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ABSTRACT Deep Neural Networks (DNNs) are the preferred choice for image-based machine learning
applications in several domains. However, DNNs are vulnerable to adversarial attacks, that are carefully-
crafted perturbations introduced on input images to fool a DNN model. Adversarial attacks may prevent the
application of DNNs in security-critical tasks: consequently, relevant research effort is put in securing DNNS.
Typical approaches either increase model robustness, or add detection capabilities in the model, or operate on
the input data. Instead, in this paper we propose to detect ongoing attacks through monitoring performance
indicators of the underlying Graphics Processing Unit (GPU). In fact, adversarial attacks generate images
that activate neurons of DNNs in a different way than legitimate images. This also causes an alteration
of GPU activities, that can be observed through software monitors and anomaly detectors. This paper
presents our monitoring and detection system, and an extensive experimental analysis that includes a total
of 14 adversarial attacks, 3 datasets, and 12 models. Results show that, despite limitations on the monitoring
resolution, adversarial attacks can be detected in most cases, with peaks of detection accuracy above 90%.

INDEX TERMS Attack detection, anomaly detection, graphics processing unit, deep Neural Networks,

adversarial attacks, image classification.

I. INTRODUCTION

Machine Learning (ML) is the enabling technology for
a multitude of services, with increasing applications in
security-critical domains, including financial market [74],
healthcare [72], industrial automation [75], transportation
systems [73], and energy management [76]. Most recent
machine learning systems exploit Deep Neural Networks
(DNNs), which notably outperform other machine learn-
ers especially for image classification [71], [75] and image
processing applications [80].

Unfortunately, recent works have repeatedly shown that
DNNs can be fooled by adversarial attacks [52], [58]. These
attacks are primarily crafted against object classification
where, given an input x of class y, the goal of the attack
is to generate a new input x’ that is similar to x but it is
not classified as y [22]. In addition to classification tasks,
adversarial attacks have been applied to other image-based
ML applications such as self-driving agents [1], [55], [56].
Further, it has been recently shown that these attacks can be
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directly exercised against physical sensors (e.g., cameras).
For example, the work in [3] showed that a classifier can be
attacked through images displayed on cameras. Similarly, the
works in [53] and [55] deceive autonomous cars by placing
respectively tags on traffic signs, and stickers at intersections.
Last, authors of [54] tricked a facial biometric system using
an eyeglass frame with a colored pattern.

Consequently, it is crucial to understand how adversarial
attacks can be perpetrated, and consequently build security
defenses. Typical defenses aim at either making the DNN
robust against adversarial attacks, or at detecting that the input
is an adversarial one [52]. These approaches operate either
on the training dataset, enriching the training phase with
additional adversarial data to improve model robustness [25],
or on the model itself e.g., appropriately building the model
to identify adversarial inputs [37]. However, there is plenty of
experimental evidence that shows the problem is still open:
attacks can still go undetected even when applying the most
recent security defenses [86], [87].

In this paper, we present an approach to the detection
of adversarial attacks which is based on a new perspec-
tive, and that is complementary to existing approaches. Our
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approach monitors performance indicators of the Graphics
Processing Unit (GPU) to discover possible fluctuations of
the monitored values when adversarial inputs are processed
by the DNN model instead of legitimate inputs. The over-
all idea relies on the common knowledge that activation
patterns of DNN neurons are different when classifying a
legitimate input or an adversarial input [50]-[52]. We first
hypothesize that 1) the different activation patterns alter the
computational load on the GPU which executes the DNN
model, and ii) such alterations can be detected thanks to a
software monitor and an anomaly detector. Then, we confirm
our hypothesis with extensive experiments, to show the abil-
ity to detect adversarial attacks under different conditions.
More precisely, to confirm our hypotheses we operate as
follows:

« First, we present the software monitor to observe and
log GPU performance indicators, and we identify the
indicators more relevant for our purpose.

o Then, using the library in [2], we compute adversarial
images for 14 adversarial attacks, on 3 image datasets
and for 12 DNN models.

« Next, we feed the images to the DNN models, and we
observe the GPU activity with a software monitor. Over-
all, we collect approximately 10 GB of data that describe
the GPU activity when the DNN models are processing
either the image datasets or adversarial images.

o We then process such data with a supervised anomaly
detector to provide evidence that adversarial attacks
can be detected through the analysis of GPU perfor-
mance indicators. In the majority of cases, it is possible
to detect ongoing attacks, despite detection accuracy
ranges from above 90% to less than 60% depending on
the DNN model, the attack, and the image dataset.

« Additionally, we observe how probing resolution
often ends up being too coarse-grained. Consequently,
we foresee that the availability of dedicated hard-
ware/software probes with increased resolution could
drastically improve detection accuracy.

As additional contribution, we believe that the data logged
from GPU performance indicators, released at [5], can be
used as reference for attack detection tasks: in fact, it is the
first publicly available dataset that reports on GPU activity
during image classification. We release ~130 GB of adver-
sarial images, and ~10 GB of tabular data logged from
the GPU. Generating all the data required multiple weeks
of 24/7 execution: therefore, having it readily available can
represent a valid accelerator and a benchmark for the work of
researchers which aim to face the same or similar challenges.
In addition, we release a software suite [4] to reproduce all
the data of this paper, from generation of attacks datasets to
GPU logging and analysis.

The rest of the paper is organized as follows. Section II
presents background notions and positions our paper with
respect to existing approaches. Section III describes our mon-
itoring system, letting Section IV to present the experimental
approach. Section V discusses results, whereas Section VI
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concludes the paper and debates on existing limitations and
future works.

Il. BACKGROUND, MOTIVATIONS AND STATE OF

THE ART

We present background notions on adversarial attacks and
defenses (Section II.A and Section I1.B), and on the detection
of attacks achieved via anomaly detection (Section IL.C).
Then, at the light of the presented notions, we review moti-
vations and novelty of our paper (Section II.D), and we
identify how it differentiate from related works on this subject
(Section ILE).

A. ADVERSARIAL ATTACKS

DNNSs are vulnerable to adversarial attacks, in which inputs
(images, texts, tabular data, etc.) are deliberately modified to
produce a desired response by the DNN model, while being
perceptually indistinguishable from the legitimate inputs [3],
with few exceptions e.g., adversarial patches [20] where col-
ored patches are sticked on the input image. If adversarial
attacks act without knowledge of the DNN model, they are
named as black-box attacks; otherwise, if they exploit spe-
cific weaknesses of a given DNN model, they are white-box
attacks.

