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Abstract

We present an `-adic trace formula for saturated and admissible dg-categories over a base monoidal
dg-category. Moreover, we prove Künneth formulas for dg-category of singularities, and for inertia-
invariant vanishing cycles. As an application, we prove a categorical version of Bloch’s Conductor
Conjecture (originally stated by Spencer Bloch in 1985), under the additional hypothesis that the
monodromy action of the inertia group is unipotent.
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3.4 A Künneth theorem for invariant vanishing cycles . . . . . . . . . . . . . . . . . . . . . 25

∗Partially supported by ERC-2016-ADG-741501 and ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-
0002-02.

1



4 Künneth formula for dg-categories of singularities 30
4.1 The monoidal dg-category B and its action . . . . . . . . . . . . . . . . . . . . . . . . . 30
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1 Introduction

Motivated by applications to arithmetic geometry, the first one being presented in this paper, we develop
methods of derived and non-commutative geometry over a mixed-characteristic base. More precisely,
we prove and investigate a trace formula for dg-categories, Künneth formulas for dg-categories of sin-
gularities and for inertia-invariant vanishing cycles, and we give an application of these results to a
categorical version of Bloch’s Conductor Conjecture (BCC) in the presence of unipotent monodromy.

Derived geometry is a generalization of algebraic geometry where commutative rings are replaced by
objects with a richer homotopical structure (such as simplicial commutative rings or commutative dif-
ferential graded algebras over a base ring of characteristic zero); they allow for more flexibility in many
constructions of moduli spaces. Non-commutative geometry, as we intend it here, aims at replacing an
algebro-geometric object (a variety, a scheme, a stack, etc.) with some appropriately chosen differential
graded (dg) category associated to it (e.g. the dg-category of coherent or perfect complexes on the given
scheme or stack), and studying this dg-category using the methods of ∞-categories, in order to extract
new information or just known information in a different way. Choosing the associated dg-category very
much depends, of course, on the kind of problem one wants to tackle. As an example, if one is interested
in studying the singularities of a (quasi-compact and quasi-separated) scheme Y , a natural dg-category
to be associated to Y is the so-called dg-category of singularities Sing(Y ) := Cohb(Y )/Perf(Y ), which is
trivial iff Y is regular. This point of view naturally leads to developing methods to extract interesting
invariants in order to study certain classes of dg-categories for their own sake, even if they do not come
from a specified algebro-geometric object. Such dg-categories are thus considered as non-commutative
spaces.
Though both derived and non-commutative geometry have been mainly (though not exclusively) applied
so far over a base field (possibly of positive characteristic), their flexibility is definitely wider. In par-
ticular, one might hope, to apply derived geometrical and non-commutative methods to open questions
in arithmetic geometry. As a recent example of particular interest for us, in [BRTV] the authors work
over an arbitrary excellent strictly Henselian ring A and exhibit a `-adic realization functor r` from the
Morita∞-category of dg-categories over A to the derived∞-category of `-adic sheaves over S = SpecA.
The construction of r` involves derived geometry, and it is obviously a part of non-commutative geom-
etry over the base A, as outlined above: by its very definition, r` is an invariant of non-commutative
spaces over A. Moreover, as shown in [BRTV], r` is an arithmetically interesting invariant, namely,
if X is regular and X → S proper and flat, then the `-adic realization of the dg-category of singu-
larities Sing(Xs) of the special fiber Xs recovers the inertia invariant part of vanishing cohomology of

2



X/S (suitably 2-periodized). This result admits a straightforward sheafified generalization (see below
Remark 2.2.2).
For S the spectrum of a discrete valuation ring (with perfect residue field k, and fraction field K),
and X a regular scheme endowed with a generically smooth, flat and proper map to S, the proper
base-change formula for `-adic cohomology, say with Q`-coefficients, implies that the `-adic Euler char-
acteristic χ(Xk, νX/S[−1]) of the (−1)-shifted vanishing cycles νX/S[−1] equals to the change δX/S :=
χ(Xk̄,Q`)−χ(XK̄ ,Q`) of the `-adic characteristics of X/S, passing from the (possibly singular) special
fiber Xk to the smooth geometric generic fiber XK̄ . Now, Bloch’s conductor conjecture (BCC, [Bl]) can
be seen as a way to express δX/S as an intersection theoretic term (the so-called Bloch’s intersection
number i.e. the self-intersection [∆X ,∆X ]S of the diagonal ∆X) plus an arithmetic correction (the
so-called Swan conductor Sw(XK̄) of the geometric generic fiber XK̄) coming from wild ramification of
X/S:

δX/S = [∆X ,∆X ]S + Sw(XK̄).

BCC is a kind of arithmetic version of Gauss-Bonnet formula, it seeks to describe the change in the
topology of the family X/S in terms of intersection theory and of further arithmetic data. If X/S is
of relative dimension 0, BCC is equivalent to the well-known classical conductor-discriminant formula
(see e.g. [Neu, VII.11.9]), while in relative dimension 1, BCC was proved by S. Bloch himself in [Bl].
For higher relative dimensions, BCC is still open in its full generality, though there are many important
partial positive results (see, e.g. [Ka-Sa, Sai]).
Let us now consider the special case of BCC where the inertia group I := Gal(K̄/Kunr) ⊆ Gal(K̄/K)
acts unipotently on H∗(XK̄ ,Q`). Note that, since we can always reduce to the case where k = k̄,
i.e. the residue field of A is separably closed, the reader may safely suppose that I = Gal(K̄/K)
if it helps. Since the inertia action is supposed to be unipotent, the Swan conductor vanishes, and
moreover taking I-invariants does not modify χ(Xk, νX/S[−1]), therefore the main result of [BRTV]
quoted above, tells us that we may express δX/S in non-commutative terms via r`(Sing(Xk)). Thus, it is
also possible to conceive that BCC can be approached, at least in the case of unipotent inertia action,
using non-commutative geometry, i.e. that, first of all, all the terms in BCC have a non-commutative
interpretation in terms of Sing(Xk),and finally that BCC equality itself is a consequence of an equality
between invariants of the non-commutative space Sing(Xk). The main idea of this paper is that, indeed,
there is such a non-commutative interpretation of the unipotent case of BCC, via a non-commutative
trace formula.
More precisely, we first prove the following general non-commutative trace formula. Let B is a monoidal
dg-category over A (A being our base discrete valuation ring, as above), and T a dg-category on which
B acts on the left (making T into a left B-module). Suppose T is smooth and proper1 over B, and
is furthermore r`-admissible over B (i.e the canonical map r`(T

op) ⊗r`(B) r`(T ) → r`(T
op ⊗B T ) is an

isomorphism in the derived category of `-adic sheaves over S = SpecA), and consider an arbitrary
endomorphism f : T → T of left B-modules. By our smooth and properness hypothesis, we may
consider both the trace of f over B, and the trace of r`(f) : r`(T )→ r`(T ) over r`(B). In the additional
hypothesis of r`-admissibility of T over B, these two traces may indeed be compared (see 2.4.9 in the
main text, and Theorem A later in this Introduction) via a `-adic version of the Chern character Ch`
(Definition 2.3.1 in the main text), yielding our non-commutative trace formula

Ch`([TrB(f)]) = Trr`(B)(r`(f)).

1Since B is only monoidal but not necessarily symmetric monoidal, the definition of smooth and proper dg-category
over B requires a bit of care.
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Now, we would like to apply this trace formula to T = Sing(Xk) (in the above notations), and relate it to
BCC. However, since the `-adic realization of any dg-category over A is always a Q`(β) := ⊕n∈ZQ`(2n)-
module, there is no chance for the trace formula to make sense with B := A, simply because T =
Sing(Xk) will not be smooth and proper over A itself. However, if we take B := B = Sing(Spec(k⊗LAk)),
Sing(Xk) is indeed a dg-category which is smooth and proper over the monoidal dg-category B. Note
that Spec(k ⊗LA k) is here a derived scheme representing the derived fiber product s×S s, s→ S being
the closed point, and the dg-category B inherits its convolution (non-symmetric) monoidal structure
from the fact that s×S s is, in fact, a derived groupoid. Therefore we see that, in order for B to exist,
and thus the trace formula to be applicable to T = Sing(Xk), it is necessary to work inside derived
geometry.
In order to prove that Sing(Xk) is smooth and proper over B, and that it is furthermore r`-admissible
over B, we use two general Künneth type formulas, one for inertia invariant vanishing cycles (Theorem
3.4.2 in the main text, and Theorem B later in this Introduction), and the other for dg-categories of
singularities (Theorem 4.2.1 in the main text, and Theorem C later in this Introduction). We think
these Künneth formulas are interesting in their own right and have a wider range of applications than
the one shown in this paper.
The combination of these two Künneth formulas implies that Sing(Xk) is smooth and proper over B;
note that this was already known when A is a field of characteristic 0 but it was unknown in general,
and we find it quite surprising in arbitrary mixed characteristic. Again by these Künneth formulas, we
show that Sing(Xk) is also r`-admissible over B, if we further assume that the inertia action is unipotent.
It is important to remark that, in the non unipotent case, r`-admissibility might indeed fail.
Once we have established that Sing(Xk) is smooth, proper, and r`-admissible over B, we may apply our
trace formula to f = id : Sing(Xk)→ Sing(Xk):

Ch`([TrB(idSing(Xk))]) = Trr`(B)(r`(idSing(Xk))).

Now, the r.h.s. of this equality is easily seen to coincide with δX/S, while the l.h.s. can be interpreted
as the self-intersection class of the diagonal ∆X/S in non-commutative geometry, so it is reasonable to
denote it by [∆X ,∆X ]cat

S , and rewrite the trace formula as

[∆X ,∆X ]cat
S = δX/S.

The above formula is our categorical or non-commutative version of BCC, for unipotent inertia action
(Theorem 5.2.2 in the main text, and Theorem D later in this Introduction). We believe that [∆X ,∆X ]cat

S

is equal to Bloch’s number [∆X ,∆X ]S (even when the inertia action is not unipotent), so that the above
formula should indeed prove BCC in the case of unipotent inertia action. The comparison between our
categorical Bloch’s class [∆X ,∆X ]cat

S and the original Bloch’s number [∆X ,∆X ]S will be investigated in
a forthcoming paper.
We hope the example of this paper might encourage both arithmetic geometers in using methods of
derived and non-commutative geometry, and experts in homotopical and higher categorical methods in
applying their tools to questions in arithmetic geometry.

We give now a more detailed description of the content of this paper. We present four main results.
As a first step, in Section 2, we prove a quite general trace formula for dg-categories (or non-commutative
schemes). This is done by using the non-commutative `-adic realization functor r` recently introduced
in [BRTV] as a functor from dg-categories over an excellent discrete valuation ring A to `-adic sheaves
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on SpecA. Via r`, we first introduce a `-adic version of the Chern character for dg-categories over A,
as a lax-monoidal natural transformation Ch` : HK→ |r`|, where HK is the non-connective, homotopy
invariant K-theory functor on dg-categories, and |r`| is the Eilenberg-Mac Lane construction applied to
the derived global sections of the `-adic realization functor r`. We prove the following result (Theorem
2.4.9 in the paper).

Theorem A (Trace formula for dg-categories). Let B be a monoidal dg-category over A. For T a
dg-category which is a (left) B-module, satisfying both a version of smoothness and properness over B
and an admissibility property2 with respect to r`, a trace formula holds

Ch`([HH(T/B; f)]) = trr`(B)(r`(f)) (1)

for any endomorphism f : T → T of B-modules.

Here [HH(T/B; f)] is the class in HK0(HH(B/A)) induced by the endomorphism f , and HK0(HH(B/A)) is
the 0-th K-theory of Hochschild homology of B over A. The r.h.s. trr`(B)(r`(f)) is the trace3 of the endo-
morphism r`(f), and the trace formula (1) is an equality in π0(|r`(HH(B/A))|) ' H0(Sét, r`(HH(B/A))).
Note that the extra generality of working over B (instead of over A, or over an E∞- algebra over A)
is actually needed for applications, as shown in Section 5: the `-adic realization of a dg-category is
always 2-periodic, i.e. it is a module over Q`(β) := ⊕n∈ZQ`(2n), so it has no chance of being smooth
and proper over A itself, unless it is trivial; in particular, no reasonable trace formula is available over A.

Our second main result (Section 3) is a Künneth type formula for inertia-invariant vanishing cycles.
Here we push forward the investigation begun in [BRTV] about the relation between vanishing cycles
and the `-adic realization of the dg-category of singularities. For X and Y regular schemes, endowed
with a flat, proper and generically smooth map to the strictly henselian excellent trait S = SpecA,
we define an inertia-invariant convolution product (E ~ F )I, for E an `-adic sheaf on the special fiber
Xs, and F an `-adic sheaf on the special fiber Ys (I := Gal(K̄/K) denoting the inertia group in this
situation). If we denote by νX (respectively, νY ) the complex of vanishing cycles for X/S (respectively,
Y/S), we prove the following result (Theorem 3.4.2 in the paper).

Theorem B (Künneth formula for inertia-invariant vanishing cycles). We have equivalences

(νX ~ νY )I ⊗Q`(β) ' r`(Sing(X ×S Y )) ' Cofib(ηX×SY : Q`(β) −→ ωX×SY ⊗Q`(β)).

where Sing(X×SY ) = Cohb(X×SY )/Perf(X×SY ) is the dg-category of singularities of the fiber product
X ×S Y , and ηX×SY is the (2-periodized) `-adic fundamental class.

This is our Künneth formula for inertia-invariant vanishing cycles, and it seems to be a new result
in the theory of vanishing cycles, especially in the mixed characteristic case. Note that it might also be
viewed as a Thom-Sebastiani formula for inertia-invariant vanishing cycles but we would like to stress
that it is not a consequence of the usual Thom-Sebastiani formula for vanishing cycles (see [Il2]), and
that it holds only if inertia invariants are taken into account in defining the convolution (E ~F )I4. We

2The `-adic realization functor is only lax-monoidal, and we say that T is r`-admissible over B if r` behaves like a
symmetric monoidal functor for T over B (see Definition 2.4.8).

3Or rather its image under the canonical map α : H0(Sét,HH(r`(B)/r`(A)))→ H0(Sét, r`(HH(B/A))).
4In particular, only (E ~ F )I, and not (E ~ F ), makes sense in our context.

5



also discuss appropriate conditions ensuring that (νX~νY )I is equivalent to (νX�νY )I (Corollary 3.4.5).

The third main result of this paper is a Künneth type formula for dg-categories of singularities
(Section 4). For X and Y regular schemes, endowed with a flat, proper and generically smooth map
to the strictly henselian excellent trait S = SpecA, we may consider the dg-categories of singularities
Sing(Xs) := Cohb(Xs)/Perf(Xs) and Sing(Ys) := Cohb(Ys)/Perf(Ys) of the corresponding special fibers.
Consider B := Sing(s×S s) (s being the closed point in S, and s×S s being the derived fiber product);
then B is a monoidal dg-category for the convolution product coming from the derived groupoid struc-
ture of s×S s. Moreover, B acts on both Sing(Xs) and Sing(Ys), in such a way that the tensor product
Sing(Xs)

o ⊗B Sing(Ys) makes sense as a dg-category over A (Proposition 4.1.7). Our Künneth formula
for dg-categories of singularities is then the following result (Theorem 4.2.1 in the paper).

Theorem C (Künneth formula for dg-categories of singularities). There is a canonical equiv-
alence

Sing(Xs)
o ⊗B Sing(Ys) ' Sing(X ×S Y )

as dg-categories over A.

Note that this result is peculiar to singularity categories: it is false if we replace Sing by Cohb. Also
notice that B is defined as the convolution dg-category of a derived groupoid, and is an object in derived
algebraic geometry that cannot be described within classical algebraic geometry. Finally, we prove that
Sing(Xs) is smooth and proper (i.e. saturated) over B, for any X regular scheme, endowed with a
flat, proper and generically smooth map to S. This fact is well-known in characteristic zero (see, for
instance, [Pr]) but is, in our opinion, a deep and surprising result in our general setting that includes
positive equi-characteristic or mixed characteristic cases.
Smoothness and properness over B is one half of the properties needed to apply the trace formula of
Theorem A to Sing(Xs) over B. Note that, without further hypothesis, it is however not true that
Sing(Xs) is also admissible (with respect to r`).

