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ON A DEFINITION OF LOGARITHM OF QUATERNIONIC

FUNCTIONS

GRAZIANO GENTILI, JASNA PREZELJ, AND FABIO VLACCI

ABSTRACT. For a slice–regular quaternionic function f, the classical

exponential function exp f is not slice–regular in general. An alternative

definition of exponential function, the ∗-exponential exp
∗
, was given: if

f is a slice–regular function, then exp
∗
(f) is a slice–regular function

as well. The study of a ∗-logarithm log
∗
(f) of a slice–regular function

f becomes of great interest for basic reasons, and is performed in this

paper. The main result shows that the existence of such a log
∗
(f) de-

pends only on the structure of the zero set of the vectorial part fv of the

slice–regular function f = f0 + fv, besides the topology of its domain

of definition. We also show that, locally, every slice–regular nonvanish-

ing function has a ∗-logarithm and, at the end, we present an example of

a nonvanishing slice–regular function on a ball which does not admit a

∗-logarithm on that ball.

1. INTRODUCTION

Let H be the skew field of quaternions and let us denote the 2-sphere of

imaginary units of H by S = {q ∈ H : q2 = −1} . Consider the natural

exponential function exp : H → H \ {0} defined by the classical power

series:

(1.1) exp(q) =

+∞∑

n=1

qn

n!

In the case of quaternions, a satisfactory definition of a (necessarily local)

inverse of this exponential function - the logarithm and its different branches

- is not a simple task, together with the question of the continuation of

the logarithm along curves lying in H \ {0} (see [GHS, GPV, GPV1] and

references therein).

Let Ω ⊆ H be an axially symmetric domain (see Definition 2.1), and

consider the class SR(Ω) of all H-valued slice–regular functions defined

in Ω (see, e.g.,[GS]). These functions have proven to be naturally suitable

to play the role of holomorphic functions in the quaternionic setting, and
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have originated a theory that is by now quite rich and well developed (see,

e.g., [GSS] and references therein). Slice regular functions present sev-

eral peculiarities, mainly due to the noncommutative setting of quaternions;

among these peculiarities, the facts that pointwise product and composition

of slice–regular functions do not produce slice–regular functions in general.

The definition of the ∗-product typical of the algebra of polynomials with

coefficients in a non commutative field can be extended to the class of slice–

regular functions on an axially symmetric domain Ω ⊆ H, which naturally

becomes an algebra. As for composition, if f : H → H is a slice–regular

function, even

exp(f(q)) =

+∞∑

n=1

f(q)n

n!

turns out not to be slice–regular in general. The ∗-product helps in this

situation to find an exponential function which maintains slice–regularity,

defined (with obvious notations) as

exp∗(f(q)) =
+∞∑

n=1

f(q)∗n

n!
(1.2)

This ∗-exponential, defined and studied in [CSS] and further investigated

in [AdF], has many interesting properties typical of an exponential-type

function.

In this paper we investigate the existence of a slice–regular logarithm

log∗(f) for a slice–regular function f . This activity finds a deep motivation

in the study of quaternionic Cousin problems, that the authors are perform-

ing and that will be the object of a forthcoming paper.

We will now briefly outline the path that this paper follows for the tun-

ing of a slice–regular logarithm. Recall that any slice–regular function f
defined on an axially symmetric domain Ω can be uniquely written as

f = f0 + if1 + jf2 + kf3 = f0 + fv

where {1, i, j, k} denotes the standard basis of H, where

f0(q) =
f(q) + f(q̄)

2

is the scalar part of f and

fv := f − f0
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its vectorial part. The vectorial part fv of f plays a fundamental role in the

definition of log∗. Indeed, with the adopted notations we have

exp∗(f) = exp∗(f0 + fv) = exp(f0) exp∗(fv)

= exp(f0)

(
∑

m∈N

(−1)m(f s
v )

m

(2m)!
+
∑

m∈N

(−1)m(f s
v )

m

(2m+ 1)!
fv

)
(1.3)

= exp(f0)

(
cos(

√
f s
v ) + sin(

√
f s
v )

fv√
f s
v

)

when the symmetrization f s
v := f 2

1 + f 2
2 + f 2

3 of fv does not vanish, and

where the definitions of cos, sin and
√

f s
v are the natural ones. A less

algebraic, but maybe more enlightening, point of view is the following.

To better understand the computation of exp∗(fv) let us notice that, since it

holds,

fv ∗ fv = −f s
v = −fv ∗ f c

v

then, outside the zero set of f s
v , we have

fv√
f s
v

∗ fv√
f s
v

=
−f s

v

f s
v

= −1

identically. Therefore the vectorial function

fv√
f s
v

can be given the role of an imaginary unit, and therefore

exp∗(fv) = exp∗(
fv√
f s
v

√
f s
v ) = cos(

√
f s
v ) + sin(

√
f s
v )

fv√
f s
v

All this said, we begin by focusing our study of the solutions f of the equa-

tion

exp∗ f = g

to the case of exp∗ f = 1 on an axially symmetric domain Ω whose inter-

section ΩI with R+ IR ∼= CI is “small” for any I ∈ S. We then proceed to

the definition of a local ∗-logarithm for any slice–regular function on such

a domain. As one may expect, once the function log∗ g is defined, we can

also define the real powers of g, like for example

(1.4) s
√
g := exp∗

(
1

s
log∗ g

)
,

for all s ∈ R, s > 0.

It turns out that the structure of the zeroes of the vectorial part gv of the

slice–regular function g : Ω → H in question plays a key role. Roughly

speaking, the set Z(gv) of nonreal and nonspherical zeroes of the vectorial
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part gv of g (shared with the entire vectorial (equivalence) class [gv] and

for this reason denoted Z([gv]), see Definition 5.1) determines the right

conditions for the existence of the ∗-logarithm of g in such a domain Ω.

In the chosen setting, a slice–regular function g : Ω → H belongs to the

vectorial class [0] if and only if its vectorial part gv is equivalent to the null

function in Ω, that is, if and only if g belongs to the same vectorial class

of its scalar part g0. This situation is particularly fortunate for our study, as

explicitly suggested by Formula (1.3).

The set of all slice–regular functions g ∈ SR(Ω) which are in the vecto-

rial class [0] is denoted by SR[0](Ω) = SRR(Ω). In general, SRω(Ω) will

denote the set of slice–regular functions g ∈ SR(Ω) whose vectorial parts

gv are in the class ω (see Section 5).

For the existence of a ∗-logarithm of a function g ∈ SR(Ω), a sort of

slicewise simple–connectedness of the axially symmetric domain Ω is re-

quired (but is not in general a sufficient condition): indeed we will require

that each of the, at most two, connected components of ΩI = Ω ∩ CI is

simply connected for one (and hence for all) I ∈ S. Such a domain Ω will

be called a basic domain. If W ⊆ H is any subset, then we will set the

notation SW := {sw : s ∈ S, w ∈ W} and use it henceforth.

The main theorem of this paper, stated below and proved in Section 7

(Subsection 7.1) together with some of its consequences, identifies suffi-

cient conditions for the existence of a ∗-logarithm of a function g ∈ SR(Ω)
with respect to the different structures of the vectorial class [gv] and of its

zero set Z([gv]).

Theorem 1.1. Let Ω ⊆ H be a basic domain and let g ∈ SRω(Ω) be a

nonvanishing function. Then it holds:

(a) if ω = [0], a necessary and sufficient condition for the existence of

a ∗-logarithm of g on Ω, log∗ g ∈ SR[0](Ω), is

g(Ω ∩ R) ⊂ (0,+∞);

(b) if ω 6= [0], then if Z(ω) = ∅ or if SZ(ω) = Ω there are no

conditions, and a ∗-logarithm of g on Ω, log∗ g ∈ SRω(Ω), always

exists;

(c) if ω 6= [0] and Z(ω) is discrete, a sufficient condition for the exis-

tence of a ∗-logarithm of g on Ω, log∗ g ∈ SRω(Ω), is the validity

of both inclusions

(1.5)
√
gs(Ω ∩ R) ⊂ (0,+∞)

and

(1.6)
g0√
gs
(Ω) ⊂ H \ (−∞,−1].
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where gs = g20 + gsv denotes the symmetrization of g.

Now, if the functions µ, ν ∈ SRR(H) are defined by the identities

µ(z2) = cos z and ν(z2) =
sin z

z
,

then the last formula in (1.3) can be rewritten as

exp∗ f = exp(f0)(µ(f
s
v ) + ν(f s

v )fv).

Moreover, for any I ∈ S the mapping

µI : CI \ {k2π2 : k ∈ N ∪ {0}} → CI \ {1,−1}
turns out to be a covering map (see subsection 4.1). In this setting, we

can obtain the second main result of this paper which appears in Section 7

(Subsection 6.2): Theorem 6.4. It produces a formula for the ∗-logarithms

of a non vanishing slice–regular function g, defined on a basic domain with

no real points and whose vectorial class [gv] has only one (non real) zero.