Especially for image classification, adversarial attacks
can deceive a target model to produce completely wrong
predictions by adding small perturbations to the legitimate
image [1], [38], [52]. Adversarial attacks to images usually
target classification tasks, and are organized in three cate-
gories: poisoning, extraction and evasion attacks [2], [38],
[52]. In poisoning attacks, attackers deliberately manipulate
the training data to significantly decrease the performance of
the DNN model, trigger targeted misclassification, and insert
backdoors and neural trojans. Extraction attacks instead aim
to develop a new model, starting from a proprietary black-box
model; the new model emulates the behavior of the original
model. In this paper, we focus on evasion attacks only, which
target DNNs (typically, classifiers) while they are performing
their task.

Evasion attacks modify the input to a DNN model such that
it is misclassified, while keeping the modification as small
as possible [38]. Evasion attacks can be black-box or white-
box. Black-box evasion attacks are mostly based on the pos-
sibility to input any image at will and acquire classification
results. An attacker can then leverage the acquired results
to design more effective adversarial examples to fool the
target DNN model [27]. White-box evasion attacks assume
that the attacker has full access to the model, including the
architecture and its parameters [22].

B. DEFENCES AGAINST ADVERSARIAL ATTACK
Several security defenses against adversarial attacks were
proposed in recent years and they are usually categorized in
the three groups [2] below.

Model hardening generates a new DNN model with better
robustness properties than the original one; typically, the
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DNN is trained using a dataset enriched with adversarial
examples [25].

Data preprocessing aims to increase robustness by apply-
ing transformations of the inputs and labels at test and/or
training time, before feeding the input to the DNN model.
For example, in [37] the input image is transformed before it
is processed by the classifier.

Runtime detection of adversarial samples extends the orig-
inal classifier with a detector to check whether a given input
is adversarial or legitimate. For example, it could determine
whether the model is under attack by tracking the activations
of the neurons in hidden layers (the called deep features) of
the target DNN [39], or by observing the output distributions
of the hidden neurons in a classifier [40].

C. ANOMALY DETECTION

Anomaly detection refers to the problem of finding pat-
terns in data that do not conform to the expected (normal)
behavior [59]. The underlying assumption is that pattern
changes are caused by specific and non-random factors, such
as the activation of ongoing attacks. Consequently, in the last
decade, the detection of attacks, intrusions and failures using
anomaly detection has been largely explored especially in
case of trace logs [77], [78], or traffic data [79]. Anomaly
detectors are often applied to detect intrusions [65], [67] or
to predict failures [60], based on the hypothesis that the acti-
vation of a fault or an ongoing attack generates increasingly
an anomalous performance-related behavior.

Additionally, anomaly detectors have been recently used
to detect attacks to DNNs [62], [64] or other classifiers [63],
by observing anomalies in the input data distribution or in the
activation of hidden layers.

D. MOTIVATION AND NOVELTY OF OUR CONTRIBUTION
Adversarial attacks introduce small perturbation in images,
so that the DNN model activates alternative neurons which
are typically not activated by legitimate inputs [40], [50].
The neuron activation patterns of DNNs which process an
adversarial input are quite different from those given by legit-
imate inputs of the same class [40]. From this observation,
we hypothesize and experimentally show that i) given a DNN
model that runs on a GPU, adversarial attacks to the DNN
model generate a GPU load which is different than the GPU
load obtained with legitimate inputs; ii) this leads to different
values collected from the performance indicators of the GPU,
and iii) such different values can be detected by an anomaly
detector. This allows building a runtime detector of adver-
sarial samples based on GPU performance indicators. Our
approach is complementary to existing defense mechanisms
reviewed in Section II.B. In fact, it collects values of GPU
performance indicators with no access to the model and to
the input data, and it executes independently from the DNNs
executing on the GPU.

Further, to be aligned with the vast majority of works on
adversarial attacks [18], [20], [22], [23], [25], we consider
image classification models.
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E. RELATED WORKS

To the best of our knowledge, our work is the first attempt to
propose a runtime detector of adversarial images by observ-
ing anomalies from GPU performance indicators. The only
work which we deem close to our approach is the recent
work [1] which, amongst other contributions, observes spikes
in GPU memory overhead and GPU utilization overhead, and
shows that adversarial attacks can be detected observing the
increased usage of GPU resources.

The most relevant differences from our work are three.
First, to our understanding the models in [1] are trained
on datasets augmented with the adversarial examples for
robustness, and attacks are launched while running defensive
methods. This may be the reason for the visible spikes of
the monitored GPU performance indicators in [1], which we
do not confirm in our experiments; for example, differently
from [1] we believe that observing the GPU memory over-
head is not useful. Second, the detection approach in [1] is
based on static thresholds: instead, we use ML algorithms
for anomaly detection, which is clearly a more powerful
approach. Third, the study in [1] is limited to 3 DNN models
and 5 attacks on a single dataset, while we use 12 DNN
models, 14 attacks and 3 datasets; this is particularly relevant
as we record significant differences depending on the model,
attack, and dataset in use.

Ill. MONITORING FOR ADVERSARIAL ATTACKS

A. OVERALL ARCHITECTURE

To reach our goal, we need to: i) build a GPU monitor which
exploits drivers and software probes to periodically collect
performance indicators from the GPU, and ii) design and
train a runtime anomaly detector which detects anomalies
caused by adversarial attacks. We notice that the detection
of an anomaly should trigger a response: however, response
strategies are outside the scope of this work.

We present our GPU Monitor and Runtime Anomaly
Detector in Figure 1. First, we observe that it does not interact
with the existing components of DNN-based applications,
which we depicted in the upper-left side of Figure 1; for
example, applications can rely on PyTorch or Tensorflow.
When performing a classification, the predicted class of the
input image should be paired with the output of the anomaly
detector. The GPU Monitor provides information from the
GPU, whereas the Runtime Anomaly Detector uses such
information to decide on the image legitimacy, i.e., if it is an
adversarial image or a legitimate image.

B. THE GPU MONITOR

The GPU Monitor relies on specific drivers or probes that
can periodically query the GPU and retrieve values of per-
formance indicators. Those drivers clearly depend on the
GPU hardware and on the operating system. In our approach,
we use a GPU NVIDIA Quadro RTX 5000 and related drivers
and tool suites on Linux OS. However, our approach fits all
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FIGURE 1. The GPU monitor and runtime anomaly detector.

recent NVIDIA GPUs, with differences only on the proper
selection of performance indicators.