Our fourth and final main result is a categorical version of Bloch’s Conductor formula for unipotent
monodromy (section 5) that we now describe.
In his seminal 1987 paper [Bl], S. Bloch introduced what is now called Bloch’s intersection number
[∆X ,∆X ]S, for a flat, proper map of schemes X −→ S where X is regular, and S is a henselian trait S.
This number can be defined as the degree of the localized top Chern class of the coherent sheaf Ω1

X/S

and measures the “relative” singularities of X over S. In the same paper, Bloch introduced his famous
conductor formula, which can be seen as a conjectural computation of the Bloch’s intersection number
in terms of the arithmetic geometry of X/S. It reads as follows.

Bloch’s Conductor Conjecture (BCC)
We have an equality

[∆X ,∆X ]S = χ(Xk̄)− χ(XK̄)− Sw(XK̄),

where Xk̄ and XK̄ denotes the special and generic geometric fibers of X over S, χ(−) denotes Q`-adic
Euler characteristic, and Sw(−) is the Swan conductor.
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In [Bl] the above formula is proven in relative dimension 1. Further results implying special cases
of BCC have been obtained since then by Kato-Saito [Ka-Sa] and others, the most recent one being a
full proof in the geometric case by T. Saito [Sai] (see Section §5 for a more detailed discussion about
the status of the art about BCC). In the mixed characteristic case, the conjecture is open in general
outside the cases covered in [Ka-Sa]. In particular, for isolated singularities the above conjecture already
appeared in Deligne’s exposé [SGA7-I, Exp. XVI], and remains open.
In Section 5 we propose a first step towards a new understanding of Bloch’s conductor formula using
the results developed in the previous sections. We start by defining an analog of Bloch’s intersection
number, that we call the categorical Bloch’s intersection class (Definition 5.2.1), and denote it by
[∆X ,∆X ]cat

S . It is an element in H0(Sét, r`(HH(B/A))), where B = Sing(s ×S s) (as in Section 4, see
above), and it is basically defined as an intersection class in the setting of non-commutative algebraic
geometry. The precise comparison with the original Bloch’s number is not covered in this work and will
appear in a forthcoming paper.
It is easy to see that there are canonical inclusions Z ↪→ Q` ↪→ H0(Sét,HH(r`(B)/r`(A))), and for
any λ ∈ Z, we will write λ∧ its image under the canonical map α : H0(Sét,HH(r`(B)/r`(A))) →
H0(Sét, r`(HH(B/A))).

Our fourth main result is then the following theorem (Theorem 5.2.2 in the paper).

Theorem D (Categorical BCC for unipotent monodromy) With the notations of BCC, if the
monodromy action of the inertia on H∗(XK̄ ,Q`) is unipotent, then we have an equality

[∆X ,∆X ]cat
S = χ(Xk̄)

∧ − χ(XK̄)∧.

Since unipotent monodromy action implies tame action, the Swan conductor vanishes for unipotent
monodromy, so that Theorem D is completely analogous to BCC under this hypothesis.
We believe the main ideas in our proof of Theorem D are new in the subject, and might be also useful
to answer other related questions in algebraic and arithmetic geometry. The key point in the proof of
Theorem D is that, once Theorem B and C are established, it is a direct consequence of the trace for-
mula for dg-categories (Theorem A). In fact, by the main result of [BRTV], the `-adic realization of the
dg-category of singularities Sing(Xs) of the special fiber is the inertia invariant part of vanishing coho-
mology of X/S (suitably 2-periodized). Moreover, our Künneth formulas for inertia-invariant vanishing
cycles (Theorem B above, and see Section 3 of the main text), and for dg-categories of singularities
(Theorem C above, and see Section 4 of the main text), imply that Sing(Xs) is smooth and proper over
B. Finally, again our Künneth formulas together with the hypothesis of unipotent monodromy show that
Sing(Xs) is also r`-admissible, so that we are indeed in the position of applying our trace formula (The-
orem A) to the identity endomorphism of Sing(Xs) over B: Theorem D is then an immediate corollary
of this trace formula.

We conclude this introduction by remarking that the hypothesis of unipotent inertia action in Theo-
rem D is, of course, a bit restrictive: unipotent monodromy implies tame monodromy and our theorem
does not deal with the interesting arithmetic aspects encoded by the Swan conductor. However we
are convinced that we can go beyond the unipotent case, and prove some new cases of BCC con-
jecture (possibly the whole unrestricted conjecture), by considering Sing(X ×S S ′) as a module over
B′ := Sing(S ′×S S ′), where S ′ = SpecA′ → S is a totally ramified Galois extension of strictly henselian
traits such that the inertia for S ′ acts unipotently on H∗((X ×S S ′)K̄′ ,Q`). Here K ′ is the fraction field
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of A′, and the existence of such an extension S ′ → S is guaranteed by Grothendieck local monodromy
theorem ([SGA7-I, Exp. I, Théorème 1.2]). This strategy for BCC, as well as the comparison between
the categorical and the classical Bloch numbers, will be investigated in a future work.
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Notations.

• Throughout the text, A will denote a (discrete) commutative noetherian ring. When needed, A
will be required to satisfy further properties (such as being excellent, local and henselian) that
will be made precise in due course.

• L(A) will denote the A-linear dg-category of (fibrant and) cofibrant A-dg-modules localized with
respect to quasi-isomorphisms.

• dgCatA will denote the Morita ∞-category of dg-categories over A (see §2.1).

• Top denotes the ∞-category of spaces (obtained, e.g. as the coherent nerve of the Dwyer-Kan
localization of the category of simplicial sets along weak homotopy equivalences). Sp denotes the
∞-category of spectra.

• If R is a an associative and unital monoid in a symmetric monoidal ∞-category C, we will write
Mod(R) or ModC(R) for the ∞-category of left R-modules in C ([Lu-HA]).

2 A non-commutative trace formalism

2.1 ∞-Categories of dg-categories

We denote by A a commutative ring. We recall here some basic facts about the ∞-category of dg-
categories, its monoidal structure and its theory of monoids and modules.

We consider the category dgCatA of small A-linear dg-categories and A-linear dg-functors. We recall
that an A-linear dg-functor T −→ T ′ is a Morita equivalence if the induced functor of the corresponding
derived categories of dg-modules f ∗ : D(T ′) −→ D(T ) is an equivalence of categories (see [To1] for
details). The∞-category of dg-categories over S is defined to be the localisation of dgCatA along these
Morita equivalences, and will be denoted by dgCatS or dgCatA. Being the ∞-category associated to
a combinatorial model category, dgCatA is a presentable ∞-category ([Lu-HTT, A.3.7.6]). As in [To1,
§ 4], the tensor product of A-linear dg-categories can be derived to a symmetric monoidal structure
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on the ∞-category dgCatA. This symmetric monoidal structure moreover distributes over colimits
making dgCatA into a presentable symmetric monoidal ∞-category. We have a notion of rigid, or,
equivalently, dualizable, object in dgCatA. It is a well known fact that dualizable objects in dgCatA
are precisely smooth and proper dg-categories over A (see [To2, Prop. 2.5]).

The compact objects in dgCatA are the dg-categories of finite type over A in the sense of [To-Va]. We
denote their full sub-∞-category by dgCatftA ⊂ dgCatA. The full sub-category dgCatftS is preserved
by the monoidal structure, and moreover any dg-category is a filtered colimit of dg-categories of finite
type. We thus have a natural equivalence of symmetric monoidal ∞-categories

dgCatA ' Ind(dgCatftS ).

We will from time to time have to work in a bigger∞-category, denoted by dgCATA, that contains
dgCatA as a non-full sub-∞-category. By [To2], we have a symmetric monoidal ∞-category dgCatlpA
of presentable dg-categories over A with morphisms given by colomit-preserving functors. We define
dgCATA the full sub-∞-category of dgCatlpA consisting of all compactly generated dg-categories. The
∞-category dgCatA can be identified with the non-full sub-∞-category of dgCATA which consists of
compact objects preserving dg-functors. This provides a faithful embedding5 of symmetric monoidal
∞-categories

dgCatA ↪→ dgCATA.

At the level of objects, this embedding sends a small dg-category T to the compactly generated dg-
category T̂ of dg-modules over T o. An equivalent description of dgCATA is as the∞-category of small
dg-categories together with the mapping spaces given by the classifying space of all bi-dg-modules be-
tween small dg-categories. Objects and morphisms in dgCATA (respectively, in dgCatA) will be called
big (respectively, small).

Definition 2.1.1 A monoidal A-dg-category is a unital and associative monoid in the symmetric
monoidal ∞-category dgCatA. A module over a monoidal A-dg-category B will, by definition, mean
a left B-module in dgCatA in the sense of [Lu-HA], and the ∞-category of (left) B-modules will be
denoted by dgCatB.

For a B-module T , we have a morphism µ : B⊗AT → T in dgCatA, that will be simply denoted by
(b, x) 7→ b⊗ x. For a monoidal A-dg-category B, we will denote by B⊗-op the monoidal A-dg-category
where the monoid structure is the opposite to the one of B, i.e. b ⊗op b′ := b′ ⊗ b. Note that B⊗-op

should not be confused with Bo (which is still a monoidal A-dg-category), where the “arrows” and not
the monoid structure have been reversed, i.e. Bo(b, b′) := B(b′, b). By definition, a right B-module is a
(left) B⊗-op-module. The ∞-category of right B-modules will be denoted by dgCatB⊗-op , or simply by
dgCatB. If B is a monoidal A-dg-category, then B⊗-op ⊗A B is again a monoidal A-dg-category, and
B can be considered either as a left B⊗-op ⊗A B (denoted by BL), or as a right B⊗-op ⊗A B-module
(denoted by BR). For T a B-module, and T ′ a right B-module, then T ′ ⊗A T is naturally a right
B⊗-op ⊗A B-module, and we define

T ′ ⊗B T := (T ′ ⊗A T )⊗B⊗-op⊗AB B
L

which is an object in dgCatA.

5I.e. a functor which on mapping spaces is injective on π0 and an isomorphism on all the πi’s.
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LetB be a monoidalA-dg-category. We can consider the symmetric monoidal embedding dgCatA ↪→
dgCATA, so that the image B̂ of B is a monoid in dgCATA. The ∞-category of B̂-modules in
dgCATA is denoted by dgCATB, and its objects are called big B-modules. The natural ∞-functor

dgCatB −→ dgCATB is faithful and its image consists of all big B-modules T̂ such that the morphism

B̂⊗̂AT̂ −→ T̂ is a small morphism.
It is known (see [To2]) that the symmetric monoidal ∞-category dgCATA is rigid, that for any T̂

its dual is given by T̂ o, and that the evaluation and coevaluation morphisms are defined by T considered
as T o ⊗A T -module. This formally implies that if T̂ is a big B-module, then its dual T̂ o is naturally a
right big B-module. We thus have two big (i.e. morphisms in DGCAT) morphisms

µ : B̂⊗̂AT̂ −→ T̂ , µo : T̂ o⊗̂AB̂ −→ T̂ o.

µ has a right adjoint µ∗ (the restriction at the level of modules) which is presentable but not in general
continuous. In fact, µ∗ is continuous iff µ is a small morphisms. When this is the case these morphisms
also provide a third big morphism

h : T̂ o⊗̂AT̂ −→ B̂

obtained by duality from
µ∗ : T̂ −→ B̂⊗̂AT̂

We now make the following definitions.

Definition 2.1.2 Let B be a monoidal dg-category, and T a B-module. We say that:

1. T is cotensored (over B) if the big morphism µo defined above is a small morphism (i.e. a
morphism in dgCatA);

2. T is proper or enriched (over B) if both the big morphisms µ and h defined above are in fact
small morphisms (i.e. morphisms in dgCatA).

We can make the above definition more explicit as follows. Let B and T be as above; for two objects
b ∈ B and x ∈ T , we can consider the dg-functor

xb : T o −→ L(A)

sending y ∈ T to T (b ⊗ y), x) where (b, x) 7→ b ⊗ x : B ⊗A T −→ T is the B-module structure on T .
Then, T is cotensored over B if and only if for all b and x the above dg-module xb : T o −→ L(A) is
compact in the derived category D(T o) of all T o-dg-modules. When T is furthermore assumed to be
triangulated, then this is equivalent to ask for the dg-module to be representable by an object xb ∈ T .
In a similar manner, we can phrase properness of T over B by saying that, for any x ∈ T and y ∈ T ,
the dg-module

Bo −→ L(A)

sending b to T (b⊗ x, y) is compact (or representable, if B is furthermore assumed to be triangulated).

Remark 2.1.3 It is important to notice that, by definition, when T is cotensored, then the big right B-
module T̂ o is in fact a small right B-module (i.e. it is in the essential image of dgCatB −→ dgCATB).
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Equivalently, when T is cotensored, then T o is naturally a right B-module inside dgCatA, with the
right module structure given by the morphism in dgCatA

µo : T o ⊗A B −→ T o

sending (x, b) ∈ T o ⊗A B to the cotensor xb ∈ T o.

We end this section by recalling some facts about existence of tensor products of modules over
monoidal dg-categories. As a general fact, since dgCatA is a presentable symmetric monoidal ∞-
category, for any monoidal dg-category B there exists a tensor product ∞-functor

⊗B : dgCatB × dgCatB −→ dgCatA,

sending a left B-module T and a right B-module T ′ to T ′⊗B T (see [Lu-HA]). Now, if T is a B-module
which is also cotensored (over B) in the sense of Definition 2.1.2, we have that T o is a right B-module,
and we can thus form

T o ⊗B T ∈ dgCatA.

When T is not cotensored, the object T ⊗B T o does not exist anymore. However, we can always
consider the presentable dg-categories T̂ and T̂ o as left and right modules over B̂, respectively, and
their tensor product T̂ o⊗̂B̂T̂ now only makes sense as a presentable dg-category which has no reason
to be compactly generated, in general. Of course, when T is cotensored, this presentable dg-category is
compactly generated and we have

̂T o ⊗B T ' T̂ o⊗̂B̂T̂ .

Remark 2.1.4 The following, easy observation, will be useful in the sequel. Let B be a monoidal
dg-category, and assume that B is generated, as a triangulated dg-category, by its unit object 1 ∈ B.
Then, any big B-module is small (i.e. in the image of dgCatB −→ dgCATB), and also cotensored.

2.2 The `-adic realization of dg-categories

We denote by SHS the stable A1-homotopy ∞-category of schemes over S (see [Vo, Def. 5.7] and [Ro,
§ 2]). It is a presentable symmetric monoidal∞-category whose monoidal structure will be denoted by
∧S. Homotopy invariant algebraic K-theory defines an E∞-ring object in SHS that we denote by BUS

(a more standard notation is KGLS). We denote by ModSHS
(BUS) the ∞-category of BUS-modules

in SHS. It is a presentable symmetric monoidal ∞-category whose monoidal structure will be denoted
by ∧BUS

.
As proved in [BRTV], there exists a lax symmetric monoidal ∞-functor

M− : dgCatS −→ModSHS
(BUS),

which will be denoted by T 7→ MT (while it is denoted by T 7→ M∨
S(T ) in [BRTV]). The precise

construction of the∞-functor M− is rather involved and uses in an essential manner the theory of non-
commutative motives of [Ro] as well as the comparison with the stable homotopy theory of schemes.
Intuitively, the ∞-functor M− sends a dg-category T to the homotopy invariant K-theory functor
S ′ 7→ HK(S ′ ⊗S T ). To be more precise, there is an obvious forgetful ∞-functor

U : ModSHS
(BUS) −→ Fun∞(Smop

S ,Sp),
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to the ∞-category of presheaves of spectra on the category SmS of smooth S-schemes. For a given
dg-category T over S, the presheaf U(MT ) is defined by sending a smooth S-scheme S ′ = SpecA′ →
SpecA = S to HK(A′ ⊗A T ), the homotopy invariant non-connective K-theory spectrum of A′ ⊗A T
(see [Ro, 4.2.3]).

The ∞-functor M− satisfies some basic properties which we recall here.

1. The ∞-functor M− is a localizing invariant, i.e. for any short exact sequence T0 ↪→ T −→ T/T0

of dg-categories over A, the induced sequence

MT0 //MT //MT/T0

exhibits MT0 has the fiber of the morphism MT → MT/T0 in Mod(BUS).

2. The natural morphism BUS −→ MA, induced by the lax monoidal structure of M−, is an equiva-
lence of BUS-modules.

3. The ∞-functor T 7→ MT commutes with filtered colimits.

4. For any quasi-compact and quasi-separated scheme X, and any morphism p : X −→ S, we have
a natural equivalence of BUS-modules

MPerf(X) ' p∗(BUX),

where p∗ : ModSHX
(BUX) −→ModSHS

(BUS) is the direct image of BU-modules, and Perf(X)
is the dg-category of perfect complexes on X.