In the last section, we also show that for the following function

g(z) = −1 + z2i+
√
2zj + k,

which is nonvanishing on the ball B4(0, 1.1), there is no slice–regular loga-

rithm globally defined in the entire B4(0, 1.1). Indeed, this function g meets

the hypotheses of Theorem 1.1 (c), but does not fulfil the stated sufficient

conditions (1.5) and (1.6).

While preparing the final draft of this paper, we became aware that

results similar to ours, but suggested by different motivations and involving

different techniques, were obtained by Altavilla and de Fabritiis and are

now posted on arXiv ([AdF1]).

2. PRELIMINARY RESULTS

Given any quaternion z 6∈ R, there exist (and are uniquely determined)

an imaginary unit I ∈ S, and two real numbers, x, y y > 0, such that

z = x+ Iy. With this notation, the conjugate of z will be z̄ := x− Iy and

|z|2 = zz̄ = z̄z = x2 + y2. Each I ∈ S generates (as a real algebra) a copy

of the complex plane denoted by CI = R + IR. We call such a complex

plane a slice. The upper half-plane in CI , namely the set C+
I := {x+ yI ∈

CI : y > 0} will be called a leaf.

Definition 2.1. A domain Ω of H will be called axially symmetric1 if

Ω =
⋃

x+Iy∈Ω

x+ Sy

1Some authors use the term “circular.”
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i.e., if for all x, y ∈ R and all I ∈ S, we have that x+ Iy ∈ Ω implies that

the entire 2-sphere x+ Sy is contained in Ω.

The proof of the following facts is straightforward:

Proposition 2.2. Let Ω ⊆ H be an axially symmetric domain. For all I ∈ S,

we have that

Ω =
⋃

x+Iy∈ΩI

x+ Sy

Moreover, for all I ∈ S, the set ΩI ⊆ R+IR is invariant under conjugation,

i.e., ΩI = ΩI .

A class of natural domains of definition for slice–regular functions is the

following one.

Definition 2.3. A domain Ω of H is called a slice domain if, for all I ∈ S,

the subset ΩI is a domain in R + IR and if Ω ∩ R 6= ∅. If, moreover, Ω is

axially symmetric, then it is called a symmetric slice domain.

On the other hand, slice functions (see [GP]) are naturally defined on

axially symmetric domains which are not necessarily slice domains.

Definition 2.4. An axially symmetric domain Ω of H\R is called a product

domain.

If Ω ⊆ H is an axially symmetric domain, then for (one and hence for) all

I ∈ S, the set ΩI is an open subset of CI such that: either it is a connected

set that intersects R, or it has two symmetric connected components sepa-

rated by the real axis, swapped by the conjugation. In the former case, Ω is

an axially symmetric slice domain; in the latter case Ω is a product domain.

Proposition 2.5. Let Ω ⊆ H be an axially symmetric domain. Then Ω is

either a symmetric slice domain or it is a product domain.

The following class of domains will play a key role in this paper.

Definition 2.6. A domain Ω of H is called a basic domain if it is axially

symmetric and if, for (one and hence for) all I ∈ S, the single connected

component or both the connected components of ΩI are simply connected.

A basic domain is also a basic neighborhood of any of its points.

The following examples show that being a simply connected domain and

being a basic domain are distinct notions in general.

Example 2.7. For any given pair of positive real numbers 0 < r < R,

the axially symmetric domain Ar,R = {q ∈ H : r < |q| < R} is simply

connected but the domain of the slice CI obtained as Ar,R∩CI is not simply

connected for any I ∈ S. HenceAr,R is not a basic domain.
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Example 2.8. The axially symmetric domain H\R is not simply connected,

but the intersection of H \ R with any slice CI has two connected compo-

nents, and each one is simply connected. Hence H \ R is a basic domain.

We will now recall a unified definition of the class of slice regular func-

tions on axially symmetric domains, valid both for slice domains and for

product domains (see, e.g., [GP1]). If ι2 = −1, consider the complexifica-

tion HC = H + ιH, of the skew field H and set x + ιy 7→ x − ιy to be the

natural involution of HC. For any J ∈ S, let the map

φJ : HC → H

be defined by

φJ(x+ ιy) = x+ Jy

Notice that the map φJ , when restricted to RC
∼= R + ιR ∼= C, is an

isomorphism between C and R+ JR = CJ .

If Ω ⊆ H is an axially symmetric domain, and if i denotes the imaginary

unit of C, then the intersection Ωi = Ω ∩ (R + iR) = Ω ∩ C defines a

domain of the complex plane that is invariant under complex conjugation,

i.e., is such that Ωi = Ωi. With respect to the established notations, the

subset Ωι = {x + ιy ∈ H + ιH : x + iy ∈ Ωi} is called the image of Ωi

in HC, and is invariant under involution, i.e., Ωι = Ωι. We are now in a

position to recall the following definitions.

Definition 2.9. Let Ω ⊆ H be an axially symmetric open set, let Ωi =
Ω ∩ (R+ iR) and let Ωι be the image of Ωi in HC.

A function F : Ωι → HC is called a stem function if F (z̄) = F (z) for

all z ∈ Ωι. For each stem function F : Ωι → HC, there exists a unique

f : Ω → H such that the diagram

Ωι HC

Ω H

φJ

F

φJ

f

commutes for all J ∈ S. The function f is called the slice function induced

by F and denoted by J (F ).
Let f = J (F ), g = J (G) be the slice functions induced by the stem

functions F,G respectively. The ∗-product of f and g is defined as the slice

function f ∗ g := J (FG).

We will use a definition of slice regularity (and ∗-product) that involve

stem functions, and that is valid for any axially symmetric domain of H.

When restricted to symmetric slice domains, it coincides with the Definition

1.2 of slice regularity initially presented in [GS].
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Definition 2.10. Let Ω ⊆ H be an axially symmetric open set.

A slice function f : Ω → H, induced by a stem function F : Ωι → HC,

is called slice–regular if F is holomorphic. The set of all slice–regular

functions on Ω is denoted by SR(Ω).
A slice function f : Ω → H is said to be slice–preserving if and only

if ∀I ∈ S, ∀z ∈ ΩI := Ω ∩ CI we have that f(z) ∈ CI . The set of all

slice–regular functions, which are slice–preserving in Ω, will be denoted as

SRR(Ω).

The next proposition recalls two well known technical results that will be

extensively used in the sequel (see, e.g., [GP1]).

Proposition 2.11. Let Ω ⊆ H be an axially symmetric open set, and let

f, g ∈ SR(Ω) be two slice–regular functions. Then

(a) the ∗-product f ∗ g is a slice–regular function on Ω;

(b) if f is slice–preserving, then f ∗ g = fg = g ∗ f , i.e, the ∗-product

coincides with the pointwise product.

Let us now define the imaginary unit function

I : H \ R → S

by setting I(q) = I if q ∈ CI . The function I is slice–regular and slice–

preserving, but it is not an open mapping and it is not defined on any slice

domain.

Consider now an axially symmetric open set Ω and f ∈ SR(Ω). We have

already defined the splitting f = f0 + fv, where the scalar part f0 of f is a

slice–preserving function.

Definition 2.12. The function f ∈ SR(Ω) is a vectorial function if f = fv.
The set of vectorial functions on Ω will be denoted by SRv(Ω). We have

SR(Ω) = SRR(Ω)⊕ SRv(Ω).

Given a standard basis of H, the vectorial part can be decomposed further

([CGS], Proposition 3.12, compare [AdF], Proposition 2.1):

Proposition 2.13. Let {1, i, j, k} be the standard basis of H and assume Ω
is an axially symmetric domain of H. Then the map

(SRR(Ω))
4 ∋ (f0, f1, f2, f3) 7→ f0 + f1i+ f2j + f3k ∈ SR(Ω)

is bijective.

In the sequel, all bases of H ∼= R4 will be orthonormal (and positively

oriented) with respect to the standard scalar product of R4. Proposition

2.13 implies that, given any f, g ∈ SR(Ω), there exist and are unique
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f0, f1, f2, f3, g0, g1, g2, g3 ∈ SRR(Ω) such that

f = f0 + f1i+ f2j + f3k = f0 + fv

g = g0 + g1i+ g2j + g3k = g0 + gv

With the above given notation, if we call regular conjugate of f the function

f c = f0 − fv

then we have

f0 =
f + f c

2
.

