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Abstract

Using a recursive approach, we show that the generating function F (x) for

sets of Motzkin paths avoiding a single (not necessarily consecutive) pattern is

rational over x and the Catalan generating function C(x) = 1−
√
1−4x2

2x2 , where

x keeps track of the length of the path. Moreover, an algorithm is provided

for finding the generating function in the more general case of an arbitrary

set of patterns. In addition, this algorithm allows us to find a combinatorial

specification for pattern-avoiding Motzkin paths, which can be used not only

for enumeration, but also for exhaustive and random generation.
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1. Introduction

A Motzkin path of length n is a lattice path starting at (0, 0) and ending

at (n, 0) consisting of up steps (U = (1, 1)), down steps (D = (1,−1)) and

horizontal steps (H = (1, 0)) that never goes below the x-axis. We represent

Motzkin paths as words over the alphabet {U,D,H}. In Figure 1, the Motzkin5

path UHUUDHDD is shown.

Figure 1: The Motzkin path UHUUDHDD.

Let M be the set of all Motzkin paths, MH be the set of Motzkin paths

that start with a horizontal step, andMU be the set of Motzkin paths starting

with an up step. With this we have

M = {ε} tMH tMU , (1)

where ε represents the empty path and we use t to denote disjoint union. The

“folklore” result (see for example Donaghey and Shapiro [1]) on Motzkin paths

says that every Motzkin path in MH can be written as Hw for some w in M,

and every Motzkin path in MU can be written UxDy for some x, y in M as10

shown in Figure 1.

M

M

MM = ε t t

Figure 2: A pictorial representation of the structural decomposition of Motzkin paths.

If we let mn be the number of length n Motzkin paths then it follows that
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mn satisfies the recurrence relation

m0 = m1 = 1, mn = mn−1 +

n−2∑
i=0

mimn−i−2

and moreover if we let M(x) =
∑
n≥0mnx

n be the generating function, then

M(x) satisfies the minimal polynomial

1 + (x− 1)M(x) + x2M(x)2 = 0.

Akin to investigations for other combinatorial structures (eminently for per-

mutations, but also for graphs), there has been interest in studying properties

related to the notion of patterns in the context of lattice paths. For paths it has

been common to consider a pattern as a sequence of contiguous letters, see for15

instance Asinowski et al. [2] and Sapounakis et al. [3], to cite just a couple of

references. This may be due to the fact that, as we have also remarked above,

the set of lattice paths of a certain type can be conveniently seen as a formal

language, and it is common in theoretical computer science to study contiguous

patterns, or factors, of the words of a formal language (e.g. pattern matching20

and related problems). In this work, however, we will deal with a notion of pat-

tern that is closer to the one usually studied for permutations, namely we will

consider a pattern as a subword (whose letters are not necessarily contiguous)

of a given word. Below we give the necessary notations and definitions in the

specific case of Motzkin paths.25

A Motzkin path p contains a pattern q in {U,H,D}∗, written q � p, if q

occurs as a subword in p. If p does not contain q we say p avoids q and write

q � p. For a set P of patterns, we say a path avoids P if it avoids all q ∈ P and

define the set of Motzkin paths avoiding P as

Av(P ) = {p ∈M | p avoids P}.

If a path does not avoid P we say it contains P and define the set of Motzkin

paths containing P as

Co(P ) = {p ∈M | p contains P},
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i.e. the set of Motzkin paths containing at least one pattern in P . For instance,

consider again the Motzkin path in Figure 1. It is easy to check that it contains

the pattern UHDH, but it avoids the pattern UDHH. Notice that, according

to our definition of containment for sets of patterns, such a path also contains

the set P = {UHDH,UDHH}.30

The set Av(H)1 is the set of Dyck paths which are counted by the Catalan

numbers. Recall that Dyck paths are defined like Motzkin paths, except that

they do not use horizontal steps. In Bacher et al. [4], it was shown that any

set of Dyck paths avoiding a single pattern has a rational generating function.

In this paper, we show a similar statement holds for the set of Motzkin paths,35

alongside an algorithm for effectively computing the generating functions even

in the more general case of a set of patterns.