We now let ` be a prime number invertible in A. We denote by ShctQ`
(S) the ∞-category of con-

structible Q`-adic complexes on the étale site Sét of S. It is a symmetric monoidal ∞-category, and we
denote by

ShQ`
(S) := Ind(ShctQ`

(S))

its completion under filtered colimits (see [Ga-Lu, Def. 4.3.26]). According to [Ro, Cor. 2.3.9], there
exists an `-adic realization ∞-functor

R` : SHS −→ ShQ`
(S).

By construction, R` is a symmetric monoidal ∞-functor sending a smooth scheme p : X −→ S to
p!p

!(Q`), or, in other words, to the relative `-adic homology of X over S.
We let T := Q`[2](1), and we consider the E∞-ring object in ShQ`

(S)

Q`(β) := ⊕n∈ZT⊗n.

In this notation, β stands for T, and Q`(β) for the algebra of Laurent polynomials in β, so we might as
well write

Q`(β) = Q`[β, β
−1].

As shown in [BRTV], there exists a canonical equivalence R`(BUS) ' Q`(β) of E∞-ring objects in
ShQ`

(S), that is induced by the Chern character from algebraic K-theory to étale cohomology. We thus
obtain a well-defined symmetric monoidal ∞-functor

R` : ModSHS
(BUS) −→ModShQ`

(S)(Q`(β)),
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from BUS-modules in SHS to Q`(β)-modules in ShQ`
(S). By pre-composing with the functor T 7→ MT ,

we obtain a lax monoidal ∞-functor

r` := R` ◦M− : dgCatS −→ModShQ`
(S)(Q`(β)).

Definition 2.2.1 The ∞-functor defined above

r` : dgCatS −→ModShQ`
(S)(Q`(β))

is called the `-adic realization functor for dg-categories over S.

From the standard properties of the functor T 7→ MT , recalled above, we obtain the following
properties for the `-adic realization functor T 7→ r`(T ).

1. The ∞-functor r` is a localizing invariant, i.e. for any short exact sequence T0 ↪→ T −→ T/T0 of
dg-categories over A, the induced sequence

r`(T0) // r`(T ) // r`(T/T0)

is a fibration sequence in Mod(Q`(β)).

2. The natural morphism
Q`(β) −→ r`(A),

induced by the lax monoidal structure, is an equivalence in ModShQ`
(S)(Q`(β)).

3. The ∞-functor r` commutes with filtered colimits.

4. For any separated morphism of finite type p : X −→ S, we have a natural morphism of Q`(β)-
modules

r`(Perf(X)) −→ p∗(Q`(β)),

where p∗ : ModShQ`
(S)(Q`,X(β)) −→ModShQ`

(S)(Q`(β)) is induced by the direct image ShctQ`
(X) −→

ShctQ`
(S) of constructible Q`-complexes. If either p is proper, or A is a field, this morphism is an

equivalence.

Remark 2.2.2 The `-adic realization functor of Definition 2.2.1 can be easily “sheafified”, as follows.
For X a separated, excellent scheme, and T a sheaf of dg-categories on XZar (i.e. T ∈ dgCatX :=
lim dgCatU• where U• is the Cech-nerve of any Zariski open cover U of X), by taking the limit along
the Cech-nerve of a Zariski open cover of X, we define M−X : dgCatX → ModSHX

(BUX) and R`,X :
ModSHX

(BUX) −→ModShQ`
(X)(Q`,X(β)). The composite

r`,X := R`,X ◦M−X : dgCatX −→ModShQ`
(X)(Q`,X(β))

is called the `-adic realization functor for dg-categories over X. Obviously we have r` = r`,S, for r` as in
Definition 2.2.1. Moreover, for X as above, any separated morphism of finite type p : X −→ S induces
a commutative diagram6

dgCatX

p∗

��

r`,X //ModShQ`
(X)(Q`,X(β))

p∗
��

dgCatS r`
//ModShQ`

(S)(Q`(β))

6Note that the functor p∗ : dgCatX → dgCatS consists simply in viewing a dg-category over X as an A−dg-category
via the morphism p.
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2.3 The `-adic Chern character

As explained in [BRTV], there is a symmetric monoidal∞-category SHnc
A of non-commutative motives

over A. As an ∞-category it is the full sub-∞-category of ∞-functors of (co)presheaves of spectra

dgCatftA −→ Sp,

satisfying Nisnevich descent and A1-homotopy invariance.
We consider Γ : ShQ`

(S) −→ dgQ`
, the global section∞-functor, taking an `-adic complex on Sét to

its hyper-cohomology. Composing this with the Dold-Kan construction RMapdgQ`
(Q`,−) : dgQ`

−→
Sp we obtain an ∞-functor

| − | : ShQ`
(S) −→ Sp,

which computes hyper-cohomology of Sét with `-adic coefficients, i.e. for any E ∈ ShQ`
(S), we have

natural isomorphisms
H i(Sét, E) ' π−i(|E|) , i ∈ Z.

By what we have seen in our last paragraph, the composite functor T 7→ |r`(T )| provides a (co)presheaf
of spectra

dgCatftA −→ Sp,

satisfying Nisnevich descent and A1-homotopy invariance. It thus defines an object |r`| ∈ SHnc
A . The

fact that r` is lax symmetric monoidal implies moreover that |r`| is endowed with a natural structure
of a E∞-ring object in SHnc

A .
Each T ∈ dgCatftA defines a corepresentable object hT ∈ SHnc

A , characterized by the (∞-)functorial
equivalence

RMapSHnc
A

(hT , F ) ' F (T ),

for any F ∈ SHnc
A . The existence of hT is a formal statement, however the main theorem of [Ro] implies

that we have a natural equivalence of spectra

RMapSHnc
A

(hT , hA) ' HK(T ),

where HK(T ) stands for non-connective homotopy invariant algebraic K-theory of the dg-category T .
In other words, T 7→ HK(T ) defines an object in SHnc

A which is isomorphic to hB. By Yoneda lemma,
we thus obtain an equivalence of spaces

RMaplax−⊗(HK, |r`|) ' RMapE∞−Sp(S, |r`(A)|) ' ∗.

In other words, there exists a unique (up to a contractible space of choices) lax symmetric monoidal
natural transformation

HK −→ |r`|,

between lax monoidal ∞-functors from dgCatftA to Sp. We extend this to all dg-categories over A, as
usual, by passing to Ind-completion dgCatA ' Ind(dgCatftA ).

Definition 2.3.1 The natural transformation defined above is called the `-adic Chern character. It is
denoted by

Ch` : HK(−) −→ |r`(−)|.
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Remark 2.3.2 Definition 2.3.1 contains a built-in, formal Grothendieck-Riemann-Roch formula. In-
deed, for any B-linear dg-functor f : T −→ T ′, the square of spectra

HK(T )
f! //

Ch`,T
��

HK(T ′)

Ch`,T ′

��
|r`(T )|

f!
// |r`(T ′)|

commutes up to a natural equivalence.

2.4 Trace formula for dg-categories

Let C⊗ be a symmetric monoidal ∞-category ([To-Ve-1], [Lu-HA, Definition 2.0.0.7]).

Hypothesis 2.4.1 The underlying ∞-category C has small sifted colimits, and the tensor product pre-
serves small colimits in each variable.

Definition 2.4.2 Let C⊗ be a symmetric monoidal ∞-category satisfying Hypothesis 2.4.1. We denote
by Alg(C) the (∞, 2)-category of algebras in C⊗ denoted by Alg(1)(C⊗) in [Lu-COB, Definition 4.1.11]
(see also [Ha, Def. 4.40] for a more rigorous definition).

Informally, one can describe Alg(C) as the (∞, 2)-category with:

• objects: associative unital monoids (=: E1-algebras) in C⊗.

• MapAlg(C)(B,B
′) := BimodB′,B(C⊗), the ∞-category of (B′, B)-bimodules.

• The composition of 1-morphisms (i.e. of bimodules) is given by tensor product.

• The composition of 2-morphisms (i.e. of morphisms between bimodules) is the usual composition.

Definition 2.4.3 Let B be an algebra in C and X a left B-module. Let us identify X with a 1-
morphism X : 1C → B in Alg(C). A right B-dual of X is defined as a right adjoint Y : B → 1C to X.

Unraveling the definition, we get that a right dual of X is a left B⊗-op-module Y , where (−)⊗-op de-
notes the opposite E1-algebra structure, the unit u of adjunction (or coevaluation) is a map coev : 1C →
Y ⊗BX in C, the counit v of adjunction (or evaluation) is a map ev : X ⊗Y → B of (B,B)-bimodules;
u and v satisfy usual compatibilities.
Note that, if a right B-dual of X exists then it is unique up to an equivalence.

If the right B-module Y is the right B-dual of the left B-module X, then we can define the trace of
any map f : X → X of left B-modules, as follows.
Recall that we have a coevaluation map in C coev : 1C → Y ⊗B X in C and an evaluation map of

(B,B)-bimodules ev : X ⊗ Y → B.
Consider the graph Γf defined as the composite

1C
coev // Y ⊗B X

id⊗f // Y ⊗B X.

We now elaborate on the evaluation map. Observe that
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• B ∈ C has a left B ⊗B⊗-op-module structure that we will denote by BL.

• B ∈ C has a right B⊗B⊗-op-module structure (i.e. a left B⊗-op⊗B-module), that we will denote
by BR.

• ev : X ⊗ Y → BL is a map of left B ⊗B⊗-op- modules.

• the composite ev′ : Y ⊗X σ // X ⊗ Y ev // BR is a map of left (B⊗-op ⊗B)-modules

Apply (−)⊗B⊗B⊗-op BL to the composite

ev′ : Y ⊗X σ // X ⊗ Y ev // BR

to get

evHH : (Y ⊗X)⊗B⊗B⊗-op BL // BR ⊗B⊗B⊗-op BL =: HHC(B) .

Now observe that (Y ⊗X)⊗B⊗B⊗-op BL ' Y ⊗B X in C.
Note that, by definition, HHC(B) is (only) an object in C, called the Hochschild homology object of B.

Definition 2.4.4 The non-commutative trace of f : X → X over B is defined as the composite

TrB(f) : 1C
Γf // Y ⊗B X ' (Y ⊗X)⊗B⊗B⊗-op BL evHH // BR ⊗B⊗B⊗-op BL =: HHC(B) .

T rB(f) is a morphism in C.

Remark 2.4.5 Let B ∈ CAlg(C⊗), and let us still denote by B its image via the canonical map
CAlg(C⊗) → AlgE1

(C⊗). In this case, ModB(C⊗) is a symmetric monoidal ∞-category, and if X ∈
ModB(C⊗) is a dualizable object (in the usual sense), then its (left and right) dual in ModB(C⊗) is
also a right-dual of X according to Definition 2.4.3. In this case, any f : X → X in ModB(C⊗), has
therefore two possible traces, a non-commutative one (as in Definition 2.4.4)

TrB(f) : 1C −→ HHC(B)

which is a morphism in C, and a more standard, commutative one

Trc
B(f) : B −→ B

which is a morphism on ModB(C⊗). The two traces are related by the following commutative diagram

1C
uB //

TrB(f)

��

B

TrcB(f)

��
HHC(B) a

// B

where a : HHC(B) → B is the canonical augmentation (which exists since B is commutative), and
uB : 1C → B is the unit map of the algebra B in C.
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The case of dg-categories. Let us specialize the previous discussion to the case C⊗ = dgCatA.
Let B be a monoidal dg-category, i.e. an associative and unital monoid in the symmetric monoidal
∞-category dgCatA.

Proposition 2.4.6 For any B-module T which is cotensored in the sense of Definition 2.1.2, the big
B-module T̂ ∈ dgCATB has a right B-dual in the sense of Definition 2.4.3, whose underlying big

dg-category is T̂ o.

Proof. This is very similar to the argument used in [To2, Prop. 2.5 (1)]. We consider T̂ o, and we
define evaluation and coevaluation maps as follows.

The big morphism h introduced right before Definition 2.1.2

h : T̂ o⊗̂AT̂ −→ B̂,

whose domain is naturally a B̂-bimodule, can be canonically lifted to a morphism of bimodules. We
choose this as our evaluation morphism.

The coevaluation is then obtained by duality. We start by the diagonal bimodule

T : (T o ⊗A T )o −→ L(A) = Â.

sending (x, y) to T (y, x). This morphism naturally descends to (T o ⊗B T )o, providing a dg-functor

(T o ⊗B T )o −→ Â.

Note that T o is naturally a rightB-module since T is assumed to be cotensored (and note that, otherwise,

T o ⊗B T would not make sense). This dg-functor is an object in ̂T o ⊗B T ' T̂ o⊗̂AT̂ , and thus defines
a coevaluation morphism

Â −→ T̂ o⊗̂AT̂ .
These two evaluation and coevaluation morphisms satisfy the required triangular identities, and thus
make T̂ o a right dual to T̂ . 2

According to the previous Proposition, any cotensored B-module T has a big right dual, so it comes
equipped with big evaluation and coevaluation maps.

Definition 2.4.7 For a monoidal dg-category B, and a B-module T ∈ dgCatB, we say that T is
saturated over B if

1. T is cotensored (over B), and

2. the evaluation and coevaluation morphisms are small (i.e. are maps in dgCatA).

In particular, if T saturated over B, and f : T → T is a morphism in dgCatB, then the trace

TrB(f : T → T ) : A→ HH(B/A) = BR ⊗B⊗-op⊗AB B
L

is also small, i.e. it is a morphism inside dgCatA.

Since our `-adic realization functor r` is only lax-monoidal, in order to establish our trace formula
for an endomorphism f : T → T of a saturated B-module, we need to restrict to those saturated
B-modules on which r` is in fact symmetric monoidal.
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Definition 2.4.8 A saturated T ∈ dgCatB is called `⊗-admissible if the canonical map

r`(T
op)⊗r`(B) r`(T ) −→ r`(T

op ⊗B T )

is an equivalence in ShQ`
(S).

The trace TrB(f) is a map A→ HH(B/A), hence it induces a map in Sp

K(TrB(f)) : K(A)→ K(HH(B/A))

which is actually a map of K(A)-modules (in spectra), since K is lax-monoidal. Hence it corresponds
to an element denoted as

[HH(T/B, f)] ≡ trB(f) ∈ K0(HH(B/A)).

Therefore, its image by the `-adic Chern character Ch`,0 := π0(Ch`)

Ch`,0 : K0(HH(B/A))→ HomD(r`(A))(r`(A), r`(HH(B/A))) ' H0(Sét, r`(HH(B/A))),

is an element Ch`,0([HH(T/B; f)]) ∈ H0(Sét, r`(HH(B/A))).

On the other hand, the trace Trr`(B)(r`(f)) of r`(f) over r`(B) is, by definition, a morphism

r`(A) ' Q`(β)→ HH(r`(B)/r`(A))

in Modr`(A)(ShQ`
(S)).

We may further compose this with the canonical map

HH(r`(B)/r`(A))→ r`(HH(B/A))

(given by lax-monoidality of r`(−)), to get a map

r`(A)→ r`(HH(B/A))

in Modr`(A)(ShQ`
(S)). This is the same thing as an element denoted as

trr`(B)(r`(f)) ∈ π0(|r`(HH(B/A))|) ' H0(Sét, r`(HH(B/A))).

Theorem 2.4.9 Let B a monoidal dg-category over A, T ∈ dgCatB a saturated and `⊗-admissible
B-module, and f : T → T map in dgCatB. Then, we have an equality

Ch`,0([HH(T/B, f)]) = trr`(B)(r`(f))

in H0(Sét, r`(HH(B/A)).

Proof. This is a formal consequence of uniqueness of right duals, and of the resulting fact that traces
are preserved by symmetric or lax symmetric monoidal ∞-functors under our admissibility condition.
The key statement is the following lemma, left as an exercise to the reader, and applied to the case
where F is our `-adic realization functor.
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Lemma 2.4.10 Let
F : C −→ D

be a lax symmetric monoidal ∞-functor between presentable symmetric monoidal ∞-categories. Let B
be a monoid in C, M a left B-module, and f : M −→ M a morphism of B-modules. We assume that
M has a right dual M o, and that the natural morphism

F (M o)⊗F (B) F (M) −→ F (M o ⊗B M)

is an equivalence. Then, F (M) has a right dual, and we have

F (Tr(f)) = i(Tr(F (f)))

as elements in π0(HomD(1, F (HH(B))), where i is induced by the natural morphism HH(F (B)) −→
F (HH(B)).

