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Abstract 
 

In recent years, the problem of target search has received much attention in the research 

community due to the wide range of applications domains involved, such as environmental 

monitoring, precision agriculture, surveillance, or search and rescue. Essentially, it concerns 

the search for stationary or dynamic targets in unstructured environments, aiming to 

minimize the overall discovery time. In order to tackle this problem, solutions based on 

collective search are currently of great interest in robotics. However, coordinating a multi-

robot system is a challenging problem, particularly in unstructured areas, as for example 

hazardous and post-disaster scenarios where direct communication is limited. Swarm robotics 

is a new and disruptive research field that studies how to manage and coordinate large groups 

(swarms) of mostly simple physical robots, getting inspiration from swarm intelligence to model 

the behavior of the robots. 

For centuries, the concept of intelligence has been linked exclusively to human beings. 

However, a simple observation of nature shows that other creatures can also develop 

behaviors that are sophisticated enough to be considered intelligent. The mysterious dance 

of honeybees to communicate the location of promising food sources, the amazing floating 

shapes drawn in the sky by a flock of birds while foraging, the creation of impressive 

cathedral mounds by termites, the trail followed by ants to quickly reach the nest from a food 

source are all good examples of complex collective behaviors, unknown to individual 

members of the swarm. These sophisticated collective behaviors emerge from a relatively 

small set of rather simple rules, where single individuals exploit only low-level local 

interactions with each other and with the environment to gain decentralized control and self-

organization. For example, in ant societies, a key factor of self-organization is the indirect 

communication between individuals through changes in the environment, a process known 

as stigmergy. Specifically, at the beginning the ants search for new food sources moving 

randomly. However, when an ant finds a potential food source, it takes a piece and returns 

to the nest, leaving pheromone trails on the way back. Other ants, while perceiving the 

pheromones, follow the trail until the food source and come back to the nest, releasing 

themselves new pheromones, thus reinforcing the specific route. On the other hand, these 

pheromone trails evaporate over time, reducing their attractive strength. Obviously, shorter 

paths are less affected by this evaporation process in short term, so they are more likely to 

be eventually visited more frequently than the longer ones. In this way, nature provide a 

solution to the problem of finding the shortest path between two points: the ant colony and 

the food source. This and other biological mechanisms have been the inspiration for efficient 



 

optimization methods (bio-inspired heuristics). In the context of swarm robotics, a virtual 

representation of the pheromone can be used to steer the swarms towards the most favorable 

areas of an application scenario, e.g. the regions with the highest probability of the presence 

of targets. 

The main drawbacks of bio-inspired heuristics are related to the selection of the most 

suitable algorithm for the specific scenario and the parametrization costs to adapt it to new 

type of missions. In fact, the hypothesis space of a bio-heuristic, i.e. the space in which to 

search for a good algorithm configuration, is constrained by models of biological species. In 

order to generate more adaptable logics, in this thesis it is proposed a novel design approach 

based on hyper-heuristics. For a given application domain, hyper-heuristics aim to provide more 

generalized solutions to optimization problems, rather than deriving techniques that perform 

well for just a few problem instances. In order to achieve this result, they either select or 

generate low-level heuristics, which are used to solve the problem at hand. In this thesis, two 

fundamental components are considered as constructive low-level heuristics for building 

decentralized and self-organized robot swarm coordination logics, i.e. stigmergy and 

flocking. Moreover, Differential Evolution is used to optimize the aggregation and tuning of 

these modular heuristics over realistic real-world scenarios. The experimental results 

acquired from extensive simulations are promising and show the convenience of using hyper-

heuristics as a novel design methodology compared to simple bio-inspired heuristics. 
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Chapter 1 

 

1 Introduction 

Optimization has become increasingly important in a wide range of applications, from 

engineering design and business planning to data mining and machine learning. Minimizing 

energy consumption, costs, waste, travel time, and environmental impact, as well as 

maximizing profit, outputs, performance, efficiency, and sustainability, are all real-world 

problems that are concerned with optimization. Clearly, any application is subject to a limited 

amount of resources of many kinds, such as time and money, and the goal becomes to find 

optimal solutions to various design problems, which have a broad range of complex 

constraints (Yang & Deb, 2014). Mathematical optimization or mathematical programming 

can be used to properly formulate and model any kind of optimization problem. The 

construction of the cost function or objective function represents the most important part 

of the model and, usually, several design options are evaluated and compared. After 

formulating the optimization problem, the goal is to find the optimal solution or a set of 

optimal solutions, in order to minimize or maximize the objective function. Most real-world 

problems are nonlinear in terms of both objective function and constraints, and only 

sophisticated optimization algorithms can deal with such problems. Moreover, the 

evaluations of objective functions can be time-consuming, particularly for problems related 

to data mining and machine learning. 

Despite the increasing computational power of modern computers, brute force 

approaches to finding optimal solutions are not feasible. Therefore, the use of efficient 

algorithms is critical in almost all applications. Algorithms for efficient optimization include 

both traditional techniques, such as gradient-based algorithms, and evolutionary approaches, 

such as genetic algorithms (GA) and evolutionary algorithms (EA). In recent years, this list 

has grown with interesting new algorithms inspired by nature and swarm intelligence, 

including ant colony optimization (ACO) (Dorigo, Birattari, & Stützle, 2006), particle swarm 

optimization (PSO) (Kennedy & Eberhart, 1995), the firefly algorithm (FA) (Yang, 2009), 

cuckoo search (CS) (Yang & Deb, 2014), and many others. 

Among the applications where optimization can play an important role, there are 

multi-robot systems. Multi-robot systems have a great potential in a variety of critical 
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missions, such as surveillance, environmental monitoring, search and rescue. A relevant issue 

is the coordination of swarms for an increasing number of robots in order to achieve pre-

defined global objectives. Regarding this issue, today biological swarms are much more 

effective with respect to the artificial counterpart. Considering that in complex or open 

environments robots cannot exploit static information on layout and targets locations, their 

coordination is fundamental for an efficient target discovery: the key problem is how to 

specify the individual robot behavior for an effective interaction at the swarm level. 

A target search mission is usually organized into environmental exploration, i.e., to search 

targets, and targets resolution, i.e., to collect sufficient target information. In the literature of 

biological models, a fundamental strategy of exploration is carried by ants. While on the 

move, ants deposit in the terrain a chemical substance called pheromone. As an example, in 

Ant Colony Optimization (ACO) (Dorigo, Birattari, & Stützle, 2006) artificial ants release 

pheromones while exploring the environment to temporarily mark the visited places. 

Different types of pheromones, related to different meanings, enable ants to make different 

decisions. Digital versions of pheromones are commonly used to orientate robots’ 

exploration (Alfeo, et al., Swarm coordination of mini-UAVs for target search using 

imperfect sensors, 2018). Robots move according to the sensed pheromone; specifically, a 

robot begins to coordinate the resolution of the target detected during exploration, by 

attracting other robots towards the position indicated by the pheromone. When the recruited 

robots are sufficient in number, they perform the target resolution. In the literature, three 

major bio-inspired meta-heuristics are considered for recruitment: (i) the Firefly-based Team 

Strategy (FTS) (Yang, 2009), an algorithm derived from swarms of fireflies; (ii) Particle 

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), modelled from schools of fishes 

and flocks of birds; (iii) Artificial Bee Colony (ABC) (Karaboga & Akay, 2009), based on 

behavior of honey bees. The problem of coordinating swarms of robots has received 

attention by many research areas, due to its potential impact on real-world applications. 

Swarm coordination strategies can be divided into two categories. Explicit coordination is based 

on the direct exchange of messages between robots, according to a detailed orchestration 

among swarm members (Senanayake, et al., 2016). This many-to-many communication 

strategy causes a poor performance of large swarms of robots. In contrast, with implicit 

coordination each robot makes simple behavioral decisions, based on information gathered 

through its indirect perception mediated by an environmental mechanism. Although the 

single piece of information obtained by perception is not completely accurate, the robustness 

of the swarm can be sensibly improved by the collective contribution (Senanayake, et al., 

2016). 



 3 

1.1 Swarm intelligence in natural systems 

For centuries, the notion of intelligence has been linked exclusively to human beings, 

without considering the possibility that other natural creatures could also develop 

sophisticated behaviors. However, this assumption is contradicted by multiple examples 

observed in nature, such as the collective behavior of colonies of many social animals (ants, 

termites, birds, bees, and fireflies). These swarms exhibit global behaviors that go far beyond 

the simple aggregations of individual behaviors. The mysterious dance of honeybees to 

communicate the location of promising food sources, the amazing floating shapes drawn in 

the sky by a flock of birds while foraging, the creation of impressive cathedral mounds by 

termites, the trail followed by ants to quickly reach the nest from a food source are all good 

examples of complex collective behaviors, unknown to individual members of the swarm. 

Pierre-Paul Grassé in 1959 first investigated the nest-building behavior of termite colonies. 

Termites occasionally pick up a ball of soil that is then covered with pheromone and dropped 

at random. If there is already a pheromone covered mud ball nearby, there is a greater 

likelihood that a second one will be placed next to it. As this stack increases in size and the 

corresponding amount of pheromone increases, the chances of more pheromones being 

added increase, leading to the result of creating a structured termite mound complete with 

arches and chambers. This action of cascading mud balls until a complete termite mound is 

built is an example of a positive feedback loop. Although a colony is composed of individual 

termites apparently pursuing their own interests, the shape and state of their local 

environment affects their actions and allows coordination at the swarm level (Howden, 

2013). 

In nature swarms can have very different sizes, from a few individuals that live in a 

restricted area to wide colonies spread over a large area and made up of thousands or millions 

of individuals. The fundamental feature of the swarms is that they are decentralized, in other 

words, the members of the swarm are not led by a leader to complete the prefixed activities. 

In general, a swarm is composed of a set of homogeneous (or quasi-homogeneous) 

individuals that move in a non-synchronized way. Each member has limited intelligence and 

is not able to achieve the goals of the swarm alone. It has been shown that the individuals 

are able to produce sophisticated collective behaviors without having any global 

understanding of the swarm. Each member has no information about the overall status of 

the swarm. On the other hand, interactions between individuals occur only at the local level. 

A paradigmatic example is represented by the flocking behavior of birds: each bird is aware 

only of its local neighbors, but despite this the flock is capable of migrating thousands of 
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kilometers toward a destination, following a common orientation in its movement. Another 

example is fish schooling: individual fish keep track only of their close neighbors by following 

with their eyes some marks on the bodies of other fishes and ignore the overall evolution of 

the swarm. However, the school as a whole can change its shape and direction of movement 

at amazing speed, and without collisions between its members. 

It is hard to understand how such complex behaviors can result from swarms of simple 

individuals with limited cognitive abilities. Surprisingly, these sophisticated collective 

behaviors emerge from a relatively small set of rather simple rules, where single individuals 

exploit only low-level local interactions with each other and with the environment to gain 

decentralized control and self-organization. The self-organization is based on the 

combination of four fundamental rules: positive feedback, negative feedback, randomness, 

and multiple interactions (Bonabeau, Theraulaz, Deneubourg, Aron, & Camazine, 1997). A 

key factor is the indirect communication between individuals through changes in the 

environment, a process known as stigmergy. Stigmergy is a mechanism of indirect 

coordination, mediated by the environment, by which the swarm is able to self-organize, 

generating intelligent behavioral patterns without any form of planning, control, or even 

direct communication between agents. Thanks to this indirect communication mechanism, 

extremely simple agents, although with low memory and intelligence, and without awareness 

of each other, achieve an efficient level of collaboration. For example, ants communicate by 

releasing pheromones into the environment. Specifically, at the beginning the ants search for 

new food sources moving randomly. However, when an ant finds a potential food source, it 

takes a piece and returns to the nest, leaving pheromone trails on the way back. Other ants, 

while perceiving the pheromones, follow the trail until the food source and come back to 

the nest, releasing themselves new pheromones, thus reinforcing the specific route. On the 

other hand, these pheromone trails evaporate over time, reducing their attractive strength. 

Obviously, shorter paths are less affected by this evaporation process in short term, so they 

are more likely to be eventually visited more frequently than the longer ones. In this way, 

nature provide a solution to the problem of finding the shortest path between two points: 

the ant colony and the food source. This mechanism has inspired the well-known Ant Colony 

Optimization method (Dorigo, Birattari, & Stützle, 2006). 

