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Innovative Technologies

Introduction

Minimal access surgery (MAS) introduced a paradigm 
shift in surgery by drastic reduction of the access trauma 
to the patient inherent to traditional open surgery. Instead 
of major laparotomies, operations are performed exter-
nally using images of the operative field with instruments 
inserted through small ports (5-10 mm). The downside to 
MAS is increased difficulty in surgical manipulation 
using long slender instruments with limited degrees-of-
freedom (DoF; n = 4) compounded by marked degrada-
tion of the tactile feedback, eye–hand coordination, and 
loss of stereoscopic vision. All these adverse ergonomic 
factors contribute to a significant increase in the level of 
difficulty in the execution of the operations. Thus, the 
benefits of MAS (shorter recovery time, lower risk of 
infection, less pain/trauma, reduction in hospital stay) are 

marred by increased risk of iatrogenic injuries, unless 
proficiency is acquired by training in the MAS approach.

In the quest for improved clinical outcome of patients 
treated by the MAS approach, 3 requirements are recog-
nized: (a) efficient training programs and objective method-
ologies to evaluate surgical performance, (b) design of new 
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Abstract
Background. The uptake of minimal access surgery (MAS) has by virtue of its clinical benefits become widespread 
across the surgical specialties. However, despite its advantages in reducing traumatic insult to the patient, it imposes 
significant ergonomic restriction on the operating surgeons who require training for the safe execution. Recent 
progress in manipulator technologies (robotic or mechanical) have certainly reduced the level of difficulty, however it 
requires information for a complete gesture analysis of surgical performance. This article reports on the development 
and evaluation of such a system capable of full biomechanical and machine learning. Methods. The system for gesture 
analysis comprises 5 principal modules, which permit synchronous acquisition of multimodal surgical gesture signals 
from different sources and settings. The acquired signals are used to perform a biomechanical analysis for investigation 
of kinematics, dynamics, and muscle parameters of surgical gestures and a machine learning model for segmentation 
and recognition of principal phases of surgical gesture. Results. The biomechanical system is able to estimate the level 
of expertise of subjects and the ergonomics in using different instruments. The machine learning approach is able 
to ascertain the level of expertise of subjects and has the potential for automatic recognition of surgical gesture for 
surgeon–robot interactions. Conclusions. Preliminary tests have confirmed the efficacy of the system for surgical gesture 
analysis, providing an objective evaluation of progress during training of surgeons in their acquisition of proficiency in 
MAS approach and highlighting useful information for the design and evaluation of master–slave manipulator systems.

Keywords
surgical gesture analysis, biomechanical analysis of movement, machine learning approach, metrics and benchmarks, 
ergonomics, surgical robotics
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ergonomic surgical instruments/handheld manipulators 
with increased DoF, and (c) the development of the next 
generation of robotic systems with tactile feedback for 
MAS surgery. In this context, the current literature indicates 
the importance of analysis of surgical gesture as a quantita-
tive index analysis of surgical performance for the develop-
ment and progress of advanced technologies for MAS.

The efficient training programs for novice surgeons use 
clearly defined metrics for the objective assessment of the 
proficiency–gain curve of surgeons by the Observational 
Clinical Human Reliability Analysis (OC-HRA)1-3 until 
they reach the proficiency zone when they can perform 
MAS operations consistently well and to an acceptable 
standard of surgical care, that is, become expert surgeons. 
Objectively this has to be based on studies on the percep-
tual and mechanical properties of surgical gesture during 
the training period. A similar approach can also be used 
for the design of surgical instruments/manipulators pro-
viding accurate evaluation of their ergonomics and func-
tionalities, which confirm their advantages including the 
effect on the posture and fatigue of surgeons.4 The analy-
sis of surgical gesture is of crucial importance for the 
development of smart surgical robotic systems,5 able to 
automate and enhance safety of surgical MAS operations 
through autonomous or shared control, by providing more 
accurate kinematics and dynamic constraints. Baseline 
data and evaluation methods for demonstrating relative 
improvement in performance will be a feature of the next 
generation of smart surgical robots, which will be based 
on systems able to learn from existing data, or at least 
learn to recognize, optimal surgical gestures.