2

3 Invariant vanishing cycles

This section gathers general results about inertia-invariant vanishing cycles (I-vanishing cycles, for
short), their relations with dg-categories of singularities, and their behaviour under products. These
results are partially taken from [BRTV], and the only original result is Proposition 3.4.2 that can be
seen as a version of Thom-Sebastiani formula in the mixed-characteristic setting.

All along this section, A will be a strictly henselian excellent dvr with fraction field K = Frac(A),
and perfect (hence algebraically closed) residue field k. We let S = SpecA. All schemes over S are
assumed to be separated and of finite type over S. We denoted by i : s := Spec k −→ S the closed point
of S, and j : η := SpecK −→ S its generic point. For an S-scheme X, we denote by Xs := X ×S s its
(geometric) special fiber, and Xη = X×S η its generic fiber. Accordingly, we write Xη̄ := X×SSpecKsp

for the geometric generic fiber.

3.1 Trivializing the Tate twist

We let ` be a prime invertible in k, and we denote by p the characteristic exponent of k. As k is
algebraically closed, we may, and will, choose once for all a group isomorphism

µ∞(k) ' µ∞(K) ' (Q/Z)[p−1]

between the group of roots of unity in k and the prime-to-p part of Q/Z. Equivalently, we have chosen
a given group isomorphism

lim
(n,p)=1

µn(k) ' Ẑ′,

where Ẑ′ := lim(n,p)=1 Z/n. In particular, we have selected a topological generator of lim(n,p)=1 µn(k),

corresponding to the image of 1 ∈ Z inside Ẑ′. The choice of the isomorphism above also provides a
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specific induced isomorphism Q`(1) ' Q` of Q`-sheaves on S, where (1) denotes, as usual, the Tate
twist. By taking tensor powers of this isomorphism, we get various induced isomorphisms Q`(i) ' Q`

for all i ∈ Z.
We recall that the absolute Galois group I of K (which coincides with the inertia group in our case)

sits in an extension of pro-finite groups7

1 // P // I // It ' Ẑ′ // 1 ,

where P is a pro-p-group (the wild inertia subgroup). For any continuous finite dimensional Q`-
representation V of I, the group P acts by a finite quotient GV on V . Moreover, the Galois cohomology
of V can then be explicitly identified with the two-terms complex

V G 1−T // V G

where T is the action of the chosen topological generator of It. This easily implies that for any Q`-
representation V of I, the natural pairing on Galois cohomology

H i(I, V )⊗H1−i(I, V ∨) −→ H1(I,Q`) ' Q`

is non-degenerate. In other words, if we denote by V I the complex of cohomology of I with coefficients
in V , we have a natural quasi-isomorphism (V I)∨ ' (V ∨)I[1].

3.2 Reminders on actions of the inertia group

Let X −→ S be an S-scheme (separated and of finite type, according to our conventions). We recall
from [SGA7-II, Exp. XIII, 1.2] that we can associate to X a vanishing topos (X/S)νet which is defined
as (a 2-)fiber product of toposes

(X/S)νet := (Xs)
∼
et ×s∼et η

∼
et.

Since S is strictly henselian, s∼et is in fact the punctual topos, and the fiber product above is in fact
a product of topos. The topos η∼et is equivalent to the topos of sets with continuous action of I =
Gal(Ksp/k), where Ksp denotes a seprable closure of K. Morally, (X/S)νet is the topos of étale sheaves
on Xs, endowed with a continuous action of I (see [SGA7-II, Exp. XIII, 1.2.4]).

As explained in [BRTV] we have an `-adic∞-category D((X/S)νet,Z`). Morally speaking, objects of
this ∞-category consist of the data of an object E ∈ D(X̄s,Z`) = ShZ`

(X̄s) together with a continuous
action of I. We say that such an object is constructible if E is a constructible object in D(X̄s,Z`) =
ShZ`

(X̄s), and we denote by Dc((X/S)νet,Z`) the full sub-∞-category of constructible objects.

Definition 3.2.1 The ∞-category of ind-constructible I-equivariant `-adic complexes on Xs is defined
by

DI
ic(Xs,Q`) := Ind(Dc((X/S)νet,Z`)⊗Z`

Q`).

The full sub-∞-category of constructible objects is DI
c(Xs,Q`) := Dc((X/S)νet,Z`)⊗Z`

Q`.

7Note that the tame inertia quotient It is canonically isomorphic to Ẑ′(1), and it becomes isomorphic to Ẑ′ through
our choice.
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Note that since we have chosen trivialisations of the Tate twists, Q`(β) is identified with Q`[β, β
−1]

where β is a free variable in degree 2. This is a graded algebra object in DI
ic(Xs,Q`), and we define

the∞-category DI
ic(Xs,Q`(β)) as the∞-category of Q`(β)-modules in DI

ic(Xs,Q`), or equivalently, the
2-periodic ∞-category of ind-constructible Q`-adic complexes on (X/S)νet.

Definition 3.2.2 An object E ∈ DI
ic(Xs,Q`(β)) is constructible if it belongs to the thick triangulated

sub-∞-category generated by objects of the form E0(β) = E0 ⊗Q`
Q`(β) for E0 a constructible object in

DI
ic(Xs,Q`).

The full sub-∞-category of DI
ic(Xs,Q`(β)) consisting of constructible objects is denoted DI

c(Xs,Q`(β)).
Similarly, for any S-scheme X, we define Dc(X,Q`(β)) as the full sub-∞-category of objects in Dic(X,Q`(β))
generated by E0(β) for E0 constructible.

Note that strictly speaking an object of DI
c(Xs,Q`(β)) is not constructible in the usual sense, as its

underlying object in Dic(Xs,Q`) is 2-periodic.

The topos (X/S)νet comes with a natural projection (X/S)νet −→ (Xs)
∼
et whose direct image is an

∞-functor denoted by
(−)I : DI

ic(Xs,Q`) −→ Dic(Xs,Q`)

called the I-invariants functor. This∞-functor preserves constructibility. The∞-categories DI
ic(Xs,Q`)

and Dic(Xs,Q`) carries natural symmetric monoidal structures and the∞-functor (−)I comes equipped
with a natural lax symmetric monoidal structure (being induced by the direct image of a morphism of
toposes). Moreover, (−)I is the right adjoint of the symmetric monoidal∞-functor U : Dic(Xs,Q`) −→
DI
ic(Xs,Q`) endowing objects in Dic(Xs,Q`) with the trivial action of I. This gives DI

ic(Xs,Q`) the
structure of a Dic(Xs,Q`)-module via Dic(Xs,Q`) × DI

ic(Xs,Q`) → DI
ic(Xs,Q`) : (E,F ) 7→ U(E) ⊗ F .

This bi-functor distributes over colimits, thus by the adjoint functor theorem, we get an enrichment of
DI
ic(Xs,Q`) over Dic(Xs,Q`). Note that DI

ic(Xs,Q`) is also enriched over itself.

It is important to notice that the I-invariants functor commutes with base change in the following
sense. Let f : Spec k −→ Xs be a geometric point. The morphism f defines a geometric point of (Xs)

∼
et

and thus induces a geometric morphism of toposes

η∼et −→ (X/S)νet.

We thus have an inverse image functor

f ∗ : DI
c(Xs,Q`) −→ Dc(η,Q`) = Dc(I,Q`).

where Dc(I,Q`) is the ∞-category of finite dimensional complexes of `-adic representations of I. As
usual, the square of ∞-functors

DI
c(Xs,Q`)

(−)I //

f∗

��

Dc(Xs,Q`) = ShctQ`
(Xs)

f∗

��
Dc(I,Q`)

(−)I
// Dc(Q`)

comes equipped with a natural transformation

f ∗((−)I)⇒ (f ∗(−))I.
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It can be checked that this natural transformation is always an equivalence. In particular, for any
geometric point x in Xs, we have a natural equivalence of `-adic complexes (E)I

x ' (Ex)
I, for any

E ∈ DI
c(Xs,Q`).

The dualizing complex ω of the scheme Xs can be used in order to obtain a dualizing object in
DI
c(Xs,Q`) as follows. We consider ω as an object in DI

c(Xs,Q`) endowed with the trivial I-action. We
then have an equivalence of ∞-categories

DI : DI
c(Xs,Q`) −→ DI

c(Xs,Q`)
op

sending E to RHom(E,ω), where RHom denotes the natural enrichment of DI
c(Xs,Q`) over itself. We

obviously have a canonical biduality equivalence D2
I ' id. The duality functor DI is compatible with

the usual Grothendieck duality functor D for the scheme Xs up to a shift, as explained by the following
lemma.

Lemma 3.2.3 For any object E ∈ DI
c(Xs,Q`), there is a functorial equivalence in Dc(Xs,Q`)

d : D(EI)[−1] ' (DI(E))I.

Proof. Taking I-invariants is a lax monoidal ∞-functor, so we have a natural map EI ⊗ DI(E)I −→
(E ⊗ DI(E))I, that can be composed with the evaluation morphism E ⊗ DI(E) −→ ω to obtain EI ⊗
DI(E)I −→ ωI. As the action of I on ω is trivial, we have a canonical equivalence ωI ' ω⊗QI

` ' ω⊕ω[−1].
By projection on the second factor we get a pairing EI ⊗ DI(E)I −→ ω[−1], and thus a map

DI(E)I −→ D(EI)[−1].

We claim that the above morphism is an equivalence in Dc(Xs,Q`). For this it is enough to check that
the above morphism is a stalkwise equivalence. Now, the stalk of the above morphism at a geometric
point x of Xs can be written as

(E(x)∨)I −→ (E(x)I)∨[−1]

where E(x) := H∗x(X,E) ∈ Dc(Q`) is the local cohomology of E at x, and (−)∨ is now the standard lin-
ear duality over Q`. The result now follows from the following well-known duality for Q`-representations
of I: for any finite dimensional Q`-representation V of I, the fundamental class in H1(I,Q`) ' Q`, in-
duces a canonical isomorphism of Galois cohomologies

H∗(I, V ∨) ' H1−∗(I, V )∨.

2

3.3 Invariant vanishing cycles and dg-categories

From [SGA7-II, Exp. XIII] and [BRTV, 4.1], the vanishing cycles construction provides an ∞-functor

φ : Dc(X,Q`) −→ DI
c(Xs,Q`).

Applied to the constant sheaf Q`, we get this way an object denoted by νX/S (or simply νX if S is clear)
in DI

c(Xs,Q`).
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Definition 3.3.1 The I-invariant vanishing cycles of X relative to S (or I-vanishing cycles, for short)
is the object

νI
X := (νX)I ∈ Dc(Xs,Q`).

There are several possible descriptions of invariant vanishing cycles. First of all, by its very definition,
νI
X is related to the I-invariant nearby cycles ψI

X := (ψX)I by means of an exact triangle in Dc(Xs,Q`)

QI
`

// ψI
X

// νI
X . (2)

Another description, in terms of local cohomology, is the following. We let U = XK be the open
complement of Xs inside X, and jX : U ↪→ X and iX : Xs ↪→ X the corresponding immersions. Then,
the I-vanishing cycles enters in an exact triangle in Dc(Xs,Q`)

νI
X

// Q`
// i!X(Q`)[2]. (3)

Triangle (3) follows from the octahedral axiom applied to the triangles (2) and

Q` −→ QI
` ' Q` ⊕Q`[−1] −→ Q`[−1],

taking also into account the triangle

i!XQ` −→ Q` −→ i∗X(jX)∗j
∗
XQ` ' ψI

X .

We get one more description of νI
X (or rather, of νI

X(β) := νI
X ⊗Q`(β)) using the `-adic realization

of the dg-category of singularities studied in [BRTV], at least when X is a regular scheme with smooth
generic fiber. Let Sing(Xs) = Cohb(Xs)/Perf(Xs) be the dg-category of singularities of the scheme Xs.
This dg-category is naturally linear over the dg-categories Perf(Xs) and Perf(X), and thus we can take
its `-adic realization r`,X(Sing(Xs)) over X (see Remark 2.2.2) which is a Q`,X(β)-module in Dic(X,Q`)
supported on Xs, hence can be identified with a Q`,Xs(β)-module in Dic(Xs,Q`). When X is a regular
scheme and XK is smooth over K, we have from [BRTV] a canonical equivalence in Dc(Xs,Q`(β)) 8

νI
X(β)[1] ' r`,X(Sing(Xs)) (4)

where νI
X(β) stands for νI

X ⊗Q`(β).

We conclude this section with another description of νI
X(β) (see equivalence (6)), this time in terms

of sheaves of singularities. We need a preliminary result.

Lemma 3.3.2 We assume that S is excellent. Let p : X → S be a separated morphism of finite type.
We write r`,X : SHX → ShQ`

(X), for the `-adic realization over X, as in Remark 2.2.2. Then, we have

1. r`,X(Perf(X)) ' Q`,X(β) in Dic(X,Q`).

2. r`,X(Cohb(X)) ' ωX(β) in Dic(X,Q`), where ωX ' p!(Q`) is the `-adic dualizing complex of X9.

8Strictly speaking, in [BRTV] the equivalence (4) is proved only after push-forward to S but the very same proof shows
also the equivalence (4).

9Note that since S is excellent, X is excellent so that ωX exists by a theorem of Gabber ([ILO, Exp. XVII, Th. 0.2]).
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3. There exists a canonical map ηX : Q`,X(β) −→ ωX(β) in Dc(X,Q`(β)), called the 2-periodic `-adic
fundamental class of X.

Proof. First of all, separated finite type morphisms of noetherian schemes are compactifiable (by
Nagata’s theorem), thus we can assume that p : X → S is proper.

(1) follows immediately from [BRTV, Prop. 3.9 and formula (3.7.13))].
In order to prove (2) we first produce a map α : r`(Coh

b(X)) → ωX(β). In the notations of [BRTV,
§3] (note that [BRTV]’s notation for MT

X isM∨
X(T )), we first construct a map αmot :M∨

X(Cohb(X))→
p!(BUS) =: ωmot

X in SH(X), whose étale `-adic realization will be α. Since p is proper, αmot is the same
thing, by adjunction, as a map p∗(M∨

X(Cohb(X))) → BUS in SH(S). Now, p∗(M∨
X(Cohb(X))) is just

M∨
S(Cohb(X))), where Cohb(X) is viewed as a dg-category over S, via p. If Y is smooth over S, we

have by [Pr, Prop. B.4.1], an equivalence of S-dg-categories

Cohb(X)⊗S Cohb(Y ) ' Cohb(X ×S Y ) (5)

Through this identification, M∨
S(Cohb(X)) ∈ SH(S) is the ∞-functor Y 7→ KH(Cohb(X ×S Y )), and

KH(Cohb(X ×S Y )) is equivalent to the G-theory spectrum G(X ×S Y ) of X ×S Y , by A1-invariance
of G-theory. Since S is regular, BUS ' GS := G(−/S) canonically in SH(S), and we can take the
map M∨

S(Cohb(X))) → BUS ' GS to be the push forward p∗ on G-theories G(X ×S −) → G(−/S).
This gives us a map αmot : M∨

X(Cohb(X)) → p!(BUS) =: ωmot
X . Now observe that by [BRTV, formula

(3.7.13)], the étale `-adic realization of p!(BUS) is canonically equivalent to p!(Q`(β)) ' ωX(β) (since
étale `-adic realization commutes with six operations, [BRTV, Rmk. 3.23]). Therefore, we get our map
α : r`(Coh

b(X)) → ωX(β). Checking that α is an equivalence is a local statement, i.e. it is enough to
show that if j : V = SpecA ↪→ X is an open affine subscheme, then j∗(α) is an equivalence. Now,
j∗r`(Coh

b(X)) ' r`,V (j∗Cohb(X)) ' r`,V (Cohb(V )) (where r`,V denotes the `-adic realization over V ),
and j∗ωX ' j!ωX ' ωV , so j∗α identifies with a map r`,V (Cohb(V )) → ωV (β). Since V is affine and
of finite type over S, we can choose a closed immersion i : V ↪→ V ′, with V ′ affine and smooth (hence
regular) over S. Let h : V ′ \ V ↪→ V ′ be the complementary open immersion. Since V ′ and V ′ \ V are
regular, by Quillen localization and the properties of the nc realization functor M∨ (see [BRTV]), we
get a cofiber sequence

M∨
V ′(Coh

b(V )/V ′)→ BUX′ → h∗BUV ′\V ,

where the notation Cohb(V )/V ′ means that Cohb(V ) is viewed as a dg-catgeory over V ′, via i. In other
words,M∨

V ′(Coh
b(V )/V ′) ' i∗M∨

V (Cohb(V )). If we apply i∗ to this cofiber sequence, and compare what
we obtain to the application of i∗ to the standard localization sequence

i∗i
!BUV ′ → BUV ′ → h∗h

∗BUV ′ = h∗BUV ′\V ,

we finally get, after étale `-adic realization, that ωV (β) ' i!Q`(β) ' r`,V (Cohb(V )). This implies that
j∗α is also an equivalence.
By (1) and (2), the map in (3) is finally obtained by applying r`,X to the inclusion Perf(X)→ Cohb(X).