Another important property sometimes observed in natural swarms is the eusociality, 

which represents the highest level of organization in social animals. A distinctive feature of 

eusociality is an efficient division of labor among the members of the swarm, where several 

specialized groups can be found. In many cases, this division of labor is characterized by the 

existence of subgroups of individuals who have lost a behavioral skill that is instead a 
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property of other members of the swarm. This behavioral specialization makes swarms more 

efficient but also more complex, resulting in the emergence of different subgroups exhibiting 

different behavioral roles, usually labeled as castes. Examples of eusociality in animal swarms 

include most species of ants and termites, as well as many species of bees and wasps. 

 

 

1.2 Computational swarm intelligence 

The expression swarm intelligence was first used by Gerardo Beni and Jing Wang in 

1989 in the context of a project on cellular robotic systems (Beni & Wang, 1989). Swarm 

intelligence is a branch of artificial intelligence concerned with the collective behavior of 

decentralized and self-organized systems. Swarm intelligence systems typically consist of a 

population of relatively simple agents that interact locally with each other and with the 

environment, as well as natural swarms actually do. Indeed, several biological systems 

observed in nature show very similar features (Yang, 2016). Since its introduction, swarm 

intelligence has increasingly attracted the attention of the scientific community in several 

fields, from computer science to artificial intelligence, from engineering to economics, and 

many others. As a result, a great number of techniques based on swarm intelligence have 

been developed in order to solve complex problems, such as optimization problems. 

Practically all swarm behaviors observed in nature have been suitably modeled to 

develop different swarm intelligence methods. For example, optimization methods were 

proposed in the 1990s that are now well known, such as Ant Colony Optimization (Dorigo, 

Birattari, & Stützle, 2006), Particle Swarm Optimization (Kennedy & Eberhart, 1995), and 

Differential Evolution (Storn & Price, 1997). Methods based on swarm intelligence are 

designed to exploit mainly the local interactions among the agents of the swarm, rather than 

focusing on the structure of the agents as in the traditional approaches in artificial 

intelligence. Typically, the agents have poor intelligence and are driven by a small set of rules. 

However, the swarm as a whole is able to complete difficult tasks through strong cooperation 

based on local interactions and division of labor, leading to the emergence of complex 

behaviors never observed in a single agent. Ant algorithms represent one of the first 

applications of the computational stigmergy (Dorigo, Bonabeau, & Theraulaz, 2000). These 

approaches have been used in solving several computational problems, such as the traveling 

salesman problem, scheduling and routing problems, and problems related to structural 

engineering and digital image processing (Mohan & Baskaran, 2012). 
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1.3 Swarm robotics 

In recent years, the research community has become increasingly interested in swarm 

intelligence because of its potential applications in multiple fields. The decentralized 

coordination of groups of very simple self-organized robots is one of its most important 

applications. In this way, complex and expensive robots can be replaced by simple and 

inexpensive drones that can potentially perform highly sophisticated tasks (Arvin, Murray, 

Shi, Zhang, & Yue, 2014). This interesting research area is generally referred to as swarm 

robotics. Swarm robotics can be briefly defined as the discipline that studies how to handle 

and coordinate large groups (swarms) of relatively simple autonomous robots by using local 

rules and interactions. The design of physical components (sensors and actuators) and 

controlling behaviors of the robots is also of interest for this research area (Sauter, Matthews, 

Parunak, & Brueckner, 2007). 

The main challenge of swarm robotics applications is that the swarm of robots must 

be designed in such a way that local interactions among agents and between agents and the 

environment led to the emergence of the desired collective behavior, according to the 

concepts of swarm intelligence. However, in order to avoid falling into other approaches of 

coordinating multi-robot systems, the design of robotic swarms must also require the 

following criteria: 

• The robots of the swarm are usually small and low cost, so that they can be 

manufactured and deployed in large numbers. 

• The robots must be autonomous and able to sense and work in a real-world 

environment. 

• The robots of the swarm should be homogeneous. Heterogeneous subgroups of 

robots are allowed only in limited number. 

• The robots are very simple and cannot solve the problem individually, or they do 

so by exhibiting very poor performance. As a result, they need to cooperate in order 

to solve the problem more efficiently. 

• Only local sensing and communication capabilities are allowed to the robots of the 

swarm. The local communication ensures that the swarm is scalable and robust and 

can overcome failures of individual members. 
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• The members of the swarm are usually controlled by very simple behavioral rules, 

performed at the individual level, according to the cooperative behavior commonly 

observed in natural swarms. The interaction of these rules produces a wide set of 

complex collective behaviors. 

• The robotic swarm is decentralized, distributed, and self-organized. As a result, it 

shows high efficiency, parallelism, scalability, and robustness. 

 

1.3.1 Advantages and limitations 

Most of the advantages manifested by robotic swarm systems are similar to those 

observed in natural swarms. A single robot that has to perform a difficult task requires a 

sophisticated design and configuration, involving a great number of different structural 

components (mechanical, electronics, optical, etc.) and several control modules for sensors 

and actuators. Typically, many organizations and institutions do not have sufficient budget 

to deal with the high costs of building, testing, operating, enhancing, and maintaining these 

types of robots and their components. Moreover, a single expensive robot is subject to the 

issue known as “single point of failure”. In other words, it becomes highly vulnerable and 

prone to errors, since even the smallest component can affect the overall performance of the 

whole robotic structure. Vice versa, a swarm of simple and low-cost robots can accomplish 

similar tasks via strong cooperation among its members. By deploying a large number of 

robots in different areas, it is possible to increase the exploration capability of the swarm 

compared to a single robot, also exploiting the high parallelism. Furthermore, the loss of an 

individual robot, or even some of them, does not affect, or affects only minimally, the overall 

performance of the swarm, so making it less susceptible to errors and accidents. 

A representative example is related to one of the worst nuclear disasters in recent 

history, which is the Fukushima disaster. In 2011, a tsunami caused by a strong earthquake 

reached the coast of Fukushima prefecture and the nuclear plant located nearby. This disaster 

clearly highlighted the limitations of robotic technologies. In fact, the highly radioactive 

environment following the disaster proved to be too extreme for many robotic units 

deployed at the nuclear plant. Complex machines that were considered the cutting edge of 

technology at the time were suddenly inactivated by radiation. Sophisticated and expensive 

autonomous robots were disconnected or shut down, while others were trapped by fallen 

structures and deformed obstacles in unexpected places. In December 2016, more than 5 
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years after the disaster, a new powerful and sophisticated autonomous robot developed by 

Toshiba was deployed at the plant. The robot was equipped with sensors to measure 

radiation and temperature, and cameras to get the better viewing angles. Unfortunately, the 

robot was stuck by some blocks of molten metal found on its way, after entering unit 2 of 

the plant. The mission aborted after 2 hours, even though it had been planned to operate for 

10 hours. After this failed attempt, Toshiba returned to the plant several times with new, 

improved and smaller robots operating cooperatively. Finally, they were able to complete the 

mission, providing very useful information about the state of the plant, such as radiation and 

temperature measurements, and without disturbing the surrounding environment. The 

robots were also able to clean out small objects in some of the indoor paths. 

The main advantages of robotic swarms over a single sophisticated robot are the 

following: 

• Improved performance thanks to parallelization: the members of the swarm can perform 

different actions in different locations at the same time, because they work following 

each one its individual rules. In this way the swarm gains more flexibility and 

efficiency in carrying out complex tasks, as individual robots (or groups of them) can 

solve portions of a complex task independently. 

• Enabling new tasks: multiple robots can complete tasks that are impossible or 

extremely difficult for a single robot (e.g., dynamic target tracking, cooperative 

environmental monitoring, autonomous surveillance of large areas). 

• Scalability: the whole swarm does not need to be reprogrammed after adding new 

robots. Interactions between robots occur only at local level, so their total number 

within the system does not rise significantly although new individuals are added. 

• Distributed sensing and action: the sensing range and the exploration capability of the 

whole swarm are greater than a single complex robot. These features make the swarm 

much more effective in multiple tasks, such as exploration and navigation (e.g., in 

disaster rescue missions), or environmental monitoring (e.g., early fire detection and 

tracking). 

• Robustness: the failure of a single unit does not affect the completion of the given 

mission due to the decentralized and self-organized nature of the swarm. If one or a 

few units fail or stop the task, the swarm adapts to the change in population size by 

implicitly reallocating the task. 
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• Cost-effectiveness: the cost of a single sophisticated robot is dramatically higher than the 

cost of a simple robot of a swarm. Typically, robotic swarm units are designed to be 

very low-cost, so they can be manufactured in large volumes. Since these robots are 

almost identical, their components are usually highly interchangeable and 

maintenance costs are also very low. Moreover, the maintenance process is simpler 

thanks to the less expertise required to fix simple and homogeneous robotic units. 

• Energy efficiency: simpler and smaller robots need smaller batteries and less energy 

power. As a result, the lifetime of the whole swarm increases. 

There also exist other areas where groups of robots are used simultaneously to 

complete a common mission, such as multi-robot systems, multi-agent systems, and sensor 

networks. However, they generally do not have the properties of robotic swarms and cannot 

be considered as such. Table 1.1 summarizes the main features among these multi-individual 

systems. 

 
Table 1.1 - Comparison between swarm robotics and other multi-robot systems 

 
SWARM 

ROBOTICS 

MULTIROBOT 

SYSTEM 

SENSOR 

NETWORK 

MULTIAGENT 

SYSTEM 

POPULATION SIZE 
Variation in great 

range 
Small Fixed In a small range 

CONTROL 
Decentralized and 

autonomous 

Centralized or 

remote 

Centralized or 

remote 

Centralized or 

hierarchical or 

network 

HOMOGENEITY Homogeneous 
Usually 

heterogeneous 
Homogeneous 

Homogeneous or 

heterogeneous 

FLEXIBILITY High Low Low Medium 

SCALABILITY High Low Medium Medium 

ENVIRONMENT Unknown Known or unknown Known Known 

MOTION Yes Yes No Rare 

TYPICAL 

APPLICATION 

Post disaster relief 

Military applications 

Dangerous 

applications 

Transportation 

Sensing 

Robot football 

Surveillance 

Medical care 

Environmental 

protection 

Net resources 

management 

Distributed control 

 

Tan and Zheng (Tan & Zheng, 2013) highlight that the main differences between 

robotic swarms and other multi-robot systems are related to population size, type of control, 

homogeneity of the units, flexibility, and scalability. Regarding the population size, it can vary 

widely in robotic swarms, differently from multi-robot and multi-agent systems where it is 
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kept small, while it is fixed for sensor networks. Usually, robots of multi-robot and multi-

agent systems are heterogeneous, having specialized roles in the missions in which they are 

involved. As a result, they are poorly suited to general-purpose problem solving because they 

lack flexibility and scalability, while they are able to achieve high performance on specific 

tasks. For example, the teams of robots that participate in popular competitions such as 

“Robocup” cannot be considered robotic swarms, exactly because the different robots in the 

team have very specialized roles. Thanks to flexibility, robotic swarms can perform different 

missions using the same hardware and small changes in the software. They are able to adapt 

to new environments, changing the mission completion strategy: in order to achieve this, it 

is not required to reprogram the whole swarm, but is enough to perform just incremental 

changes aimed at improving the current strategy, typically via machine learning approaches. 

Finally, local sensing and communication features allow the swarm to be scalable. Indeed, 

the many-to-many communication represents a limit for the scalability of the system, since 

by adding new units the communication costs grow exponentially. Thanks to the manifest 

advantages that characterize the robotic swarms, in the last twenty years many relevant 

projects in this research area have arisen. 

However, the robotic swarms have their own limitations and drawbacks too. The main 

ones are the following: 

• Potential collisions: since the robots in the swarm only communicate locally and are not 

aware of other robots at a global level, they can sometimes obstruct each other or 

collide in unexpected ways. 

• Uncertainty: swarm coordination requires each individual to know the locations of the 

other robots and what they are doing. However, local communication does not allow 

robots to have complete certainty about the status of the other members of the 

swarm. As a result, sometimes this can cause conflicts between robots that compete 

rather than cooperate. 

• Lack of specialization: since the swarm is homogeneous, highly specialized tasks can be 

completed with difficulty. Vice versa, a single sophisticated and customized robot 

might outperform the swarm. 

• Hard to design swarm behavior: in swarm robotics, global behavioral patterns emerge 

from local interactions between individuals and between individuals and the 

environment, thus it is challenging to determine the implicit rules that lead to the 

best performance in completing a task. 



 11 

1.3.2 Target search problem 

The problem of collective search requires a trade-off between maximizing the area to 

be covered and searching accurately. The study of distributed algorithms applied to the 

problem of collective search is currently a solution of great interest in robotics. In this 

context, the design aims to allow robots, without centralized coordination, to use local 

information to perform search and rescue operations (Countryman, et al., 2015). The 

problem of coordinating a team of robots for exploration is a challenging task, particularly 

in unstructured environments, such as hazardous and post-disaster scenarios where direct 

communication is limited. The ant foraging model has inspired the design of a possible 

exploration algorithm. The absence of governing hierarchy, the self-organizations of robots, 

and the indirect communication represent the crucial aspects of this kind of approach, where 

individual robots play the key role. 