The monitoring probes are provided by the utility NVIDIA
System Management Interface (NVIDIA-smi, [46]). We con-
figure NVIDIA-smi to collect all the available indicators for
our GPU. Further, we enable on the GPU: i) the Error Correct-
ing Code (ECC) mode, which allow gathering error counts for
various types of ECC errors, ii) the persistence mode, so that
the NVIDIA driver remains loaded even when no active
clients exist: this minimizes the driver load latency associ-
ated with running the dependent applications (i.e., CUDA
programs) and increases repeatability of experiments, and iii)
the accounting flag, which computes statistics on individual
processes running on the GPU.

The GPU Monitor can acquire periodically performance
indicators from five probes with NVIDIA-smi, as follows:

o query-gpu (70 indicators): indicators about current GPU
status and utilization,

o supported-clocks (7 indicators): the list of clocks com-
binations that the GPU can operate on, which indicates
the frequency at which the different parts of the GPU are
running,

o compute-apps (8 indicators): information on the pro-
cesses which are currently running on the GPU,

o accounted-apps (11 indicators): details on the process
which previously accessed the GPU for computation,

o retired-pages (8 indicators): the memory pages that have
been retired. Pages are retired in case of double bit
errors or multiple single bit errors which could not
be corrected by the available SECDED (Single Error
Correction-Double Error Detection) mechanism.

We rework the GPU Monitor to i) minimize the number
of performance indicators to be processed, and ii) create a
unique output out of the different probes. The following four
steps are valid for our setup, and it is recommendable to
cross-check them for different systems.

First, we observe that accounted-apps and retired-pages
return null values for most of the indicators in most of our
experiments. Therefore, we discard those two probes.

Second, we observe that query-gpu has an average sam-
pling period of 30 milliseconds (it outputs 33 times per
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seconds), while supported-clocks and compute-apps have a
sampling period of approximately one second. Additionally,
query-gpu returns 1 csv (comma-separated value) line for
each individual output i.e., it produces an average of 33 lines
per second. Instead, in the same timeframe supported-clocks
and compute-apps return hundreds of csv lines. To tackle
these issues, our GPU Monitor aggregates the outputs of
the probes as follows. Each output of query-gpu matches an
output from the GPU Monitor. The GPU Monitor enriches
the output with aggregated information from all the csv lines
produced by supported-clocks and compute-apps in their
most recent sampling period. The aggregated information is
the maximum, minimum, mean and the standard deviation of
each numerical column in the csv lines of supported-clocks
and compute-apps.

Third, the GPU monitor discards all timestamps, because
our study does not focus on the analysis on time series; more-
over, using the timestamp as a feature to train an anomaly
detector would be a trivial mistake [41]: the detector should
not use the timestamp to decide on the image, because the
values learned from such feature have no relevance when it is
deployed after training.

Fourth, we observe that most of the performance indica-
tors do not carry informative content that is useful for the
detection of anomalies. In fact, values of many indicators are
constant throughout all experiments and do not fluctuate at
all: those can be dropped by the GPU Monitor.

We summarize the remaining 12 performance indicators
in Table 1. Noteworthy, Table 1 does not include any per-
formance indicator from compute-apps. However, it is rec-
ommendable to repeat the selection of monitored features in
case of novel experiments in different settings. For example,
the GPU memory in use is a relevant indicator in [1] to per-
form detection, whereas used_gpu_memory from compute-
apps [46] is constant through the execution of a DNN model
in our experiments.

C. RUNTIME ANOMALY DETECTOR

The Runtime Anomaly Detector elaborates the latest output
of the GPU monitor, to decide if a DNN was fed with adver-
sarial images or legitimate images in the last sampling period
(30 milliseconds, from Section III.B).

For the purpose of this paper, we run the Runtime Anomaly
Detector offline i.e., we first save data from the GPU Monitor
and then we apply anomaly detection on such data. While the
architectural structure of Figure 1 does not change, this allows
storing data and comparing multiple anomaly detection
algorithms.

We rely on supervised anomaly detection, which is more
consolidated in the literature and offers better detection per-
formance than unsupervised alternatives [81], [82]. Super-
vised algorithms take advantage of labels in training data: in
our case, labels refer to the legitimacy of images that are pro-
cessed by the DNN model. The data from the GPU Monitor
(and then processed by the Runtime Anomaly Detector) is
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TABLE 1. Our selection of GPU performance indicators, collected from
the GPU monitor.

GPU Performance
Indicator (Feature)
Indicators from probe query-gpu

Percent of time during which kernels
(applications) were executing in the last sampling
period

Percent of time during which the device memory
was being read or written in the last sampling
period

GPU temperature

Description

utilization.gpu

utilization.memory

temperature.gpu

clocks.current.graphics | Current frequency of graphics (shader) clock
Current clock frequency of the Streaming
Multiprocessor (the computing module of the
GPU)
clocks_throttle reason |Information about factors that are reducing the
s.active frequency of clocks, reported in a bitmask
clocks_throttle_reason
s.hw_slowdown It indicates that, to reduce the frequency of core
clocks_throttle reason [clocks, hardware slowdown is engaged e.g.,
s.hw_thermal slowdo |because of high temperature.
wn
clocks_throttle reason |The frequency of clocks may be reduced because
S.SW_power cap the GPU is consuming too much power
clocks.current.video  |Current frequency of video clock
power.draw Last measured power draw for the entire board
fan.speed Speed the device’s fan is intended to run at
Indicators from probe supported-clocks

clocks.current.sm

mem_clock min
mem_clock avg
mem_clock std
graphics_clock avg
graphics_clock_std

Minimum, average and standard deviation of]
supported memory clocks combinations

Average frequency and standard deviation of]
supported graphics (shader) clocks combinations

labelled as legitimate if no adversarial images are processed
in the related probing interval, and adversarial otherwise.

Selecting the most suitable anomaly detection algorithm
is difficult and time-consuming, because it usually requires
comparison studies and empirical evaluation of multiple
alternatives [65], [68]. Therefore, we run preliminary tests
by using a wide variety of supervised anomaly detec-
tors [83], [84] as Gradient Boosting, k-NN, Random Forests,
ADABoost, LDA, Naive Bayes, Logistic Regression, Sup-
port Vector Machines, Multi-Layer Perceptron, and neural
networks enhanced with entity embedding. Results of pre-
liminary tests suggested to rely on neural networks enhanced
with entity embedding [47], because they achieved signifi-
cantly better results in almost all our preliminary tests. Con-
sequently, we will proceed with neural network with entity
embedding from now on, while results with other approaches
are available for reference at [4]. Entity embedding maps
similar values in the embedding space to reveal the intrinsic
properties of the categorical (i.e., discrete) variables [47].
This improves fitting of neural networks on tabular data, espe-
cially when the data is sparse and/or statistics are unknown.
The Python code to execute the Runtime Anomaly Detector
was crafted starting from [48] and it is available at [4].