Furthermore, using Definition 2.9 and Proposition 2.11, we obtain the fol-

lowing expression for the ∗-product of f and g:

(2.7) f ∗ g := f0g0−f1g1−f2g2−f3g3+f0gv+ g0fv+
fv ∗ gv − gv ∗ fv

2
We now set

f s := f 2
0 + f 2

1 + f 2
2 + f 2

3 = f ∗ f c = f c ∗ f
and call f s the symmetrization of f .

3. BASIC PROPERTIES OF THE EXPONENTIAL

If exp(q) is the (quaternionic) exponential mapping defined in (1.1), then

for every k ∈ Z, we define its restriction to the cylinder {q : Im(q) ∈
S(kπ, (k + 1)π)} to be

expk : {q : Im(q) ∈ S(kπ, (k + 1)π)} → H \ R.
For any k ∈ Z the function expk is a bijective slice–regular slice–preserving

function with a slice–regular and slice–preserving inverse, namely

logk(q) = log |q|+ I(q) argI(q),k(q) ,
where argI(q),k ∈ (kπ, (k + 1)π) denotes the argument of q in the com-

plex plane CI(q). The mapping log0 is called the principal branch of the

logarithm and can be extended to

log0 : H \ (−∞, 0] → {q : Im(q) ∈ S[0, π)}
as the inverse of the extension of

exp0 : {q : Im(q) ∈ S[0, π)} → H \ (−∞, 0].

Let turn our attention to the problem of computing the logarithm of a

function g, defined on a domain Ω of H. For any continuous function

g : Ω → H \ (−∞, 0], one can define

f := log0 ◦ g,
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so that the diagram

R× S[0, π)
exp

''P
PP

PP
PP

PP
PP

P

Ω
g

//

f
::✉✉✉✉✉✉✉✉✉✉✉

H \ (−∞, 0]

commutes. In these hypotheses, for any z ∈ Ω, we have the equality

exp(f(z)) = g(z) by definition, but even if g is slice–regular, no regularity

on the function f can be argued. If, in addition Ω, is axially symmetric

and g ∈ SRR(Ω) is a slice–regular and slice–preserving function, then f
is a well-defined slice–regular and slice–preserving function too. Indeed,

(see Proposition 2.11) the equality exp∗(f) = exp(f) = g holds on Ω for

f = log0 ◦ g and we say that the function f is a logarithmic function of g
(in Ω).

We have thus shown

Proposition 3.1. Let Ω ⊆ H be a symmetric slice domain. If g ∈ SRR(Ω)
is such that

g(Ω) ⊂ H \ (−∞, 0]

then the function

f = log0 ◦ g
is the (slice–regular and slice–preserving) principal logarithm of g.

Let us point out that if f ∈ SRR(Ω), with Ω ⊆ H any symmetric slice

domain, then (exp∗ f)(x0) = (exp f)(x0) > 0 for any x0 ∈ Ω ∩ R. Hence

the condition

(3.8) g(Ω ∩ R) ⊂ (0,+∞)

is a necessary condition for a slice–preserving function g ∈ SRR(Ω) to

have a slice–preserving logarithm (see also [AdF]).

4. ∗-EXPONENTIAL OF A QUATERNIONIC FUNCTION

In this section we shortly recall some results from [AdF], which are nec-

essary to explain our definition of ∗-logarithm.

The ∗-exponential map of a slice–regular function f ∈ SR(Ω), with Ω
axially symmetric domain, is defined for any z ∈ Ω as in (1.2) by

exp∗(f(z)) =
∑

k≥0

f(z)∗k

k!

in such a way that exp∗(f) ∈ SR(Ω). The equality exp∗(f + g) = exp∗ f ∗
exp∗ g does not hold in general as stated in Theorem 4.3 (see also Theorem

4.14 in [AdF]), which we premise a crucial definition to.
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Definition 4.1. Let fv ∈ SRv(V ) and gv ∈ SRv(V ), where V ⊂ H is an

axially symmetric domain in H. We say that fv and gv are linearly depen-

dent over SRR(V ) if and only if there exist a, b ∈ SRR(V ), with a or b
not identically zero in V , such that afv + bgv = 0 in V . If V ⊂ H is an

axially symmetric open set in H, then fv and gv are linearly dependent over

SRR(V ) if and only if they are linearly dependent over SRR(Vλ) for each

connected component Vλ of V .

Remark 4.2. Real isolated zeroes and isolated spherical zeroes can be fac-

tored out of a slice regular function (see, e.g., [GSS, GP1]). As a con-

sequence for any vectorial function fv ∈ SRv(Ω) on an axially symmet-

ric open set Ω and for every axially symmetric open set V ⋐ Ω, there

exists a non identically zero, slice–regular and slice–preserving function

a ∈ SRR(Ω) such that

fv = af̃v

with f̃v ∈ SRv(Ω) having neither real nor spherical zeroes on V . Of course

fv and f̃v are linearly dependent over SRR(Ω).

Theorem 4.3. Assume that the axially symmetric domain Ω intersects the

real axis (i.e., it is a symmetric slice domain). Take f, g ∈ SR(Ω). If

(4.9) exp∗(f + g) = exp∗(f) ∗ exp∗(g)

then either

(i) fv and gv are linearly dependent over SRR(Ω) or

(ii) there exist n,m, p ∈ Z \ {0} such that f s = n2π2, gs = m2π2,
2(f1g1+ f2g2+ f3g3) = (p2−n2−m2)π and n+m ∼= p mod 2.

Vice versa, if either (i) or (ii) are satisfied, then (4.9) holds.

Hence equality (4.9) holds if there exist a, b ∈ SRR(Ω) such that afv +
bgv = 0 with a 6≡ 0 or b 6≡ 0. In particular this implies

exp∗(0) = exp∗(f) ∗ exp∗(−f) ≡ 1

so that, for every f ∈ SR(Ω), the slice–regular function exp∗(f) is a non-

vanishing function in Ω. If f = f0 + fv, then

(4.10) exp∗(f) = exp(f0) exp∗(fv).

Moreover

exp∗(f
c) = (exp∗(f))

c

whence

(exp∗(f))
s = exp∗(f) ∗ (exp∗(f))

c

= exp∗(f) ∗ exp∗(f
c) = exp∗(f + f c)

= exp(2f0)
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and, from (4.10),

(4.11) exp∗(f) = exp(f0)

(
∑

m∈N

(−1)m(f s
v )

m

(2m)!
+
∑

m∈N

(−1)m(f s
v )

m

(2m+ 1)!
fv

)
.

Following [AdF, Remark 4.8] we will use the notations

µ(z) :=
∑

m∈N

(−1)mzm

(2m)!
, ν(z) :=

∑

m∈N

(−1)mzm

(2m+ 1)!
.(4.12)

Both functions µ and ν are entire slice–regular and slice–preserving func-

tions in H, in symbols µ, ν ∈ SRR(H). Furthermore,

(4.13) µ(z2) = cos z and ν(z2) =
sin z

z

where, in general,

(4.14)

cos∗(f) =
∑

m∈N

(−1)m(f)∗(2m)

(2m)!
and sin∗(f) =

∑

m∈N

(−1)mf ∗(2m+1)

(2m+ 1)!

for f ∈ SR(Ω). Notice that also cos∗ and sin∗ are entire slice–regular and

slice–preserving functions in H. More in detail (see again [AdF, Corollary

4.7]), given a basic domain Ω and a slice–regular function f : Ω → H, such

that f s
v is not identically zero and fv has only real or spherical zeroes, then,

in Ω,

(4.15) exp∗(f) = exp(f0)

(
cos(

√
f s
v ) + sin(

√
f s
v )

fv√
f s
v

)
,

where
√

f s
v is defined in the obvious way, being f s

v a slice–preserving func-

tion. Indeed, we will refer to (4.15) as the polar representation for exp∗(f).
The reader can find more details about the definition of square roots in

Proposition 3.1 and Corollary 3.2 in [AdF] (see also [GPV]).

4.1. Properties of the function µ. Let us first list some properties of the

function µ, defined by (4.12), which are essential to define the logarithm of

a slice–regular function. Since we have the identity µ(q2) = cos(q), for any

q ∈ H, we first define the branches µk of µ using the branches of the inverse

of the function cos, i.e. the inverses of

cosk : {q : Re(q) ∈ (kπ, (k + 1)π)} → H((−∞,−1] ∪ [1,+∞)),

denoted by arccosk . To this end consider first the domains

• D0 := {q : Re(q) ∈ [0, π)}, D−1 := {q : Re(q) ∈ (−π, 0]},
• Dk := {q : Re(q) ∈ (kπ, (k + 1)π)} for k ∈ Z \ {0,−1}.
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Notice that domains Dk, k 6= 0,−1, lie entirely either in the right half-space

{q : Re(q) > 0} or in the left half-space {q : Re(q) < 0}, so the squaring

map p2, p2(q) = q2, is injective on each Dk and hence bijective onto p2(Dk)
with an inverse

√
.

