS duration 0.69
LVEF 0.23
Mutation MYH7 0.54

LVEF
QRS duration 0.38
Presence  of
hypercholesterolaemia

0.54

Syncope 0.46 0.40 (2/5) 0.49
Gene_Testing_Performed 0.69
NYHA 0.38

LA_Vol
LA_Vol 0.69
BSA 0.54 0.75 (3/4) 0.48
Age 0.15
Atrial fibrillation 0.54

LVIDs
LA 0.38
LVIDd 0.38
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LA_Vol 0.62
BSA 0.85 0.43 (3/7) 0.47
Mutation MYBPC3 0.62
IVS 0.38
Family history of HCM 0.08

LA
LA 0.85
Atrial fibrillation 0.15
BSA 0.08 0.17 (1/6) 0.36
IVS 0.38
Age 0.31
LVEF 0.38

Discussion

Principal Results

We presented  a  disease  progression  system for  patients  diagnosed  with  HCM that  is  based  on
predicting six target parameters (LA, LA_vol, LVIDd, LVIDs, LVEF, and NYHA) for 10 years ahead
using supervised machine learning models. The experiments revealed good ML performance for all
targets,  with  the  achieved  predictive  error  lower  than  the  error  of  the  default  predictors.  The
experiments also revealed that semi-supervised learning and the artificial data from virtual patients
helped  to  achieve  even  higher  predictive  accuracy  for  all  six  targets.  Finally,  we validated  our
approach with human experts using a structured questionnaire and determined the models' favorable
performance compared to performance of experts for five out of six targets.

Limitations

The design of the study carries several limitations, stemming from the fact that this work is based on
real-world data that is expensive to obtain and is subject to noise. The first limitation of this study is
that it is based only on a single medical center dataset. To further validate this study, it would be
beneficial  to  independently  evaluate  the  models  with  datasets  from other  centers  or  extend  the
existing dataset with more data. Additionally, the benefit for including more data could also be in
diminishing a potential bias of our dataset, which could potentially include population distribution
that is different from other medical centers and thus different ranges of recorded parameters, which
we did in fact observe in some cases. Additionally, in the perfect but rather unrealistic scenario due
to its cost, both data modalities (echo and CMR) would be available for all patients, which would
allow us to use the CMR data as an additional data source for all patients. Due to unavailability of
such data at the time of the study or data that was structured very differently, we leave this for our
further work. 
Further, to prepare the data to be used for machine learning and obtain stable predictions, we used
several preprocessing and data augmentation steps. Since we are dealing with real medical data, this
opens questions how different data transformations influence our predictions. Hence, a sensitivity
study of the results would be required, as well as determining how the patient’s record timeframe and
predicted risk timeframe influence the achieved accuracies. Additional limitation of the performed
validation was that the ML results were compared to the inputs of medical experts in the structured
survey instead  of  their  free  diagnoses  and evaluations.  Although this  was  required  to  unify  the
structure of human answers to enable statistical comparisons, the form of survey might introduce its
own bias.
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The described limitations, along with our further research questions and ideas open opens several
ideas forfuture study directions.  First,  we shall  evaluate  the proposed system on an independent
cardiological dataset, e.g. The Sarcomeric Human Cardiomyopathy Registry – SHaRe [54]. Second,
as our current approach provides future predictions for six independent parameters, the outputs shall
be further combined into a single risk prediction of high/low risk, which can further improve HCM
health management initiative  [32]. To achieve this, a combination of models' output analysis and
domain  experts'  input  would  be  required.  Finally,  further  ways  for  improvement  of  predictive
accuracy shall be tested (additional predictive models and feature selection techniques, including
deep learning), as well as the reasons for the experts' disagreement with some of the explanation
components shall be determined.

Conclusions

Although ML can have limitations in medicine [2], in this work we showed the importance of using
computer models in cardiology by predicting disease progression of HCM patients 10-years ahead,
which could be used to prevent sudden cardiac death. Additionally, the results confirmed findings in
[44–46] that additional artificial data and semi-supervised learning can provide additional low-cost
and low-risk data using already available medical knowledge, increasing the predictive performance.
Simple  explanations  of  predictions  contribute  to  the  trust  of  provided  predictions  and  ease  the
decision  of  experts.  We  hope  that  our  work  will  further  contribute  to  the  goal  of  developing
constructive strategies to prevent SCD in patients with HCM, as motivated by [36].

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under  grant  agreement  No. 777204 (www.silicofcm.eu)  This  article  reflects  only the
author's view. The Commission is not responsible for any use that may be made of the information it
contains.

Conflicts of Interest

None declared.

Abbreviations

AUC: area under curve
BSA: body surface area
CMR: cardiac magnetic resonance
COPD: chronic obstructive pulmonary disease
ECG: electrocardiogram
Echo: echocardiogram
GAN: generative adversarial network
GB: gradient boosted trees
HCM: hypertrophic cardiomyopathy
ICD: implantable cardioverter defibrillator
IVS: interventricular septum
KNN: k-nearest neighbors
LA: left atrial size
LA_Vol: left atrial volume
LR: linear regression
LVEF:  left  ventricular  ejection  fraction
LVIDd: left ventricular internal diastolic diameter
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LVIDs: left ventricular internal systolic diameter
MAE: mean absolute error
ML: machine learning
MSE: mean squared error
MVND: multivariate normal distribution
NN: neural network
NYHA: New York heart association
RBF: radial basis function
RF: random forest
RMSE: root mean square error
RRMSE: relative root mean squared error
SCD: sudden cardiac death
SHAP: Shapely additive explanation
SHARE: sarcomere human cardiomyopathy registry
SVM: support vector machine

Multimedia Appendix 1

Bar graphs of parameter influence for each model used.

Multimedia Appendix 2

A sample of questionnaire for the first patient.
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An overview of the proposed disease progression system. The system receives clinical data and disease-related events of a
patient as an input, utilizes virtual patient data and semi-supervised learning for self-improvement, and returns the predictions
and their explanation for six target variables.
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This figure shows relationship between the amount of labeled and unlabeled data. The bars for Yes and No values are stacked,
visually revealing the ratio between the labeled and unlabeled data. Note that the rightmost columns do not have 10-year follow
up data, as they are younger than 10 years.
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An example of explanation of prediction for target variable LA.
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The plotted results for R2 statistic for each target variable using different sets (input parameters). Note that VP, S and S + VP
are used on feature subsets.
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Bar graphs of parameter influence for each model used.
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A sample of questionnaire for the first patient.
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