In nature, ants have evolved over a long period of time and exhibit very intelligent 

behaviors that are well suited to tackle complex tasks. Social insects communicate through 

pheromones, that allow them to perform many social functions, such as food gathering, 

aggregation, mating, recognition, and alarm propagation to other members of the colony. 

Certain swarm intelligence algorithms, such as ACO, use pheromone trails as a way of 

(indirect) communication between agents. 

In pheromone-based coordination, robots transfer information using the environment 

as a medium: each robot, depending on the type of information it wants to indirectly 

communicate, deposits marks in the environment to send different types of signals. The 

shared memory provided by the aggregation of trails in the environment allows simple robots 

with no memory to easily coordinate, even without the need for self-awareness of other 

agents. These algorithms are based on memoryless agents that exhibit very simple individual 

behaviors and are entirely decentralized. Agents can only mark and move based on their local 

perceptions, and thus communicate only by marking the environment. In the robotics field, 

thanks to the availability of several types of sensors, the information can be encoded through 

a range of environmental markers, such as chemicals, heat sources, metals, and electronic 

tags (Kuyucu, Tanev, & Shimohara, 2012). 

The recruitment problem is aimed at designing a low-cost coordination mechanism 

that is able to organize groups of robots at those sites where targets are detected. A single 

robot may not have enough resource capabilities to handle a target, so once it finds a target, 

it attracts other robots in order to organize a coalition that works cooperatively to process 

or disarm the target. Since the detection of a target can occur at any time during the 
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exploration of the environment, the recruitment task is carried out in real time and possibly 

at different sites in the search environment. 

For this purpose, when a fast reaction is expected and countermeasures need to be 

taken, direct communication may be more effective and information about found targets is 

shared using wireless communication. In this case, each robot is assumed to have 

transmitters and receivers and can send packets to other robots in its wireless range. 

In this problem a key issue is how to avoid deadlock, i.e., the situation where robots 

wait a long time for others to proceed in the target processing. In strictly collaborative tasks, 

these problems are particularly relevant, since each robot has information about the 

environment only locally and partially, and the robots must work collectively and adaptively 

to disarm hazardous targets. The greedy approach is the most common one, where a detected 

target is instantly assigned to the robots, without taking into account future events. A more 

flexible strategy is possible, where the robots can react to new future events, possibly 

changing the decisions made. However, each robot must make individual decisions that 

could lead to stop taking into account from requests for help. In missions of this type, for 

example, while reaching a target it is possible to detect another target or receive another 

request, and then it is possible to change decisions in order to move in a more convenient 

way from the robot's point of view. So, at each time step, the robots will be able to make the 

best decision based on their positions and conditions, in response to the requests for help 

received, trying at the same time to balance the two tasks. 

Generally, there are two communication mechanisms that are suitable for tackling the 

problem. The first communication mechanism is one-hop, where coordinating robots send 

packets only to the direct neighborhood (i.e., robots within the communication range) and 

no information forwarding can occur. Following this approach, different bio-inspired 

algorithms can be compared. The other mechanism involves multi-hop communication, 

where information can be propagated among team members. In this case, for example, an 

ant-based protocol can be used. 
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1.4 Hyper-heuristics 

Bio-inspired meta-heuristic algorithms succeed in efficiently addressing many NP-hard 

combinatorial optimization problems and more generally constrained nonlinear optimization 

problems (Yang, 2020), and so they have recently become the cutting edge of current 

research. Each of these algorithms is based on a specific successful mechanism of a biological 

phenomenon found in nature, aiming to achieve the survival of the fittest individual in a 

dynamically changing environment. In nature, examples of collective behavior are numerous. 

These are primarily based on the direct or indirect exchange of information about the 

environment among swarm members. The overall result of collective behavior is difficult to 

predict, although the rules governing interactions at the local level are usually simple to 

describe. However, swarms in nature are able to solve complex problems that are crucial for 

their survival through simple collaboration. 

Even more recently, known benchmark sets have been used to derive techniques that 

improve the results obtained from existing techniques in the field of research on solving 

combinatorial optimization problems such as rostering, vehicle routing, and scheduling 

problems. These benchmark sets are made publicly available to compare the performance of 

different techniques in solving this class of problems. The results of such research have 

shown that a specific technique may produce the best results on one or two instances of the 

problem, but quite often performs poorly on other instances of the problem. 

The research field of hyper-heuristics arises from an attempt to provide more 

generalized solutions to combinatorial optimization problems, rather than deriving 

techniques that provide good results only for some instances of the problem for a certain 

reference domain, showing good performance on a set of problems. Hyper-heuristics achieve 

this by working in the heuristic space rather than in the solution space (Burke, et al., 2003). As 

such, hyper-heuristics select or generate low-level heuristics, which in turn are used to solve the 

problem at hand. In order to select or generate low-level heuristics, several techniques such 

as evolutionary programming, local search, and case-based reasoning are used (Pillay & Qu, 

2018). 

Hyper-heuristics either select low-level heuristics to construct/improve a solution or 

create new low-level heuristics. As such, low-level heuristics are categorized as constructive or 

perturbative. These heuristics are usually defined for a particular problem domain and hence 

are problem specific. 

Constructive heuristics are usually used to create an initial solution to a problem, which 

in turn serves as a starting point for other optimization techniques such as simulated 
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annealing or tabu search in solving the problem. In the domain of examination timetabling, 

for example, constructive heuristics are used to select the examination to schedule next based 

on a measure of the difficulty of scheduling it. 

Perturbative heuristics are used to improve an existing initial solution created by a 

constructive heuristic or randomly created. Low-level perturbative heuristics have the same 

effect as a move operator in local search used to explore the neighborhood of a search point 

and therefore perform changes to the initial solution. The domain of the problem determines 

the type of perturbation carried out. In the case of examination timetabling, for example, 

perturbative heuristics can include deallocating an examination, allocating an examination, 

swapping examinations between timetable periods, and swapping rows in the timetable. 

Since hyper-heuristics either select existing low-level heuristics or generate new low-

level heuristics, and these heuristics can be constructive or perturbative, hyper-heuristics are 

classified as being selection constructive, selection perturbative, generation constructive or 

generation perturbative (Burke, et al., 2013). 

 
Table 1.2 - Classification of Hyper-Heuristics according to two dimensions: (i) the source of feedback during learning, and (ii) the 

nature of heuristic search space 

 HYPER-HEURISTICS 

Source of feedback 

during learning 
ON-LINE LEARNING / OFF-LINE LEARNING / NO LEARNING 

Nature of the 

search space 
HEURISTIC SELECTION HEURISTIC GENERATION 

Low-level 

heuristics 
CONSTRUCTIVE PERTURBATIVE CONSTRUCTIVE PERTURBATIVE 

 

Constructive selection hyper-heuristics select a low-level heuristic to be applied at each 

point of the solution construction. Techniques employed by hyper-heuristics to select the 

low-level construction heuristic include population-based methods, local search methods, 

case-based reasoning, adaptive methods, and hybrid approaches. 

Perturbative selection hyper-heuristics select the low-level perturbative heuristic to be 

applied to each point of the solution improvement and can perform the search on a single 

point or on multiple points. In the first case, the hyper-heuristic includes two components, 

one for the selection heuristic to select a low-level perturbative heuristic, and another for the 

move acceptance to determine whether the move made by the selected low-level heuristic 

should be accepted or not. The selection heuristic and the move acceptance can use several 
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techniques. Perturbative selection hyper-heuristics that perform multipoint search to select 

low-level heuristics use population-based methods to explore the heuristic space such as 

evolutionary algorithms. The population-based technique by its nature performs both 

selection heuristics and move acceptance, and thus hyper-heuristics do not contain separate 

components for these functions. 

Generation constructive hyper-heuristics create new low-level constructive heuristics 

for the problem domain. The generated heuristics are used to create an initial solution, which 

is further optimized using other techniques. Genetic programming has mainly been used by 

hyper-heuristics to generate constructive heuristics. The components of low-level heuristics 

include existing low-level heuristics or components of these heuristics as well as problem 

characteristics. These components are combined using arithmetic operators and conditional 

operators such as if-then-else. Evolved heuristics can be disposable or reusable. Disposable 

heuristics are used to solve a particular instance of the problem. Reusable heuristics are 

generated using one or more instances of the problem and can be applied to unknown 

instances, i.e., instances of the problem not used in the induction and generation of the 

heuristic. 

Generation perturbative hyper-heuristics produce new low-level perturbative 

heuristics through the combination of existing low-level perturbative heuristics and 

acceptance criteria using conditional statements, usually if-then-else statements. For 

example, the conditions used may include whether a solution has been found and whether a 

local optimum has been achieved (Nguyen, Zhang, & Johnston, 2011). 

 

 

1.5 Main contributions 

Robotics is becoming increasingly important in real-world applications. In fact, many 

expensive and high-risk tasks can be accomplished by robots autonomously. Swarm robotics 

represents a key research area to deal with scenarios such as environmental monitoring, 

surveillance, or search and rescue, where large areas must be covered. One of the challenges 

of swarm robotics is coordination, particularly when the environment is unknown a priori 

or is dynamic, and when robots cannot process all the information collected by other robots. 

Unfortunately, real-world scenarios often fall into these categories, and thus manual 

programming or centralized control is very difficult to apply and poorly effective. 
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In the literature, approaches based on hyper-heuristics have been very successful in 

solving complex problems. They aim to automatically generate algorithms from a given set 

of operators, and the goal is to produce a good solver rather than a good solution. Of course, 

hyper-heuristics have also been used in the field of robotics, for example to perform real-

time path-planning for a UAV in unknown environments (Yu, Song, & Aleti, 2019). 

However, to the best of our knowledge, in the literature there are no methodologies for 

coordinating robots based on hyper-heuristics that use bio-inspired behavioral mechanisms 

as modular components of the low-level heuristics used to solve the problem at hand. 

This thesis investigates the use of bio-inspired hyper-heuristics for coordinating 

swarms of robots to solve the problem of target search in unstructured environments. 

Specifically, the original contributions of this thesis are: 

• a novel design methodology called SFE (Stigmergy, Flocking, and Evolution) based 

on hyper-heuristics for coordinating swarms of robots in target search. The approach 

combines two low-level constructive heuristics, i. e., stigmergy and flocking. 

Differential evolution is used to optimize the aggregation and tuning of modular 

heuristics on real-world scenarios; 

• a modeling and optimization testbed that has been publicly released; 

• a comparison between our swarm coordination methodology and some popular bio-

inspired meta-heuristics made adaptive through differential evolution. 

 

1.6 Outline of the thesis 

This dissertation has five chapters. In chapter 1, an overview of the main topics 

considered in the thesis is outlined. In chapter 2 a theoretical background of bio-inspired 

metaheuristics and hyper-heuristics is presented. Specifically, the chapter begins by defining 

the concept of heuristics. Next, a review of the literature on bio-inspired metaheuristics is 

carried out. This is followed by a detailed description of some of the most important bio-

inspired algorithms used in optimization problems. The second part of the chapter focuses 

on hyper-heuristics as a method to design more effective heuristics. Two categories of hyper-

heuristics are investigated: the selection constructive hyper-heuristics and the generation 

constructive hyper-heuristics. Chapter 3 presents a novel hyper-heuristic-based methodology 

for coordinating swarms of drones in a decentralized way. First, the design of the modular 
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components of the hyper-heuristic is detailed. Then, the simulation testbed and scenarios on 

which to evaluate the performance of the algorithm are presented. Chapter 4 lists some 

experimental applications of the previously described methodology: (i) the comparison 

between the proposed hyper-heuristic and some adaptive bio-inspired metaheuristics in the 

context of coordinating swarms of robots in target search, (ii) the tracking of dynamic targets 

by using swarms of drones, and (iii) the collection of plastics in the ocean through swarms 

of unmanned surface vehicles. Finally, Chapter 5 draws conclusions of the study and 

discusses possible future developments. 
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Chapter 2 

 

2 From nature-inspired meta-heuristics to hyper-heuristics 

Most classical or conventional optimization algorithms are deterministic. For example, 

in linear programming the simplex method is a deterministic algorithm. Deterministic 

optimization methods that use gradient information are called gradient-based algorithms. 