In the reported literature, studies on the analysis of 
surgical gesture have been performed in several ways: 
observing operations and unsupervised (expert) and 
supervised (trainees) operating on models, human cadav-
ers, and animals using embedded sensor systems in 
trainer boxes or virtual simulators. For all of these 
approaches, different metrics have been proposed, for 
example, execution time, trajectories, velocity, accelera-
tion, smoothness, error rates segmentation procedures, 
and so on.6 Various methodologies have been used to 
evaluate parameters of movement including video-
recording, virtual reality simulators, robotic systems such 
as da Vinci, and so on.7-10 Most of these approaches have 
mainly focused on the assessment of surgeons’ or nov-
ices’ abilities based on the measurement of the difference 
in the skill level between experts and novices performing 
exercises with clearly defined objective metrics.

To our knowledge, there has not been any description 
of a complete system for surgical analysis that evaluates 
not only surgical performance but also provides an ergo-
nomic assessment that can be used for the design of the 
next generation of wristed manipulators/robots. This arti-
cle reports on the efficacy of a modular system for surgical 

gesture analysis that exploits a holistic biomechanical and 
machine learning model of surgical gesture. The biome-
chanical model is based on the development of a muscle–
skeleton model of surgeon during MAS by means of the 
LifeMOD-Adams software platform (for kinematics, 
dynamics, and muscle parameters of surgical gesture) and 
the machine learning approach by means of the Hidden 
Markov Models (HMM) to segment and recognize princi-
pal phases of surgical gesture.

Methods

The proposed analysis of surgical gesture was based on a 
biomechanical approach and a machine learning 
approach. The first approach assumed that the surgeon 
and the laparoscopic instruments were components of 
one holistic mechanical system, for which a modeling 
process was implemented and kinematic and kinetic 
inverse and forward dynamic analysis were performed. In 
the second approach, the surgical performance was mod-
eled with a learning process in which the machine learn-
ing algorithm automatically tuned its internal parameters 
to reproduce the physical process output values.

Modeling Process and Gesture Analysis on 
Adams-LifeMOD Platform

The Automatic Dynamic Analysis of Mechanical Systems 
software (ADAMS; MSC Software Corporation, Newport 
Beach, CA) in combination with the BRG.LifeMOD soft-
ware module for emulation of human motion and activities 
was used to model and simulate the surgical setting, for 
example, subject performing surgical procedures with sur-
gical instruments. The human structure (limbs, joints, mus-
cles, and neuromuscular system [GeBOD anthropometric 
database]) and the surgical environment (surgical instru-
ments and arrangement) were modeled initially. This was 
followed by simulation of the surgical procedures to com-
pute the motion behavior and measure kinematic and 
kinetic parameters: (a) position, velocity, and acceleration 
of head, right and left hand, lower arm, scapular, upper 
arm, lower torso, neck, and upper torso; (b) torque values 
in sagittal, transverse, and frontal planes of the lower neck, 
right and left scapular, shoulder, arm, and wrist; and (c) 
force, translational displacement, and translational velocity 
of the trapezius, deltoids, pronator, biceps, latissimus dorsi, 
brachioradialis, E-carpi, and F-carpi.

Specifically, the simulation consisted of inverse and for-
ward dynamic simulations. In the first inverse dynamic 
simulation, the motion was determined through position 
data from the ODL, using the Optotrack Certus system. 
Based on the trajectories of the 3D markers, joint angula-
tions and muscle shortening/lengthening patterns were cal-
culated for use in the subsequent dynamic simulation. After 
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the inverse dynamics simulation was performed, the mea-
sured joint angulations and shortening/lengthening patterns 
were used in the forward dynamic simulation to calculate 
joint torques and muscle forces, taking into consideration 
the influence of the external forces (gravity, contact, etc).