IV. GPU PERFORMANCE INDICATORS: DATASET
GENERATION

We describe the experimental process that generates the
labelled datasets of GPU performance indicators (on such
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datasets, we apply anomaly detection as from Section III.C).
First, we present our general strategy (Section IV.A). Then
we present the 3 image datasets (Section IV.B), the 12 DNNs
models (Section IV.C), and the 14 adversarial attacks
(Section IV.D). The source code to reproduce these steps
is available at [4], while data and trained models can be
retrieved from [5].

A. METHODOLOGY

1) SELECTION OF IMAGE DATASETS AND CLASSIFIERS

We start by selecting 3 image datasets, detailed in
Section IV.B. Each dataset is partitioned into a train set and a
test set. We train 4 DNNs on each of the 3 train sets separately,
obtaining 4 - 3 = 12 trained DNN models i.e., 12 classifiers.
Obviously, these classifiers are ready to be exercised on the
3 test sets. From now on, we call the 3 test sets as Legitimate
Image Sets (LISs).

2) CREATION OF ADVERSARIAL IMAGE SETS

Next, we select 14 adversarial attacks. We apply each adver-
sarial attack on each DNN model and its corresponding LIS.
This generates, for each adversarial attack and each of the
12 models, an entire copy of the LIS, but composed exclu-
sively of adversarial images. Last, we create the Black and
White datasets: they are equivalent to the LISs in images
shape and number, but they contain respectively entirely
black images and entirely white images. This will turn useful
as it will show the different behavior of the GPU in outlier
cases. Sets composed either by black, white or adversarial
images are called from now on Original Adversarial Image
Sets (OAISs).

Often, adversarial attacks fail and produce the same clas-
sification output of the legitimate image; instead, we are
especially interested in detecting adversarial attacks that alter
such classification output. For this reason, we select adver-
sarial images from the OAISs for which the classifier decides
differently and erroneously than on the LISs. More precisely,
given the classifier c, any legitimate image x of class y, and
the corresponding adversarial image x’, we select all x” such
that c(x) # c(x’) and c(x") # y. For each adversarial attack,
these images are then replicated to reach datasets of the same
size of the LISs. From now on, we call the datasets created in
this way as Synthetic Adversarial Image Sets (SAISs).

3) DATA COLLECTION GOALS

At this point, we just have to exercise the 12 DNN models
on LISs, OAIS, and SAISs while the GPU Monitor logs
data. From past experience with tabular data and anomaly
detection, we target roughly 800000 rows of data logged
from the GPU Monitor for each of the 12 DNN models.
We target a 50-50 split between rows labelled as legitimate
and adversarial: in other words, for each model, we aim to col-
lect 400000 rows from the GPU Monitor while images from
LISs are being processed. The remaining ~400°000 rows
are logged while images from the OAISs and SAISs are
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processed (~200'000 rows each). Since we are consider-
ing 14 attacks plus the Black and White cases, each attack
occurs roughly in 400°000/16 =~25"000 rows. To reach these
goals, the total execution time of the GPU Monitor is above
150 hours.

4) DATA COLLECTION APPROACH

We introduce strategies to eliminate possible bias in the
measurements. For example, running first the LISs, and then
the OAISs and SAIs, would be questionable: realistically,
we should instead expect that attacks are mixed with legit-
imate data. Further, we need to avoid that attacks are rec-
ognized thanks to specific conditions of the GPU that are
not related to their occurrence. As simple example, the GPU
temperature typically starts at ~30 °C and raises through
time exceeding 60 °C. If we test on LISs at the beginning of
the experiment, and only successively on OAISs and SAISs,
the GPU temperature could be used to distinguish between
the execution of legitimate or adversarial images with high
accuracy but no actual value in the results.

The strategies to remove possible bias originate the proce-
dure for data collection reported in Algorithm I and described
below. Algorithm I exemplifies the operations for a single
DNN model; this is repeated for all the models, and for each
dataset in the LISs, OAISs, and SAISs.

Algorithm 1 GPU Data Collection Procedure, Repeated for
Each DNN Model

def classify_on_LIS:
load LIS
start logging from GPU Monitor
repeat classification for approx. 15 seconds
stop GPU Monitor
drop first and last 50 lines of GPU Monitor
pause for 2 second

def classify_Adversarial (attack n):

# executed for each attack in the OAIS and SAIS. Works
# the same of classify_on_LIS, but uses images

# from OAISs and SAISs as inputs

main:

load trained DNN model

repeat 30 times:
classify_on_LIS
classify_Adversarial (attack 1)
classify_on_LIS
classify_Adversarial (attack 2)
classify_on_LIS
classify_Adversarial (attack 3)
classify_on_LIS

Algorithm I alternates classification on LISs, OAISs and
SAISs. This way, the DNN model continuously alternates
processing of legitimate images and adversarial images. For
each image set (either from LISs, OAISs and SAISs) provided
to the DNN model, the processing period must be sufficiently
long to acquire enough data from the GPU monitor: we set
15 seconds of continuous execution of the classifier on the
same image set, in which ~500 lines are collected from the
GPU Monitor.
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The whole process is iterated multiple times (25 to 30).
Additionally, image sets are always shuffled so that a different
order is provided to the model. Further, when the 15 seconds
slot completes, we discard the first and last 50 rows logged by
the GPU Monitor. This cuts out possible transient behaviors
of the GPU and the system. Last, once the 15 seconds of
execution expire, the entire computation is paused for approx-
imately 2 seconds to reduce the risk of any residual transient
condition of the system.

In the pseudo-code in Algorithm I, the function
classify_on_LIS loads a Legitimate Image Set and performs
classification while the GPU Monitor is logging. The same
procedure is executed on the other image sets, by the function
classify_Adversarial, with the difference that each time it is
invoked, it works on a different attack i.e., a different image
set amongst those in OAISs and SAISs.

5) HARDWARE AND SOFTWARE PLATFORM

All the computations are performed on a Dell Precision
5820 Tower with an Intel 19-9920X, GPU NVIDIA Quadro
RTX5000 with 24GB VRAM, 128GB RAM and Ubuntu
18.04 with kernel 5.4.0, NVIDIA driver 450.119.03 and
runtime CUDA 11.0.

B. LEGITIMATE IMAGE SETS (LISs)

Our Legitimate Image Sets are the test sets of the three
datasets MNIST [13], CIFAR-10[14], and STL-10 [15]. They
are commonly used for image classification tasks and are
highly appreciated because of the relatively low size of the
images, which makes training time reasonably short. This
aspect comes particularly handy for our study in which we
need to train 12 models and apply several attacks. Example
images from the three datasets are in Figure 2, while the
datasets are described below.

b) CIFAR-10

a) MNIST
FIGURE 2. Sample images from the three LISs.