Theorem 1.1. Let q be a fixed pattern and let an be the number of q-avoiding

Motzkin paths of length n. Then the generating function ∆q(x) =
∑
n≥0 anx

n is

rational over x and C(x) =
∑
n≥0 Cnx

2n, where Cn is the n-th Catalan number.40

The paper is organised as follows. In Section 2, we outline an algorithm for

computing a combinatorial specification, in the sense of Flajolet and Sedgewick [5],

for sets of Motzkin paths avoiding an arbitrary set of patterns. Such a spec-

ification then gives a method for computing the generating function but also

the ability to sample uniformly from these sets. In Section 3, we give a proof45

of Theorem 1.1. The strategy of the proof consists of describing a recursive

procedure to compute the generating function ∆q(x); such a procedure also de-

pends on certain auxiliary generating functions, which are in turn described in

a recursive fashion. Finally, in Section 4 some suggestions for further research

are given.50

In closing this Introduction, we remark that, whenever we will consider Dyck

paths, we will usually enumerate them according to the length, rather than (as it

is usual) the semilength. As a consequence, our version of the Catalan generating

1We will not include the braces in our notation, i.e. we write Av(H) rather than Av({H})
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function is C(x) = 1−
√
1−4x2

2x2 , hence, for all n ∈ N, [x2n]C(x) = Cn = 1
n+1

(
2n
n

)
(the n-th Catalan number) and [x2n+1]C(x) = 0 (where [xn]F (x) denotes the55

n-the coefficient of the generating function F (x)).

2. The algorithm

For a set P of patterns, we define AvH(P ) to be the Motzkin paths avoiding

P and beginning with an H step,

AvH(P ) = Av(P ) ∩MH ,

and AvU (P ) to be the Motzkin paths avoiding P and beginning with a U step,

AvU (P ) = Av(P ) ∩MU .

The set of Motzkin paths avoiding P can be partitioned in the same manner as

the set of all Motzkin paths,

Av(P ) = {ε} tAvH(P ) tAvU (P ) . (2)

2.1. Starting with H

Using the following, we can enumerate the set AvH(P ).

Theorem 2.1. For a set of patterns P , let PU , PD, and PH be the sets of

patterns in P beginning with U , D and H, respectively, and

P ′ = PU ∪ PD ∪ {p | Hp ∈ PH}

then

AvH(P ) = {Hp | p ∈ Av(P ′)}.

Proof. Let Hq be a path in AvH(P ). It follows that q must avoid every pattern60

in PU and PD. If q contains an occurrence of some p for Hp ∈ PH , then Hq

must contain an occurrence of Hp. Therefore, q must avoid p.

On the contrary, let Hq ∈ {Hp | p ∈ Av(P ′)}, then as q avoids PU and

PD, it follows that Hq also avoids PU and PD. As q avoids all p coming from

Hp ∈ PH , the path Hq must avoid Hp. Hence we have shown that Hq avoids65

P .
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If an counts the number of length n paths in AvH(P ) and bn counts the

number of length n paths in Av(P ′) then by the above Theorem we get ak = bk−1

for all k ≥ 1.

2.2. Starting with U70

Every Motzkin path in AvU (P ) can be written as UxDy for some x, y in

Av(P ), however not each choice of x and y from Av(P ) yields a Motzkin path

in AvU (P ). For example, if P = {HH}, and x = H and y = H, then we get the

path UHDH which contains an occurrence of HH. In order to capture this, we

introduce the notion of crossing patterns.75

A Motzkin path p ∈MU contains the crossing pattern `− r, where ` and r

are words over the alphabet {U,D,H}, if p can be written UxDy where UxD

contains ` and y contains r. Otherwise, we say it avoids ` − r. If either ` or r

is ε we write −r and `−, respectively, and call these patterns local. We use the

notation of Av(P ) and Co(P ) as before for crossing patterns.80

With our new definition, for the case of P = {HH} we have

AvU (P ) = AvU (−HH,H −H,HH−) .

For a path UxDy in AvU (P ), if x avoids H then UxDy avoids H −H and

HH−. However, if x contains H then UxDy avoids −H and HH−. That is

AvU (−HH,H −H,HH−) = AvU (−HH,H−)t(AvU (−H,HH−) ∩ Co(H−)) .

(3)

Every path in AvU (−HH,H−) can be written UxDy where x ∈ Av(H) and

y ∈ Av(HH). Similarly, every path in AvU (−H,HH−)∩Co(H−) can be written

UxDy where x ∈ Av(HH) ∩ Co(H) and y ∈ Av(H). This argument is shown

pictorially in Figure 3.