For all k ∈ Z define the domains Mk, M̃k to be

Mk := p2(Dk), M̃k := µ(Mk) = cos(Dk),

and observe that

• 0 ∈ M0 = M−1,
• M̃0 = M̃−1 = H \ (−∞,−1],

• M̃k = H \ ((−∞,−1] ∪ [1,+∞)), k 6= 0,−1.

By definition, for each k ∈ Z, the diagram

Dk

p2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ cos

  ❇
❇❇

❇❇
❇❇

Mk
µk

// M̃k

commutes. The choice of domains Dk, k 6= 0,−1, is such that both cos and

p2 are bijective, hence so is µk. To see that also µ0 and µ−1 are bijective

it remains to show that they are bijective when restricted to the imaginary

axis. In this case, since both cos and p2 are even, we have for q ∈ Im(H)

cos(q) = cos(−q) and p2(q) = p2(−q).

Moreover, for each I ∈ S, k = 0,−1, the restrictions

cos : I[0,+∞) → [1,+∞)

and

p2 : I[0,+∞) → (−∞, 0]

are injective, which implies that the induced maps µ0, µ−1 are bijective.

The points kπ, k ∈ Z, are branching points for the complex cosine,

which implies that the points k2π2 are branching points for µ, except the

point 0, which is contained in M0 and where µ′
0(0) = −1/2 6= 0.

We can summarize these considerations in the following

Proposition 4.4. For each k the function µk := µ|Mk
: Mk → M̃k is

bijective with the inverse µ−1
k . In particular, µ0(0) = 1 and the function

µ0 maps a neighbourhood of 0 bijectively to a neighbourhood of 1. The

mapping

µ : H \ {k2π2, k ∈ N ∪ {0}} → H \ {±1}
is a slice–covering map, i.e.

µI : CI \ {k2π2, k ∈ N ∪ {0}} → CI \ {±1}
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is a covering map for every I ∈ S. Furthermore, any map µI extends to a

local diffeomorphism across the point 0.

It turns out that for k 6= 0,−1 we have

arccosk :=
√

◦ µ−1
k : M̃k → Dk,

and, for k = 0,−1 we have

arccosk :=
√

◦ µ−1
k : M̃k \ [1,+∞) → Dk \ {q : Re(q) = 0}.

5. GLOBALLY DEFINED VECTORIAL CLASS

Formula (4.9) shows how crucial it is for two slice–regular functions to

have linearly dependent vectorial parts. This motivates the following

Definition 5.1. Let fv ∈ SRv(U) and gv ∈ SRv(U ′), where U, U ′ ⊂ H are

axially symmetric domains in H such that U ∩ U ′ 6= ∅. Take p ∈ U ∩ U ′;

we say that fv and gv are equivalent at p, in symbols fv ∼p gv, if there exist

an axially symmetric neighborhood of p, Vp ⊂ U ∩ U ′, such that fv and gv
are linearly dependent over SRR(Vp) in Vp. We will denote by [fv]p the ∼p

equivalence class whose representative is fv.

It is easy to verify that the relation ∼p is an equivalence relation at each

point p; The definition above immediately implies that if fv ∼p gv then

fv ∼q gv for every q ∈ Sp =: Sp. Moreover:

Remark 5.2. For each equivalence class [fv]p we can choose a local rep-

resentative f̃v having neither real nor spherical zeroes (see Remark 4.2).

Definition 5.3. By Vp we denote the set of all ∼p equivalence classes of

vectorial functions at p, namely

Vp := {[fv]p : fv ∈ SRv(U), U axially symmetric neighborhood of p}.
Definition 5.4. Let U be an axially symmetric open set and

VU := {Vp, p ∈ U}
be the set of all equivalence classes of vectorial functions with respect to

equivalence relations ∼p, with p ∈ U. A vectorial class ωU on U is defined

to be any function

ωU : U → VU

such that:

• for all p ∈ U , it holds ωU(p) ∈ Vp;

• if p, q ∈ U, if ωU(p) = [fv]p with fv ∈ SRv(Vp) for an axially

symmetric domain Vp ⊂ U containing p, if ωU(q) = [gv]q with

gv ∈ SRv(Vq) for an axially symmetric domain Vq ⊂ U containing

q, then [fv]p̃ = [gv]p̃ for all p̃ ∈ Vp ∩ Vq.
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We denote by V(U) the set of all vectorial classes over U.
If fv ∈ SRv(U) then it obviously defines the vectorial class on U

p 7→ [fv]p, p ∈ U

which we denote by [fv]U and call principal vectorial class (associated to

fv) on U.

Notice that V(U) is not a ring over SRR(U) (it is not possible to define

the sum of two classes); furthermore, if [fv]U = [gv]U and f̃v and g̃v are

representatives on U without real or spherical zeroes, then f̃ s
v identically

zero in U implies g̃sv identically zero in U .

Definition 5.5. Let U, U ′ ⊂ H be two axially symmetric open sets such that

U ∩ U ′ 6= ∅. If fv ∈ SRv(U) and gv ∈ SRv(U ′) are linearly dependent

over SRR(U∩U ′) inU∩U ′, then they define a vectorial class [fv∨gv]U∪U ′ ∈
V(U ∪ U ′) by





[fv] in U \ U ′

[fv] = [gv] in U ∩ U ′

[gv] in U ′ \ U

Definition 5.6. Let V ⊂ U ⊂ H be axially symmetric open sets and let

ωU ∈ V(U) be a vectorial class on U . The restriction morphism

res V,U : V(U) → V(V )

is defined by

res V,U(ωU) := ωU |U∩V =: ωV .

Proposition 5.7. The collection {U,V(U)} of vectorial classes over all ax-

ially symmetric domains U ⊂ H together with the families of restriction

morphisms res V,U : V(U) → V(V ), V ⊂ U, is a presheaf.

Proof. It is immediate that res U,U = id V(U). It is also immediate that

resW,V ◦ res V,U = resW,U holds for axially symmetric domains W ⊂ V ⊂
U, since vectorial classes are functions. �

Proposition 5.8. The presheaf {U,V(U)} is a sheaf and will be denoted by

V.

Proof. Let U be an axially symmetric domain and ̟U , ωU ∈ VU . Let

{Uα}α∈Λ be an open covering of U with axially symmetric open sets.

(i) Locality. If we have ̟Uα
= ωUα

for all α ∈ Λ, then by definition

̟U = ωU .
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(ii) Gluing. Let the vectorial classes ωα,Uα
, α ∈ Λ be such that

ωα,Uα
|Uα∩Uβ

= ωβ,Uβ
|Uβ∩Uα

, α, β ∈ Λ.

The function defined by

(ωU)|Uα
:= ωα,Uα

, α ∈ Λ,

is a vectorial class on U.

�

Remark 5.9. Vectorial classes V(U) are sections of the sheaf VU .

Let Ω be an axially symmetric domain and fv a vectorial function on Ω.
Then, being slice–regular, its symmetrization f s

v is either identically2 0 or

has isolated real or spherical zeroes.

Proposition 5.10. Let Ω be an axially symmetric domain, fv = f1i+ f2j+
f3k a vectorial function on Ω and assume that f s

v is not identically zero on

Ω. Let z0 be a real zero of f s
v . Then it is a real zero of fv and there exists

k > 0 such that

(q − z0)
−kfv =: gv,

gv ∈ SR[fv ](Ω) and gv(z0) 6= 0. Similarly, if fv has a spherical zero Sz0 =
{a+ Ib : I ∈ S} of multiplicity k > 0, then

(q2 − 2qRe(z0) + |z0|2)−kfv =: gv,

gv ∈ SR[fv ](Ω) and gv(q) 6= 0 for all q ∈ Sz0 , except maybe at one point.

Proof. First notice that z0 is a real zero of fv 6≡ 0 if and only if it is

a common zero of fl, l = 1, 2, 3. If z0 is a real zero of f s
v 6= 0 then

f 2
1 (z0) + f 2

2 (z0) + f 2
3 (z0) = 0 which implies that z0 is a common zero

of all the components of fv of multiplicity k for some k ∈ N, since

fl(z0) ∈ R, l = 1, 2, 3. Therefore we may factor out a slice–preserving

factor (q − z0)
k from f1, f2, f3 and hence the function (q − z0)

−kfv is

nonvanishing on a neighbourhood of z0. In other words, one can locally

write fv = λw, where w does not have real zeroes and λ 6≡ 0 is a slice–

preserving function. If fv has a spherical zero Sz0 = {a + Ib : I ∈ S},

then fl(a + Ib) = al + Ibl, l = 1, 2, 3 for any I ∈ S. For i = I we have

that f2(z0)j + f3(z0)k = x1j + x2k and f1(z0)i = a1i − b1, hence the

condition f1(z0)i+ f2(z0)j + f3(z0)k = 0 implies a1 = b1 = 0 and, analo-

gously, al = bl = 0 for l = 2, 3, hence f1, f2, f3 all have Sz0 as a spherical

zero. If the spherical zero is of multiplicity k, then we can factor out a term

(q2 − 2qRe(z0) + |z0|2)k from fl, with l = 1, 2, 3. �

2This doesn’t imply that fv is identically zero. Consider for example fv ∈ SR(H \ R)
defined as fv(x+ Iy) = Ii+ j; then f s

v
= I2+1 ≡ 0, fv 6≡ 0 (and fv has a zero on every

sphere).
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Definition 5.11. Let ω be a vectorial class on an axially symmetric domain

Ω. Define

SRω(Ω) = {g ∈ SR(Ω) : [gv]p ∈ ω(p), ∀p ∈ Ω}.
For the case ω = [0], notice that by definition SR[0](Ω) = SRR(Ω).