2

Remark 3.3.3 Note that Lemma 3.3.2 applies, in particular, to give a 2-periodic `-adic fundamental
class map ηU : Q`(β) −→ ωU(β) for any open subscheme U ↪→ X over S, whenever X is proper over S.

Definition 3.3.4 Let X/S be a separated and finite type S-scheme. The sheaf of singularities of X is
defined to be the cofiber of the 2-periodic `-adic fundamental class morphism ηX (Lemma 3.3.2 (3))

ωoX := Cofib(ηX : Q`(β) −→ ωX(β)).
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Remark 3.3.5 By construction of ηX in Lemma 3.3.2, ωoX is then the `-adic realization r`,X(Sing(X))
of the dg-category Sing(X), considered as a dg-category over X, and this is true without any regularity
hypothesis on X.

Remark 3.3.6 If p : X → S is a proper lci map from a derived scheme X , we can still define a 2-
periodic `-adic fundamental class map ηX , as in Lemma 3.3.2. This can be done by observing that the
pushforward on G-theories along the inclusion of the truncation t0X → X is an equivalence, and that
p being lci we have a natural inclusion Perf(X )→ Cohb(X ). We further observe that in this case, while
the ∞-category Dc(X ,Q`(β)) only depends on the reduced subscheme (t0X )red, and the same is true
for the objects Q`,X (β) and ωX (β), in contrast, the morphism ηX does depend on the derived structure
on X , and thus it is not a purely topological invariant.

Let us come back to X a regular scheme, proper over S. We have a canonical equivalence in
Dc(Xs,Q`(β))

νI
X(β)[1] ' ωoXs

. (6)

This is a reformulation of the equivalence (4), in view of Lemma 3.3.2.

Remark 3.3.7 When X is not regular anymore, but still proper and lci10 over S, there is nonetheless
a natural morphism νI

X(β)[1] −→ ωoXs
, constructed as follows. Consider again the triangle (3)

νI
X

// Q`
// i!X(Q`)[2].

On X, we do have the 2-periodic `-adic fundamental class ηX : Q`(β) −→ ωX(β), and by taking its
!-pullback by i!X , we get a morphism i!X(Q`)(β) −→ ωXs(β). This produces a sequence of morphisms

νI
X(β) // Q`(β) // i!X(Q`)[2](β) = i!X(Q`)(β) // ωXs(β).

The resulting composite morphism Q`(β) → ωXs(β) is the 2-periodic `-adic fundamental class of Xs.

Moreover, by construction, the composition νI
X(β) // Q`(β) // ωXs(β) is canonically the zero map,

and this induces the natural morphism

αX : νI
X(β)[1] −→ ωoXs

we were looking for. Summing up, the morphism αX always exists for any proper, lci scheme X over
S, and is an equivalence whenever X is regular.

3.4 A Künneth theorem for invariant vanishing cycles

In this section, we consider two separated, finite type S-schemes X and Y , such that XK and YK are
smooth over K, and both X and Y are regular and connected. For simplicity11 we also assume that
X and Y are flat over S. We set Z := X ×S Y , and consider this as a scheme over S. We have
Zs ' Xs ×s Ys, and the ∞-category DI

c(Zs,Q`) comes equipped with pull-back functors

p∗ : DI
c(Xs,Q`) −→ DI

c(Zs,Q`)←− DI
c(Ys,Q`) : q∗.

10Note that a morphism of finite type between regular schemes is lci, since we can check that its relative cotangent
complex has perfect amplitude in [−1, 0].

11In the non-flat case, the fiber product of X and Y over S, to be considered below, should be replaced by the derived
fiber product.
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By taking their tensor product, we get an external product functor

� := p∗(−)⊗ q∗(−) : DI
c(Xs,Q`)×Dc(Ys,Q`) −→ DI

c(Zs,Q`).

For two objects E ∈ DI
c(Xs,Q`) and F ∈ DI

c(Ys,Q`), we can define the Künneth morphism in Dc(Zs,Q`)

k : (E � F )I[−1] −→ EI � F I

as follows. Since Grothendieck duality on Zs is compatible with external products, in order to define k
it is enough to define its dual

D(EI)� D(F I) −→ D((E � F )I)[1].

By Lemma 3.2.3, the datum of such a morphism is equivalent to that of a morphism

DI(E)I � DI(F )I −→ DI(E � F )I.

We now define k as the map induced by the composite

DI(E)I � DI(F )I
µ
(−)I // (DI(E)� DI(F ))I

(µDI
)I
// DI(E � F )I

where µ(−)I is the lax monoidal structure on (−)I, and µDI
the one on DI

12.

Definition 3.4.1 With the above notations, the I-invariant convolution of the two objects E ∈ DI
c(Xs,Q`)

and F ∈ DI
c(Ys,Q`) is defined to be the cone of the Künneth morphism, and denoted by (E ~ F )I. By

definition it sits in a triangle

(E � F )I[−1] k // EI � F I // (E ~ F )I.

The main result of this section is the following proposition, relating the I-invariant convolution of
vanishing cycles on X and Y to the dualizing complex of Z. It can be also considered as a computation
of the `-adic realization of the ∞-category Sing(Z) of singularities of Z.
Note that, as X and Y are generically smooth over S, so is Z, and thus the 2-periodic `-adic fundamental
class map ηZ : Q`(β) −→ ωZ(β) of Lemma 3.3.2 is an equivalence over the generic fiber. Therefore, ωoZ
is supported on Zs, so that it can (and will) be considered canonically as an object in Dc(Zs,Q`).

Theorem 3.4.2 With the above notations and assumptions, there is a canonical equivalence

ωoZ ' (νX ~ νY )I(β)

in Dc(Zs,Q`(β)).

Proof. The proof of this theorem will combine various exact triangles together with an application of
Gabber’s Künneth formula for nearby cycles.

To start with, the vanishing cycles νZ of Z sits in an exact triangle in DI
c(Zs,Q`)

Q`
// ψZ // νZ ,

12Note that µDI
is in fact an equivalence.

26



where ψZ = ψZ(Q`) is the complex of nearby cycles of Z over S. According to [Be-Be, Lemma 5.1.1]
or [Il1, 4.7]), we have a natural equivalence in DI

c(Zs,Q`), induced by external product

ψZ ' ψX � ψY .

The object νZ then becomes the cone of the tensor product of the two morphisms in DI
c(Zs,Q`)

Q` −→ p∗(ψX) Q` −→ q∗(ψY )

where p and q are the two projections from Z down to X and Y , respectively. Now, cones of tensor
products are computed via the following well known lemma.

Lemma 3.4.3 Let C be a stable symmetric monoidal ∞-category, and

u : x→ y v : x′ → y′

two morphisms. Let C(u) be the cone of u, C(v) be the cone of v, and C(u⊗ v) the cone of the tensor
product u⊗ v : x⊗ x′ → y ⊗ y′. Then, there exists a natural exact triangle

C(u)⊗ x′
⊕

x⊗ C(v) // C(u⊗ v) // C(u)⊗ C(v).

Proof of lemma. Factor u⊗ v as x⊗ x′ u⊗id // y ⊗ x′ id⊗v // y ⊗ y′ , and apply the octahedral axiom to the
triangles

x⊗ x′ u⊗id // y ⊗ x′ f // C(u)⊗ x′

y ⊗ x′ id⊗v // y ⊗ y′ // y ⊗ C(v) d′

[1]
// y ⊗ x′[1] ,

to get a triangle

C(u)⊗ x′ // C(u⊗ v) // y ⊗ C(v)
[1]

θ // C(u)⊗ x′[1]

together with the compatibility θ = f [1] ◦ d′. Now observe that θ ◦ (u ⊗ idC(v)) = 0, and apply the
octahedral axiom to the triangles

x⊗ C(v)
u⊗id // y ⊗ C(v) // C(u)⊗ C(v) ,

y ⊗ C(v) θ // C(u)⊗ x′[1]
f // C(u⊗ v)[1]

to conclude. ♦

Lemma 3.4.3 implies the existence of a natural exact triangle in DI
c(Zs,Q`)

νX � νY // νZ // νX � νY ,

which, by taking I-invariants, yields an exact triangle in Dc(Zs,Q`)

(T1) νI
X � ν

I
Y

// νI
Z

// (νX � νY )I.
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Lemma 3.4.4 Let k be an algebraically closed field, s := Spec k, pX : X → s, pY : Y → s be proper
morphisms of schemes, and p1 : Z := X ×s Y → X, p2 : Z := X ×s Y → Y the natural projections. If
ωZ, ωX , ωY denote the Q`-adic dualizing complexes of Z, X, and Y , respectively, there is a canonical
equivalence

a : p∗1ωX ⊗ p∗2ωY −→ ωZ .

Proof of lemma. We first exhibit the map a. We denote simply by HomT (−,−) the derived internal
hom in Dc(T,Q`) (so that D := HomZ(−, ωZ) is the Q`-adic duality on Z). By adjunction, giving a map
a is the same thing as giving a map ωX → (p1)∗HomZ(p∗2ωY , p

!
2ωY ). Since pX is proper, by [SGA4-III,

Exp XVIII, 3.1.12], we have a canonical equivalence

(p1)∗HomZ(p∗2ωY , p
!
2ωY ) −→ p!

X(pY )∗HomY (ωY , ωY ).

Therefore, we are left to define a map

ωX ' p!
XQ` → p!

X(pY )∗HomY (ωY , ωY ),

and we take p!
X(α) for this map, where α is the adjoint to the canonical map Q` ' p∗YQ` → HomY (ωY , ωY ).

One can then prove that a is an equivalence, by checking it stalkwise. 2

By Lemma 3.4.4, the dualizing complex ωZs = (Zs → s)!Q` of Zs ' Xs×sYs is canonically equivalent
to ωXs � ωYs , and, through this equivalence, the virtual fundamental class of Zs

ηZs : Q`(β) −→ ωZs(β) ' ωXs � ωYs(β)

is simply given by the external tensor product of the virtual fundamental classes of Xs and Ys. By
Lemma 3.4.3 we thus get a second exact triangle in Dc(Zs,Q`(β))

(T2) ωoXs
� ωoYs

// ωoZs
// ωoXs

� ωoYs .

There is a morphism from the triangle (T1) to the triangle (T2) which is defined using the natural
morphism

αZ : νI
Z(β)[1] −→ ωoZs

introduced in Remark 3.3.7. In fact, Z is proper and lci over S (since X/S is flat and lci13, and being lci
is stable under flat base change and composition), and the map αZ is defined for any proper, lci scheme
Z over S, being an equivalence when Z is regular with smooth generic fiber. Using the compatible
maps αX , αY and αZ we get a commutative square

νI
X(β)[1]� νI

Y (β)[1]

αZ⊕αY

��

// νI
Z(β)[1]

αZ

��
ωoXs
� ωoYs

// ωoZs
.

13Again, note that a morphism of finite type between regular schemes is lci, since we can check that its relative cotangent
complex has perfect amplitude in [−1, 0].
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This produces a morphism from triangle (T1) (tensored by Q`(β)[1]) to triangle (T2)

νI
X(β)[1]� νI

Y (β)[1] //

��

νI
Z(β)[1] //

αZ

��

(νX � νY )I(β)[1]

��
ωoXs
� ωoYs

// ωoZs
// ωoXs

� ωoYs .

(7)

Since X and Y are regular with smooth generic fibers, the maps αX and αY are equivalences, therefore
the leftmost vertical morphism is also an equivalence. Thus the right hand square is a cartesian square.

Now, the rightmost vertical morphism can be written, again using the equivalences αX and αY , as

(νX � νY )I(β)[1] −→ (νI
X(β)[1])�Q`(β) (νI

Y (β)[1]) ' (νI
X � ν

I
Y )[2](β)

This morphism is the Künneth map k of Definition 3.4.1 tensored by Q`[2](β) ' Q`(β), and thus its
cone is (νX ~ νY )I(β). In order to finish the proof of the proposition it then remains to show that the
cone of the middle vertical morphism in (7)

αZ : νI
Z(β)[1] −→ ωoZs

can be canonically identified with ωoZ .
For this, we recall the exact triangle (3) tensored by Q`(β)

Q`(β) // i!Z(Q`(β)) // νI
Z(β)[1].

Using the fundamental class ηZ : Q`(β)→ ωZ(β), we get a morphism of triangles

Q`(β) //

id
��

i!Z(Q`(β)) //

i!Z(ηZ)

��

νI
Z(β)[1]

��
Q`(β) // i!Z(ωZ(β)) // ωoZs

.

The right hand square is thus cartesian, so that the cone of the vertical morphism on the right is
canonically identified with the cone of the vertical morphism in the middle. By definition, this cone
is i!Z(ωoZ). Since ZK is smooth over K, the `-adic complex ωoZ is supported on Zs, and thus i!Z(ωoZ) is
canonically equivalent to ωoZ , and we conclude. 2

Corollary 3.4.5 We keep the same notations and assumptions as in Proposition 3.4.2, and we further
assume one of the following conditions:

1. the I-action on νX and on νY is tame, or

2. the reduced scheme (Xs)red is smooth over k.

Then, there is a canonical equivalence

ωoZ ' (νX � νY )I(β)

in Dc(Zs,Q`(β)).
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Proof. It is enough to prove that under any one of the two assumptions, (νX ~ νY )I is canonically
equivalent to (νX � νY )I. If the scheme (Xs)red is smooth over k, then we have νI

X(β) = 0. Indeed,
triangle (3) can be then re-written

νI
X

// Q`
// Q`[2n+ 2]

where n is the dimension of Xs. By tensoring by Q`(β), we get a triangle

νI
X(β) // Q`(β) b // Q`[2n+ 2](β) ' Q`(β)

where b is an equivalence. Therefore, νI
X(β) = 0, and, by definition of I-invariant convolution, this

implies that (νX ~ νY )I ' (νX � νY )I.
Assume now that the action of I on νX and νY is tame. This means that the action of I factors

through the natural quotient I −→ It, where It is the tame inertia group, which is canonically isomorphic
to Ẑ′, the prime-to-p part of the profinite completion of Z. As we have chosen a topological generator
T of It (see Section 3.1), the actions of I are then completely caracterized by the automorphisms T on
νX and νY . Moreover, νI

X is then naturally equivalent to the homotopy fiber of (1− T ) : νX → νX , and
similarly for νI

Y . From this it is easy to see that the Künneth map

(νX � νY )I[−1] −→ νI
X � ν

I
Y

fits in an exact triangle

(νX � νY )I[−1] // νI
X � ν

I
Y

// (νX � νY )I

where the second morphism is induced by the lax monoidal structure on (−)I. We conclude that there
is a natural equivalence (νX ~ νY )I ' (νX � νY )I. 2

4 Künneth formula for dg-categories of singularities

4.1 The monoidal dg-category B and its action

We keep our standing assumptions: A is an excellent strictly henselian dvr with perfect residue field k
and fraction field K. We let S = Spec, A and s = Spec k, as usual, and choose an uniformizer π of A.

We let G := s ×hS s (derived fiber product), considered as a derived scheme over S. The derived
scheme G has a canonical structure of groupoid in derived schemes acting on s. The composition in the
groupoid G induces a convolution monoidal structure on the dg-category of coherent complexes on G

� : Cohb(G)⊗A Cohb(G) −→ Cohb(G).