One of them is the well-known Newton-Raphson algorithm: in fact, it uses the values of the 

objective function and their derivatives, and works incredibly well on smooth unimodal 

problems. However, it no longer works well when there is some discontinuity in the objective 

function. In this case, it is preferable to use gradient-free or non-gradient-based algorithms 

that use no gradient at all, but only the values of the objective function. Examples of such 

types of algorithms are Nelder-Mead downhill simplex and Hooke-Jeeves pattern search. 

In general, stochastic algorithms can be classified into two categories, although their 

difference is subtle: these are heuristics and meta-heuristics. Broadly speaking, heuristic 

means "to find" or "to discover by trial and error". A hard optimization problem can be 

solved by finding quality solutions in a reasonable amount of time, but there is no guarantee 

that optimal solutions will be found. Generally, these algorithms work most of the time but 

not all the time. This is fine when you want good solutions that are easily reachable, but it is 

no longer fine when you need necessarily the best solutions. 

The so-called meta-heuristic algorithms represent a further development of heuristic 

algorithms. The prefix "meta" means "beyond" or "higher level", and usually these 

algorithms perform better than simple heuristics. Moreover, all meta-heuristic algorithms are 

characterized by a degree of trade-off between randomization and local search. There are no 

agreeable definitions of heuristics and meta-heuristics in the literature. Some researchers use 

the terms interchangeably. However, the most recent trend is to refer to meta-heuristics as 

all those stochastic algorithms that involve both randomization and local search. Since 

randomization enables the transition from local-scale search to global-scale search, almost 

all meta-heuristic algorithms can be considered suitable for global optimization. 

Heuristics, working by trial and error, provide a method for obtaining acceptable 

solutions to a complex problem in a reasonable amount of time. In fact, every possible 

solution or combination cannot be evaluated due to the complexity of the problem of 
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interest. The goal is to find a good feasible solution in an acceptable time. Obviously, there 

is no guarantee that the best solutions can be found. Furthermore, it is not even known 

whether the algorithm will work, and, if so, why it will work. The important thing is to have 

a practical and efficient algorithm that works in most cases by providing good quality 

solutions. Among the quality solutions that the algorithm succeeds in finding, some are 

expected to be near-optimal, although there is no guarantee of such optimality. 

Any meta-heuristic algorithm involves two main components, which are exploration 

and exploitation or diversification and intensification. Exploration aims to generate various 

solutions in order to visit the search space on a global scale. Exploitation uses the information 

that a good current solution has been found in a certain area in order to focus on searching 

in a local region. The selection of the best solutions is combined with this behavior and 

ensures that the solutions will converge towards optimality. Vice versa, through 

randomization, exploration prevents solutions from being trapped in local optimum while 

simultaneously increasing the diversity of solutions. Typically, global optimality can be 

achieved through the right combination of these two main components. 

There are many ways to classify meta-heuristic algorithms. These can be classified as 

population-based and trajectory-based. For example, genetic algorithms are population-

based because they use a set of individuals. Similarly, the firefly algorithm (FA), particle 

swarm optimization (PSO), and cuckoo search all use multiple agents or particles. 

Vice versa, simulated annealing uses a single solution or agent that moves within the 

search space or design space in a piecewise fragmented style. In this case, a better move or 

solution is always accepted, while a not-so-good move may be accepted with a certain 

probability. The moves or steps trace a trajectory in the search space, and the global optimum 

can be achieved by this trajectory with non-zero probability. 

In the next sections we will introduce a selection of popular bio-inspired metaheuristic 

algorithms that have been used in this work for coordinating swarms of robots in target 

search missions. 

Despite the success of bio-heuristics, there are relevant algorithm selection and 

parameterization costs associated with the specific application. Moreover, although adaptive, 

the logic of bio-heuristics is nevertheless constrained by models of biological species, and 

then, for example, it can be neither modularized nor aggregated. In order to overcome these 

limits, the field of hyper-heuristics represent an attempt to provide more generalized 

solutions to optimization problems. Hyper-heuristics achieve this by automating the 

combination of modular heuristics to generate more adaptable logics, so they work in the 

heuristic space rather than in the solution space. More specifically, a hyper-heuristic either 
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selects or generates low-level heuristics, which are exploited to solve the problem at hand. 

To select or generate low-level heuristics, a hyper-heuristic can use different techniques such 

as case-based reasoning, local search, and evolutionary programming. In this work, an 

evolutionary optimization is used to optimize the aggregation and tuning of the bio-heuristics 

on a unique and continuous search space and, consequently, an efficient heuristics 

hybridization is generated for a given application domain. 

 

 

2.1 Nature-inspired meta-heuristics 

In the literature, many algorithms proposed for modeling swarms of robots are 

inspired by biological systems. In particular, solutions based on insect colonies manifest 

interesting properties such as local control and communication, self-organization and 

emergence of global behavior (Dorigo, Birattari, & Stützle, 2006) (Yang, 2009). For instance, 

ants release attractive pheromone trails as a medium for self-organization to mark and 

reinforce their most frequent paths. Coordination strategies for robots based on chemical 

trails have been experimented; for instance, in Fujisawa et al. (Fujisawa, Dobata, Kubota, 

Imamura, & Matsuno, 2008), ethanol trails have been used by robots as a medium to deposit 

and follow. However, chemical trails can cause problems for environmental impact, 

maintenance costs, control of transmission speed and range. For this reason, non-chemical 

media are more effective (Ducatelle, Di Caro, Pinciroli, & Gambardella, 2011). Masár et al. 

(Masár & Zelenka, 2012) have proposed a variant of the PSO algorithm for environment 

exploration. Another significant bio-inspired algorithm is called Artificial Bee Colony (ABC): 

it is based on the food foraging process of honey bees. ABC variants have been also used to 

coordinate robotic systems (Contreras-Cruz, Ayala-Ramirez, & Hernandez-Belmonte, 2015). 

Another well-known algorithm is the Firefly-based Team Strategy (FTS), proposed by Yang 

(Yang, 2009) and based on the flashing behavior of fireflies. In this work FTS, PSO and ABC 

will be considered as a reference for swarm coordination in target search missions. 

Bio-inspired techniques, albeit provided with a certain variety of approaches, are still 

not organized as an operational framework: design and setting costs associated with every 

new type of mission and with new instances of known missions are a major drawback. The 

major difficulties are due to the lack of reliable guidance on how to select the algorithms and 

the parameters in different situations. When applied to real-world problems, the method 

tends to become tailored and problem-specific, characterized by expensive development and 
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maintenance. For this purpose, a promising research direction is called algorithm configuration, 

whose goal is to automatically determine the appropriate parameters values for an algorithm. 

The goal can be considered as a search problem in the configuration space, in which the 

objective function measures the algorithm performance over a benchmark (Hutter, Hoos, & 

Stützle, 2007). Another approach is called parameter control, which performs an online tuning 

of the algorithm parameters at execution time (Eiben, Hinterding, & Michalewicz, 1999). 

However, to automate the tuning of bio-inspired methods for target search is a challenge in 

the field (Burke, et al., 2003). For this purpose, in this work evolutionary optimization is 

adopted. 

 

2.1.1 Flocking behavior 

Many species of birds found in nature adopt a type of behavior called flocking, which 

involves forming large groups of individuals that move together to a common destination. 

Other social animals also adopt similar collective behaviors, such as fish schooling and herd 

formation in ungulates. In these cases, local interactions among autonomous agents result in 

the emergence of collective-level behaviors in a distributed way. These behaviors are of 

interest to swarm robotics researchers, who have tried to replicate flocking in robotic swarms 

by studying the mechanisms underlying animal behavior. In most existing work, robots with 

limited sensing capabilities must keep a compact formation by measuring the distance and 

relative orientation of their neighbors (Turgut, Çelikkanat, Gökçe, & Şahin, 2008) (Virágh, 

et al., 2014) (Yasuda, Adachi, & Ohkura, 2014). Typically, the usual assumption on which 

flocking studies are based is that all robots have at least one neighbor that connects them to 

the rest of the swarm, while cases where individuals or groups of robots are outside the 

detection and communication range of the rest of the robots are not considered. 

As just stated, a key requirement for implementing flocking behavior is the capability 

of a robot to measure the distance and relative orientation of neighboring robots. In real-

world scenarios, since the detection and communication range is typically limited, in practice 

only a limited number of neighbors are detected by a given robot, and not the entire swarm 

population. This limitation does not prevent the implementation of flocking behavior by 

assuming that there are no isolated individuals or groups within the swarm. On the other 

hand, if the factors of scalability and processing complexity are taken into account, this 

limitation can be considered as an advantage. 
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The most distinctive feature of flocking compared to simple aggregation is the 

alignment of robot motion. This allows the group to collectively move toward a certain 

direction. The ontology of flocking behavior is showed in Figure 2.1. This is performed by 

simple agents, named boids in the literature, and consists of three fundamental features: 

separation, alignment, and cohesion (Reynolds, 1987). 

 

 
Figure 2.1 - Floking behavior ontology 

 

Each agent moves according to the following prioritized rules: 

1. Separation: the boid steers to avoid crowding flock mates. Separation prevents the 

overlapping of sensing areas by maintaining a minimum distance among the flock 

mates. 

2. Alignment: the boid steers towards the average heading of the flock mates. Alignment 

allows to align the flock heading to the average heading of nearby agents. 

3. Cohesion: the boid steers to move toward the center of gravity of the flock mates. 

Cohesion allows the agents to stay together. 

For each rule, agents considered as flock mates are determined based on different 

reference ranges, as showed in Figure 2.2. 

 

 
Figure 2.2 - Flocking rules: separation, alignment, and cohesion 
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The scatter procedure helps to maximize the sensing area, further separating nearby 

agents. Alfeo et al. have verified in their work (Alfeo, Cimino, De Francesco, Lega, & Vaglini, 

2018) other important properties: 

• the cohesion rule is not suitable for robots moving among many obstacles. 

• the separation rule can be better exploited with an area different than circular, as 

represented in Figure 2.3. 

 

 
Figure 2.3 - Search area for robot flocking: separation and alignment 

 

2.1.2 Ant Colony Optimization 

The study of collective phenomena such as collective exploration can be carried out 

on ant colonies, which are one of the most significant examples. Exploration allows animals 

to obtain food, to discover new resources, to look for a new home, or to detect the presence 

of potential hazards, and consequently represents a very important task in nature. Ant 

colonies coordinate their behaviors through local interactions, operating without central 

control. Ants perceive only local, chemical, and tactile signals. In order to monitor their 

environment and detect both resources and hazards, ants in a colony must move so that if a 

food source appears or a certain event happens, some ants are likely to be close enough to 

detect it (Countryman, et al., 2015). Although individual ants are very simple, ant colonies 

show amazingly good results in achieving global goals. As a result, borrowing the behavior 

of ants and more generally social insects is becoming increasingly popular in distributed 

systems and robotics. 

The natural behavior of ants to release pheromone trails and follow them has inspired 

Dorigo and Stützle (Dorigo, Birattari, & Stützle, 2006) to develop the Ant Colony 

Optimization (ACO) model. Ants live in colonies and the survival of the colony rather than 

the survival of individuals is the goal that drives their behavior.  The ACO model was inspired 
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by the foraging behavior of ants, and in particular the way they find the shortest paths 

between food sources and their nest. When searching for food, at the beginning ants 

randomly explore the area surrounding their nest. As they move, ants may release a trail of 

chemical pheromone on the ground and may also smell their presence. When choosing 

which route to take, they tend to be more likely to follow paths marked by strong 

concentrations of pheromone. After an ant identifies a food source and assesses its quantity 

and quality, it takes some of it back to the nest. Such information about quantity and quality 

of the food source can determine the amount of pheromone that an ant releases on the 

ground during its way back. Other ants will be steered by the pheromone trails to the food 

source. A parameterized probabilistic model, called pheromone model (Dorigo & Blum, 

2005), represents the fundamental component of an ACO algorithm. During the last decade, 

several researchers in the field of robotics have proposed and applied many versions of 

Dorigo's method. 

For example, taking into account the exploration problem in the domain of search and 

rescue operations, the mobile and autonomous robots must be able to determine the 

sequence of movements needed to explore the whole environment (Yang, 2020). 

Traditionally, the development of exploration strategies relies on approaches that involve 

exploring the environment incrementally by evaluating, based on a certain criterion, several 

candidate observation positions (which in this case are represented by neighboring cells) and 

selecting the next best position at each step. However, since finding as many targets as 

possible in as little time as possible is the main goal, the problem of building a map of the 

environment is not considered in this case. In search and rescue operations, time and battery 

limits are strong constraints and generally the mission success depends on the amount of 

areas explored rather than the quality of the built map. In addition to area exploration, robots 

should be also capable of multiple functionalities, and consequently both integration into a 

swarm and the ability to explore should be seamless and should not consume a large amount 

of the resources of the robot. Furthermore, the effectiveness of a search strategy depends 

on the ability to attract robots to unseen areas, to avoid situations where some areas are 

frequently revisited while others remain unexplored. 