Theorem 2.1 says that

AvH(HH) = {Hp|p ∈ Av(H)}. (4)

Let ∆HH(x) be the generating function for Av(HH) and C(x) = 1−
√
1−4x2

2x2

be the generating function for Av(H), then it follows from Equations (2), (3),
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AvU (HH) =
Av(HH)

Av(HH)

Av(H

H)

=
Av(H)

Av(HH)
t

Av(HH) ∩ Co(H)

Av(H)

Figure 3: A pictorial representation of Equation (3) for AvU (HH).

and (4) that ∆HH(x) satisfies the equation

∆HH(x) = 1 + xC(x) + x2C(x)∆HH(x) + x2(∆HH(x)− C(x))C(x). (5)

From (5), replacing C(x) with 1−
√
1−4x2

2x2 and squaring after suitable manipula-

tions, we find that ∆HH(x) satisfies the minimal polynomial

(4x4 − x2)∆HH(x)2 + (4x3 − 4x2 − x+ 1)∆HH(x) + 5x2 − 1.

In passing, we observe that the generating function ∆HH(x) is interesting in85

itself. In fact, the coefficients of even index are Catalan numbers, whereas the

coefficients of odd index (which count, by the way, Motzkin paths having exactly

one horizontal step with respect to the length) are the binomial coefficients(
2n+1
n+1

)
, i.e., sequence A001700 in the Online Encyclopedia of Integer Sequences

(OEIS) [6].90

We generalize this idea in the following theorem.

Theorem 2.2. For any finite sets P and Q of patterns there exist sets of local

crossing patterns P1, P2, . . ., Pk and Q1, Q2, . . ., Qk such that

AvU (P ) ∩
⋂
q∈Q

Co(q) =

k⊔
i=1

AvU (Pi) ∩
⋂
q∈Qi

CoU (q)

 .

Proof. For a pattern p we define the set s(p) consisting of all crossing patterns

`− r such that `r is p,

s(p) = {`− r | `, r ∈ {U,D,H}∗ and `r = p}.

It follows that every Motzkin path in AvU (P ) must avoid
⊔
p∈P s(p) and every

Motzkin path in
⋂
q∈Q Co(q) must contain some pattern in s(q) for each q in Q,
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i.e.

AvU (P ) ∩
⋂
q∈Q

Co(q) = AvU

⊔
p∈P

s(p)

 ∩ ⋂
q∈Q

CoU (s(q)) .

For a set of patterns Q we can partition the set of Motzkin paths containing

Q into those that avoid a pattern q in Q and those that contain q. In our

case, if we set Q = {q1, q2, . . . , qh}, we are avoiding a set of crossing patterns

P̃ =
⊔
p∈P s(p) and must contain the sets of crossing patterns Q̃1, Q̃2, . . ., Q̃h,

where Q̃i = s(qi), for all i = 1, 2, . . . , h. Therefore, if q ∈ Q̃1, we have

AvU

(
P̃
)
∩

h⋂
i=1

CoU

(
Q̃i

)
=

(
AvU

(
P̃ ∪ {q}

)
∩ CoU

(
Q̃1\{q}

)
∩

h⋂
i=2

CoU

(
Q̃i

))

t

(
AvU

(
P̃
)
∩ CoU ({q}) ∩

h⋂
i=2

CoU

(
Q̃i

))
.

By iterating this process, and perhaps rearranging the order of the Q̃i, this will

result in writing

AvU (P ) ∩
⋂
q∈Q

Co(q) =

h⊔
i=1

AvU

(
P̃i

)
∩
⋂
q∈Q̃i

CoU (q)

 .

where the P̃i and Q̃i are sets of (not necessarily local) crossing patterns.

If `− r in Q̃1 then it follows that the paths must contain both `− and −r,

i.e. they contain every pattern in the set Q̃′1 =
(
Q̃1\{`− r}

)
t{`−,−r} and we

have

AvU

(
P̃1

)
∩
⋂
q∈Q̃1

CoU (q) = AvU

(
P̃1

)
∩
⋂
q∈Q̃′

1

CoU (q) . (6)

If `− r in P̃1 then we can partition the paths to those that avoid `− and those

that contain `− giving

AvU

(
P̃1

)
∩
⋂
q∈Q̃1

CoU (q) =

AvU

(
P̃1 t {`−}

)
∩
⋂
q∈Q̃1

CoU (q)


t

AvU

(
P̃1 t {−r}

)
∩

⋂
q∈Q̃1t{`−}

CoU (q)

 .