The MNIST database of handwritten digits has a training
set of 60000 examples and a test set of 10°000 examples,
all of 28 x 28 pixels and in black/white only. All digits have
been size-normalized and centered in a fixed-size image [13].
In general, this dataset is considered easy to classify, even by
DNNs with only few convolutional layers.

The CIFAR-10 dataset consists of 60°000 32 x 32 colored
images from 10 classes, with 6'000 images per class. There
are 50'000 training images and 10°000 test images [14].

STL-10 consists of 5000 training images and 8 000 test
images. Images are colored and of 96 x 96 size [15].
The training set of STL-10 contains far less images than
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MNIST and CIFAR-10; this makes supervised classification
on STL-10 harder than in the previous two cases.

C. DNN MODELS

We select four DNNs implemented in PyTorch [12], [21] for
each of the three LISs, according to the following criteria:
i) one simple DNN, from tutorial examples available; ii) three
state-of-the-art DNNs that are deeper and show higher accu-
racy. The outcome of our selection is summarized in Table 2.

TABLE 2. Details of the DNN models trained on the image sets MNIST,
CIFAR-10, STL-10.

Acronym | Dataset |Accuracy) DNN Trained from| From

MNIST-1 = 0.979 |2 conv. layers [19]
MNIST-2| @ 0.983 ResNet [31]
MNIST-3 § 0.990 [2 conv. layers [32]

MNIST-4 0.992 scratch, using [33]

9 conv. layers .
Y the settings

CIFAR-1 , 0.572 |2 conv. layers oposed b [34]
CIFAR2| % o [ 0955 | ResNet | Prorosee Y [Tyssy
= the authors
CIFAR-3 % 0.954 DenseNet [35]
CIFAR-4 0.926 | MobileNetV2 [35]
STL-1 - 0.707 |6 conv. Layers [36]
STL-2 3 0.782 ResNet transfer [42]
STL-3 = 0.821 DenseNet |learning from| [42]
STL-4 0.814 |MobileNetV2| ImageNet [42]

For the MNIST dataset, we select the following DNN

models of incremental accuracy:

o MNIST-1 is provided at [19], and it is composed of just
2 convolutional layers and 2 linear layers.

o MNIST-2 instead uses a user-defined ResNet [43] for
MNIST, available at [31].

e MNIST-3 from [32] and MNIST-4 from [33] are custom
networks, with respectively 2 and 9 convolutional layers.

For CIFAR-10, we select:

o CIFAR-1: the DNN provided as example on the PyTorch
website [34], with just 2 convolutional layers.

o CIFAR-2, CIFAR-3 and CIFAR-4 are implementations,
available at [35], of the three DNNs ResNet18 [43],
DenseNet121 [45] and MobileNetV2 [44]. A normal-
ization factor is applied to the images, and training is
augmented with random cropping and random horizon-
tal flipping [35].

For STL-10, we select:

e STL-1: a classifier for STL-10 that we found online
at [36] with 6 convolutional layers.

e STL-2, STL-3 and STL-4 are ResNet18, DenseNet161
and MobileNetV2, obtained with transfer learning from
the ResNetl8, DenseNetl61 and MobileNetV2 pre-
trained on the ImageNet dataset and available on the
PyTorch model zoo [42]. We transfer-learned from pre-
trained models, because of the difficulties in retriev-
ing optimized implementations of DNNs for STL-10,
as instead we did for CIFAR-10.

D. ATTACKS LIST

We select 14 evasion attacks from the Adversarial Robust-
ness Toolbox (ART, [2]), a Python library originally
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developed by IBM and now maintained by the Linux Founda-
tion. ART implements tools to craft black-box and white-box
adversarial attacks against DNNs, alongside with suggesting
defenses. Attacks implemented in ART can be invoked by
providing as input the DNN and other parameters e.g., the
loss/optimization functions and the size of the input images.
In our study, we use ART 1.5.1 and PyTorch 1.7.1.

Each of the 14 attacks has modifiable parameters [19]
to tweak in order to be more effective against the target
DNN model or to reduce the computational time needed to
create the adversarial sample. Especially, all attacks except
the Adversarial Patch [20] aim at forging an adversarial image
that is as close to the legitimate image as possible, so we
tune attacks to find a compromise between attack efficacy
and image alteration. Table 3 reports the attacks parameters
we used in this study. When attacks or parameters are not
specified in the table, default values from [19] are used.

TABLE 3. Attack parameters.

Attack
Adversarial Patch

Selected configuration of attack parameters
size=0.4

MNIST: € =0.1, ggep = 0.02, max_iter =200
CIFAR-10, STL-10: £ = 0.01, £, = 0.01

Basic Iterative Method

ElasticNet itermx=2

Fast Gradient Method [ =0.09, £4¢,=0.0001, minimal=True
HopSkipJump itermax = 5, evalpn.y =500
NewtonFool iterma = 10, =0.01

Projected Gradient
Descent

MNIST: £ =0.1, &ep =0.1

CIFAR-10, STL-10: £ =0.01, &, =0.01
MNIST: max(du, 6v)=10, translations=5,
max(0)=5°, rotations=5

STL-10, CIFAR-10: max(du, 6v) =5,
translations=1, max(0)=5°, rotations=1

e=0.1, restarts = 10

6 =0.8, [ = 0.5, itermax = 1, ¢ = 0.6, use_resize
= False, v, = 0.8

Spatial Transformation

Square

7,00

We briefly review the 14 attacks, distinguishing between
black-box and white-box. We introduce an acronym for each
attack, to facilitate the discussion in the rest of the paper.

1) BLACK-BOX ATTACKS

The Adversarial Patch (APatch, [20]) consists in generating a
colored patch that, when printed out and inserted into a natu-
ral scene, brings to misclassification of pictures taken of that
scene. While various alternatives exist for creating patches,
we use the algorithm in [20]. Figure 3 shows examples of the
patched images and gives a clear understanding of this attack
and the patch size. MNIST does not contain colored images
and therefore in this case the usage of a colored patch is not
meaningful.

HopSkipJump (HSJ, [17]) starts from a big perturba-
tion and aims to reduce it to a minimum that still causes
misclassification. The perturbation is reduced iteratively
through binary searches. For computational reasons, we set
itermax = 5 the maximum number of algorithm iterations,
and evalyna,x = 500 the maximum number of evaluations that
estimate the current perturbation (Table 3).
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FIGURE 3. Samples of the adversarial patch attack, computed for the
models a) CIFAR-1, b) STL-1, c) STL-2.