If f, g ∈ SRω(Ω) then also f ∗ g = g ∗ f ∈ SRω(Ω), because the last

term in the Formula (2.7) vanishes. In particular, since SRR(Ω) ⊆ SRω(Ω)
for any ω, if f ∈ SRω(Ω) and g ∈ SRR(Ω) then f ∗ g ∈ SRω(Ω).

Remark 5.2 suggests now the following

Definition 5.12. Let Ω be an axially symmetric domain and let ω ∈ V(Ω).
Let U ⊂ Ω be an axially symmetric open set and let w ∈ SRω(Ω) be the

vectorial part of a slice–regular function. Then w is called minimal on U if

it has neither real nor spherical zeroes on U.

We have shown that in the case f s
v 6≡ 0, spherical and real zeroes of the

vectorial part are precisely the common zeroes of the components of fv.
The vectorial function w(z) = z2i+

√
2zj + k is an example of a minimal

representative; it has an isolated zero on the unitary sphere S, namely z0 =
k−i√

2
j, and its symmetrization ws(z) = (z2 + 1)2 vanishes on S. Notice

furthermore, that z2 + 1 is not a common factor of the components of w.

For all fv ∈ SRv(Ω), the factorization fv = λw with w ∈ SR[fv](Ω)
minimal and λ ∈ SRR(Ω) is unique up to a multiplication by a slice–

preserving nonvanishing function. If wα, wβ are two minimal representa-

tives of the same vectorial class on an axially symmetric subset U ⊂ Ω,
then awα = bwβ for some a, b ∈ SRR(U) and by minimality both a and

b are nonvanishing on U ; moreover the zero sets of wα and wβ coincide.

Therefore, given a vectorial class ω on an axially symmetric domain Ω, we

can define the zero set Z(ω) of ω.

Definition 5.13. Let Ω be an axially symmetric domain and let ω ∈ V(Ω)
be a vectorial class.

If ω 6= 0, let w be a minimal representative of ω on an axially symmetric

open set U ⊂ Ω. Define Z(ω) ∩ U = w−1(0). Then the zero set Z(ω) of ω
is defined to be the union of all zeroes w−1(0) where w runs over minimal

representatives of ω on open axially symmetric subsets U of Ω.
If ω = [0], then we define Z([0]) = ∅.

Proposition 5.14. Let Ω be an axially symmetric domain and let ω ∈ V(Ω)
be a vectorial class. If w is a local minimal representative of ω on an axially

symmetric domain U ⊂ Ω, then

(i) if ws 6≡ 0, then Z(ω) ⊂ Ω is a discrete set of non real quaternions;

(ii) if ws ≡ 0 but w 6≡ 0, we have SZ(ω) = Ω, there is precisely one

zero of Z(ω) on each sphere and, moreover, Ω ⊂ H \ R.
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Proof. Let w be a local minimal representative of ω 6= [0] on a basic domain

U ⊂ Ω. Then ws is slice–preserving and hence it is either identically equal

to 0 or has isolated real or spherical zeroes (or no zeroes). If ws is not

identically equal to 0, the same holds for any other minimal representative

by the identity principle and then obviously the set Z(ω) is either discrete

or empty.

Assume that ws ≡ 0 but w 6≡ 0. Recall that, for any other representative

w̃ we have w̃s ≡ 0, by the identity principle. The identity principle implies

that Ω ⊂ H \R is a product domain. Indeed, if Ω is a slice domain, then on

the real axis the symmetrization ws is a sum of squares of real numbers and

hence, if it is identically 0, then by the identity principle also w ≡ 0 in an

axially symmetric domain containing Ω ∩ R, and hence in the entire slice

domain Ω; contradiction.

Now, ws ≡ 0 on the product domain Ω implies that w has a zero on each

sphere, and can have neither a sphere of zeroes nor a real zero, since it is a

minimal representative of ω.

Since ws = w ∗ wc and wc = −w, the equation ws(z0) = 0 im-

plies that either w(z0) = 0 or if w(z0) 6= 0, wc(z) = −w(z) = 0 for

z = w(z0)
−1z0w(z0) ∈ Sz0 . If there were two distinct zeroes on Sz0 then

extension formula would imply that w(Sz0) = 0, which contradicts the as-

sumption that w is minimal.

�

If fv = λw with w minimal and λ a slice–preserving function is the

(local) decomposition of fv, then f s
v = λ2ws. If ws is nonvanishing on

a basic domain U ⊂ Ω, then one can define square roots of f s
v and ws

(denoted as
√

f s
v and

√
ws) (see [AdF], Proposition 3.1. and next sections)

and find that
√
f s
v = ±λ

√
ws. Therefore we can state that:

Proposition 5.15. Let Ω be a basic domain, let ω 6= [0] be a vectorial class

on Ω with Z(ω) = ∅ and let fv ∈ SRω(Ω). If w is a minimal representative

of ω in Ω, then the normalized vectorial function

fv/
√

f s
v ∈ {±w/

√
ws}

is minimal and such that

(fv/
√

f s
v )

s = 1

in Ω.

Proof. After the premises to this statement, the proof is straightforward.

�



∗-LOGARITHM 19

6. LOCAL DEFINITION OF log∗.

We now reach the heart of the problem: if Ω is an axially symmetric

domain of H, given g ∈ SR(Ω) not vanishing in Ω and z ∈ Ω an arbitrary

point, find an open axially symmetric neighbourhood U of z and a function

f ∈ SR(U) such that

exp∗ f = g on U.

The assumption that g ∈ SR(Ω) is a nonvanishing function in Ω is in-

trinsic with the problem, since, where defined, the function exp∗ f is non-

vanishing. We will find necessary and sufficient conditions on g to define a

local logarithmic function of g.

Let us assume henceforth that Ω is a basic domain in H. After writing

g = g0 + gv and f = f0 + fv as in the previous section, we’ll proceed by

steps.

6.1. Case 0: g ∈ SR(Ω) is a constant function. To avoid confusion, the

constant function q0 will be denoted by Cq0 .

Consider first the case q0 = 1. Then the principal branch of the log-

arithm can be defined, because the function exp0 is a bijection between

{q : Im(q) ∈ S[0, π)} and H \ (−∞, 0] and so we can define

log∗,0,0 := log0(C1) = 0,

in the whole H. Choose a point z0 ∈ H and let ω be any vectorial class with

z0 6∈ SZ(ω). Let w be one of the two normalized minimal nonzero repre-

sentatives of ω (see Proposition 5.15) defined on a basic neighbourhood Uz0

of z0. Then, for all n ∈ Z, the function

(6.16) log∗,0,2nw(C1) := 2πnw

also satisfies exp∗(log∗,0,2nw C1) = 1 (see Formula (4.15)). If, moreover,

Uz0 ⊂ H \ R is a product domain then the imaginary unit function I is a

well-defined slice–preserving function and hence we have the possibilities

(6.17) log∗,m,nw(C1) := mπI + nπw,

on Uz0, where m,n ∈ Z are such that m + n ≡ 0 (mod 2). Notice that if

Uz0 is a basic slice domain, then the only possibilities are those appearing

in Formula (6.16).

For any constant function Cq0 , q0 ∈ H \ (−∞, 0], the situation is com-

pletely analogous, and we have

log∗,0,2nw(Cq0) := log0(q0) + 2nπw.

(for any n ∈ Z) on a basic slice neighborhood Uz0 of z0, and

(6.18) log∗,m,nw(Cq0) := log0(q0) +mπI + nπw,

on Uz0 , where m,n ∈ Z are such that m+ n ≡ 0 (mod 2).
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Consider now the constant function C−1. Define, for n ∈ Z,

log∗,0,2nw(C−1) := (2n+ 1)πw.