In general, the robots operate according to the following steps: 

1. The robots sense the surrounding cells using on-board sensors. 

2. The robots compute the sensed information in neighbor cells, in this case the 

concentration of pheromone. 

3. The robots decide where to go next. 

4. The robots move in their best local cell and start again from the step 1. 
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Carrying out search and rescue operations mainly means designing a movement 

strategy that allows a team of robots, each equipped only with simple sensors, to efficiently 

explore potentially complex environments. Exactly as it happens in biology for ant colonies, 

the principle of pheromone-based coordination is used, where each robot releases 

pheromone on the visited cells in order to inform, in an indirect way, the other robots about 

the already explored areas. As already pointed out, according to this approach robots do not 

have to communicate directly, but advise other robots not to enter the already visited regions 

through the release of pheromone on the boundaries. If on-board sensors detect the 

pheromone, the robot understands that it is entering a potentially explored area, and as a 

result can preemptively decide to change direction. By exploiting the physical properties that 

exist in a real-world environment, it is desirable to develop a simple algorithm that, through 

the use of pheromone, can enable complex collective behavior within a large group of simple 

homogeneous robots. Such an algorithm does not necessarily require that the map topology 

be maintained in memory. Decision making is based on probabilistic evaluations that exploit 

local pheromone information. Since the main goal is to build a model that performs the 

assigned task through self-adaptive decision mechanisms, issues related to pheromone 

release, sensors, or controls cannot be considered. 

In general, as the robots are exploring the area, they release pheromone on the visited 

cells and each robot uses the pheromone distribution in its immediate neighborhood to 

decide where to move. Exactly as occurs in nature, pheromone trails change both in space 

and time. The pheromone released on a cell by a robot diffuses outwards cell-by-cell until a 

certain distance 𝑅! such that 𝑅! ⊂ 𝐴 ⊂ ℝ" and the amount of the pheromone decreases as 

the distance from the robot increases. Mathematically, the pheromone diffusion is defined 

as follows. Assume that robot 𝑘 at iteration 𝑡 is located in a cell with coordinates (𝑥#$ , 𝑦#$) ∈

𝐴. Then the amount of pheromone that the robot releases at cell 𝑐 with coordinates (𝑥, 𝑦) 

is given by: 

 

Δ𝜑#%$ = 1Δ𝜑&𝑒
!"#$
%& − '

('
,										𝑖𝑓	𝑟#% ≤ 𝑅!

0,																																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (  2.1  ) 

 

where 𝑟#% is the distance between the robot 𝑘 and cell 𝑐, defined as: 

 

𝑟#% = >(𝑥#$ − 𝑥)" + (𝑦#$ − 𝑦)"    (  2.2  ) 
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As it happens in biological systems, the pheromone spreads up to a certain distance 

and after that it is no longer sensed by other robots. In addition, Δ𝜑& is the quantity of 

pheromone released in the cell where robot 𝑘 is placed and it is the maximum amount of 

pheromone, 𝜀 is a heuristic value (noise), and 𝜀 ∈ (0, 1). Furthermore, 𝑎) and 𝑎" are two 

constants to reduce or increase the effect of the pheromone and noise. It should be noted 

that if multiple robots release pheromone in the environment at the same time, then the total 

amount of pheromone that can be sensed in a cell 𝑐 depends on the contribution of many 

robots. Furthermore, the released pheromone concentration evaporates over time and so it 

is not fixed. The rate of evaporation of pheromone is given by 𝜌	(0 ≤ 𝜌 ≤ 1), and the total 

amount of pheromone evaporated in cell 𝑐 at step 𝑡 is given by the following function: 

 

𝜉%$ = 𝜌𝜑%$     (  2.3  ) 

 

where 𝜑%$ is the total amount of pheromone on cell 𝑐 at iteration 𝑡. Considering the 

evaporation of the pheromone and the diffusion according to the distance, the total amount 

of pheromone in cell 𝑐 at iteration 𝑡 is given by: 

 

𝜑%$ = 𝜑%
($+)) − 𝜉%

($+)) + ∑ Δ𝜑#%$-(
#.)    (  2.4  ) 

 

where 𝑁/ is the number of robots that are able to release pheromone on the cell 𝑐. 

At each time step, without knowledge of the whole area, the algorithm selects the most 

appropriate cell for each robot from a set of neighboring cells. In fact, the algorithm does 

not expect the robots to have global information about the environment. The aim is to avoid 

any overlapping and redundant efforts. Therefore, in order to complete the mission as 

quickly as possible, while avoiding any waste of resources and energy, the robots must be 

highly distributed in the search area. Each robot 𝑘, at each time step 𝑡, is placed on a 

particular cell 𝑐#$  that is surrounded by a set of accessible neighbor cells 𝑁(𝑐#$). Essentially, 

each robot senses the pheromone released into the nearby cells, and then it chooses which 

cell to move to at the next step. 

At each time step, the probability for robot 𝑘 of moving from cell 𝑐#$  to cell 𝑐 ∈ 𝑁(𝑐#$) 

can be calculated by: 
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𝑝(𝑐|𝑐#$) =
01$)2

*03$)2
+

∑ 01,
) 2
*
03,
) 2
+

,∈./$#
) 0

,										∀𝑐 ∈ 𝑁(𝑐#$)   (  2.5  ) 

 

where 𝜑%$ is the amount of pheromone in the cell 𝑐 at iteration 𝑡 and 𝜂%$  is the heuristic 

variable to avoid the robots being trapped in a local minimum. In addition, 𝜇 and 𝜆 are two 

constant parameters which balance the weight to be given to pheromone values and heuristic 

values, respectively. Robot 𝑘 moves into the cell 𝑐 that satisfies the following condition: 

 

𝑐 = argmin[𝑝(𝑐|𝑐#$)]    (  2.6  ) 

 

In this way, the robots will prefer less frequently visited areas and more likely they will 

direct towards unexplored regions. 

The ACO-based exploration strategy applied by a swarm of robots in Forager State is 

detailed in Algorithm 2.1, which provides the pseudocode for the pheromone-based control 

that must be executed at each time step. 

On the first iteration, Algorithm 2.1 initializes all cells with the same pheromone trail 

value, set to be zero. This represents the fact that the cells have not yet been visited by any 

of the robots and ensures that the initial probabilities of a cell being chosen are nearly 

identical. Thus, at first the cell is chosen practically at random. Then the robots move from 

one cell to another according to the cell transition rule in Eq. (2.6). In the following iterations, 

the unexplored cells become more attractive to the robots. By using this approach, robots 

explore the area following the direction that is opposite to the pheromone gradient. Then 

the pheromone trails on the cells visited by the robots are updated using Eq. (2.4). When the 

mission is completed, i.e., all targets have been performed, Algorithm 2.1 terminates 

execution for each robot. 
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Algorithm 2.1 
ACO-based exploration strategy 

begin 
step 1: initialization 

set 𝑡: {𝑡 is the time step}. Define 𝑅!, Δ𝜑&, 𝜀, 𝑎), 𝑎", 𝜌, 𝜇, 𝜆. 
step 2: generation coordination system 

for the whole swarm, set the initial locations in terms of 𝑥 and 𝑦 
coordinates. 

step 3: procedure 
while the stop criteria are not satisfied do 

foreach robot 𝑘 in Forager State do 
evaluate the current location 𝑐#$ ; 
evaluate neighborhood cells 𝑁(𝑐#$); 
compute 𝑐 according to Eq. (2.6); 
if 𝑐.hasObstacle() or 𝑐.isOccupied() or 𝑐.isInaccessible() then 

choose a random cell 𝑐∗ ∈ 𝑁(𝑐#$); 
move robot 𝑘 towards 𝑐∗; 

else 
move robot 𝑘 towards 𝑐; 
release pheromone according to Eq. (2.1); 

end if 
end foreach 
foreach cell 𝑐 ∈ 𝐴 do 

update pheromone according to Eq. (2.4); 
end foreach 

update 𝑡; 
end while 

end 
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2.1.3 Firefly algorithm 

The firefly algorithm (FA) was developed by Xin-She Yang in late 2007 and published 

in 2008 (Yang, 2009). In tropical and temperate regions FA is based on the flashing patterns 

and behavior of tropical fireflies. The flashing light of fireflies is an amazing show in the 

summer sky. There are about two thousand species of fireflies, and most of them emit short, 

rhythmic flashes. The pattern of the flashes is often unique to a particular species. The 

flashing light is produced by a process of bioluminescence. The actual functions of these 

signaling systems are yet discussed. However, two basic functions of such flashes are to 

attract mating partners (communication) and to attract potential prey (Lewis & Cratsley, 

2008). Furthermore, flashing may also act as a protective warning mechanism to remind 

potential predators of the bitter taste of fireflies. 

The rhythmic flash, the rate of flashing, and the amount of time between flashes are 

all part of the signaling system that joins the sexes (Lewis & Cratsley, 2008). In the same 

species females reply to the unique flashing pattern of the male. Whereas, in some species 

female fireflies may even mimic the mating flashing pattern of other species in order to attract 

and then eat male fireflies, who may exchange flashes as a suitable potential mate. Some 

tropical fireflies may even synchronize their flashes, thus forming an emerging self-organized 

biological behavior. 

It is known that the intensity of light at a particular distance 𝑟 from the light source 

complies with the inverse-square law. That is to say, the light intensity 𝐼 decreases as the 

distance 𝑟 increases in terms of 𝐼 ∝ 1 𝑟"⁄ . Moreover, the air absorbs the light, which gets 

progressively weaker as the distance increases. These two factors combined result in most 

fireflies being visible at a limited distance, usually several hundred meters at night, that is 

good enough for fireflies to communicate. 

The flashing light can be modeled in such a way that it is associated with the objective 

function to be optimized, thus making it possible to formulate new optimization algorithms. 

It is possible to idealize some of the flashing characteristics of fireflies in order to develop 

firefly-inspired algorithms. To simplify the description of the standard FA, the following 

three idealized rules are used: 

• All fireflies are unisex, so a firefly will be attracted to other fireflies regardless of their 

gender. 

• The attractiveness is proportional to the brightness of a firefly. Thus, for any two 

flashing fireflies, the less bright one will move toward the brighter one. Both 
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attractiveness and brightness decrease as their distance increases. If there is no one 

brighter than a specific firefly, it will move randomly. 

• The brightness of a firefly is affected or determined by the design of the objective 

function. For a maximization problem, the brightness may simply be proportional to 

the value of the objective function. Other forms of brightness can be defined 

similarly to the fitness function in genetic algorithms. 

In the FA, there are two important issues: the variation of light intensity and the 

formulation of attractiveness. For simplicity, we can always assume that the attractiveness of 

a firefly is determined by its brightness, which in turn is associated with the encoded objective 

function. 

In the simplest case for maximum optimization problems, the brightness 𝐼 of a firefly 

at a particular location 𝑥 can be chosen as 𝐼(𝑥) ∝ 𝑓(𝑥). However, the attractiveness 𝛽 is 

relative, it should be seen in the eyes of the watcher or judged by the other fireflies. Thus, it 

will vary with the distance 𝑟67 between firefly 𝑖 and firefly 𝑗. In addition, light intensity 

decreases with the distance from its source, and light is also absorbed in the media, so the 

attractiveness should also vary with the degree of absorption. 

In the simplest form, the light intensity 𝐼(𝑟) varies according to the inverse square law: 

 

𝐼(𝑟) = 81
9'

     (  2.7  ) 

 

where 𝐼! is the intensity at the source. For a particular medium with a fixed light absorption 

coefficient 𝛾, the light intensity 𝐼 varies with the distance 𝑟. In formula: 

 

𝐼 = 𝐼&𝑒+:9    (  2.8  ) 

 

where 𝐼& is the original light intensity at zero distance 𝑟 = 0. In order to avoid the singularity 

at 𝑟 = 0 in the expression 𝐼! 𝑟"⁄ , the combined effect of both the inverse-square law and 

absorption can be approximated as the following Gaussian form: 

 

𝐼(𝑟) = 𝐼&𝑒+:9
'    (  2.9  ) 

 

Since the attractiveness of a firefly is proportional to the intensity of the light that is 

seen by the neighboring fireflies, the attractiveness 𝛽 of a firefly can be defined as following: 

 



 31 

𝛽 = 𝛽&𝑒+:9
'    (  2.10  ) 

 

where 𝛽& is the attractiveness at 𝑟 = 0. Since it is often faster to calculate 1 (1 + 𝑟")⁄  than 

an exponential function, the above function, if necessary, can conveniently be approximated 

as following: 

 

𝛽 = ;2
)<:9'

     (  2.11  ) 

 

It may be advantageous to use this approximation in some applications. Both (2.10) 

and (2.11) define a characteristic distance Γ = 1 √𝛾⁄  over which the attractiveness changes 

significantly from 𝛽& to 𝛽&𝑒+) for Eq. (2.10) or 𝛽& 2⁄  for Eq. (2.11). 