(7)
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By repeated application of Equations (6) and (7), simplifying the avoidance

and containment sets, and possibly reordering the P̃i and Q̃i, we get the desired

disjoint union where all of the crossing patterns in the resulting sets Pi and Qi95

are local.

The case analysis of Theorem 2.2 will result in a disjoint union with sets

of the form AvU (P ) ∩
⋂
q∈Q CoU (q) for some sets of local crossing patterns P

and Q. As the pattern containment conditions for these sets of Motzkin paths

become local we get the following theorem.100

Theorem 2.3. Let P and Q be sets of local crossing patterns. Let Pr (Qr)

be the right local patterns in P (Q). Let P` (Q`) be the patterns obtained by

taking the left local patterns in P (Q) and removing a single U from the left

and single D from the right if such exists. Then,

AvU (P )∩
⋂
q∈Q

CoU (q) = {UxDy | x ∈ AvU (P`)∩
⋂
q∈Q`

CoU (q) , y ∈ AvU (Pr)∩
⋂
q∈Qr

CoU (q)}.

Let an be the number of length n Motzkin paths in Av(P )∩
⋂
q∈Q Co(q), bn

be the number of length n Motzkin paths in Av(P`) ∩
⋂
q∈Q`

Co(q), and cn be

the number of length n Motzkin paths in Av(Pr)∩
⋂
q∈Qr

CoU (q). Theorem 2.3

implies an =
∑n−2
i=0 bicn−i−2.

2.3. Finding a specification105

Combinatorial exploration, introduced in Bean [7], is an automatic method

for finding (combinatorial) specifications. It consists of a systematic application

of strategies to create (combinatorial) rules about a (combinatorial) class of

interest. Each rule describes how to build a class from other classes using well-

defined constructors. In this paper, we only use the disjoint union and Cartesian110

product constructors. Using these rules, the method then finds a specification

which can be used, for example, to count the number of objects of each size,

generate objects, and sample uniformly at random. This entire procedure has

been implemented as the comb_spec_searcher Python package by Bean et

al. [8].115
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Theorems 2.1, 2.2, and 2.3 encode strategies for finding specifications for

pattern-avoiding Motzkin paths. Moreover, as the recursive application of these

theorems result in either shortening of the patterns being avoided and con-

tained or reducing the size of the sets being avoided and contained, they give a

finite process that will always result in a specification. Our Python implemen-120

tation, which uses the comb_spec_searcher package, can be found on GitHub

by Bean [9].

We do one final example to illustrate the recursive nature of the theorems.

2.4. Enumerating Motzking paths avoiding UHHD

In this section, we outline how Theorems 2.1, 2.2, and 2.3 are used to enu-125

merate Av(UHHD).

We first apply Equation (2) to get

Av(UHHD) = {ε} tAvH(UHHD) tAvU (UHHD) . (8)

Theorem 2.1 tells us that

AvH(UHHD) = {H} ×Av(UHHD) . (9)

Theorem 2.2 tells us that we can find sets of local crossing patterns to describe

AvU (UHHD). We follow the algorithm outlined in the proof of the theorem to

get this description. The set of crossing patterns coming from UHHD is

s(UHHD) = {−UHHD,U −HHD,UH −HD,UHH −D,UHHD−}.

Therefore, AvU (UHHD) = AvU (s(UHHD)). As we have no sets of patterns

Q to contain as in Theorem 2.2, we apply Equation 7 to get

AvU (s(UHHD)) = AvU (−UHHD,−HHD,UH−) ∩ CoU (U−)

t (AvU (−HD,UHH −D,UHHD−) ∩ CoU (UH−))

= AvU (−HHD,UH−) ∩ CoU (U−)

tAvU (−HD,UHH−) ∩ CoU (UH−)

tAvU (−D,UHHD−) ∩ CoU (UHH−)

(10)

10



Note, the case where you are avoiding U− is precisely the empty set since all of

the paths contain U−, and therefore we have not included this in our equations.