This function satisfies exp∗(log∗,0,2nw(C−1)) = −1 and on a basic product

neighborhood Uz0 of a point z0 ∈ H \ R we also have

log∗,m,nw(C−1) := πw + (mπI + nπw) = πw + log∗,m,nw C1,

for n +m ≡ 0 (mod 2). With the notation of the previous section, for any

constant function Cq0 , q0 ∈ H \ {0}, we have

log∗,m,nw Cq0 ∈ SRω(U).

Remark 6.1. Once a slice–regular logarithm of two slice–regular functions

g, h ∈ SR(U) is defined in a basic domain U , one can always add to each

logarithm a vectorial function 2nπw (with w any normalized minimal rep-

resentative of a vectorial class ω in the basic domain U with Z(ω)∩U = ∅),

but for the price of losing the property exp∗(log∗(g) + log∗(h)) = g ∗ h.
Indeed, notice that, for example, the equality

exp∗(log∗,2m1,2n1w1
(C1) + log∗,2m2,2n2w2

(C1)) = 1

is not necessarily valid, if w2 6∈ [w1] (compare (ii) in Theorem 4.14,

[AdF]). The property exp∗(log∗(g) + log∗(h)) = g ∗ h is still valid for

functions g, h ∈ exp−1
∗ (SRR(U)) ∩ (SRω(U)).

Remark 6.1 suggests to restrict our considerations to the sets

exp−1
∗ (SRω(U)) ∩ (SRω(U)). According to Proposition 5.14 and Defi-

nition 5.13 we have the following four different possibilities with respect to

the vectorial classes and the structure of their zero sets.

6.2. Case 1: g ∈ SRR(Ω) is slice–preserving, i.e. gv ≡ 0. Let’s now con-

sider the general case of a nonvanishing slice–regular and slice–preserving

function g = g0. In this case the involved regular functions behave like

holomorphic functions on each slice, but at the same time topological ob-

structions near the real axis complicate the problem of finding a logarithmic

function.

We assume that the necessary condition expressed by Formula (3.8), i.e.,

g0(Ω ∩ R) ⊂ (0,+∞), holds. Then, since g 6= 0, one can locally define a

logarithmic function of g in the following way. Consider a point z0 ∈ Ω.
If z0 6∈ R, then we have the following possibilities:

• g(z0) ∈ H \ (−∞, 0], then a logarithmic function of g can be de-

fined in a neighbourhood of z0 since the function exp0 is a bijection
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between R×S[0, π) and H\(−∞, 0]; indeed, locally, for all m ∈ Z,

we can define

log∗,2m,0(g) := exp−1
0 ◦g + 2mπI.

• g(z0) ∈ (−∞, 0). In this case a logarithmic function can be locally

defined for −g as in the previous point. And then we can exploit the

equality:

log∗,2m,0(g) = log∗,2m,0(−g) + πI = exp−1
0 ◦(−g) + (2m+ 1)πI

If z0 ∈ R, then by hypothesis g(z0) > 0 and we have the only possibility:

log∗,0,0(g) := exp−1
0 ◦g

since the function I cannot be defined on the real axis.

Remark 6.2. Condition (3.8) is necessary if we want the logarithm of a

slice–preserving function to be slice–preserving. If not, then this condition

is no longer needed. Indeed, consider any normalized minimal representa-

tivew of any vectorial class defined on an axially symmetric neighbourhood

U of z0 which is nonvanishing on U and assume that g(z0) < 0 for some

z0 ∈ R. Then log∗,0,0(−g) is defined and

f = log∗,0,(2n+1)w(−g) = log∗,0,0(−g) + (2n+ 1)πw

satisfies

exp∗ f = −g(−1)0(µ((2n+ 1)2π2) + ν(((2n+ 1)2π2)(2n+ 1)πw) =

= −g(−1)2n+1 = g.

Remark 6.3. The above considerations imply that given a nonvanishing

slice–regular and slice–preserving function g ∈ SRR(Ω) (not necessarily

satisfying condition (3.8), that g(Ω∩R) ⊂ (0,+∞)), one can always locally

define a slice–preserving logarithmic function of at least one of the two

functions g,−g or both, depending on the domain of definition.

6.3. Case 2: g ∈ SR(Ω) with gv 6≡ 0, gsv ≡ 0. Consider now g = g0 + gv
such that g is nonvanishing and gv is not identically 0 but gsv is (which im-

plies g0 is nonvanishing). Then Ω is a product domain since otherwise gv
would be identically 0 because of the identity principle (Proposition 5.14).

Therefore log∗,2m,0 g0 can be locally defined on a basic neighbourhood U
of any point of Ω, for all m ∈ Z. The class [gv] = ω does not have a nor-

malized minimal representative, therefore in this case we use the notation

log∗,m,0·[gv] to indicate, that the resulting function is in the class SRω(Ω)
but there are no periods in any minimal representative of [gv].

In general, whenever g = gv with gsv ≡ 0, the equality

exp∗ g = exp∗ gv = 1 + gv



22 GRAZIANO GENTILI, JASNA PREZELJ, AND FABIO VLACCI

holds, since g∗2v = −(gv)
s = 0 and then g∗kv vanishes for all k ≥ 2. In these

cases we put

log∗(1 + g) = log∗,0,0·[gv](1 + gv) := gv = g.

Assume now g = g0 + gv with g0 nonvanishing and gsv ≡ 0 in Ω. Then

one can write g = g0

(
1 +

gv
g0

)
; hence, from exp∗(log∗,0,·[gv] g) = g, one

concludes that

log∗,0,·[gv] g = log∗,0,0 g0 + log∗,0,·[gv](1 + gv/g0) = log∗,0,·[gv] g0 +
gv
g0
;

more in general, on a product domain U ⊆ Ω,

log∗,m,0 g := log∗,m,0 g0 +
gv
g0
, m ∈ Z,

which completely describes all possible solutions for exp∗ f = g with the

given assumptions for g, namely g not vanishing, gv 6≡ 0 and gsv ≡ 0 in Ω.

Example 6.4. Consider the function

z = x+ Iy 7→ Ψ(x+ Iy) := Ii+ j;

clearly Ψ = Ψ0 + Ψ1i + Ψ2j + Ψ3k is well-defined, slice–regular in Ω =
H \ R and constant on any slice and Ψ|Ω−k

≡ 0. Moreover, since Ψ0 = 0,

Ψ1 = I, Ψ2 = 1 and Ψ3 = 0, then Ψs
v = 0. Hence

exp∗Ψ = 1 + Ψ.

Notice that Ψ1 = I ∈ SRR(H\R) and cannot be extended continuously to

H. Consider now the function g(z) = z+Ψ(z); clearly g is a nonvanishing

slice–regular and slice–preserving function in Ω = H \ R. Furthermore,

g0 = Id and gv = Ψ and so, for any z ∈ H \ R, we have

(log∗,k g)(z) = [log∗,k(Id+Ψ)](z) = [log∗,k(g0 + gv)](z)

= log∗,k(z) +
Ψ(z)

z

= log(|z|) + [argI(z)(z) + 2kπ]I(z) + Ψ(z)

z
,

where log represents the usual real natural logarithm.

6.4. Case 3: g ∈ SR(Ω) and z0 ∈ Ω such that Z([gv]) ∩ {Sz0} = ∅.

The condition Z([gv]) ∩ {Sz0} = ∅ implies the following: either gv 6= 0
on Sz0 or there is a factorization gv = λw̃ with w̃ 6= 0 on Sz0 . Hence the

function h :=
√
w̃s is locally well-defined on a basic open neighbourhood
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U of z0 and satisfies h2 = w̃s. Put
√
gsv := λ

√
w̃s. The normalized vectorial

function
gv√
gsv

=
w̃√
w̃s

=: w

is thus well-defined in U. Similarly, the function ±√
gs is well-defined in

U. If U intersects the real axis, we choose the sign so that
√
gs(U ∩ R) ⊂

(0,+∞). Then f0 := log∗,0,0
√
gs is well-defined. If U does not intersect

the real axis then we define f0 in accordance to the next formula

(6.19)
f0 := log∗,2m,0(

√
gs), if

√
gs(Sz0) ⊂ H \ (−∞, 0) and

f0 := log∗,2m+1,0(−
√
gs), if

√
gs(Sz0) ⊂ (−∞, 0).

with m ∈ Z. Notice also that the image of a sphere Sz by a slice–preserving

function is always a sphere centered on the real axis.

For f = f0 + fv = log∗ g following Formula (4.15), we want the listed

equalities to hold:

fv√
f s
v

=
gv√
gsv
,

cos∗
√
f s
v =

g0√
gs
,

sin∗
√
f s
v =

√
gsv√
gs
.