Machine Learning

The Machine Learning11 approach and in particular the 
HMM were used to create a statistical model describing 
the physical aspects of surgical procedures starting from 
observations of the whole data related to the process 
itself. The Machine Learning approach for surgical ges-
ture analysis and recognition is necessary for a detailed 
strictly biomechanics analysis providing a high-level 
description of complex movements requiring high-level 
abstraction and multimodal data fusion.

The basic idea is to create an “expert model” able to 
describe, recognize, and better understand the expert ges-
tures. Based on this, we modeled performances executed by 
expert surgeons through HMM as input kinematics of the 
laparoscopic instruments. The first relevant application of 
this expert model was its use as reference standard for sur-
gical performance evaluation with objective metrics.9,10

Instruments

The modular system for gesture analysis comprises 5 prin-
cipal modules, allowing synchronous acquisition of multi-
modal surgical gesture signals from different sources and 

scenarios. The 5 modules are the following: (a) a Central 
Acquisition Server (CAS), which acts as coordinator of 
the entire system and permits recording and online pro-
cessing of incoming data from other modules; (b) User 
Management Interface (UMI) for managing the entire sys-
tem, adding or removing data sources and setting the 
nature of experimental sessions; (c) Optical movement 
Data Logger (ODL) for the acquisition of 3D positions of 
surgeons’ limbs, body, and surgical instruments; (d) 
Sensor instrument Data Logger (SDL) for capturing 
movement signals and status of the surgical instruments 
being used; and (e) Frame Grabber Module (FGM) for 
video streaming from any video source included in the 
scenarios (Figure 1).

The system was designed to operate in 3 settings: vir-
tual simulators (including daVinci simulator), trainer 
boxes, and actual operating room. In all these settings, 
different surgical gesture signals could be acquired 
depending on the sensors used.

Central Acquisition Server

The CAS module coordinates the other modules and 
records surgical gesture signals. It provides a synchroni-
zation of signals coming from the other modules to guar-
antee the same time scale of contemporaneous data from 
different sources. The synchronization of the systems is 
obtained by means of a Synch Acquisition Device, which 
generates 3 different kinds of trigger signals, each 
detected by different acquisition device.

Figure 1. Overview of the entire modular gesture analysis system.
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User Management Interface

The UMI integrates all the data provided by other mod-
ules, allowing the user to set all parameters and to moni-
tor data flow. Moreover, it allows mixing of real time and 
recorded data flow, enabling the software to act as a plat-
form to reload and play raw acquired data for comparison 
with offline processed data.

Optical movement Data Logger

The ODL records body position and motion data of sur-
geon’s limbs, that is, head and upper torso, and of surgical 
instruments through the Optotrak Certus system (Northern 
Digital Inc, Waterloo, Ontario, Canada). To date, the 
ODL has been used for the acquisition of movements of 
surgeon’s limbs in settings related to virtual laparoscopic 
simulators and trainer bench-box, but it can also be used 
for the acquisition of movements of surgical instruments 
during live surgical operations. The Optotrak Certus 
System is an optical localization instrument that tracks up 
to 512 infrared LEDs at a maximum frame rate of 4600/
(n + 2) Hz (n being number of LEDs used).

Supports have been designed to bind the markers on 
the subjects’ upper body and on the surgical instruments. 
The upper body markers were placed according to a mod-
ified Adams “plug-in-gait” protocol12 to import and pro-
cess the positions of the 3D markers by means of 
LifeMOD-Adams software: 2 markers are placed over 
the temples, 2 on the torso (on the jugular notch and on 
the xiphoid process of the sternum), and 6 in each arm (on 
the acromio-clavicular joint, on the upper arm between 
the elbow and the shoulder marker, on the lateral epicon-
dyle, on the lower arm between the wrist and the elbow 
marker, on the wrist, thumb, and little finger).

The markers for surgical instruments are mounted on a 
rigid frame, designed for connection to the surgical 
instrument and with a sterilizable self-lock/unlock sys-
tem in order to use the same sensory system on different 
instruments with similar handles.