Each of the disjoint sets on the right are defined by local crossing patterns

and so we apply Theorem 2.3 to each of these sets. This gives the equations

AvU (−HHD,UH−) ∩ CoU (U−) = {UD} × (Av(H) ∩ Co(ε))×Av(HHD)

AvU (−HD,UHH−) ∩ CoU (UH−) = {UD} × (Av(HH) ∩ Co(H))×Av(HD)

AvU (−D,UHHD−) ∩ CoU (UHH−) = {UD} × (Av(HH) ∩ Co(HH))×Av(D) .

(11)

As a path can not both avoid and contain HH, the latter set is in fact empty.

The algorithm would actually spot this sooner as it is not hard to argue that a130

path cannot simultaneously avoid UHHD− and contain UHH− since the final

letter before the split in a path is D.

In the previous section we enumerated Av(HH)∩Co(H) by utilising the set

difference

Av(HH) ∩ Co(H) = Av(HH) \Av(H)

which implies its generating function is ∆HH(x) − C(x). Although this is a

legitimate method for enumeration, due to the set difference operation above,

the sampling of the Motzkin paths will not be efficient. Therefore our algorithm135

instead continues to apply the theorems in order to only use disjoint unions and

Cartesian products.

In Equations (11), we need to expand further the sets Av(HH) ∩ Co(H),

Av(HHD), and Av(HD). We first apply Theorem 2.1 to get

AvH(HH) ∩ Co(H) = {H} ×Av(H)

AvH(HHD) = {H} ×Av(HD)

AvH(HD) = {H} ×Av(D) .

(12)

Note, Av(D) is precisely {H}∗.

11



We then apply Theorem 2.2 to get

AvU (HH) ∩ Co(H) = AvU (−HH,H −H,HH−) ∩ CoU (−H,H−)

= (AvU (H−,−HH) ∩ CoU (−H)) t (AvU (−H,HH−) ∩ CoU (H−))

AvU (HD) = AvU (−HD,H −D,HD−)

= AvU (H−,−HD) t (AvU (−D,HD−) ∩ CoU (H−))

AvU (HHD) = AvU (−HHD,H −HD,HH −D,HHD−)

= AvU (H−,−HHD) t (AvU (−HD,HH −D,HHD−) ∩ CoU (H−))

= AvU (H−,−HHD) t (AvU (−HD,HH−) ∩ CoU (H−))

t (AvU (−D,HHD−) ∩ CoU (HH−)) .

(13)

By a similar argument as before the sets AvU (−D,HD−) ∩ CoU (H−) and

AvU (−D,HHD−) ∩ CoU (HH−) are the empty set. For the remaining all of

the patterns are local crossing patterns so we can apply Theorem 2.3.

AvU (H−,−HH) ∩ CoU (−H) = {UD} ×Av(H)× (Av(HH) ∩ Co(H))

AvU (−H,HH−) ∩ CoU (H−) = {UD} × (Av(HH) ∩ Co(H))×Av(H)

AvU (H−,−HD) = {UD} ×Av(H)×Av(HD)

AvU (H−,−HHD) = {UD} ×Av(H)×Av(HHD)

AvU (−HD,HH−) ∩ CoU (H−) = {UD} × (Av(HH) ∩ Co(H))×Av(HD)

(14)

The Equations (8), (9), (10), (11), (12), (13), and (14) give a combinatorial

specification for Av(UHHD), and can be used directly to get the generating

function

1− 3x− 4x2 + 12x3 − (1− 3x− 4x2 + 8x3)
√

1− 4x2

2x2(1− 2x− 3x2 + 8x3 − 4x4)

for this set. The coefficients of this generating function are the sequence A347036

in the OEIS [6]. We ran our algorithm on many sets of pattern-avoiding Motzkin140

paths. We list a few which have connections to sequences in the OEIS [6].

12



The generating function for Av(UDH) is

1− 2x−
√

1− 4x2

2x(2x− 1)

which shows that there are
(
n
bn2 c
)

paths of length n in this set, i.e. sequence

A001405 in the OEIS [6].

The set Av(UDH,UHD) has the generating function

1−
√

1− 4x2

2x2(x− 1)

whose coefficients are the sequence A110199 in the OEIS [6]. This tells us that

there are
∑n
k=0 Cn many paths of lengths 2n and 2n + 1 in Av(UDH,UHD).145

This follows from the fact that the paths in this set can be described as some

Dyck path prepended with an arbitrary number of H steps.