The distance between any two fireflies 𝑖 and 𝑗 at locations 𝑥6 and 𝑥7 , respectively, is 

the Euclidean distance: 

 

𝑟67 = ^𝑥6 − 𝑥7^ = _∑ `𝑥6,# − 𝑥7,#a
">

#.)    (  2.12  ) 

 

where 𝑥6,# is the 𝑘-th component of the spatial coordinate 𝑥6 of 𝑖-th firefly. In the 2D case, 

the distance is expressed as following: 

 

𝑟67 = _`𝑥6 − 𝑥7a
" + `𝑦6 − 𝑦7a

"
   (  2.13  ) 

 

The motion of a firefly 𝑖 that is attracted by another more attractive (brighter) firefly 𝑗 

is determined by: 

 

𝑥6$<) = 𝑥6$ + 𝛽&𝑒
+:934

'
`𝑥7$ − 𝑥6$a + 𝛼𝜀6$   (  2.14  ) 

 

where the second term is due to the attraction. The third term is randomization, with 𝛼 being 

the randomization parameter, and 𝜀6 is a vector of random numbers drawn from a uniform 

distribution or Gaussian distribution. For example, in the simplest form 𝜀6 can be replaced 

by the expression (𝜎 − 1 2⁄ ) where 𝜎 is a random number generator uniformly distributed 

in [0, 1]. For most implementation, it can be taken 𝛽& = 1 and 𝛼 ∈ [0, 1]. 
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The basic steps of the FA can be summarized as the pseudo code shown in Algorithm 

2.2. 

 

Algorithm 2.2 
Firefly algorithm 

Data: objective functions 𝑓(𝑥) 
Result: best or optimal solution 
Initialization of parameters (𝑛, 𝛼, 𝛽, and 𝛾); 
Generate an initial population of 𝑛 fireflies in locations 𝑥6 (𝑖 = 1, 2, … , 𝑛); 
Light intensity 𝐼6 at 𝑥6 is determined by 𝑓(𝑥6); 
while (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) do 

for 𝑖 = 1: 𝑛	(𝑎𝑙𝑙	𝑛	𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠) do 
for 𝑗 = 1: 𝑛	(𝑎𝑙𝑙	𝑛	𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠) do 

if `𝐼6 < 𝐼7a then 
move firefly 𝑖 towards 𝑗 (for maximization problems) 
according to Eq. (2.14); 

end if 
vary attractiveness with distance 𝑟 via 𝑒𝑥𝑝[−𝛾𝑟"]; 
evaluate new solutions and update light intensity; 

end for 
end for 
rank the fireflies and find the current global best 𝑔∗; 

end while 
Postprocess results and visualization; 

 

 

 

 

 

 

 

 

 

 

 



 33 

2.1.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) has been developed by Kennedy and Eberhart in 

1995 (Kennedy & Eberhart, 1995), based on the behavior of swarms in nature, such as bird 

flocking and fish schooling. Since then, due to its simplicity and flexibility, it has become one 

of the most popular swarm intelligence-based algorithms used. PSO has been applied to 

almost all areas of optimization, computational intelligence, and design applications. It uses 

the randomness of real numbers and the global communication between swarm particles. 

The PSO algorithm searches the space of an objective function by adjusting the 

trajectories of individual agents, called particles, as the piecewise paths formed by positional 

vectors in a quasi-stochastic fashion (Kennedy & Eberhart, 1995). The motion of a swarm 

particle consists of two main components: a deterministic component and a stochastic 

component. Each particle is attracted toward the position of the current global best 𝑔∗ and 

its own best location 𝑥6∗ in history, while at the same time it has a tendency to move randomly. 

When a particle finds a position that is better than any previously found positions, 

PSO algorithm updates that position as the new current best for particle 𝑖. There is a current 

best for all 𝑛 particles at any time step 𝑡 during iterations. The aim is to find the global best 

among all the current individual best solutions until the objective function no longer 

improves or after a specific number of iterations. The movement of particles is schematically 

represented in Figure 2.4, where 𝑥6∗ is the current best for particle 𝑖, and 𝑔∗ = 𝑚𝑖𝑛m𝑓`𝑥7∗an 

for (𝑗 = 1, 2, … , 𝑛) is the current global best at time step 𝑡. 

 

 
Figure 2.4 - Schematic representation of the motion of a particle in PSO 

 

Let 𝑥6 and 𝑣6 be the position vector and the velocity vector for particle 𝑖, respectively. 

The new velocity vector is determined by the following formula: 
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𝑣6$<) = 𝑣6$ + 𝜅)𝜀6,)$ [𝑔∗ − 𝑥6$] + 𝜅"𝜀6,"$ [𝑥6∗ − 𝑥6$]   (  2.15  ) 

 

where 𝜀6,) and 𝜀6," are two random vectors, and each entry takes the values between 0 and 

1. The parameters 𝜅) and 𝜅" are the learning parameters or acceleration constants, which 

can be typically taken as 𝜅) ≈ 𝜅" ≈ 2. 

The initial positions of all particles should distribute quite uniformly so that it is 

possible to sample over most regions, that is particularly important for multimodal problems. 

The initial velocity of a particle can be taken as zero, that is 𝑣6$.& = 0. The new position can 

then be updated as the following: 

 

𝑥6$<) = 𝑥6$ + 𝑣6$<)Δ𝑡    (  2.16  ) 

 

where Δ𝑡 is the time increment. Since PSO is iterative with a discrete integer time counter, it 

can be set Δ𝑡 = 1 for all implementations. Although 𝑣6 can assume any values, it is usually 

bounded in some range [0, 𝑣?(@]. 

The fundamental steps of the particle swarm optimization can be summarized as the 

pseudo code shown in Algorithm 2.3. 

 

Algorithm 2.3 
Particle Swarm Optimization 

Data: objective functions 𝑓(𝑥) 
Result: best or optimal solution 
Initialize locations 𝑥6 and velocities 𝑣6 of 𝑛 particles; 
Find the global best 𝑔∗ from 𝑚𝑖𝑛{𝑓(𝑥)), … , 𝑓(𝑥A)} at 𝑡 = 0; 
while (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑖𝑠	𝐹𝑎𝑙𝑠𝑒) do 

for 𝑎𝑙𝑙	𝑛	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	𝑎𝑛𝑑	𝑎𝑙𝑙	𝑑	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 do 
generate new velocity 𝑣6$<) using Eq. (2.15); 
calculate new locations according to Eq. (2.16); 
evaluate the objective function at new locations 𝑥6$<); 
find the current best for each particle 𝑥6∗; 

end for 
find the current global best 𝑔∗; 
update 𝑡 = 𝑡 + 1; 

end while 
Output the final results 𝑥6∗ and 𝑔∗; 
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There are many versions that extend the standard PSO algorithm, and the most 

obvious improvement is probably to use the inertia function 𝜃(𝑡) so that the velocity 𝑣6$ is 

replaced by 𝜃(𝑡)𝑣6$ as following: 

 

𝑣6$<) = 𝜃𝑣6$ + 𝜅)𝜀6,)$ [𝑔∗ − 𝑥6$] + 𝜅"𝜀6,"$ [𝑥6∗ − 𝑥6$]  (  2.17  ) 

 

where 𝜃 takes in theory the values between 0 and 1 (Chatterjee & Siarry, 2006). In the 

simplest case, the inertia function can be taken as a constant, typically 𝜃 ≈ 0.5~0.9. This is 

equivalent to introduce a virtual mass to stabilize the motion of the particles, and thus the 

algorithm is expected to converge more quickly. 
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2.1.5 Artificial Bee Colony Optimization 

Another evolutionary approach is the Artificial Bee Colony (ABC) algorithm by 

Karaboga et al. (Karaboga & Akay, 2009). This algorithm is inspired by the foraging behavior 

of honeybees when searching for a quality food source. In the ABC algorithm, there is a 

population of food locations, and artificial bees change these food locations over time. The 

algorithm uses a set of computational agents called honeybees to find the optimal solution. 

The honeybees in ABC can be categorized into three groups: employed bees, onlooker bees, 

and scout bees. The employed bees exploit food locations, while the onlooker bees wait for 

information from employed bees about the nectar amount of the food locations. The 

onlooker bees select food locations using information from the employed bees and exploit 

the selected food locations. Finally, the scout bees find new random food locations. Each 

solution, in the search space, consists of a set of optimization parameters that represent a 

food location. The number of employed bees is equal to the number of food sources. 

In the ABC algorithm, the location of a food source represents a possible solution to 

the optimization problem, and the nectar quantity of a food source is equal to the quality 

(fitness) of the corresponding solution. The number of employed bees or onlooker bees is 

equal to the number of solutions in the population. At the first step, the ABC generates a 

randomly distributed initial population 𝑃(𝐶 = 0) of 𝑆𝑁 solutions (food source locations), 

where 𝑆𝑁 corresponds to the size of employed bees or onlooker bees. Each solution 

𝑥6 	(𝑖 = 1,… , 𝑆𝑁) is a 𝐷-dimensional vector. Here, 𝐷 is the number of optimization 

parameters. After initialization, the population of the locations (solutions) is subject to 

repeated cycles, 𝐶 = 1, 2, … ,𝑀𝐶𝑁 (where MCN is the Maximum Cycle Number), of the 

search processes of the employed bees, the onlooker bees, and the scout bees. 

Each cycle of the search consists of three steps: 

1) Sending the employed bees onto their food sources and evaluating their nectar 

amounts. 

2) After sharing the nectar information of food sources, the onlooker bees select the 

regions of food sources and evaluate the nectar quantity of food sources. 

3) Determining the scout bees and then sending them randomly onto possible new food 

sources. 

In the initialization phase, a set of food sources is randomly selected by bees and their 

nectar amounts are evaluated. At the first step of the cycle, these bees enter the hive and 
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share nectar information about the sources with bees waiting on the dance area. A bee that 

waits on the dance area for making a decision to choose a food source is called an onlooker, 

while the bee that goes to the food source that she has visited just before is called an 

employed bee. After sharing their information with the onlookers, each employed bee goes 

to the area of the food source visited in the previous cycle by herself, as that food source 

exists in her memory, and then chooses a new food source by visual information in the 

neighborhood of the one in her memory and evaluates its nectar quantity. In the second step, 

an onlooker prefers a food source area based on nectar information shared by employed 

bees on the dance area. As the nectar amount of a food source increases, the probability of 

that food source being selected also increases. After arriving at the selected area, it chooses 

a new food source in the neighborhood of the one in memory based on visual information 

as in the case of the employed bees. The decision of the new food source is made by the 

bees based on the process of visually comparing the locations of the food sources. At the 

third step of the cycle, when the nectar of a food source is abandoned by the bees, a new 

food source is randomly determined by a scout bee and replaced with the abandoned one. 

In the model of (Karaboga & Akay, 2009), at most one scout bee exits to search for a new 

food source at each cycle, and the number of employed bees and onlooker bees are selected 

to be equal to each other. These three steps are repeated for a predefined number of cycles 

called the Maximum Cycle Number (MCN) or until a termination criterion is met. 

An artificial onlooker bee selects a food source based on the probability value assigned 

to that food source, 𝑝6 , calculated by the following expression: 

 

𝑝6 =
B6$3

∑ B6$56.
57&

     (  2.18  ) 

 

where 𝑓𝑖𝑡6 is the fitness value of the solution 𝑖 which is proportional to the nectar amount 

of the food source in the location 𝑖 and 𝑆𝑁 is the number of food sources that is equal to 

the number of employed bees or onlooker bees. 

In order to produce a candidate food position from the old one in memory, the ABC 

uses the following expression: 

 

𝑣67 = 𝑥67 + 𝜙67`𝑥67 − 𝑥#7a   (  2.19  ) 

 

where 𝑘 ∈ {1,… , 𝑆𝑁} and 𝑗 ∈ {1, … , 𝐷} are randomly chosen indexes. Although 𝑘 is 

determined randomly, it must be different from 𝑖. 𝜙67 is a random number between [−1, 1]. 
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It controls the locating of nearby food sources around 𝑥67 and represents the visual 

comparison of two food locations by a bee. As can be seen from (2.19), as the difference 

between the parameters of 𝑥67 and 𝑥#7 decreases, the perturbation on the position 𝑥67 also 

decreases. Thus, as the search comes closer to the optimum solution in the search space, the 

step length is adaptively reduced. If the value of a parameter resulting from this operation 

exceeds its predefined limit, the parameter can be set to an acceptable value, for example it 

can be set to its limit value. 