Sensor Instrument Data Logger

The SDL module records the position and orientation of 
surgical instruments (tips) and the status of the end effec-
tors (grasp value) in the scenarios related to virtual lapa-
roscopic simulators and trainer bench-box. Depending on 
different experimental setup, the SDL module can be 
implemented in 2 different ways. In the virtual laparo-
scopic setting, the position and orientation of the instru-
ments and the status of the end effectors are recorded 
using the Virtual Laparoscopic Interface (VLI, produced 
by Immersion Corporation, San Jose, CA). The VLI 
tracks the motion of a pair of virtual laparoscopic surgical 

instruments, each moving in with 5 degrees of freedom 
(position and orientation of tips and grasping value of end 
effectors), with acquisition frequency up to 1 KHz. In the 
trainer bench-box setting, the arrangement described 
above is modified by replacement with real surgical 
instruments. Infrared proximity sensors integrated on the 
handles are used to trace grasping values of the real 
instruments (Figure 1).

Frame Grabber Module

The FGM module consists of a digital frame grabber able 
to capture videos provided by the laparoscopic simulator 
(for exercises performed in virtual environment), by a 
standard camera (in bench-box) and by the endoscopic 
camera signal (for real interventions). For each exercise a 
*.avi file is created.

Experimental Protocols

The modularity of the system allowed to test different 
experimental protocols, according to the setting in which 
subjects operated. Potentially the system could be used in 
virtual reality, bench box, and operating room settings. 
Table 1 depicts how the sensorized modules of the system 
were installed and used for each setting.

For the virtual reality setting, we used a well-validated 
commercial laparoscopic simulator, LapSim Basic Skills 
3.0 (Surgical Science AB, Goteborg, Sweden), as previ-
ously reported.13 The set of 5 exercises, described in 
Table 2, was chosen.

In the trainer bench box setting, the SDL, used for the 
virtual laparoscopic simulator, was fixed in vertical posi-
tion to a home-made base and used in reverse orientation 
over the surgical trainer with real surgical instruments. 
The same virtual exercises were performed by the partici-
pating subjects with the addition of the knot tying exer-
cise. In the operating room, the surgeon’s instruments 
were tracked by using the optical localization system dur-
ing the entire duration of the intervention.

To demonstrate the efficacy of this modular system for 
surgical gesture analysis both with a biomechanical and 
machine learning approach, this article preliminarily con-
centrates on the Virtual Laparoscopic setting, whose 
achieved results could be generalized also to the other 
settings.

Results

The 2 proposed methodological approaches allowed us to 
calculate kinematic and kinetic parameters and likeli-
hood-based metrics.

The measurement of kinematic parameters was used to 
estimate quality metrics, such as duration, path length, 
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mean speed, maximum speed, mean acceleration, maxi-
mum acceleration, normalized jerk (measure of the motion 
smoothness and rate of change in acceleration, normalized 
with respect to duration of the exercise and path length), 
and energy expenditure (measured as the integral of the 
magnitude of the total Acceleration Vector, which is cor-
related to the energy expenditure).14 The measurement of 
kinetic parameters, such as the muscle forces, was used to 
estimate the load on muscles and, hence, quantitative 
fatigue resulting from performing the exercises. Particularly 
the fatigue was considered as the work (N m) done by each 
single muscle, which was computed integrating the force 
multiplied by the translational velocity among the time.

These metrics presented different values according to 
the nature of the exercise and the expertise of the subjects. 

A group of 9 medical students from the last year of the 
Faculty of Medicine, University of Pisa, Italy, and 2 expert 
surgeons from the Department of Surgery, Transplantation 
and New Technologies at Cisanello Hospital, Pisa, Italy, 
were recruited to perform 5 cycles of the 5 exercises. The 
2 surgeons had long experience in laparoscopy, respec-
tively, with more than 200 and 600 laparoscopic interven-
tions. Normalized Jerk and Energy Expenditure were 
higher in more complex exercises, such as combined L&G 
and CUT. Additionally, they were lower for expert sur-
geons compared to trainees (Figures 2 and 3).