The generating functions for Av(UUDD) and Av(UDUDUD,UUDDUD,UUDUDD)

are
1− 4x+ 7x2 − 6x3 + 3x4

(1− x)5
and

1− 4x+ 6x2 − 4x3 + 2x4

(1− x)3(1− 2x)

whose coefficients are the sequences A000127 and A084634 in the OEIS [6].

In a few cases, we found the sequences for the coefficients at odd indices

in the generating functions appeared in the OEIS [6]. For example, if we let

an be the number of length n Motzkin paths in Av(HHUD,HUHD,UHHD)

then the generating function for the sequence of odd length paths in this set,

i.e.,
∑
n≥0 a2n+1x

n, is

1− 4x−
√

1− 4x

−2x(1− 5x+ 4x2)
.

The coefficients are the sequence A079309 in the OEIS [6]. Similarly, the se-

quence given by the number of odd length paths in Av(UDHH) has the gener-

ating function
1− 6x+ 8x2 − (1− 3x)

√
1− 4x

−x+ 8x2 − 16x3

which appears to be the sequence A194460 in the OEIS [6].

13



3. Proof of Theorem 1.1150

In this section, we give a proof of Theorem 1.1. Analogously to what has

been done in Bacher et al. [4] for Dyck paths, our strategy is the following. First,

we describe functional equations satisfied by some bivariate generating functions

of certain Motzkin prefixes, where the relevant statistics are the length and the

final height. These are then used to find functional equations for the generating155

functions of Motzkin paths avoiding a single pattern. The derived equations

will clearly show that such generating functions are rational over x and C(x),

as desired.

A Motzkin prefix is defined exactly like a Motzkin path, except that the final

point of the path has nonnegative height (so it is not required that the path160

ends on the x-axis, but it can end at every point having nonnegative integer

coordinates). Denote with MP the set of all Motzkin prefixes. For a given

non-empty Motzkin prefix p, let p− be the Motzkin prefix obtained from p by

removing its last step. Given a set P of Motzin prefixes, let MinCo(P ) = {p ∈

MP | p contains P and p− avoids P}. In other words, an element of MinCo(P )165

is a smallest Motzkin prefix containing P . In the sequel, we will be interested

in the case where P = {q}, for a certain Motzkin prefix q.

Denote with Γq(x, y) the bivariate generating function of the smallest Motzkin

prefixes containing q, where x keeps track of the length and y keeps track of

the final height. For instance, choosing q = UH, the generic smallest Motzkin170

prefix containing q is obtained by concatenating a sequence of letters H with

a non-empty Dyck prefix followed by an H. Thus, recalling the expression of

the bivariate generating function DP(x, y) = 2
1−2xy+

√
1−4x2

of Dyck prefixes,

we get

Γq(x, y) =
1

1− x

(
2

1− 2xy +
√

1− 4x2
− 1

)
x.

The following result gives a recursive procedure to compute Γq(x, y). In175

the statement below, ε is the empty path; moreover, given q ∈ MP and X ∈

{U,H,D}, qX is the Motzkin prefix obtained by appending the step X to q.
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Proposition 3.1. For any given Motzkin prefix q, we have:

Γε(x, y) = 1, (15)

ΓqU (x, y) =
xy

(1− x)(x− y(1− x))

(
xΓq

(
x,

x

1− x

)
− y(1− x)Γq(x, y)

)
,

(16)

ΓqH(x, y) =
2x(

1− 2xy +
√

1− 4x2
)

(y − xC(x))
(yΓq(x, y)− xC(x)Γq(x, xC(x))) ,

(17)

ΓqD(x, y) =
x

y

(
1

1− xy − x
Γq(x, y)− 1

1− x
Γq(x, 0)

)
. (18)

Proof. Clearly, the only smallest Motzkin prefix containing the empty path is ε

itself, which gives Γε(x, y) = 1.