For each I ∈ S define the complex manifold ΣI to be the regular set s−1(1)
for s : C2

I → CI , s(u, v) = u2 + v2. It is not difficult to show that the

mapping

T : CI → ΣI , T (q) = (cos q, sin q)

is a covering map and by construction we have

G :=

(
g0√
gs
,

√
gsv√
gs

)
: UI → ΣI .

There exist a lift G̃ such that the diagram

CI

T

  ❆
❆❆

❆❆
❆❆

❆

UI
G

//

G̃
>>⑥⑥⑥⑥⑥⑥⑥⑥

ΣI

commutes, i.e. T ◦ G̃ = G.
If UI is simply connected, U∩R is an open interval and G(U∩R) ⊂ S1 ⊂

R2 ⊂ (CI)
2, since all the functions are slice–preserving. The only possibil-

ity that both sin(z) and cos(z) are real, is, that z is real. Therefore for any

lift G̃ the restriction G̃|U∩R is real-valued and hence satisfies the reflection
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property G̃(z) = G̃(z̄). If UI has connected components UI,n, n = 1, 2,

then first define the function G̃ on UI,1 to be an arbitrary lift of G|UI,1
and

extend the definition to UI,2 by reflection property. Define
√
f s
v := G̃

on UI . The reflection property guarantees that
√

f s
v has a slice–preserving

extension to U.
In the case U ∩ R 6= ∅ the final formula is

(6.20) log∗,0,2nw g = log∗,0,0(
√
gs) + (

√
f s
v + 2nπ)

gv√
gsv
.

If U ∩ R = ∅ we also have periodicity in the scalar part and the formula is

(6.21) log∗,m,nw g = log∗,0,0(
√
gs) +mπI + (

√
f s
v + nπ)

gv√
gsv
,

where m,n ∈ Z are such that m + n ≡ 0 (mod 2) and the logarithm

f0 := log∗,0,0(
√
gs) is chosen in accordance with 6.19.

Notice that, contrary to the previous Cases 1 and 2 (and the next case,

Case 4), in Case 3 one cannot specify the “principal branch”, unless one

chooses a specific point in the domain and specific normalized minimal

representative.

6.5. Case 4: g ∈ SR(Ω) and z0 ∈ Ω are such that z0 ∈ SZ([gv]). With-

out loss of generality we assume that z0 ∈ Z([gv]), since the logarithmic

function is to be defined on a basic neighbourhood of z0. We have the fol-

lowing two possibilities:

(i) z0 is a nonreal isolated zero of gv,
(ii) z0 is a nonreal isolated zero and Sz0 is a spherical zero of gv.
Let’s first consider case (i). Since gs(z0) = g20(z0) 6= 0, we define

(6.22)
√
gs := g0

√
1 +

gsv
g20

with
√

defined using the principal branch of the logarithm (see For-

mula (1.4)). The function
√
gs is a slice–preserving and slice–regular func-

tion with g0(z0) =
√
gs(z0). This function is well-defined in a neighbour-

hood of Sz0 . Define

f s
v := µ−1

((√
1 +

gsv
g20

)−1
)

where µ−1 = µ−1
0 is the inverse function of µ from a neighbourhood of 1

to a neighbourhood of 0, so that f s
v (z0) = 0 (see Subsection 4.1). This is
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equivalent to the choice of the principal branch of arccos denoted by arccos0
indeed

f s
v =

(
arccos0

g0√
gs

)2

.

Recall that the function µ is locally invertible near 0 because µ′(0) =
(−1/2)ν(0) = −1/2. If the function −√

gs is chosen instead, f s
v cannot

be defined since the function µ has branching points at

µ−1(−1) = {(2k + 1)2π2, k ∈ N}.
Remark 6.5. The isolated nonreal zeroes of the vectorial part force the

choice of the function
√
gs to be such that g0(z)/

√
gs(z) = 1 for every zero

z of gsv.

For the definition of f0 we have to calculate a logarithm of
√
gs depending

on the two cases as in (6.19):

f0 := log∗,2m,0(
√
gs), if

√
gs(Sz0) ⊂ H \ (−∞, 0) and

f0 := log∗,2m+1,0(−
√
gs), if

√
gs(Sz0) ⊂ (−∞, 0).

with m ∈ Z. Since f s
v (z0) = 0 in both cases, we have µ(f s

v )(z0) =
ν(f s

v )(z0) = 1.
Define the vectorial function fv to be

fv = exp∗(−f0)
gv

ν(f s
v )
.

Then f = f0 + fv solves exp∗ f = g. The complete formula is

log∗,m,0·[gv] g(6.23)

= log∗,m,0((−1)m
√
gs) +

gv

ν
(
µ−1

(
1/
√
1 + gsv

g2
0

))√
gs
,

where m depends on the values of
√
gs as in (6.19) and ν is defined in

Formulas 4.12 and 4.13. Notice that the period in the imaginary direc-

tions appears from the definition of the branches of logarithm for the slice–

preserving part.

If, in addition, Sz0 is also a spherical zero of gv, the necessary condition,

namely that g0(z) =
√
gs(z) for every zero of gsv, is fulfilled on the whole

sphere Sz0, hence the same formula applies to the case (ii).

Remark 6.6. In the case where the zero z0 has even multiplicity, the square

root
√
gsv is well-defined and we could follow the construction for Case 3

and get Formulae (6.20) or (6.21); instead the vectorial part

(
√

f s
v + 2kπ)

gv√
gsv
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has a pole unless we choose k = 0. In addition, we must also have√
f s
v (Sz0) = 0 and this implies that

arccos
g0√
gs
(z0) = 0,

which at the end gives Formula (6.23).

Remark 6.7. Let f, g, w ∈ SRω(U) for U a basic domain in H and let

w be a normalized representative of ω on U. Assume that ∀ m,n ∈ Z,
log∗,m,nw fg, log∗,m,nw f and log∗,m,nw g, all exist. Since there is no ‘princi-

pal branch’ in w, there is no reason that the equality

log∗,m,nw fg = log∗,m0,n0w f + log∗,m−m0,(n−n0)w g

should hold; in general we have

log∗,m,nw fg = log∗,m0,n0w f + log∗,m−m0,(n−n0)w g + 2kπw.

7. GLOBAL DEFINITION OF log∗ AND PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1, namely we consider the global

problem of determining the logarithmic function of a given slice–regular

function, with the requirement that the logarithmic function defines the

same vectorial class as the original function: if Ω is a basic domain of H,

given g ∈ SR(Ω) not vanishing in Ω, find f ∈ SR[gv](Ω) such that

exp∗ f = g on Ω.

A classical result in complex analysis states that it is not possible to define

log(z2) on C \ {0} and hence it is also not possible to define a logarithmic

function of p2(q) = q2 on H \ {0}, although the function p2 satisfies the

necessary condition (3.8).

7.1. Proof of Theorem 1.1. The proof of Theorem 1.1 is presented accord-

ing to the four cases as in Section 6. Here we recall the statement, before

proving it.

Theorem 1.1. Let Ω ⊆ H be a basic domain and let g ∈ SRω(Ω) be a

nonvanishing function. Then it holds:

(a) if ω = [0], a necessary and sufficient condition for the existence of

a ∗-logarithm of g on Ω, log∗ g ∈ SR[0](Ω) = SRR(Ω), is

g(Ω ∩ R) ⊂ (0,+∞);

(b) if ω 6= [0], then if Z(ω) = ∅ or if SZ(ω) = Ω there are no

conditions, and a ∗-logarithm of g on Ω, log∗ g ∈ SRω(Ω), always

exists;
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(c) if ω 6= [0] and Z(ω) is discrete, a sufficient condition for the exis-

tence of a ∗-logarithm of g on Ω, log∗ g ∈ SRω(Ω), is the validity

of both inclusions

(1.24)
√
gs(Ω ∩ R) ⊂ (0,+∞)

and

(1.25)
g0√
gs
(Ω) ⊂ H \ (−∞,−1].

6.1.1. Proof of Theorem 1.1 (a). The conditions in (a) correspond to Case

1 presented in subsection 6.2. Assume that Ω is a basic product domain.

This implies that the imaginary unit function I is well-defined. In each

leaf C
+
I the set Ω+

I := C
+
I ∩ Ω is simply connected. Assume that g ∈

SRR(Ω) is a nonzero function. Then g+I := g|Ω+

I
→ CI is holomorphic and

therefore it has a holomorphic logarithm f+
I := log g+I . Because g is also

slice–preserving, we can define log−I g
+
−I(z) = logI(g

+
I (z)) and extend the

logarithm to Ω. Denote this extension by f = log∗ g. Similarly, the whole

family of logarithmic functions fk = log∗((−1)kg) + kπI is also well–

defined. Notice that it is essential for this construction that the imaginary

unit function I exists.