Simple Black-box Attack (SimBA, [28]) randomly samples
a vector from a predefined orthonormal basis and either adds
or subtracts it to the target image.

Spatial Transformation (ST, [16]) aims to find the mini-
mum spatial transformation that causes misclassification of
the image. Repeatedly, the image is rotated by 6 angle and
shifted of (6u, 6v) pixels, calculated as a percentage of the
image size.

Square (SQ, [29]) is based on a randomized search scheme
which, iteratively, performs localized square-shaped updates
of the image. We set ¢ = 0.1 the maximum perturbation
to be introduced during an iteration, and restarts = 10 the
maximum number of restarts from random seed for each
image.

Zeroth-Order-Optimization (ZOO, [27]) attack is a black-
box version of Carlini and Wagner L, which relies on queries
of the output confidence scores [2] and has several config-
uration parameters [19]. We do not apply ZOO in STL-1 to
STL-4, because an overflow error was generated using ART.

2) WHITE-BOX ATTACKS

Carlini & Wagner L, (CWL;y, [22]) finds the adversarial
instance by finding the smallest noise added to an image that
will change the classification. The noise level is measured in
terms of L, distance.

Carlini & Wagner Loo (CWLqo, [22]) is similar to CWL;
but it uses the Lo, norm.

DeepFool (DFool, [23]) aims, for a given input, to perform
an iterative linearization (exploiting the L, norm) of the
classifier to generate minimal perturbations that are sufficient
to change the classification label.

Elastic Net (ENet, [24]) is a variant of CWL; which
aims at controlling, as distortion metric, the total variation
in the perturbation (measured using the L; norm). We set
itermax = 2 to limit the maximum number of iterations.

Fast Gradient Method (FGM) aims at controlling the gra-
dient of the cost function with respect to the data, measured
using the L; and L, norms and following the approach in [25].
We configure it to compute the minimal perturbation using
input variation ¢ = 0.09 and descent step size &gep = 0.0001.

Basic Iterative Method (BIM, [3]) is an iterative version
of the Fast Gradient Sign Method [25], which produces an
adversarial example by calculating the perturbation that max-
imizes the loss (with respect to the loss of the input image).
The Basic Iterative Method extends the FGM attack by
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applying it multiple times until max_iter limit, with small step
of size &gtep. Each intermediate result is cropped to ensure that
it stays within the limits established by a hyper parameter ¢,
that sets the amount of perturbation allowed in the target
image.

NewtonFool (NFool, [18]) uses the gradient-descent algo-
rithm to find the perturbation that minimizes the probability
of the original class. The tuning parameter n determines how
aggressively the gradient descent attempts to minimize the
probability of the original class.

Projected Gradient Descent (PGD, [26]) is an iterative
extension of FGSM; its main strategy is similar to BIM.

3) ATTACK ACCURACY

As already said, by exercising the 14 attacks to the LISs, the
OAISs is generated, exception made for the white and black
cases. In Table 4 we report the classification accuracy (given
TN True Negatives, TP True Positives, FP False Positives,
FN False Negatives, we define accuracy Acc = TP + TN/
(TP + TN + FP + FN) [70]) of the DNN models when
they elaborate image sets from the LISs and the OAISs.
Noticeably, accuracy on the SAISs is zero by construction of
such image set, and it is not reported in Table 4. The Black and
White cases have 10% accuracy, which is random guessing
in our classifiers with 10 classes, and are also not reported in
Table 4.

We observe that some attacks as CWLj, CWL4,, SimBA
and HSJ have more distinguishable impact on classification
than others, dropping accuracy to below 10%. Other attacks
as ST and, to a lesser extent, APatch have minimal effects.
Last, BIM and PGD have significant impact on MNIST-1 and
on STL-1 to STL-4, but are far less effective in the other cases,
with accuracy values very close to the “no attacks™ values.
Noteworthy, these results strongly depends on: i) the attack
and its configuration, ii) the DNN model, and iii) the image
itself. However, we remark that rating adversarial attacks is
not the contribution of this paper, and Table 4 is presented
only because it is functional to the analysis of results in the
successive Section.

V. ANOMALY DETECTION: EXECUTION AND RESULTS

A. SET-UP AND EXECUTION

Once the data logged from the GPU Monitor is available,
itis possible to exercise the anomaly detector based on neural
network with entity embedding as described in Section III.C.

We analyze the detection performance of the anomaly
detector when the LISs, SAISs and the OAISs for each DNN
model are processed.

We use a balanced dataset with 50% legitimate data and
50% adversarial data, where legitimate data is produced when
legitimate images are being processed by the GPU, and adver-
sarial data is produced when adversarial images are being
processed by the GPU. Whenever needed, we select random
samples from the legitimate data to maintain such balance:
this happens for example when we differentiate the analysis
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TABLE 4. Classification accuracy of the 12 DNN models on the LISs (row “no attacks”) and on the OAISs (14 attacks). In grey cells, the attack efficacy is

limited: accuracy drops less than 50% with respect to the “no attacks” case.

MNIST-1[MNIST-2[MNIST-3]MNIST-4] CIFAR-1|CIFAR-2 [ CIFAR-3 [CIFAR-4[ STL-1 | STL-2 | STL-3 | STL-4
no attacks | 0.98 0.98 0.99 0.99 0.57 0.95 0.95 0.93 0.71 0.78 0.82 0.81
average

APatch APatch not applicable on MNIST | 0.46 0.87 0.88 0.82 0.58 0.57 0.57 0.54 0.66
BIM 0.16 0.96 0.99 0.99 0.44 0.94 0.93 0.89 0.17 0.13 0.11 0.11 0.57
CWL: 0.13 0.05 0.08 0.05 0.2 0.17 0.05 0.25 0.15 0.13 0.11 0.12 0.12
CWL.. 0.29 0.13 0.39 0.45 0 0.1 0.09 0.09 0 0 0 0 0.13
DFool 0.39 0.05 0.01 0.01 0.28 0.1 0.1 0.11 0.18 0.34 0.39 0.47 0.20
ENet 0.02 0.01 0.01 0.01 0.19 0.4 0.41 0.41 0.15 0.13 0.11 0.12 0.16
FGM 0.69 0.4 0.91 0.94 0.19 0.4 0.4 0.36 0.16 0.15 0.13 0.14 0.41
HSJ 0.01 0.01 0.01 0.02 0.16 0.02 0.03 0.02 0.16 0.1 0.14 0.08 0.06
NFool 0.7 0.1 0.87 0.95 0.13 0.41 0.4 0.42 0.16 0.1 0.09 0.08 0.37
PGD 0.34 0.96 0.99 0.99 0.44 0.94 0.93 0.89 0.1 0.13 0.11 0.11 0.58
SimBA 0.01 0.01 0.49 0.64 0.02 0.08 0.09 0.11 0.01 0 0 0 0.12
ST 0.64 0.96 0.98 0.98 0.53 0.52 0.54 0.49 0.67 0.64 0.69 0.71 0.70
SQ 0.73 0.4 0.94 0.96 0.01 0.22 0.21 0.15 0.02 0 0 0 0.30
700 0.65 0.18 0.67 0.84 0.2 0.54 0.56 049 | Z00 not applicable on STL 0.51