Let π ∈ MinCo(qU) and denote with π′ the smallest prefix of π containing180

q. Moreover, we indicate with h the final height of π′. Then, π can be factorized

as

π = π′β(h)U, (19)

where β(h) is a path starting at height h (which is the height of the final point

of π′) using only H steps and D steps and not crossing the x-axis (i.e., the final

height i of β(h) is such that 0 ≤ i ≤ h). Clearly, the path β(h) is the reverse of a

path α starting at the origin, using only U steps and H steps, with final height

less than or equal to h. It is not difficult to compute the bivariate generating

function A(x, y) of such paths α, where x and y track the length and the final

height of α, respectively. Indeed, such a path α, if not empty, can be obtained

either by taking an H step followed by a pattern of the same kind or by taking

a U step followed by a pattern of the same kind. This leads to the functional

equation:

A(x, y) = 1 + xA(x, y) + xyA(x, y),

hence

A(x, y) =
1

1− x− xy
=

1

1− x
∑
n≥0

(
x

1− x

)n
yn , (20)

15



If B(h)(x, y) denotes the generating function of the paths β(h) (where x and y

have the same role as in A(x, y)), using essentially the same argument as above,

we have

B(h)(x, y) =

h∑
i=0

([
yh−i

]
A(x, y)

)
yi;

hence, in terms of generating functions, relation (19) becomes:

ΓqU (x, y) =

∑
h≥0

([
yh
]

Γq(x, y)
)
B(h)(x, y)

xy (21)

=

∑
h≥0

([
yh
]

Γq(x, y)
) h∑
i=0

([
yh−i

]
A(x, y)

)
yi

xy .

We note that, referring to (19), the term
∑
h≥0

[
yh
]

Γq(x, y) in (21) records the185

prefix π′, while the term xy tracks the step U . By using (20) for the coefficient[
yh−i

]
A(x, y), expression (21) can be reduced to (16).

Similarly, let π ∈ MinCo(qH) and let π′ be the smallest prefix of π containing

q. We denote with δ(h) a Dyck factor starting at height h (i.e., a sequence of U

and D steps which does not cross the x-axis) and with D(h)(x, y) the bivariate

generating function for such paths. We have:

π = π′δ(h)H .

Therefore,

ΓqH(x, y) =

∑
h≥0

([
yh
]

Γq(x, y)
)
D(h)(x, y)

x . (22)

As far as D(h)(x, y) is concerned, denoting with γ a generic Dyck prefix and

with γi a Dyck path, we observe that a Dyck factor δ(h) can be factorized as

δ(h) = (γ1D)(γ2D) . . . (γrD)γ, with 0 ≤ r ≤ h, where the first D step reaching190

height h− i is highlighted, for each i = 1, 2, . . . , r. From the above construction,

in terms of generating functions we have:
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D(h)(x, y) = DP(x, y)yh + C(x)xDP(x, y)yh−1 +

C(x)2x2DP(x, y)yh−2 + · · ·+ C(x)hxhDP(x, y)yh−h

= DP(x, y)

h∑
i=0

xiyh−iC(x)i ,

leading to

D(h)(x, y) =
2

1− 2xy +
√

1− 4x2
· y

h+1 − xh+1C(x)h+1

y − xC(x)
. (23)

Plugging (23) into (22) we obtain:

ΓqH(x, y) =
2x(

1− 2xy +
√

1− 4x2
)

(y − xC(x))

∑
h≥0

([
yh
]

Γq(x, y)
) (
yh+1 − xh+1C(x)h+1(x)

)
which boils down to (17).195

Finally, let π ∈ MinCo(qD) and let π′ be the smallest prefix of π containing

q. Then

π = π′αD

where α is, as before, a path starting at the origin, using only U and H steps,

and with the additional restriction that, if π′ ends at height h = 0, then α 6= Hr,

r ≥ 0 (otherwise π would not be a Motzkin prefix, since it would terminate below

the x-axis). In terms of generating functions, recalling the expression (20) for

the bivariate generating function of the paths α, we then have:200

ΓqD(x, y) =

∑
h≥0

([
yh
]

Γq(x, y)
)
yhA(x, y)

xy−1 −
([
y0
]

Γq(x, y)
)∑
i≥0

xixy−1

=
x

y
A(x, y)Γq(x, y)− x

y
Γq(x, 0)

1

1− x

=
x

y

(
1

1− x− xy
Γq(x, y)− 1

1− x
Γq(x, 0)

)
,

17



which is equal to (18).

Let ∆q(x) be the generating function of Motzkin paths avoiding a Motzkin

prefix q with respect to the length. The following result gives a recursive pro-

cedure to compute ∆q(x).