The food source whose nectar is abandoned by the bees is replaced with a new food 

source by the scouts. In ABC, this is simulated by randomly generating a location and 

replacing it with the abandoned one. In ABC, if a location cannot be improved further 

through a predefined number of cycles, then that food source is considered abandoned. The 

value of the predefined number of cycles is an important control parameter of the ABC 

algorithm, which is called the “abandonment limit". Assume that the abandoned source is 𝑥6 

and 𝑗 ∈ {1, … , 𝐷}, then the scout discovers a new food source to be replaced with 𝑥6 . This 

operation can be defined as in the following: 

 

𝑥6
7 = 𝑥?6A

7 + 𝑟𝑎𝑛𝑑[0, 1]`𝑥?(@
7 − 𝑥?6A

7 a  (  2.20  ) 

 

After that each candidate source location 𝑣67 is generated and then evaluated by the 

artificial bee, its performance is compared with that of the old source. If the new food source 

has equal or better nectar than the old source, it is replaced with the old one in memory. 

Otherwise, the old one is maintained in memory. In other words, a greedy selection 

mechanism is employed as the selection operation between the old source location and the 

candidate source. 

Totally, ABC algorithm employs four different selection processes: 

1) a global probabilistic selection process, in which the probability value is calculated by 

(2.18) and used by the onlooker bees to discover promising regions. 

2) a local probabilistic selection process performed in a region by the employed bees and 

the onlooker bees depending on the visual information such as color, shape and 

fragrance of the flowers (sources) to determine a food source around the source in 

memory as described by (2.19). 

3) a local selection called greedy selection process performed by onlooker and employed 

bees in that if the nectar amount of the candidate source is better than that of the 
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current source, the bee forgets the current one and stores the candidate source 

generated by (2.19); otherwise, the bee keeps the current one in memory. 

4) a random selection process performed by scouts as defined in (2.20). 

It is clear from the above discussion that there are three control parameters in the basic 

ABC: (i) the number of food sources that is equal to the number of employed or onlooker 

bees (SN), (ii) the limit value for abandonment, and (iii) the maximum number of cycles 

(MCN). 

In the case of bees, the recruitment rate represents a measure of how quickly the bee 

colony locates and exploits a newly found food source. The artificial recruitment could 

similarly represent a measure of how quickly feasible or good solutions to difficult optimization 

problems can be discovered. The bee colony survival and evolution depend on the rapid 

discovery and efficient exploitation of the best food sources. Similarly, the successful 

solution of difficult engineering problems is related to the relatively fast discovery of good 

solutions especially for problems that need to be solved in real time. In a robust search process, 

the exploration and exploitation processes must be performed together. In the ABC 

algorithm, while the onlookers and employed bees perform the exploitation process in the 

search space, the scouts control the exploration process. The detailed pseudocode of ABC 

is shown in Algorithm 2.4. 
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Algorithm 2.4 
Artificial Bee Colony 

Data: objective functions 𝑓(𝑥) 
Result: best or optimal solution 
Initialize the population of solutions 𝑥6 , 𝑖 = 1,… , 𝑆𝑁; 
Evaluata the population; 
𝑐𝑦𝑐𝑙𝑒 = 1; 
while (𝑐𝑦𝑐𝑙𝑒 ≠ 𝑀𝐶𝑁) do 

calculate new solutions 𝑣6 for the employed bees by using Eq. (2.19); 
evaluate the objective function at new solutions 𝑣6 for the employed bees; 
apply the greedy selection process for the employed bees; 
calculate the probability values 𝑝6 for the solutions 𝑥6 by using Eq. (2.18); 
calculate new solutions 𝑣6 for the onlookers from the solutions 𝑥6 
selected depending on 𝑝6 ; 
evaluate the objective function at new solutions 𝑣6 for the onlooker bees; 
apply the greedy selection process for the onlooker bees; 
determine the abandoned solution for the scout (if it exists); 
replace the abandoned solution with a new randomly calculated solution 
𝑥6 by using Eq. (2.20); 
memorize the best solution achieved so far; 
𝑐𝑦𝑐𝑙𝑒 = 𝑐𝑦𝑐𝑙𝑒 + 1; 

end while 
Output the best solution 𝑥6∗; 
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2.1.6 Differential Evolution 

Differential evolution, or DE, was first developed by R. Storn and K. Price in their 

nominal papers in 1996 and 1997 (Storn & Price, 1997). DE is a vector-based meta-heuristic 

algorithm that shows some similarity to pattern search and genetic algorithms because of its 

use of crossover and mutation. DE is a stochastic search algorithm with self-organization 

and does not use derivative information. Thus, it is a population-based method with no 

derivatives. Also, DE uses real numbers as solution strings, so no encoding and decoding is 

required. 

As in genetic algorithms, the design parameters in a 𝑑-dimensional search space are 

represented as vectors, and various genetic operators are applied on their string bits. 

However, in contrast to genetic algorithms, differential evolution performs operations on 

each component (or each dimension of the solution). Almost everything is done in terms of 

vectors. For example, in genetic algorithms, mutation is performed at one site or multiple 

sites on a chromosome, whereas in differential evolution, a difference vector of two 

randomly chosen population vectors is used to perturb an existing vector. Such a vector 

mutation can be seen as a more implementation-efficient approach. This type of perturbation 

is performed on every population vector and thus can be expected to be more efficient. 

Similarly, crossover is also a vector-based swapping of chromosomes or vector segments. In 

addition to using mutation and crossover as differential operators, DE has explicit updating 

equations. This also makes it easy to implement and design new variants. 

For a 𝑑-dimensional optimization problem with 𝑑 parameters, a population of 𝑛 

solution vectors 𝑥6 , where 𝑖 = 1, 2, … , 𝑛, is initially generated. For each solution 𝑥6 at any 

generation 𝑡, it can be used the following formal notation: 

 

𝑥6$ = `𝑥),6$ , 𝑥",6$ , … , 𝑥>,6$ a    (  2.21  ) 

 

that consists of 𝑑-components in the 𝑑-dimensional space. This vector can be considered as 

the chromosome or genome. 

 DE involves three main steps: 

1. Mutation. 

2. Crossover. 

3. Selection. 
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Mutation is performed by the mutation scheme. For each vector 𝑥6 at any time or 

generation 𝑡, three distinct vectors 𝑥C, 𝑥D , and 𝑥9 at 𝑡 are first randomly chosen, and then it 

is generated a so-called donor vector by the following mutation scheme: 

 

𝑣6$<) = 𝑥C$ + 𝐹`𝑥D$ − 𝑥9$a   (  2.22  ) 

 

where 𝐹 ∈ [0, 2] is a parameter, frequently denoted as the differential weight. This requires that 

the minimum number of the population size is 𝑛 ≥ 4. In practice, a scheme with 𝐹 ∈ [0, 1] 

is more efficient and stable. In fact, almost all the studies in the literature use 𝐹 ∈ [0, 1]. In 

Figure 2.5 it is shown that the perturbation 𝛿 = 𝐹`𝑥D − 𝑥9a to the vector 𝑥C is used to 

calculate a donor vector 𝑣6 . 

 

 
Figure 2.5 - Schematic representation of donor (mutation) vector 

 

The crossover is controlled by a crossover parameter 𝐶9 ∈ [0, 1], that represent the 

rate or probability for crossover. The crossover can be performed in two ways: binomial and 

exponential. The binomial scheme carries out crossover on each of the 𝑑 components or 

variables. By generating a uniformly distributed random number 𝑟7,6 ∈ [0, 1], the 𝑗-th 

component of 𝑣6 is processed in the following way: 

 

𝑢7,6$<) = �
𝑣7,6$<)										𝑖𝑓	𝑟7,6 ≤ 𝐶9
𝑥7,6$ 													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (  2.23  ) 

 

where 𝑗 = 1, 2, … , 𝑑. In this way, it can be randomly decided whether to swap each 

component with the donor vector component or not. 
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In order to ensure that 𝑣6$<) ≠ 𝑥6$, that may increase the exploratory or evolutionary 

efficiency, the Eq. (2.23) can be replaced by the following: 

 

𝑢7,6$<) = �
𝑣7,6$<)							𝑖𝑓	𝑟7,6 ≤ 𝐶9 	𝑜𝑟	𝑗 = 𝐽9 			
𝑥7,6$ 										𝑖𝑓	𝑟7,6 > 𝐶9 	𝑎𝑛𝑑	𝑗 ≠ 𝐽9

  (  2.24  ) 

 

where 𝐽9 ∈ {1, 2, … , 𝑑} is a random index generated by permutation. 

In the exponential scheme, a segment of the donor vector is selected, and this segment 

starts with a random integer 𝑘 and have a random length 𝐿, that can include more than one 

component. Mathematically, this means choosing 𝑘 ∈ [0, 𝑑 − 1] and 𝐿 ∈ [1, 𝑑] randomly, 

and the new vector is calculated by the following: 

 

𝑢7,6$<) = �
𝑣7,6$<)										𝑓𝑜𝑟	𝑗 = 𝑘,… , 𝑘 + 𝐿 − 1
𝑥7,6$ 													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																								

   (  2.25  ) 

 

where 𝑘 + 𝐿 − 1 ∈ [1, 𝑑]. Since the binomial is easier to implement, it is used the binomial 

crossover in most of the implementations. 

The selection is basically the same as that used in genetic algorithms. It involves 

selecting the best fit and, for a minimization problem, the minimum objective value. 

Therefore, the new solution vector is given by the following: 

 

𝑥6$<) = �
𝑢6$<)										𝑖𝑓	𝑓(𝑢6$<)) ≤ 𝑓(𝑥6$)
𝑥6$														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																

    (  2.26  ) 

 

All of the three DE components can be found in the pseudocode shown in Algorithm 

2.5. 
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Algorithm 2.5 
Differential Evolution 

Data: objective functions 𝑓(𝑥) 
Result: best or optimal solution 
Initialize the population 𝑥 with randomly generated solutions; 
Set the weight 𝐹 ∈ [0, 2] and crossover probability 𝐶9 ∈ [0, 1]; 
while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑖𝑠	𝐹𝑎𝑙𝑠𝑒) do 

for 𝑖 = 1: 𝑛	(𝑎𝑙𝑙	𝑥6 	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑣𝑒𝑐𝑡𝑜𝑟𝑠) do 
randomly choose three distinct vectors 𝑥C, 𝑥D and 𝑥9 ; 
generate a new vector 𝑣6 by mutation scheme (2.22); 
generate a random index 𝐽9 ∈ {1, 2, … , 𝑑} by permutation; 
for 𝑗 = 1: 𝑑	(𝑎𝑙𝑙	𝑣7,6 	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠	𝑜𝑓	𝑣6) do 

generate a randomly distributed number 𝑟7,6 ∈ [0, 1]; 
update by Eq. (2.24); 

end for 
select and update the solution by Eq. (2.26); 

end for 
end while 
Postprocess and output the best solution; 

 

The overall efficiency of the search is controlled by two parameters: the differential 

weight 𝐹 and the crossover probability 𝐶9 . Most studies have focused on the choice of 𝐹, 𝐶9 

and 𝑛 as well as the variations of Eq. (2.22). In fact, many different ways of formulating Eq. 

(2.22) can be used for generating the mutation vectors. This results in various schemes with 

the naming convention DE/x/y/z, where x is the mutation scheme (rand or best), y is the 

number of difference vectors, and z is the crossover scheme (binomial or exponential). So, 

DE/rand/1/bin means the basic DE scheme using random mutation and one difference 

vector with a binomial crossover scheme. 

The basic DE/rand/1/bin scheme is given in Eq. (2.22), that is: 

 

𝑣6$<) = 𝑥C$ + 𝐹`𝑥D$ − 𝑥9$a   (  2.27  ) 

 

If the vector 𝑥C$  is replaced by the current best 𝑥EF!$$  found so far, the previous scheme 

is changed into the so-called DE/best/1/bin scheme as the following: 

 

𝑣6$<) = 𝑥EF!$$ + 𝐹`𝑥D$ − 𝑥9$a   (  2.28  ) 
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There is no reason why one cannot use more than three distinct vectors. For example, 

if four different vectors are used plus the current best, the DE/best/2/bin scheme is 

considered: 

 

𝑣6$<) = 𝑥EF!$$ + 𝐹`𝑥#&
$ + 𝑥#'

$ + 𝑥#8
$ + 𝑥#9

$ a  (  2.29  ) 

 

Furthermore, if five different vectors are used, the scheme becomes DE/rand/2/bin: 

 

𝑣6$<) = 𝑥#&
$ + 𝐹)`𝑥#'

$ − 𝑥#8
$ a + 𝐹"`𝑥#9

$ − 𝑥#:
$ a  (  2.30  ) 

 

where 𝐹) and 𝐹" are differential weights in [0, 1]. Obviously, for simplicity it can also be 

taken 𝐹) = 𝐹" = 𝐹. 