Average | 0.37 0.32 0.56 0.60 0.23 0.41 0.40 0.39 0.19 0.18 0.19 0.19

by attacks type, because the legitimate data is much more than
the data of an individual adversarial attack. Data is always
shuffled when creating the train/validation/test split with pro-
portions of [0.5, 0.2, 0.3]. Our datasets are balanced: there-
fore, we use the metrics accuracy Acc previously defined, the
False Positive Rate FPR = FP/(TN + FP) and the coverage
Cov=TP/(FN + FP) [70].

The entire source code for the repetition of our analyses is
available at [4].

B. DISCUSSION OF RESULTS

First, we elaborate on detection of attacks without differen-
tiating by attacks type. We describe results with the help of
Figure 4. For MNIST-1 to MNIST-4 (Figure 4a), the anomaly
detector can distinguish between legitimate or adversarial
data with accuracy above 0.7, reaching Acc = 0.81 for SAISs
in MNIST-3. This shows that our detector is able to under-
stand when adversarial images or legitimate images are being
processed by the GPU.

Instead, we observe a clear drop in detection accuracy
when considering CIFAR-1 to CIFAR-4 (Figure 4b) and
STL-1 to STL-4 (Figure 4c). To some extent, the anomaly
detector can still distinguish when legitimate or adversarial
images are presented to the DNN e.g., we have Acc = 0.67 on
CIFAR-2, and Acc = 0.65 on CIFAR-3 for both OAISs and
SAISs. However, the evidence is much smaller than with the
MNIST. We believe the reason is the increased dimension
of the trained DNN models, in terms of extracted features
and number of weights. This complicates the detection of
anomalies using GPU performance indicators with our mon-
itoring resolution. Instead, we believe the model depth does
not contribute to such accuracy drop: for example, the number
of convolutional layer in CIFAR-1 and STL-1 is similar or
smaller than in MNIST-1 to MNIST-4.

Importantly, we observe that there is no significant differ-
ence in results obtained with the SAISs and with the OAISs.
This can be confirmed visually in the three graphs of Figure 4,
by looking at the lines describing accuracy for SAIS and
OAIS, which almost overlap. This means that the altered
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behavior of the GPU is observable whenever an attack is in
progress, and not only when the attack is successful: if images
are adversarial, the GPU is solicited in a different way than
with legitimate images, independently of the outcome of the
classifier. This behavior will also be confirmed in the next
results we discuss.

We now comment on the detection performance on each
individual attack. Table 5 reports accuracy for the OAISs; the
highlighted cells show detection accuracy above 80%. It is
immediate to note that the black and white cases (images
entirely black or entirely white) are usually outlier cases,
obtaining very high detection accuracy. As expected, those
images are so different from legitimate images that they
solicit the GPU in a very distinguishable manner.

In general, detecting an individual attack is easier i.e.,
understanding the altered behavior on the target GPU in
case of an individual attack is generally possible. Accuracy
to detect attacks on MNIST dataset is above 80% in the
majority of cases, with peaks above 90% (DFool, HSJ, NFool,
SimBA). Accuracy drops in CIFAR and STL, but not as much
as in Figure 4. There are few special cases, for example
the accuracy achieved by the anomaly detector exceeds 90%
when detecting CWL, attack on CIFAR-2 to CIFAR-4. This
suggests that the perturbation introduced by CWL into the
image has also a significant impact on the GPU behavior, far
different from the behavior under legitimate images.

Last, in Figure 5 we show that accuracy scores are very
close even when detecting individual attacks from the SAISs
and OAISs. Given a model, we compute the difference
between accuracy on SAISs and OAIS for each individual
attack, and we report the highest and lowest values, respec-
tively represented by a triangle and a square in Figure 5.
The small difference is in the range [—0.1, +0.1] with rare
exceptions, as ZOO on MNIST-3 and MNIST-4.

C. RELEVANCE RANKING OF THE PERFORMANCE
INDICATORS

Not even the best anomaly detector out of the many alter-
natives in Section III.C can always detect attacks with
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FIGURE 4. Detection performance on the entire SAISs and OAISs, for the entire set of attacks including white and black cases.

TABLE 5. Detection accuracy for each individual attacks, computed on the OAISs. Colored cells show accuracy above 80%.

[ MNIST-1 | MNIST-2 | MNIST-3 | MNIST-4 | CIFAR-1 | CIFAR-2 | CIFAR-3 [ CIFAR-4 | STL-1 | STL-2 [ STL-3 [ STL-4
BLACK 0.92 0.77 1.00 1.00 0.75 0.97 0.96 0.94 0.89 0.84 0.94 0.84
WHITE 0.82 0.60 1.00 0.98 0.73 0.97 0.95 0.93 0.87 0.81 0.90 0.86
APatch 0.69 0.65 0.68 0.63 0.75 0.68 0.68 0.72
BIM 0.81 0.85 0.82 0.81 0.67 0.64 0.67 0.62 0.76 0.68 0.67 0.72
CWL: 0.73 0.67 0.63 0.65 0.67 0.71 0.69 0.66 0.75 0.65 0.66 0.72
CWL-, 0.75 0.71 0.60 0.66 0.65 0.97 0.95 0.91 0.72 0.66 0.69 0.71
DFool 0.79 0.91 0.84 0.82 0.65 0.71 0.70 0.67 0.74 0.67 0.67 0.71
ENet 0.75 0.87 0.84 0.81 0.67 0.72 0.71 0.67 0.76 0.66 0.69 0.69
FGM 0.74 0.86 0.85 0.84 0.68 0.72 0.70 0.67 0.76 0.66 0.67 0.70
HSJ 0.83 0.91 0.90 0.85 0.68 0.71 0.72 0.69 0.74 0.67 0.67 0.70
NFool 0.80 0.87 0.91 0.86 0.68 0.73 0.70 0.67 0.75 0.64 0.65 0.71
PGD 0.83 0.83 0.83 0.79 0.67 0.65 0.67 0.64 0.75 0.67 0.65 0.72
SimBA 0.85 0.90 0.78 0.69 0.71 0.68 0.69 0.63 0.75 0.65 0.64 0.72
ST 0.82 0.80 0.75 0.71 0.67 0.71 0.70 0.65 0.75 0.67 0.64 0.70
SQ 0.82 0.83 0.89 0.86 0.67 0.71 0.71 0.64 0.74 0.65 0.64 0.69
Z00 0.73 0.75 0.77 0.70 0.67 0.72 0.71 0.66
Average Acc | 0.79 0.83 0.80 0.77 0.67 0.72 0.71 0.67 0.75 0.66 0.66 0.71
Standard Dev. | 0.04 0.07 0.09 0.08 0.01 0.08 0.07 0.07 0.01 0.01 0.02 0.01
Average FPR | 0.25 0.17 0.20 0.23 0.38 0.28 0.37 0.37 0.32 0.39 0.37 0.35
Average Cov | 0.83 0.82 0.80 0.78 0.73 0.71 0.80 0.71 0.82 0.71 0.70 0.77