Proposition 3.2. For any Motzkin prefix q, the generating function ∆q(x) is205

given by:

∆ε(x) = 0 (24)

∆qD(x) = ∆q(x) + Γq(x, 0)
1

1− x
(25)

∆qH(x) = ∆q(x) + C(x) · Γq (x, xC(x)) (26)

∆qU (x) = ∆q(x) +
1

1− x
Γq

(
x,

x

1− x

)
. (27)

Proof. Every Motzkin path contains the empty path ε, hence ∆ε(x) = 0. Let

π ∈ Av(qD). There are two cases: either π avoids q, and such paths π are

counted by ∆q(x), or π contains q but avoids qD. In the latter case, let π′ be

the smallest prefix of π containing q. Obviously π′ cannot be followed by any

D step in any position, otherwise the path π would contain qD. Hence the only

possibility is that π′ has final height equal to 0 and is followed by a certain

number of consecutive H steps. In other words, π can be factorized as

π = π′Hi ,

with i ≥ 0. In terms of generating functions, the above argument leads to:

∆qD(x) = ∆q(x) +
([
y0
]

Γq(x, y)
)∑
i≥0

xi = ∆q(x) + Γq(x, 0)
1

1− x

which is equation (25).

Suppose that π ∈ Av(qH). If π also avoids q, then, as in the previous case,

we obtain the generating function ∆q(x). Otherwise, π can be decomposed as
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its smallest prefix π′ containing q, ending at height h ≥ 0, followed by a path

starting from height h, using only U and D steps and ending on the x-axis.

This path is easily seen to be the reverse of a Dyck prefix having final height h,

hence:

∆qH(x) = ∆q(x) +
∑
h≥0

([
yh
]

Γq(x, y)
) ([

yh
]
DP(x, y)

)
. (28)

Since we have

[
yh
]
DP(x, y) =

2

1 +
√

1− 4x2

(
2x

1 +
√

1− 4x2

)h
,

plugging the above expression into (28), and observing that 2
1+
√
1−4x2

= C(x),

we get:

∆qH(x) = ∆q(x) + C(x)
∑
h≥0

([
yh
]

Γq(x, y)
)

(xC(x))
h

which is equivalent to (26).

Finally, let π ∈ Av(qU). If π contains q, as usual let π′ be the smallest prefix

of π containing q. The path π can be written as π′, which ends at height h ≥ 0,

followed by a path starting from height h and using only D and H steps. This

latter path is the reverse of a path α starting at the origin, using only U steps

and H steps and ending at height h. Recalling once more the expression (20) of

the bivariate generating function A(x, y) of such paths, we obtain:

∆qU (x) = ∆q(x) +
∑
h≥0

([
yh
]

Γq(x, y)
) ([

yh
]
A(x, y)

)
.

Since
[
yh
]
A(x, y) = 1

1−x

(
x

1−x

)h
, we get:

∆qU (x) = ∆q(x) +
1

1− x
∑
h≥0

([
yh
]

Γq(x, y)
)( x

1− x

)h
,

which is (27).210

As a consequence of Propositions 3.1 and 3.2, we get that, for a given pattern

q, the generating function ∆q(x) of Motzkin paths avoiding q is rational over x

and C(x), which is the statement of Theorem 1.1.
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4. Conclusion

The main results of the present paper, namely an algorithm to determine the215

generating function of Motzkin paths avoiding a set of patterns, and the proof

that such generating function is rational over x and C(x) (at least in the case of

a single pattern), may be seen as a further step towards a deeper investigation of

pattern avoidance in lattice paths. For instance, the same approach developed

here can be pursued for Schröder paths, for which pattern avoidance has been220

first studied in Cioni and Ferrari [10], thus getting completely analogous results

(in particular, the same technique described in Section 3 can be exploited to

show that the generating function of Schröder paths avoiding a single pattern is

also rational over x and C(x)). It would then be interesting to find analogous

results in the case of an arbitrary set of steps.225

Another issue that seems worth investigation is the asymptotic behavior of

classes of pattern-avoiding Motzkin paths. In the case of Dyck paths, in Bacher

et al. [4] it is shown that, regardless of the specific pattern to be avoided, the

asymptotic behavior of all classes of Dyck paths avoiding a single pattern is

the same (and it is polynomial). Having a similar result for pattern-avoiding230

Motzkin paths would be desirable.

There are some papers, such as Asinowki et al. [2] and Asinowki et al. [11],

which delevop a methodology based on automata and a variant of the kernel

method to study lattice paths avoiding a consecutive pattern (that is a pattern

whose element are adjacent in the path). It seems conceivable that a similar235

approach could be fruitful also in the case of generic patterns.
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