Table 3 presents the energy expenditure on the right 
hand for one novice (Subj01) and surgeon (Surg02) for 
the first and last trial in the NVI and CUT exercise. It is 
evident that the subject performed the exercise with a 

Table 2. Description of the 5 Exercises of the Virtual LAPAROSCOPIC simulator, Presented Also as Combination of 
Submovements/Tasks That Highlights Their Complexity.

Exercise Type Description Submovements/Tasks

Navigation Instrument (NVI) Subject has to touch, alternatively with right and 
left instrument tip, balls that appear in the virtual 
operative field

Reaching

Coordination (COO) Subject controls the camera with one hand to locate 
balls appearing sequentially in the virtual operative 
field and moves each ball toward the target site with 
the other hand

Reaching, moving/holding

Grasping (GRA) Subject reaches and grasps blood vessels that appear 
sequentially in the virtual operative field, alternatively 
with right and left grasping instruments

Reaching, grasping, pulling

Lifting and Grasping (L&G) Subject reaches and grasps blood vessels that appear 
sequentially in the virtual operative field, alternatively 
with right and left grasping instruments

Reaching, lifting, grasping, moving/holding

Cutting (CUT) Subject grasps the extremity of a vessel with one 
instrument to cut it with an energized instrument 
(ultrasonic shears) activated by a foot pedal

Reaching, grasping (fine), holding, cutting, 
holding/moving

Table 1. Description of How the Sensorized Modules (ie, the Optotrak Certus, the Laparoscopic Virtual Interface, and the 
Frame Grabber) Could Be Used in the Different Experimental Settings.

ODL SDL FGM

Virtual Reality Infrared markers placed on the 
subject’s body for measuring 
kinetic and kinematic 
parameters

Laparoscopic Interface placed on 
a table for measuring kinematic 
parameter of surgical instruments’ 
tips

Frame Grabber plugged to the video 
board of the computer to acquire 
the virtual laparoscopic scenes and 
perform video analysis

Bench Box Infrared markers placed on the 
subject’s body for measuring 
kinetic and kinematic 
parameters

Laparoscopic Interface placed with 
the base in vertical position and 
used with surgical instruments in 
reverse orientation for measuring 
kinematic parameter of surgical 
instruments’ tips

Frame Grabber plugged to a camera, 
pointed to the bench box, to 
acquire the laparoscopic scenes 
and perform video analysis

Operating Room Infrared markers placed on 
the surgical instruments 
for measuring kinematic 
parameters

Not used Frame Grabber plugged to the video 
output of the endoscope and 
perform video analysis
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lower energy consumption in the fifth trial with respect to 
the first one, demonstrating to be more skilled at the end 
of the session. On the contrary, the surgeon, being already 
trained, had very low improvements during the session. 
Table 3 presents also the averaged energy expenditure 
and relative standard deviation, which are definitely 
lower in the expert surgeon.

As shown in Figures 2 and 3, there were similar loads 
between the left and right arms in exercises where both 
hands are used during manipulations with the same instru-
ment (Navigation, Grasping, and Lift and Grasping), 
whereas in exercises where the hands manipulate different 

Figure 3. Energy expenditure of trainees and expert surgeons for each type of exercise, averaged on a session of 5 trials.

Table 3. Energy Expenditure on the Right Hand for One 
Novice and Surgeon for the First and Last Trials in the NVI 
and CUT Exercises and Relative Averaged and Standard 
Deviation Values Calculated Over the 5 Trials.