high accuracy. We motivate this result with the aid of
Table 6, which reports the information gain [69] carried
by the most relevant GPU performance indicators. Informa-
tion gain can measure the relevance of individual features
for classification [69], and ranges from O (no relevance at
all) to 1 (the feature perfectly describes the label to be
predicted).
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Table 6 shows that power.draw is the most relevant perfor-
mance indicator for the purpose of detection, while the others
have a much lower information gain score. In general, all
scores are quite low. This remarks that performance indicators
of the GPU certainly have the potential to detect attacks, but
there is a need of i) a finer-grained resolution of monitoring
probes, and ii) a wider pool of non-constant indicators to
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TABLE 6. Information gain of most relevant performance indicators. For brevity, we report only the top six.

performance indicators

MNIST-1|MNIST-2 MNIST-3|MNIST-4| CIFAR-1|CIFAR-2|CIFAR-3|CIFAR-4| STL-1

STL-2 | STL-3 | STL-4

power.draw

clocks.current.graphics | 4.49E-03 0
clocks.current.sm 4.49E-03 0
clocks.current.video 3.42E-03 0

temperature.gpu
utilization.memory
utilization.gpu

3.64E-02 | 1.23E-01 | 1.61E-01 | 1.45E-01 | 1.28E-03 | 6.64E-02 | 4.01E-02 | 3.14E-02 |2.18E-02|2.41E-02|1.08E-02|2.00E-02
4.28E-04 | 4.35E-03 | 2.19E-03 | 6.79E-04 | 2.51E-03 | 3.23E-03 |4.21E-04|4.85E-04|7.19E-04|6.97E-04
4.28E-04 | 4.35E-03 | 2.19E-03 | 6.79E-04 | 2.51E-03 | 3.23E-03 |4.21E-04|4.85E-04|7.19E-04|6.98E-04
4.28E-04 | 7.31E-04 | 2.19E-03 | 5.69E-04 | 1.23E-03 | 6.07E-04 |3.27E-04|1.57E-04|4.47E-04|6.66E-04
3.26E-03 | 1.08E-03 | 3.91E-03 | 1.36E-02 |4.60E-03 | 2.32E-03 |4.10E-03 | 4.61E-03 |7.93E-04|9.67E-04|3.54E-04|1.07E-03
3.93E-04 | 6.22E-04 | 1.55E-03 | 6.18E-05 |2.56E-05 | 3.18E-04 | 1.48E-04 | 2.92E-04 |4.60E-04|8.29E-05|1.35E-04|5.43E-04
3.86E-05| 7.75E-04 | 6.11E-04 | 1.37E-04 | 9.54E-05 | 2.15E-04 0

3.03E-05 [1.23E-04|2.87E-04|6.52E-04|8.15E-04
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FIGURE 5. Difference in accuracy scores with SAISs and OAISs.

increase the number of features that the anomaly detector can
process.

VI. CONCLUDING REMARKS

A. CONCLUSION

The objective of this work is to explore a new perspective
for the detection of adversarial attacks towards ML-based
applications, and especially against image classifiers. Our
approach consists in building a GPU Monitor and Runtime
Anomaly Detector: the GPU Monitor observes the GPU
performance indicators, which are analyzed by the Runtime
Anomaly Detector. This last component discovers possible
fluctuations when adversarial inputs are processed by the
DNN model instead of legitimate inputs. Relying on a large
experimental campaign, with 12 DNN models, 3 datasets and
14 attacks, we showed the feasibility of our approach and we
confirmed that it is possible to detect attacks.

B. THREATS TO VALIDITY

Monitoring probes offered by NVIDIA-smi retrieve fresh
data approximately 33 times per second. Given the image
size of MNIST, CIFAR-10 and STL-10, this frequency is
appropriate only when multiple subsequent images are adver-
sarial. In our experiments, it would not be possible to detect
few adversarial images scattered amongst several legitimate
images. While this may restrict the practical application of
our work, we argue the following. First, this is still appropri-
ate in some cases, for example with adversarial patches in the
autonomous driving domain, where the patch may be applied
to objects (e.g., traffic signs) and captured by the camera in
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successive frames [55]. Second, in case of larger images as
in [30], [85], the processing time for a single image increases
significantly, up to 10-30 images processed per seconds with
an average GPU.

Another possible limitation is that the number and quality
of GPU performance indicators that can be monitored is
not adequate. Those could be improved for example observ-
ing subcomponents and consequently better characterize the
GPU behavior; however, having the required probes is still
bound to the available hardware and software. In addition,
the monitoring probes we deployed prevent further analysis
on the GPU behavior, for example to identify which GPU
components are operating when the different parts of the
DNN are solicited. We remark that these issues could be
mitigated, as there is room to solve them with an appropriate
hardware/software development, as discussed in our plan for
future works in Section VI.C.

C. FUTURE WORKS

We are undergoing future works prioritized as follows. First,
we are planning to repeat experiments with alternative GPU
monitors, that may offer alternatives indicators to be moni-
tored that can complement those explored with nvidia-smi.
Candidate monitoring tools are the recent NVIDIA Nsight
Systems [61] and NVIDIA NvBit [57]. Additionally, we plan
to repeat the analysis by implementing alternative detection
measures against evasion attacks on the target model, and
in particular those already available in ART. This will allow
measuring the combined effects of anomaly detection and
state-of-the-art detection approaches.

On a longer term, we observe that increasing attention is
given to bugs in neural network software [6], [7] and to GPUs
faults [8], [9]. Consequently, we aim to study the impact
of faults in the DNN model [10], [11] instead than attacks,
to understand the extent faults can be detected by the GPU
Monitor and Runtime Anomaly Detector.
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