More explicitly, we have a map of derived schemes

G×s G
q // G,

defined as the projection on the first and third components s×S s×S s→ s×S s. We then define � by
the formula

E � F := q∗(E �s F )
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for two coherent complexes E and F on G. More generally, if X −→ S is any scheme, with special fiber
Xs (possibly a derived scheme, by taking the derived fiber at s), the groupoid G acts naturally on Xs

via the natural projection

qX : G×s Xs ' (s×S s)×s (s×S X) ' s×S Xs −→ Xs.

This defines an external action

� : Cohb(G)⊗A Cohb(Xs) −→ Cohb(Xs)

by E �M := (qX)∗(E �sM).
The homotopy coherences issues for the above �-structures can be handled using the fact that the

construction Y 7→ Cohb(Y ) is in fact a symmetric lax monoidal ∞-functor from a certain ∞-category
of correspondences between derived schemes to the ∞-category of dg-categories over A. As a result,
Cohb(G) is endowed with a natural structure of a monoid in the symmetric monoidal ∞-category
dgCatA, and that, for any X/S, Cohb(Xs) is naturally a module over Cohb(G) in dgCatA. However,
for our purposes it will be easier and more efficient to provide explicit models for both Cohb(G) and
its action on Cohb(Xs). This will be done locally in the Zariski topology in a similar spirit to [BRTV,
Section 2]; the global construction will then be obtained by a rather straightforward gluing procedure.

4.1.1 The monoidal dg-categories B+ and B

Let KA be the Koszul commutative A-dg-algebra of A with respect to π

KA : A π // A

sitting in degrees [−1, 0]. The canonical generator of KA in degree −1 will be denoted by h. In the
same way, we define the commutative A-dg-algebra

K2
A := KA ⊗A KA

which is the Koszul dg-algebra of A with respect to the sequence (π, π). As a commutative graded
A-algebra, K2

A is SymA(A2[1]), and it is endowed with the unique multiplicative differential sending the
two generators h and h′ in degree −1 to π (and hh′ to π · h′ − π · h).

Moreover, K2
A has a canonical structure of Hopf algebroid over KA, in which the source and target

map are the two natural inclusions KA −→ K2
A, whereas the unit is given by the multiplication K2

A →
KA. The composition (or coproduct) in this Hopf algebroid structure is given by

∆ := id⊗ 1⊗ id : KA ⊗A KA = K2
A −→ K2

A ⊗KA
K2
A = KA ⊗A KA ⊗A KA.

Finally, the antipode is the automorphism of K2
A exchanging the two factors KA. This structure of

Hopf algebroid endows the dg-category Mod(K2
A), of K2(A)-dg-modules, with a unital and associative

monoidal structure �. It is explicitely given for two object E and F , by the formula

E � F := E ⊗KA
F

where the KA⊗AKA⊗AKA-module on the rhs is considered as a K2
A module via the map ∆. The unit

of this monoidal structure is the object KA, viewed as a K2
A-module by the multiplication K2

A → KA.
It is not hard to see that � preserves cofibrant K2

A-dg-modules; more generally it makes Mod(K2
A) into

a monoidal model category in the sense of [Ho, Ch. 4]. Note however that the unit KA is not cofibrant
in this model structure.
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Definition 4.1.1 The monoidal dg-category B+
str is defined to be Modc(K2

A), the dg-category of all
cofibrant dg-modules over K2

A which are perfect over A, together with the unit object KA. It is endowed
with the monoidal structure � described above.

By Appendix A, the localization of the dg-category B+
str along all quasi-isomorphisms, defines a

monoidal dg-category.

Definition 4.1.2 The monoidal dg-category B+ is defined to be the localization

W−1
eq (B+

str),

where Weq is the set of quasi-isomorphisms. It is naturally a unital and associative monoid in the
symmetric monoidal ∞-category dgCatA.

Remark 4.1.3 Note that B+ defined above is a model for Cohb(G), for our derived groupoid G = s×S s
above. Indeed, the commutative dga K2

A is quasi-isomorphic to the normalization of the simplicial
algebra k⊗L

A k. Now, since G→ S is a closed immersion, a quasi-coherent complex E on G is coherent
iff its direct image on S is coherent, hence perfect, S being regular. In particular, we have that Cohb(G)
is equivalent to the dg-category of all cofibrant K2

A-dg-modules which are perfect over A The latter
dg-category is also naturally equivalent to the localization of B+

str along quasi-isomorphisms14

We now introduce the weak monoidal dg-category B, defined as a further localization of B+. This
will be our main “base monoid” for the module dg-categories we will be interested in.

Definition 4.1.4 The weak monoidal dg-category B is defined to be the localization

B := LW (B+),

where W is the set of morphisms in B+ whose cone is perfect as a K2
A-dg-module.

As B+ it itself defined as a localization of B+
str, if Wpe denotes the morphisms in B+

str whose cones
are perfect over K2

A, we have Weq ⊆ Wpe, then B can also be realized as localization of B+
str directly, as

B ' LWpeB+
str.

Since the monoidal structure � is compatible with Wpe, this presentation implies that B comes equipped
with a natural structure of an associative and unital monoid in dgCatA. Note, moreover, that B comes
equipped with a natural morphism of monoids

B+ −→ B

given by the localization map.

14We leave to the reader to check that adding the unit objet KA does not change the localization.
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4.1.2 The local actions

Let now X = SpecR be a regular scheme flat over A. As done above for the monoid structure on
B+, we will define a strict model for Cohb(Xs), together with a strict model for the Cohb(G)-action on
Cohb(Xs). In order to do this, let KR be the Koszul dg-algebra of R with respect to π, which comes
equipped with a natural map KA −→ KR of cdga’s over A. We consider Modc(KR), the dg-category of
all cofibrant KR-dg-modules which are perfect as R-modules (note that R is regular, and see Remark
4.1.3). The same argument as in Remark 4.1.3 then shows that this dg-category is naturally equivalent
to Cohb(Xs). Moreover, Modc(KR) has a structure of a B+

str-module dg-category defined as follows. For
E ∈ B+

str, and M ∈ Modc(KR), we can define

E �M := E ⊗KA
M,

where, in the rhs, we have used the “right” KA-dg-module structure on E, i.e. the one induced by the
composition

KA
∼ // A⊗A KA

id⊗u // KA ⊗A KA ,

u : A → KA being the canonical map. As E is either the unit or it is cofibrant over K2
A (and

thus cofibrant over KA), E ⊗KA
M is again a cofibrant KR-module, and again perfect over R, i.e.

E �M ∈ Modc(KR). By localization along quasi-isomorphisms, (see Proposition 4.1.5 for details) we
obtain that Cohb(Xs) carries a natural B+-module structure as an object in the symmetric monoidal
∞-category dgCatA.

We now apply a similar argument in order to define a B-action on Sing(Xs). Let again X = SpecR
be a regular scheme over A, and consider Modc(KR) as a B+

str-module dg-category as above. Let WR,pe be
the set of morphisms in Modc(KR) whose cones are perfect dg-modules over KR. By localization we then
get a B-module structure on LWR,pe

Modc(KR). Note that the localization LWR,pe
Modc(KR) is a model for

the dg-category Sing(Xs), which therefore comes equipped with the structure of a B-module in dgCatA.

We gather the details of above constructions in the following

Proposition 4.1.5 Let X = SpecR be a regular scheme, flat over S = SpecA, and Xs its special
fiber. Then there is a canonical B+-module structure (resp., B-module structure) on Cohb(Xs) (resp.,
on Sing(Xs)), inside dgCatA.

Proof. This is an easy application of the localization results presented in Appendix A.
We first treat the case of B+ and T := Cohb(Xs). If T str := Modc(Xr) and WT,eq denotes the quasi-
isomorphisms in T str, we have W−1

T,eqT
str ' T in dgCatA. Analogously, W−1

eq B+
str ' B+ in dgCatA.

In order to apply the localization result of Appendix A, we need to prove that the tensor product
� : B+

str ⊗A T str → T str (defined in 4.1.2) sends Weq ⊗ id ∪ id ⊗ WT,eq to WT,eq. If L,L′ ∈ B+
str,

E,E ′ ∈ T str, and w′ : L → L′, w : E → E ′ are quasi-isomorphisms, then w′ � idE is again a
quasi-isomorphism (because L, and L′ are cofibrant over K2

A, hence over KA, and thus w′ is in fact
a homotopy equivalence), and the same is true for idL � w (since L is cofibrant over KA). Therefore,
� does send Weq ⊗ id ∪ id ⊗ WT,eq to WT,eq, and there is an induced canonical map (Weq ⊗ id ∪
id ⊗WT,eq)−1B+

str ⊗A T str → W−1
T,eqT

str ' Cohb(Xs). By composing this with the natural equivalence

(Weq⊗id∪id⊗WT,eq)−1B+
str⊗AT str → W−1

eq B+
str⊗AW−1

T,eqT
str (Appendix A), we finally get our B+-module

structure on Cohb(Xs) inside dgCatA.
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We now treat the case of B and T = Sing(Xs). Here, we consider the pairs (T str = Modc(Xr),WT ) where
WT are the maps in T str whose cones are perfect over KR, and (B∗str,W ), where W are the maps in B+

str

whose cones are perfect over K2
A. We have W−1B∗str ' B, and W−1

T T str ' Sing(Xs), and we need to prove
that both W � id and id�WT are contained in WT . Let u : L→ L′ ∈ W and v : E → E ′ ∈ WT , and
C(−) denote the cone construction. We have C(idL� v) ' L⊗KA

C(v) and C(u� idE) ' C(u)⊗KA
E.

By hypothesis, L is perfect over A hence over KA (since KA is perfect over A), and C(v) is perfect
over KA, since X → S is lci (as a map of finite type between regular schemes), and thus KA → KR is
derived lci (recall that X/S is flat so that Xs is also the derived fiber), and pushforward along a lci map
preserves perfect complexes. So, C(idL�v) ∈ WT . On the other hand, the “right-hand” map KA → K2

A

(with respect to which L and L′ are viewed as KA-dg-modules in the definition of �) is derived lci,
hence C(u) is perfect over KA, being perfect over K2

A by hypothesis. Moreover, since s→ S is a closed
immersion, E is perfect over KA iff (X → S)∗E is perfect (= coherent, S being regular) over S; but
(Xs → X)∗E is perfect by hypothesis, and pushforward along X → S preserves perfect complexes,
since X/S is lci. Therefore C(u� idE) ∈ WT , and we deduce that � does send W ⊗ id∪ id⊗WT to WT .
This gives us an induced canonical map (W ⊗ id ∪ id⊗WT )−1B+

str ⊗A T str → W−1
T T str ' Sing(Xs). By

composing this with the natural equivalence (W ⊗ id ∪ id⊗WT )−1B+
str ⊗A T str → W−1B+

str ⊗AW−1
T T str

(Appendix A), we finally get our B-module structure on Sing(Xs) inside dgCatA.
2

Lemma 4.1.6 The natural morphism

Cohb(Xs)
o ⊗B+ B −→ Sing(Xs)

is an equivalence of B-modules.

Proof. This is a reformulation of [BRTV, Proposition 2.43]. 2

4.1.3 The global actions

We now let X be a regular scheme, not necessarily affine anymore. We have by Zariski descent

Cohb(Xs) ' lim
SpecR⊂X

Modc(KR),

where the limit is taken over all affine opens SpecR of X. The right hand side of the above equivalence
is a limit of dg-categories underlying B+-module structures (Proposition 4.1.5). As the forgetful functor
from B+-modules to dg-categories reflects limits, this endows Cohb(Xs) with a unique structure of
B+-module.

In the same way, we have Zariski descent for Sing(Xs) in the sense that

Sing(Xs) ' lim
SpecR⊂X

LWR,pe
(Modc(KR)).

The right hand side of the above equivalence is a limit of dg-categories underlying B-module structures
(Proposition 4.1.5). As the forgetful functor from B-modules to dg-categories reflects limits, this makes
the dg-category Sing(Xs) into a B-module in a natural way.

An important property of these B+ and B-module structures is given in the following proposition.
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Proposition 4.1.7 Let X be a flat regular scheme over S.

1. The B+-module structure on Cohb(Xs) is cotensored.

2. The B-module structure on Sing(Xs) is cotensored.

Proof. This follows from Remark 2.1.4 since the monoidal triangulated dg-categories B+ and B are
both generated by their unit objects. 2

4.2 Künneth formula for dg-categories of singularities

In the previous section we have seen that, for any regular scheme X over S, the dg-category Sing(Xs)
are equipped with a natural B-module structure. In this section we compute tensor products of dg-
categories of singularities over B.

From a general point of view, let T ∈ dgCatA be a B-module, and assume that T is also co-tensored
over B (Def. 4.1.7). Then T o has a natural structure of a B⊗−op-module given by co-tensorisation. By
Proposition 4.1.7, we may take T = Sing(Xs), so that T o is a B⊗−op-module. In particular, if we have
another regular scheme Y , we are entitled to consider the tensor product

Sing(Xs)
o ⊗B Sing(Ys),

which is a well defined object in dgCatA. We further assume, for simplicity, that X and Y are also flat
over S. The main result of this section is the following proposition, which is a categorical counterpart
of our Künneth formula for vanishing cycles (Proposition 3.4.2).

Theorem 4.2.1 Let X and Y be two regular schemes, flat over S, with smooth generic geometric fibers.
There is a natural equivalence in dgCatA

Sing(Xs)
o ⊗B Sing(Ys) ' Sing(X ×S Y ).

Proof. As B is a localization of B+, the natural ∞-functor on enriched dg-categories (which is lax
symmetric monoidal)

dgCatB −→ dgCatB+

is fully faithful. Moreover, it commutes with tensor products in the following sense: for two objects T
and T ′ in dgCatB, there is a natural equivalence T o ⊗B T ′ ' T o ⊗B+ T ′. Therefore, in order to prove
the theorem it enough to construct an equivalence of dg-categories over A

Sing(Xs)
o ⊗B+ Sing(Ys) ' Sing(X ×S Y ).

Now, we claim that the result is local on Z := X×SY . Indeed, we have two prestacks of dg-categories
on the small Zariski site Zzar:

U ×S V 7→ Sing(Us)
o ⊗B Sing(Vs) U ×S V 7→ Sing(U ×S V )

for any two affine opens U ⊂ X and V ⊂ Y . These two prestacks are stacks of dg-categories, and thus
we have equivalences in dgCatA

Sing(Xs)
o ⊗B Sing(Ys) ' lim

U⊂X,V⊂Y
Sing(Us)

o ⊗B Sing(Vs) (8)
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Sing(X ×S Y ) ' lim
U⊂X,V⊂Y

Sing(U ×S V ). (9)

The stack property (9) is proved in [BRTV, 2.3] (where it is moreover shown that this is a stack
for the h-topology). The stack property (8) is then a consequence of the same descent argument for
dg-categories of singularities. Indeed, we have the following lemma.

Lemma 4.2.2 Let Z be an S-scheme, and F be a stack of OZ-linear dg-categories. Assume that F is a
B⊗−op-module stack15, and let T0 be a B-module dg-category. Then, the prestack F⊗BT0 of dg-categories
of ZZar, sending W ⊂ Z to F (W )⊗B T0 is a stack.

Proof of Lemma 4.2.2. This is an application of the main result of [To2]. We denote, as usual, by

T̂ := RHom(T, Â) the (non-small) dg-category of all T o-dg-modules. By the main result of [To2], the
dg-category

lim
W⊂Z

̂(F (W )⊗B T0)

is compactly generated, and its dg-category of compact objects is equivalent in dgCatA to limW⊂Z F (W )⊗B
T0. Moreover, we have

̂(F (W )⊗B T0) ' F̂ (W )⊗̂B̂T̂0,

where ⊗̂ is the symmetric monoidal structure on presentable dg-categories. As ⊗̂ is rigid when restricted
to compactly generated dg-categories, we have that ⊗̂B̂ distributes over limits on both factors, and we
have

̂(F (Z)⊗B T0) ' lim
W⊂Z

F̂ (W )⊗̂B̂T̂0.

Passing to the sub-dg-categories of compact objects, we find that

F (Z)⊗B T0 ' lim
W⊂Z

F (W )⊗B T0

which is the statement of the lemma. 3

Lemma 4.2.2 immediately implies the stack property (8).
We are thus reduced to the case where X and Y are both affine, and we have to produce an equivalence

Sing(Xs)
o ⊗B Sing(Ys) ' Sing(X ×S Y )

that is compatible with Zariski localization on both X and Y .

In this case, we start by the following.