Next, assume that Ω is a basic slice domain. Then in each leaf C+
I the

set Ω+
I := C

+
I ∩ Ω is simply connected and the intersection ΩR := Ω ∩ R

is connected. Assume that g ∈ SRR(Ω) is a nonzero function satisfying

g(Ω ∩ R) ⊂ (0,∞). Let Ω0 be a connected component of g−1(g(Ω) ∩
(H \ (−∞, 0])) which contains the set ΩR. Since the image g(Ω0) does not

intersect the negative real axis, the function f0 = log∗,0,0 g is well–defined

on Ω0 and it is the unique logarithm as explained in Section 6.

If Ω = Ω0 the problem is solved so assume that Ω 6= Ω0. Then Ω0 is

an open neighbourhood of an interval ΩR. The set Ω1 := Ω \ ΩR is also

connected and basic, but Ω1,I := Ω1 ∩ CI has two connected components,

Ω1,I±. Choose the component Ω1,I+. Since it is simply connected, the func-

tion g has a complex logarithm f+ on Ω1,I+. On the intersection of their

domains of definition (which is an open connected set), the functions f0
and f+ differ by 2πkI, f0 = f+ + 2kπI. Redefine f+ to be f+ + 2kπI
and define f− to be the Schwarz reflection of the function of f+. Since f0 is

slice–preserving, f0(z) = f0(z), the reflected function coincides with f0 on

the intersection of domains of definition and hence defines a function f on

ΩI , which satisfies f(z) = f(z). By the extension formula, the function f
can be extended to a slice–preserving function on Ω.

6.1.2. Proof of Theorem 1.1 (b). The first condition in (b), ω 6= 0, Z(ω) =
∅, corresponds to Case 3 presented in Subsection 6.4. The function gs is
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nonvanishing, the function gsv has isolated real or spherical zeroes with even

multiplicities and Ω is a basic domain, which are precisely the conditions

of Proposition 1.6 in [AdF], which states, that under these conditions, the

square roots
√
gs and

√
gsv can be globally defined on Ω. Moreover, the

normalized vectorial class
gv√
gsv

=: w

is globally well-defined and nonzero on Ω. Therefore Formulae (6.20) and

(6.21) are globally valid and the logarithm exists.

The second condition in (b), ω 6= 0, SZ(ω) = Ω and hence Ω ⊂ H \ R,
corresponds to Case 2 presented in subsection 6.3. As already mentioned,

when in Case 2, the basic domain Ω does not intersect the real axis and g0
is not vanishing in Ω. Then, for m ∈ Z, one can define

log∗,2m,0·[gv] g := log∗,2m,0 g0 +
gv
g0

since from the previous considerations log∗,2m,0 g0 is well–defined on Ω.

6.1.3. Proof of Theorem 1.1 (c). The condition in (c), ω 6≡ 0, Z(ω) is

discrete, corresponds to Case 4 presented in Subsection 6.5. The logarithm

log∗
√
gs exists by Case 1. The assumptions imply that µ−1

0 (g0/
√
gs) is

well-defined on Ω and that g0(z) =
√
gs(z) for every zero z of gsv, because

−1 is not in the image of g0/
√
gs. Hence the logarithm is given by Formula

(6.23). �

Remark 6.2. Notice that in the hypotheses of case (c) of Theorem 1.1, the

stated sufficient conditions are always fulfilled on “small” basic product

domains that are neighbourhoods of a (non real) z0 ∈ Z(ω) (For instance

on any set SB4(z0, r) with small enough r > 0).

Since, by definition, every set SRω(Ω) contains also the set SRR(Ω),
Theorem 1.1 (b) yields the following

Corollary 6.3. Let Ω be a basic domain, g ∈ SRR(Ω) and let ω be a

vectorial class in Ω with Z(ω) ∩ Ω = ∅. Then there exists a logarithmic

function of g in the class SRω(Ω), denoted by log∗ g.

6.2. The case of one isolated non real zero. For the case of a slice–regular

function defined on a basic product domain, and whose vectorial class has

only an isolated zero, we can - as announced - produce a formula for the

∗-logaritms.

Theorem 6.4. Let g ∈ SRω(Ω) be a nonvanishing function and Ω be a

basic product domain. Let Z(ω) ∩ Ω = {z0} and let
√
gs be such that
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√
gs(z0) = g0(z0). Then there exist a logarithmic function f of g, f ∈

SRω(Ω), given by the formula

(6.26) f = log∗,m,0·[gv] g = log∗,m,0((−1)m
√
gs)+

gv
ν (µ−1 (g0/

√
gs))

√
gs
,

where log∗,m,0 = log∗,0,0+mπI for m ∈ Z and

(a) m is even if
√
gs(Sz0) ⊂ H \ (−∞, 0) or odd if

√
gs(Sz0) ⊂

(−∞, 0),
(b) the function

µ−1
(
g0/

√
gs
)

is the lift of the function g0/
√
gs with respect to the mapping µ such

that

µ−1
(
g0/

√
gs
)
(z0) = 0.

Proof. The logarithm of
√
gs exists by Theorem 1.1 (a), because Ω ⊂ H\R.

The function
√
gs is such that not only

√
gs(z0) = g0(z0) but also

√
gs(z) =

g0(z) for every z ∈ Sz0 . Indeed, on Sz0 we have
√
gs(z) =

√
g20(z) and

since
√
g20(z0) = g0(z0), the same holds on the whole sphere Sz0 . We have

to show that the lift of the function g0/
√
gs via µ can be defined on Ω. First

observe that (g0/
√
gs)−1(1) ∩ Ω = Sz0 . Let I be such that z0 ∈ CI,+ and

choose an arc lI,+ connecting z0 to the boundary of ΩI,+ := Ω ∩ CI,+. Let

lI,− be the reflected arc. The domain ΩI,+ \ lI,+ is simply connected and

(g0/
√
gs)(ΩI,+ \ lI,+) ⊂ CI \ {±1}.

Since the map µ is a slice–covering map from H \ {k2π2, k ∈ N} to H \
{±1}, the lift G of g0/

√
gs exists,

CI \ {k2π2, k ∈ N}
µ

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

ΩI,+

G
77♦♦♦♦♦♦♦♦♦♦♦♦♦ g0/

√
gs

// CI \ {±1}

and can be chosen in such a way that limz→z0 G(z) = 0. Cover the arc

lI,+ with a (possibly infinite) chain of discs Di such that z0 ∈ D0 and

each Di intersects only Di−1 and Di+1 and intersections are connected. Let

G0 := µ−1
0 (g0/

√
gs) near z0. The lifts G and G0 coincide on D0 \ lI,+ and

hence define a lift on the union D0∪(ΩI,+\lI,+) which we also denote by G.
Since z0 is the only point with value g0/

√
gs(z) = 1 in ΩI,+, we can choose

a lift G1 on D1 so that it matches G0 on D0 ∩D1. Since D1 ∩ (D0 ∪ ΩI,+)
is connected, by the lifting property, the lift G1 also matches the lift G on

D1 \ lI,+. Repeating this procedure extends the lift G to ΩI,+. Notice that

G(z) 6= k2π2, k ∈ N and so ν(G) 6= 0. Extend the definition of G to ΩI,−
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by Schwarz reflection and then use the extension formula to get a slice–

preserving function, which we denote - with a slight abuse of notation - by

µ−1(g0/
√
gs). The logarithm is now given by Formula (6.23). �

Example 6.5. Consider the function

g(z) = −1 + z2i+
√
2zj + k

defined on H. Because gs = 1+(z2+1)2, the zeroes of gs on CI are z1,2 =√
±I − 1 and z3,4 = −

√
±I − 1. Hence these zeroes lie on the sphere with

radius r = 21/4 > 1.1, so g is nonvanishing in the ball Ω = B4(0, 1.1). A

simple calculation shows that gs maps ΩI to a cardioid-shaped domain in

the right half-plane of H, so the image misses the negative real axis, hence

there exists a unique logarithmic function of gs, namely log0 g
s. Since the

domain Ω intersects the real axis, the necessary condition for logarithm of√
gs to exist is (3.8),

√
gs(Ω∩R) ⊂ (0,+∞), therefore the only possibility

for the definition of f0 is to take the principal branch of the square root and

set

f0 := log∗,0,0
√
gs =

1

2
log∗,0,0 g

s.

The vectorial function gv has only z0 = k−i√
2
j as the unique (double) zero

and the symmetrization of gv is gsv = (z2+1)2 on Ω. Unfortunately, g(z0) =
g0(z0) = −1 and

√
gs(z0) = 1 and hence condition (1.6) no longer holds,

which makes it impossible to define the functions fv and f s
v near the point

z0, because −1 is a branching point for µ−1. Notice that the function g
meets the hypotheses of Theorem 1.1 (c), but does not fulfil one of the

stated sufficient conditions, namely condition (1.6).
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