Trial 1 Trial 5 Mean SD

NVI  
 Subj01  9.84  6.23  8.21  1.29
 Surg02  4.25  4.11  4.50  0.38
CUT  
 Subj01 34.96 18.48 28.41 11.17
 Surg02  1.85  1.71  1.90  0.14

Figure 2. Normalized jerk of trainees and expert surgeons for each type of exercise, averaged on a session of 5 trials.
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instruments, such as COO where the left hand is used to 
hold the endoscope and the right for the grip, the loads 
were different. Again low loads on muscles were observed 
among expert surgeons (see Figure 4). More details about 
this approach can be found in Cavallo et al.13

The evaluation metric S
m
 is defined as the value of the 

log-likelihood of a generic performance compared to the 
expert model. The log-likelihood value gives a measure of 
the probability that a generic performance is generated by 
the expert model. The expert model created was able to rec-
ognize expert surgeon performances. In this case, 4 medical 
students and the same expert surgeons from the Department 

of Surgery, Transplantation and New Technologies at 
Cisanello Hospital, Pisa, Italy, were recruited to perform 5 
cycles of the NVI exercise. Observation sequences relative 
to performances executed by expert surgeons produced val-
ues of S

m
 smaller than the values produced by inexperi-

enced surgeons using data on performance on the same 
exercises as shown in the Figure 5.

Discussion

The system proposed is characterized by high modularity 
and flexibility, which enable its use in different surgical 

Figure 4. Total Work on Biceps and Trapezus in Right and Left Arms of 9 Novices and 2 Expert Surgeons for Each Type of 
Exercise, Averaged Data From Session of 5 Trials.

Figure 5. Evaluation of surgical performance in terms of log-likelihood.
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procedures and settings: surgical training centers and in 
operating rooms during live surgical operations. It repre-
sents a new paradigm for analysis of surgical perfor-
mance and related surgical instrumentation including 
robotic systems and their development for MAS. In 
essence, the system provides a global evaluation of ergo-
nomics and gesture analysis during execution of MAS 
operations, allowing us to identify expert models of 
trained surgeons and evaluate objective metric.

Indeed this metric had the advantage of being task 
independent because its input is based only kinematic 
data related to surgeon’s movements. Moreover, it com-
pares the character of the data acquired from trainees with 
data based on manipulations by expert surgeons. It is 
independent of both setting and nature of the exercises 
and objectively measures the level of skill of the operator. 
Thus, the expert model allows an improved understand-
ing of surgical gesture as it includes information not oth-
erwise obtainable (hidden states), which can discriminate 
highly between levels of expertise.9,10 The automatic rec-
ognition of these “hidden meaningful states” has formed 
the basis for the development of surgical robots with 
shared control between the human operator and the 
machine, in order to avoid dangerous movements, pre-
vent incorrect or unproductive movements, and automate 
repetitive procedures. More details about this approach 
can be found in earlier studies.9,15 In surgical training, the 
system to date has been evaluated during training of resi-
dents on bench trainers and virtual simulators for direct 
manual laparoscopic surgery (Lapsim), but there is no 
reason why it cannot be profitably used during training on 
the da Vinci Surgical System (Intuitive Surgical, 
Sunnyvale, CA).15-20 The recent acquisition of the da 
Vinci simulator in our unit will enable evaluation of the 
system in the transfer of skills for robotic-assisted sur-
gery, and these studies are planned in the EndoCAS train-
ing centre of the Department of Surgery in Pisa.

We also envisage the system as being very useful in 
the design, development, and evaluation of new instru-
mentation including the next generation of surgical robots 
for MAS. In this respect, the key issues in the develop-
ment of the next generation of surgical robots include 
interaction with the surgeon through effective human–
machine interfaces and a full understanding of the surgi-
cal gesture, which has to be reproduced by the robot, and 
optimal integration of tactile feedback sensing, all of 
which can be addressed by the system.

Ongoing work in our laboratory is devoted to the 
analysis of surgical action in order to refine objective 
metrics of performance by the system during the training 
of surgeons. Further developments will focus on 
improved function and coordination of the component 
subsystems, increased automation, and machine learning 
potential of the system together with an interface with 
the OC-HRA.

Conclusions

We have developed and evaluated a machine learning 
platform for the construction of a holistic biomechanical 
model of the surgeon and of the instruments used for 
MAS that uses a Markov chain for gesture analysis. 
Preliminary studies indicate its potential for training of 
surgeons and for the research and development of manip-
ulative technologies for MAS including robotic surgery.
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