Lemma 4.2.3 There is a natural equivalence of dg-categories over A

Cohb(Xs)
o ⊗B+ Cohb(Ys) ' CohbZs

(Z),

where Z := X ×S Y , and the right hand side is the dg-category of coherent complexes on Z with
cohomology supported on the special fiber Zs. This equivalence is furthermore functorial in X and Y .

15I.e., F is a stack on ZZar with values in the ∞-category of B⊗−op-modules in dgCatA.
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Proof of lemma 4.2.3. We use the strict models introduced in our last section. Let X := SpecB
and Y := SpecC, and KB, KC the Koszul dg-algebras of B and C with respect to the element π. As
in our previous section, we have the Hopf dg-algebroid K2

A and its monoidal dg-category of modules
Modc(K2

A). Now, Modc(K2
A) acts on both Modc(KB) and Modc(KC), the dg-categories of cofibrant KB

(resp. KC) dg-modules which are perfect over B (resp. over C).
We define a dg-functor

θ : (Modc(KB))o ⊗Modc(K2
A) Modc(KC) −→ Modc(B ⊗A C),

where Modc(B ⊗A C) is the category of perfect B ⊗A C-dg-modules. This dg-functor sends a pair of
objects (E,F ) to the object D(E) ⊗KA

F , where D(E) = HomKB
(E,KB) is the KB-linear dual of E.

After localization with respect to quasi-isomorphisms, we get a well defined morphism in dgCatA

θ : Cohb(Xs)
o ⊗B+ Cohb(Ys) −→ Cohb(Z).

In order to finish the proof, we have to check the following two conditions:

1. The image of θ generates (by shifts, sums, cones and retracts) the full sub-dg-category CohbZs
(Z);

2. The dg-functor θ above is fully faithful.

Now, on the level of objects the dg-functor θ sends a pair (E,F ), of coherent complexes on Xs and
Ys, to the coherent complex on Z

j∗(D(E)�k F ),

where j : Zs ↪→ Z is the closed embedding, �k denotes the external product on Zs = Xs ×s Ys, and
D(E) denotes the Grothendieck dual of E on the Gorenstein scheme Xs. It is known that coherent
complexes of the form E �k F generate Cohb(Zs). As the coherent complexes of the form j∗(G), for
G ∈ Cohb(Zs), clearly generate the dg-category CohbZs

(Z), we see that condition (1) above is satisfied.
It now remains to show that θ is fully faithful. Given two pairs of objects (E,F ), (E ′, F ′) ∈

Cohb(Xs)× Cohb(Ys), we have the morphism induced by θ

RHom(E ′, E)⊗B+(1) RHom(F, F ′) −→ RHom(j∗(D(E)� F ), j∗(D(E ′)� F ′)),

where B+(1) denotes the algebra of endomorphism of the unit in B+. As we have already seen, B+ ' k[u]
as an E1-algebra. As Xs and Ys are Gorenstein schemes, the structure sheaf O is a dualizing complex,
and E 7→ D(E) is an (anti)equivalence. We thus have RHom(E ′, E) ' RHom(D(E),D(E ′)), and the
above morphism can thus be written in the form

RHom(E,E ′)⊗k[u] RHom(F, F ′) −→ RHom(j∗(E � F ), j∗(E
′ � F ′)),

where it is simply induced by the direct image functor j∗. Both the source and the target of the above
morphism enter in a distinguished triangle. On the left hand side, for any two k[u]-dg-modules M and
N , we have a triangle of A-dg-modules

(M ⊗k N)[−2] //M ⊗k N //M ⊗k[u] N,

where the morphism on the right is the natural projection. This exact triangle follows from the isomor-
phism M ⊗k[u] N ' (M ⊗k N)⊗k[u]⊗kk[u] k[u], and from the exact triangle of k[u] bi-dg-modules

(k[u]⊗k k[u])[−2] a // k[u]⊗k k[u] m // k[u],
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where a is given by multiplication by (u⊗ 1− 1⊗ u), and m is the product map.
On the right hand side, we have, by adjunction,

RHom(j∗(E � F ), j∗(E
′ � F ′)) ' RHom(j∗j∗(E � F ), E ′ � F ′).

The adjunction map j∗j∗ → id, provides an exact triangle of coherent sheaves on Zs

E �k F [1] // j∗j∗(E �k F ) // E �k F.

The coboundary map of this triangle

E �k F −→ E �k F [2]

is precisely given by the action of k[u]. We thus obtain another exact triangle

(RHom(E,F )⊗k RHom(E ′, F ′))[−2] // RHom(E,F )⊗k RHom(E ′, F ′) //

// RHom(j∗(E � F ), j∗(E
′ � F ′)).

By inspection, the morphism θ is compatible with these two triangles, and provides an equivalence

RHom(E,E ′)⊗k[u] RHom(F, F ′) −→ RHom(j∗(E � F ), j∗(E
′ � F ′)).

Therefore θ is fully faithful. 3

Since X/S and Y/S are generically smooth, also Z = X×SY is generically smooth over S. Therefore
Sing(Z) ' CohbZs

(Z)/PerfZs(Z). Hence, in order to finish the proof of Proposition 4.2.1, we are left to

prove that the image of PerfZs(Z) under a quasi-inverse of θ is generated by Cohb(Xs)
o ⊗B+ Perf(Ys)

and Perf(Xs)
o ⊗B+ Cohb(Ys). Now, the dg-category Cohb(Xs)

o ⊗B+ Perf(Ys) is generated by the image
of the natural dg-functor

Cohb(Xs)
o ⊗A Perf(Ys) −→ Cohb(Xs)

o ⊗B+ Perf(Ys),

and the dg-category Perf(Xs)
o ⊗B+ Cohb(Ys) is generated by the image of the natural dg-functor

Perf(Xs)
o ⊗A Cohb(Ys) −→ Perf(Xs)

o ⊗B+ Cohb(Ys).

Therefore, what we have to prove is that PerfZs(Z) is generated by objects of the form E �A F , for
E ∈ Cohb(Xs), F ∈ Cohb(Ys), one of them being perfect.

We first notice that, if E or F is perfect, indeed, E �A F is a perfect complex on Z. To see this,
we may localize on Z, and write X = SpecB and Y = SpecC. The objects E and F then correspond
to bounded coherent complexes over Bs = B ⊗A k and Cs = C ⊗A k respectively. Assume that E is
perfect (the complementary case being totally analogous). By dévissage we can assume that E = Bs,
so that E �A F ' (B�A F )⊗A k. In other words, if we write j : Ys ↪→ Y and i : Zs ↪→ Z for the closed
embeddings, and p : Z −→ Y for the second projection, we have

E �A F ' i∗i
∗p∗(j∗(F )).
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But j∗(F ) is perfect on Y (because Y is regular), so p∗j∗(F ) is perfect on Z. Moreover, since i is an
lci morphism, i∗i

∗ preserves perfect complexes on Z, and we conclude that, indeed, E �A F is a perfect
complex on Z.

Finally, the fact that the image of Cohb(Xs)
o⊗B+Perf(Ys) and Perf(Xs)

o⊗B+Cohb(Ys) inside CohbZs
(Z)

generates the whole dg-category PerfZs(Z) follows from the fact that the image of Perf(Xs)
o⊗APerf(Ys)

inside Perf(Z) already generates PerfZs(Z). Indeed, for two perfect complexes E on Xs and F on Ys,
the image of E�AF in Perf(Z) is of the form i∗(E�kF )⊕ i∗(E�kF )[1]. As objects of the form E�kF
generate Perf(Zs) we are done, and Proposition 4.2.1 is proved. 2

4.3 Saturatedness

As a consequence of the Künneth formula for dg-categories of singularities we prove the following result.

Proposition 4.3.1 Let X be a regular and flat S-scheme.

1. If X is proper over S, then the dg-category Cohb(Xs) is proper over B+.

2. If X is proper over S, then the dg-category Sing(Xs) is saturated over B.

Proof. (1) We have to show that the big morphism

h : ̂Cohb(Xs)o ⊗A Cohb(Xs) −→ B̂+ ' ̂Cohb(G).

is small. Here G = s ×S s, and the morphism h is obtained as follows. The derived scheme G is a
derived groupoid acting on Xs by means of the natural projection on the last two factors

µ : G×s Xs = s×S s×S X −→ Xs.

The projection on the first and third factors provides another morphism

p : G×s Xs −→ Xs.

Thus, the morphisms p and µ together define a morphism of derived schemes

q : G×s Xs −→ Xs ×S Xs.

Finally, we denote by r : G ×s Xs −→ G the natural projection. Now, for two coherent complexes E
and F on Xs, we first form the external Hom complex HomA(E,F ) which is a coherent complex on
Xs ×S Xs, and we have

h(E,F ) ' r∗(q
∗HomA(E,F )).

This is a quasi-coherent complex on G. Both q and r are local complete intersection morphisms of
derived schemes, and moreover r is proper. This implies that q∗ and r∗ preserve coherent complexes,
and thus that h(E,F ) is coherent on G.

(2) We have Sing(Xs) ' Cohb(Xs)⊗B+ B, thus (1) implies that Sing(Xs) is proper over B. To prove
it is smooth we need to prove that the coevaluation big morphism A −→ Sing(Xs)

o ⊗B Sing(Xs) is a
small morphism. Using our Künneth formula for dg-category of singularities (Proposition 4.2.1) this
morphism corresponds to the data of an ind-object in Sing(X ×S X). This object is the structure sheaf
of the diagonal ∆X inside X×SX which is an object in Sing(X×SX). This shows that the coevaluation
morphism is a small morphism and thus that Sing(Xs) is indeed saturated over B. 2
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Remark 4.3.2 Proposition 4.3.1 (2) remains true if we only suppose that the singular locus of Xs is
proper over s = Spec k.

5 Application to Bloch’s conductor formula with unipotent

monodromy

In this Section we first recall Bloch’s Conductor Conjecture and the current state of the art for it, then
we prove a version of Bloch’s conductor under the hypothesis that the monodromy action is unipotent,
where Bloch’s number is replaced by a categorical Bloch class (see Definition 5.2.1). We are convinced
that Bloch’s number always agree with the categorical Bloch class but we will not prove (nor use) this
fact in this paper. We are aware of a proof of this comparison in the geometric case (i.e. when the
inclusion s → S has a retraction) but we will defer this to another paper, where we hope to give the
comparison also when S has mixed characteristic.

5.1 Bloch’s Conductor Conjecture

Our base scheme is a discrete valuation ring S = SpecA, with perfect residue field k, and fraction
field K. Let p : X −→ S be proper and flat morphism of finite type, and of relative dimension n. We
assume that the generic fiber XK is smooth over K, and that X is a regular scheme. We write K̄ for
the separable closure of K (inside a fixed algebraic closure).
In his 1985 paper [Bl], Spencer Bloch formulated the following conductor formula conjecture which
is a kind of vast arithmetic generalization of Gauss-Bonnet formula, where an intersection theoretic
(coherent) term, the Bloch’s number, is conjectured to be equal to an arithmetic (étale) term, the Artin
conductor. We address the reader to [Bl] and [Ka-Sa] for more detailed definitions of the various objects
involved in the statement.

Conjecture 5.1.1 [Bloch’s conductor Conjecture] Under the above hypotheses on p : X → S, we
have an equality

[∆X ,∆X ]S = χ(Xk̄, `)− χ(XK̄ , `)− Sw(XK̄),

where χ(Y, `) denotes the Q`-adic Euler characteristic of a variety Y , for ` prime to the characteristic
of k, Sw(XK̄) is the Swan conductor of the Gal(K̄/K)-representation H∗(XK̄ ,Q`), and [∆X ,∆X ]S is
Bloch’s number of X/S, i.e. the degree in CH0(k) ' Z of Bloch’s localised self-intersection (∆X ,∆X)S ∈
CH0(Xk) of the diagonal in X. The (negative of the) rhs is called the Artin conductor of X/S, and
denoted by Art(X/S).

Conjecture 5.1.1 is known to hold in several special cases that we recall below:

1. When k is of characteristic zero, Conjecture 5.1.1 follows from the work of [Kap]. When further-
more Xs has only isolated singularities the conductor formula was known as the Milnor formula
stating that the dimension of the space of vanishing cycles equals the dimension of the Jacobian
ring.

2. When S is equicharacteristic, Conjecture 5.1.1 has been proved recently in [Sai], based on Beilin-
son’s theory of singular support of `-adic sheaves. The special subcase of isolated singularities
already appeared in [SGA7-I, Exp. XVI].
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3. When X is semi-stable over S, i.e. the reduced special fiber (Xs)red ⊂ X is a normal crossing
divisor, Conjecture 5.1.1 was proved in [Ka-Sa].

In view of the above list of results, one of the major open cases is that of isolated singularities in
mixed characteristic, which is the conjecture appearing in Deligne’s exposé [SGA7-I, Exp. XVI].

It is classical and easy to see that Conjecture 5.1.1 can be reduced to the case where S is excellent
and strictly henselian (so that k algebraically closed)16. We will thus assume from now on that k is
algebraically closed.

5.2 An analog of Bloch’s Conjecture for unipotent monodromy

We start by introducing a categorical variant of Bloch’s number [∆X .∆X ]S defined in terms of dg-
categories of singularities.

The dg-category Sing(Xs) of singularities of the special fiber comes equipped with its canonical
B-module structure described in Proposition 4.1.7. As X is proper over S, we know by Proposition
4.3.1 that Sing(Xs) is saturated over B. We are thus entitled to take the trace (Definition 2.4.4) of the
identity of Sing(Xs), which is a morphism

A −→ HH(B/A)

in dgCatA. This trace morphism is then, by definition, determined by a perfect HH(B/A)o-dg-module
HH(Sing(Xs)/B), and thus provides us with a class in K-theory

[HH(Sing(Xs)/B)] ∈ K0(HH(B/A)).

The Chern character natural transformation (applied to HH(B/A), see Definition 2.3.1) of this class is
an element Ch`,HH(B/A)([HH(Sing(Xs)/B)]) in π0|r`(HH(B/A))| = H0(Sét, r`(HH(B/A))).

Definition 5.2.1 With the above notations and hypotheses on X/S, the categorical Bloch class of X/S
is defined as

[∆X ,∆X ]catS := Ch`([HH(Sing(Xs)/B]) ∈ H0(Sét, r`(HH(B/A))).

Notice that though B is just an associative algebra in dgCatA (an E2-algebra over A), its `-adic
realization r`(B) is in fact a commutative monoid in ShQ`

(S), naturally equivalent to i∗(Q`(β)⊕Q`(β)[1])
where i : s → S is the inclusion of the closed point. Therefore there is a canonical augmentation
a : HH(r`(B)/r`(A))→ r`(B), hence an induced augmentation

a : H0(Sét,HH(r`(B)/r`(A))) = π0|HH(r`(B)/r`(A))| −→ π0|r`(B)| = H0(Sét, r`(B)) ' Q`

that is a left inverse to

σ : Q` ' H0(Sét, r`(B))→ H0(Sét,HH(r`(B)/r`(A)))

16We first reduce to the complete dvr (hence henselian and excellent) case by proper base-change, and then we further
reduce to the excellent, strictly henselian case.
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(induced by r`(B)→ HH(r`(B)/r`(A))).

For λ ∈ Q`, we will simply write λ∧ for the image of λ via the composition

Q` ' H0(Sét, r`(B)) �
� σ // H0(Sét,HH(r`(B)/r`(A))) α // H0(Sét, r`(HH(B/A))).

We are now ready to prove our version of Bloch’s Conductor Conjecture for unipotent monodromy.

Theorem 5.2.2 Let X/S be as in Conjecture 5.1.1, and assume further that the inertia subgroup
I := Gal(K̄/Kunr) ⊆ Gal(K̄/K) acts unipotently on H∗(XK̄ ,Q`). Then we have an equality

[∆X ,∆X ]catS = χ(Xk̄, `)
∧ − χ(XK̄ , `)

∧

in H0(Sét, r`(HH(B/A))).

Remark 5.2.3 Since we have not proved that the map

α : H0(Sét,HH(r`(B)/r`(A)))→ H0(Sét, r`(HH(B/A)))

is injective, the equality in Theorem 5.2.2 is not a priori an equality of integers (and it might even be the
trivial equality 0 = 0 of classes in H0(Sét, r`(HH(B/A)))). However, we conjecture that the canonical
map u : B → HH(B/A) is in fact an A1-homotopy equivalence; this would imply that r`(u) : r`(B) →
r`(HH(B/A)) is an equivalence in ShQ`

(S), so that H0(Sét, r`(HH(B/A))) ' H0(Sét, r`(B)) ' Q`. In
particular α would be injective, and the equality in Theorem 5.2.2 would indeed be an equality of
integers.

Remark 5.2.4 Recall that the inertia group I sits in an extension of pro-finite groups

1 // P // I // It // 1 ,

where It is the tame inertia quotient, and the wild inertia P is a pro-p-subgroup. For any continu-
ous finite dimensional Q`-representation V of I, the group P acts through a finite quotient on V (see
[Se, §19]). Therefore, if I is supposed to act unipotently on V , then P acts necessarily trivially, i.e.
the I-action factors through a It-action, i.e., by definition, the I action is tame. By definition, the
Swan conductor SwI(V )(see e.g. [Ka-Sa, §6.1]) vanishes for a tame I-representation V . As a conse-
quence, granting Remark 5.2.3, under the hypothesis of unipotent action of I on H∗(XK̄ ,Q`), Conjecture
5.1.1 becomes Theorem 5.2.2 if Bloch’s number [∆X ,∆X ]S is replaced by the categorical Bloch class
[∆X ,∆X ]catS . Though we currently know a proof only in the geometric case, we are actually convinced
that the categorical Bloch class is always, i.e. regardless any hypothesis on the monodromy action and
on the mixed or equal characteristic property of S, an integer equal to Bloch’s intersection number
[∆X ,∆X ]S appearing in Conjecture 5.1.1. This fact will not be used in this paper and will be more
closely investigated in a future one.

Proof of Thm. 5.2.2. We may suppose S strictly henselian, so that I = Gal(K̄/K). We want to
apply our trace formula (Theorem 2.4.9) to T = Sing(Xs) and f = id. In order to do this, we need to
check that the conditions of being saturated and `⊗-admissible over B are met by such T .

By Proposition 4.3.1, we know that T is saturated over B.
Let us now show that T is also `⊗-admissible over B, i.e. that the canonical map

ϕ : r`(T
o)⊗r`(B) r`(T ) −→ r`(T

o ⊗B T )
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is an equivalence.
First of all we notice that, since both the source and the target of ϕ are `-adic complexes on S, supported
at s, it is enough to show that i∗(ϕ) is an equivalence, i : s → S being the canonical inclusion (note
that i∗i∗ is equivalent to the identity functor).
Let us first elaborate on the target of i∗(ϕ). By Künneth for dg-categories of singularities, we have the
canonical equivalence of Proposition 4.2.1

T o ⊗B T ' Sing(X ×S X).

Moreover, since a unipotent action of I is also tame, by Cor. 3.4.5 we have

r`(Sing(X ×S X)) ' (pZs)∗(νX � νX)I(β),

where pZs : Zs = Xs×sXs → S is the composite Zs
qZs // s

i // S , and, as usual, νX denotes vanishing
cycles for X/S on Xs. Therefore

i∗r`(Sing(X ×S X)) ' (qZs)∗(νX � νX)I(β)

in ShQ`
(s). Since qZs = qXs ×s qXs , where qXs : Xs → s is the canonical map, we have

i∗r`(Sing(X ×S X)) ' (qZs)∗(νX � νX)I(β) ' ((qXs)∗(νX)⊗Q`
(qXs)∗(νX))I(β) (10)

in ShQ`
(s), that we may rewrite as

i∗r`(Sing(X ×S X)) ' (H(Xs, νX)⊗Q`
H(Xs, νX))I(β) (11)

where we have introduced the hypercohomology H(Xs, E) := (qXs)∗(E), for E ∈ ShQ`
(Xs).

Let us now look more carefully at the source of the map i∗(ϕ). By the main theorem of [BRTV] (see
also formula (4)), we have

r`(T ) ' (pXs)∗(νX [−1]I)(β)

where pXs : Xs → S is the composite Xs

qXs // s
i // S . Therefore,

i∗(r`(T
o)⊗r`(B) r`(T )) ' i∗(r`(T

o))⊗i∗r`(B) i
∗r`(T ) ' ((qXs)∗(νX [−1])I ⊗QI

`
qXs)∗(νX [−1])I)(β) (12)

in ShQ`
(s), that we may rewrite as17

i∗(r`(T
o)⊗r`(B) r`(T )) ' (H(Xs, νX [−1])I ⊗QI

`
H(Xs, νX [−1])I)(β). (13)

By recalling that E(β) ' E [−2](β), for any E ∈ ShQ`
(Xs), and by combining (11) and (13), we see

that
i∗(ϕ) : i∗(r`(T

o)⊗r`(B) r`(T )) −→ i∗r`(T
o ⊗B T )

is then equivalent to ψ[−2](β), where ψ is the lax-monoidal structure morphism for the functor (−)I,
applied to the pair of `-adic complexes (H(Xs, νX),H(Xs, νX)),

ψ : H(Xs, νX)I ⊗QI
`
H(Xs, νX)I −→ (H(Xs, νX)⊗Q`

H(Xs, νX))I. (14)

The fact that the morphism ψ is an equivalence is a consequence of the following general lemma.

17Note that r`(T ) ' r`(T
o) because the K-theory of a dg-category is canonically isomorphic to the K-theory of the

opposite dg-category.
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Lemma 5.2.5 Let Duni(I,Q`) be the full sub-∞-category of Dc(SpecK,Q`) ' DI
c(Spec K̄,Q`) consist-

ing of all objects E for which the action of I on each H i(E) is unipotent. Then the invariant ∞-functor
induces an equivalence of symmetric monoidal ∞-categories

(−)I : Duni(I,Q`) ' Dperf(Q`[ε1]),

where Q`[ε1] is the free commutative Q`-dg-algebra generated by ε1 in degree 1, and Dperf(Q`[ε1]) is its
∞-category of perfect dg-modules.

Proof of lemma 5.2.5. This is a well known fact. The ∞-functor

(−)I : Dc(SpecK,Q`) −→ Dc(Q`)

is lax symmetric monoidal, so it induces a lax monoidal ∞-functor

(−)I : Dc(SpecK,Q`) −→ D(QI
`).

It is easy to see that QI
` is equivalent to Q`[ε1], and the choice of such an equivalence only depends

on the choice of a generator of H1(I,Q`) ' Q`. We thus have an induced lax symmetric monoidal
∞-functor

(−)I : Dc(SpecK,Q`) −→ D(Q`[ε1]).

The above ∞-functor is in fact symmetric monoidal, as it preserves unit objects, and moreover
Dc(SpecK,Q`) is generated by the unit object Q`.
The lemma is then a direct consequence of the following fact: let x ∈ C be a compact object in a
compactly generated stable ∞-category C, then the ∞-functor

C(x,−) : C −→ ModSp(End(x))

induces an equivalence of stable ∞-categories

〈x〉 ' PerfSp(End(x)),

where 〈x〉 ⊂ C denotes the full stable ∞-category generated by the object x, and End(x) denotes the
ring spectrum of endormophisms of x. ♦

The above lemma implies that the map

ψ[−2] : H(Xs, νX [−1])I ⊗QI
`
H(Xs, νX [−1])I −→ (H(Xs, νX [−1])⊗Q`

H(Xs, νX [−1]))I

is an equivalence, and thus, as observed above, the same is true for i∗(ϕ), and hence for the admissibility
map

ϕ : r`(T
o)⊗r`(B) r`(T ) −→ r`(T

o ⊗B T ),

so that T is indeed `⊗-admissible over B as we wanted.

Now that we have checked all the conditions for the trace formula of Theorem 2.4.9 to hold in our
case, we get an equality

Ch`([HH(T/B, id)]) = trr`(B)(id : r`(T )→ r`(T )) (15)
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in H0(Sét, r`(HH(B/A))). Recall that

trr`(B)(id : r`(T )→ r`(T )) := α(Trr`(B)(id : r`(T )→ r`(T ))),

where α : H0(Sét,HH(r`(B)/r`(A)))→ H0(Sét, r`(HH(B/A))) is the canonical map.

We are left to identify the two sides of (15).
The left hand side is, by definition, our categorical Bloch number [∆X ,∆X ]catS .

Let us now investigate the r.h.s. of (15): we need to show that Trr`(B)(r`(idT )) = χ(Xk̄, `)−χ(XK̄ , `).
As already noticed, r`(B) is a commutative monoid in ShQ`

(S), naturally equivalent to i∗(Q`(β) ⊕
Q`(β)[1]) where i : s→ S is the inclusion of the closed point. Therefore there is a canonical augmenta-
tion a : HH(r`(B)/r`(A))→ r`(B), hence an induced augmentation

a : H0(Sét,HH(r`(B)/r`(A))) = π0|HH(r`(B)/r`(A))| −→ π0|r`(B)| = H0(Sét, r`(B)).

Consider the diagram

H0(Sét,HH(r`(B)/r`(A))) α //

a

��

H0(Sét, r`(HH(B/A)))

Q` ' H0(Sét, r`(B))

σ

OO

can

44

where can is the map induced by the canonical map u : B → HH(B/A), and σ is the map induced by
r`(u), so that a ◦ σ = id. By compatibility between the non-commutative trace and the commutative
trace (Remark 2.4.5)

a(Trr`(B)(r`(idT )) = Trc
r`(B)(r`(idT ))

.
Since r`(B) ' i∗(Q`(β)⊕Q`(β)[1]), we have K0(r`(B)) ' Z and the following commutative diagram

Q` ' H0(Sét, r`(B)) �
� σ // H0(Sét,HH(r`(B)/r`(A))) a // H0(Sét, r`(B))

K0(r`(B))

Tr(id−)
44
Trc(id−)

11

Z
iso

kk

aa `` 99

where the maps with source Z are the unique maps of commutative rings, and a ◦ Tr(id−) = Trc(id−)
again by the functorial compatibility of non-commutative and commutative traces. By considering the
class [r`(T )] in K0(r`(B)), and using that a◦σ = id, we deduce from the previous commutative diagram
the equality of `-adic numbers

σ(Trc
r`(B)(r`(idT )) = Trr`(B)(r`(idT )). (16)

Now, unfolding the definition of Trr`(B), and using Lemma 5.2.5, the `-adic number (16) can be
described as follows. The dg-algebra QI

` is such that K0(QI
`) ' Z. Viewing Z inside Q`, this isomorphism

is induced by sending the class of dg-module E to the trace of the identity inside HH0(QI
`) ' Q`. Using
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the functoriality of the trace for the morphism of commutative dg-algebras QI
` −→ QI

`(β), we see that
(16) is simply the trace of the identity on H(Xs, νX [−1]), as an object in Duni(I,Q`). This trace is
easy to compute, as it equals 1 on the unit object Q`. Since the unit object generates Duni(I,Q`), we
have that the trace of the identity on any object E ∈ Duni(I,Q`) equals the Euler characteristic of the
underlying complex of Q`-vector spaces.

We thus have shown that (16) can be rewritten as

Trr`(B)(r`(idT )) =
∑
i

(−1)i dimQ`
H i−1(Xs, νX).

However, by proper base change, the complex H(Xs, νX) appears in an exact triangle

H(Xk̄,Q`) // H(XK̄ ,Q`) // H(Xs, νX)

and thus we have the equality

Trr`(B)(r`(idT )) = χ(Xk̄, `)− χ(XK̄ , `)

in Z ↪→ Q` ↪→ H0(Sét,HH(r`(B)/r`(A))).
Therefore

[∆X ,∆X ]catS = χ(Xk̄, `)
∧ − χ(XK̄ , `)

∧,

as required. 2

A Localizations of monoidal dg-categories

In this Appendix we recall some basic facts about localizations of dg-categories as introduced in [To1].
The purpose of the section is to explain the multiplicative properties of the localization construction. In
particular, we explain how localization of strict monoidal dg-categories gives rise to monoids in dgCatA,
and thus to monoidal dg-categories in the sense of our Definition 2.1.1.

Let T be a dg-category over A, together with W a set of morphisms in Z0(T ), the underlying
category of T (this is the category of 0-cycles in T , i.e. Z0(T )(x, y) := Z0(T (x, y))). For the sake of
brevity, we will just say that W is a set of maps in T . In other words, we allow W not to be strictly
speaking a subset of the set of morphisms in T , but just a set together with a map W →Mor(T ) from
W to the set of morphisms in T . Recall that a localization of T with respect to W , is a dg-category
LWT together with a morphism in dgCatA

l : T −→ LWT

such that, for any U ∈ dgCatA, map induced by l on mapping spaces

Map(LWT, U) −→Map(T, U)

is fully faithful and its image consists of all T → U sending W to equivalences in U (i.e. the induced
functor [T ]→ [U ] sends elements of W to isomorphisms in [U ]).
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As explained in [To1], localizations always exist, and are unique up to a contractible space of choices
(because it represents an obvious ∞-functor). We will describe here a model for (T,W ) 7→ LWT which
will have nice properties with respect to tensor products of dg-categories. For this, let dgcatW,cA be the
category of pairs (T,W ), where T is a dg-category with cofibrant hom’s over A, and W a set of maps
in T . Morphisms (T,W ) −→ (T ′,W ′) in dgcatW,cA are dg-functors T −→ T ′ sending W to W ′.

We fix once for all a factorization

∆1
A

j // Ĩ
p // ∆

1

A,

with j a cofibration and p a trivial fibration. Here ∆1
A is the A-linearisation of the category ∆1 that

classifies morphisms, and ∆
1

A is the linearisation of the category that classifies isomorphisms. For an
object (T,W ) ∈ dgcatW,cA we define W−1T by the following cocartesian diagram in dg-categories∐

W ∆1
A

//

��

T

��∐
W Ĩ //W−1T,

where
∐

W ∆1
A −→ T is the canonical dg-functor corresponding to the set W of morphisms in T .

Lemma A.0.1 The canonical morphism l : T −→ W−1T defined above is a localization of T along W .

Proof. According to [To1], the localization of T can be construced as the homotopy push-out of
dg-categories ∐

W ∆1
A

//

��

T

��∐
W A // LWT.

The lemma then follows from the observation that when T has cofibrant hom’s, then the push-out
diagram defining W−1T is in fact a homotopy push-out diagram. 2

The construction (T,W ) −→ W−1T clearly defines a functor

dgcatW,cA −→ dgcatcA

from dgcatW,cA to dgcatcA, the category of dg-categories with cofibrant hom’s. Moreover, this functor
comes equipped with a natural symmetric colax monoidal structure. Indeed, dgcatW,cA is a symmetric
monoidal category, where the tensor product is given by

(T,W )⊗ (T ′,W ′) := (T ⊗A T ′,W ⊗ id ∪ id⊗W ′).

We have a natural map
T ⊗A T ′ −→ (W−1T )⊗A ((W ′)−1T ′),

which by construction has a canonical extension

(W ⊗ id ∪ id⊗W ′)−1(T ⊗A T ′) −→ (W−1T )⊗A ((W ′)−1T ′).

47



The unit in dgcatW,cA is (A, ∅), which provides an canonical isomorphism (∅)−1A ' A. These data
endow the functor (T,W ) 7→ W−1T with a symmetric colax monoidal structure. By composing with
the canonical symmetric monoidal ∞-functor dgcatcA −→ dgCatA, we get a symmetric colax monoidal
∞-functor

dgcatW,cA −→ dgCatA,

which sends (T,W ) to W−1T . By [To3, Ex. 4.3.3], this colax symmetric monoidal ∞-functor is in fact
monoidal. We thus have a symmetric monoidal localization ∞-functor

W−1(−) : dgcatW,cA −→ dgCatA.

As a result, if T is a (strict) monoid in dgcatW,cA , then W−1T carries a canonical structure of a monoid
in dgCatA. This applies particularly to strict monoidal dg-categories endowed with a compatible notion
of equivalences. By the MacLane coherence theorem, any such a structure can be turned into a strict
monoid in dgcatW,cA , and by localization into a monoid in dgCatA. In other words, the localization
of a monoidal dg-category along a set of maps W that is compatible with the monoidal structure, is
a monoid in dgCatA. The same is true for dg-categories which are modules over a given monoidal
dg-category.
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monodromie en géométrie algébrique - (SGA 7) - vol. 1. Lecture notes in mathematics 288. Berlin;
New York: Springer-Verlag. viii+523 (1972).

48



[Ha] R. Haugseng, The higher Morita category of En-algebras, Geometry & Topology 21 (2017) 1631-
1730, DOI: 10.2140/gt.2017.21.1631

[Ho] M. Hovey, Model Categories, Mathematical Surveys and Monographs, Volume 63, AMS (1999).
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