Following a similar strategy, it is possible to design various schemes. For example, 

these variants can be written in a generalized form as follows: 

 

𝑣6$<) = 𝑥#&
$ + ∑ 𝐹! ∙ �𝑥#',1

$ − 𝑥#8,1
$ �?

!.)    (  2.31  ) 

 

where 𝑚 = 1, 2, 3, … and 𝐹!	(𝑠 = 1,… ,𝑚) are the scale factors. The number of vectors 

involved into these schemes is equal to 2𝑚 + 1. 

On the other hand, there is also another type of variants that uses an additional 

influence parameter 𝜆 ∈ (0, 1). For example, DE/rand-to-best/1/* scheme can be written 

as the following: 

 

𝑣6$<) = 𝜆𝑥EF!$$ + (1 − 𝜆)𝑥#&
$ + 𝐹`𝑥#'

$ − 𝑥#8
$ a  (  2.32  ) 

 

which introduces an extra parameter 𝜆. Again, this type of variants can be generalized as 

follows: 

 

𝑣6$<) = 𝜆𝑥EF!$$ + (1 − 𝜆)𝑥#&
$ + ∑ 𝐹!�𝑥#',1

$ − 𝑥#8,1
$ �?

!.)  (  2.33  ) 

 

In the literature, more than 10 different schemes have been formulated (Yang, 2020). 

There are also good variants of DE that include the self-adapting of the control parameters, 

and others for multi-objective optimization. 
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Differential Evolution (DE) algorithm is an evolutionary algorithm for optimization 

in continuous spaces. It can tackle non-linear and complex optimization problems, requiring 

just the objective function values. Nevertheless, the performance of the DE depends on the 

mutation control parameters, especially when the problem is complex (Brest, Greiner, 

Boskovic, Mernik, & Zumer, 2006). To balance the convergence (fitness evaluations) and 

the reliability (optimum’s globality), ranges of parameters values have been studied. The 

most popular variant of DE is called “DE/rand/1/bin”, where, as pointed out in the 

previous section, “DE”	stands for Differential Evolution, “rand”	means that the individuals 

selected to compute the mutation values are randomly chosen, “1”	is the number of pairs of 

individuals chosen for mutation, and “bin”	denotes the binomial crossover. Another variant 

is based on the best selection strategy: it is called “DE/best/1/bin”, because the perturbing 

individual is generated from the best population member. It is known that 

“DE/rand/1/bin”	is slow but robust compared to the strategies based on the best member. 

Among the most sensitive parameters, the Crossover Rate (CR) is a probability of mixing 

between mutant (donor) and target vectors of the current population (Zaharie, 2009). 

Low/high CR values are good for uni/multi-modal problems. Good convergence can be 

achieved with large CR values. Recommended CR values are in [. 2, .9]. The differential 

weight 𝐹 ∈ [0, 2] controls the mutant vector: large F values allow escaping from local 

optima; low values cause premature convergence; 𝐹 ≤ 1 determines a fast and reliable search 

process. As a result, F is usually set in [0.4, 0.9]. The population size (NP) is another 

important parameter. In the literature, there is a lack of sufficient justifications and a lot of 

conflicting motivations about the manual parameter tuning of DE. To solve the issue, in our 

research a grid search technique is used. 
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2.2 Hyper-heuristics to design heuristics 

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of 

biological species and can be neither modularized nor aggregated. A novel design approach 

based on hyper-heuristics (HH) can be used to overcome these limits. A hyper-heuristic is a 

search method that automates the combination of modular heuristics to generate more 

adaptable logics. In (Burke, et al., 2013) a unified classification and definition of HH able to 

capture the research work in the field has been presented. The authors define HH as a search 

method or a learning mechanism to select or generate heuristics solving search problems. 

Specifically, in a learning HH a feedback is given from the search process. In online learning 

HH the learning occurs while solving the problem, whereas in offline learning HH knowledge 

is gathered from training instances and modelled as rules or programs. Considering the type 

of search space, the heuristic selection chooses or selects predefined heuristics, whereas the 

heuristic generation generates new heuristics from modular components. Both search paradigms 

can be further divided into constructive, when iteratively extending partial candidate solutions 

with missing components and perturbative, when adjusting full candidate solutions by 

modifying their components. A comprehensive classification of hyper-heuristic approaches 

is represented in Table 1.2. 

In the literature, hybrid approaches are also used. In particular, Garrido et al. (Garrido 

& Riff, 2010) have solved the dynamic vehicle routing problem via an evolutionary HH. 

Their framework is based on a combination of both constructive and perturbative HH and 

is evaluated on a large and complex set of problems. Results are competitive with respect to 

well-known methods of the literature. The HH approach aims to provide a general method 

for many application domains, rather than a better solution to a specific problem. Indeed, 

the search space of HH is a space of new heuristics, rather than a space of solutions. The 

difference is that a new heuristic can be potentially reused for solving many problem 

instances. In the literature, a well-known method for generating heuristics is genetic 

programming (Poli & Koza, 2014). It is an evolutionary computation technique evolving a 

population of computer programs. Genetic programming can be considered as an HH if the 

evolved programs are heuristics or heuristic’s components. For example, in (Geiger, Uzsoy, 

& Aytug, 2006) Geiger et al. have illustrated the main motivations to automatically generate 

heuristics in production scheduling. The research in the field has shown also that successful 

components can be derived by the available human-created heuristics (Fukunaga, 2008). 

Another research field, related to perturbative heuristics, is called adaptive memetic algorithms. It 
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is an evolutionary algorithm characterized by local searchers called memes, adaptively 

selected/generated during the search (Ong, Lim, Zhu, & Wong, 2006). 

 

 

2.2.1 Selection constructive hyper-heuristics 

In an optimization problem, selection constructive hyper-heuristics select a low-level 

heuristic at each point in the construction of a solution. Low-level constructive heuristics 

aim to construct a complete solution, or an initial solution for optimization. The solution of 

a problem starts from an initial state, going through a certain number of intermediate states 

until it reaches the final state or solution state. 

In order to move from one state of the problem to the next, selection constructive 

hyper-heuristics select the low-level constructive heuristics to be applied. The domain of the 

problem determines the low-level heuristics. A formal definition of constructive selection 

hyper-heuristics is provided in Definition 2.1. 

 

Definition 2.1: given a problem 𝑝 and a set of low-level construction heuristics 𝐿 =

{𝐿&, 𝐿), … , 𝐿A} for the problem domain, a selection constructive hyper-heuristic constructs 

a solution 𝑠 for 𝑝 by using a technique 𝑇 to select a low-level heuristic from 𝐿 and by applying 

this low-level heuristic to change from one problem state 𝑠($) to the next state 𝑠($<)), 

beginning at the initial state and stopping at the solution state 𝑠. 

 

Hyper-heuristics generally exploit a high-level technique such as meta-heuristics or 

case-based reasoning to select low-level heuristics. For solving a combinatorial optimization 

problem, usually the algorithm that is used by a selection constructive hyper-heuristic is 

outlined in Algorithm 2.6. 
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Algorithm 2.6 
Selection constructive hyper-heuristic 

procedure 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒𝐻𝑦𝑝𝑒𝑟𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑝, 𝐿) 
initialize solution 𝑠 to be empty; 
while 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑠	𝑖𝑠	𝑛𝑜𝑡	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 

use technique 𝑇 to select a low-level constructive heuristic 𝐿6 from 𝐿; 
apply 𝐿6 to extend the solution 𝑠; 

end while 
return solution 𝑠; 

end procedure 
 

The categories of techniques employed by selection constructive hyper-heuristics to 

select low-level heuristics include case-based reasoning, local search methods, population-

based methods, and hybridization and adaptive methods. 

Population-based search methods explore multiple points simultaneously, in contrast 

to local search methods that move from one point in the search space to the next. The 

population of solutions represents different points in the search space. Evolutionary 

algorithms have mainly been used in the literature to explore the heuristic space. In these 

cases, genetic operators are applied to combinations of heuristics and thus perform 

exploration and exploitation in the heuristic space. The performance of an EA depends, in 

turn, on the configurations of the hyper-parameters: for example, mutation and crossover 

probabilities, population size, and number of generations. Parameter control methods have 

been proposed, such as deterministic, adaptive, and self-adaptive methods (Smith, 2008). 

Each element in the population, i.e., the chromosome, is a combination of heuristics. 

The combination includes low-level constructive heuristics, and each heuristic in the 

combination represents a heuristic selected by the selection constructive hyper heuristic. The 

selection as such is performed by the genetic algorithm through the process of fitness 

evaluation, selection, and recombination. Each chromosome is applied to solve one or more 

instances of the problem, and the fitness is the objective value in the case of a single instance 

of the problem or a function of the objective values of different instances of the problem. 

When the source of feedback is the evaluation of a problem instance, the goal is to evolve a 

combination of heuristics specific to the problem at hand. In this case, the combination of 

heuristics is disposable, i.e., the combination of heuristics or the evolved rule is used to solve 

an instance of the problem. In contrast, when the source of feedback is the evaluation of 

more than one instance, the goal is to evolve a reusable combination of heuristics. In this 

case, the problem instances are divided into training and testing sets. The training set is used 
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to evolve the combination of heuristics, while the testing set is a set of unseen problems on 

which the evolved combination of heuristics is tested. 

The representation used by the population-based approach affects the performance of 

the hyper-heuristic. The simplest representation of a chromosome is a single combination of 

low-level heuristics of a specific type. A chromosome may also include more than one type 

of low-level heuristics. The set of low-level heuristics to be used to compose the 

combinations of heuristics must be chosen carefully. A large set with less useful constructive 

heuristics may lead to a search space that is too large to explore an optimal combination of 

heuristics in a limited runtime. In addition to low-level constructive heuristics, the heuristic 

space may alternatively consist of condition-action rules, where the condition represents the 

states of the problem and the action the corresponding heuristic to be applied. In the 

literature, it has also been shown that different low-level constructive heuristics are needed 

at different points in the construction of a solution, i.e., a different heuristic is needed for 

each state of the problem from the initial state to the solution state. Adaptive methods have 

been shown to be effective in tailoring hybridizations or different types of constructive 

heuristics at different stages of the construction of solution (Pillay & Qu, 2018). 

 

 

2.2.2 Generation constructive hyper-heuristics 

In solving optimization problems, a low-level constructive heuristic is used to create 

an initial solution, which is a starting point for solving the problem using optimization 

techniques. These heuristics are usually problem dependent. In fact, research has shown that 

different low-level constructive heuristics are effective for different classes of problems, and 

for some problem domains it is more effective to generate heuristics suitable for each 

instance of the problem (Lu, Xin, Zhang, & Chen, 2020) (Kahar & Kendall, 2010) (Felipe, 

Ortuño, Righini, & Tirado, 2014) (Paquay, Limbourg, & Schyns, 2018). Deriving 

constructive heuristics is a time-consuming process due to the relevant heuristic selection 

and parameterization costs associated with each new problem type and new instances of 

known problems. Thus, deriving low-level constructive heuristics becomes expensive to do 

manually (Drake, Hyde, Ibrahim, & Ozcan, 2014). Constructive hyper-heuristics generation 

aims to automate this process by generating low-level constructive heuristics by using a given 

set of problem attributes. Automating this process reduces the human hours involved in 

deriving low-level heuristics and can result in the generation of new constructive heuristics 
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that humans would not think of. This allows the constructive heuristic to be tailored to a 

particular instance of the problem or to be engineered for different classes of problems. 

Thus, the heuristics generated can be disposable, i.e., created for a specific problem instance, 

or reusable, i.e., used to solve similar problems never seen before (Burke, et al., 2013). 

Two criteria should be used to evaluate the performance of the generation constructive 

hyper-heuristics, i.e., the time needed to generate the heuristics and the performance of the 

generated heuristics compared to existing manually derived heuristics. The time required by 

the generation constructive hyper-heuristics should be less than the time needed to manually 

derive these heuristics (Burke, Hyde, Kendall, & Woodward, 2010). Moreover, the 

performance of the generated low-level heuristics cannot be expected to be comparable to 

the state of the art for the specific problem domain (Drake, Hyde, Ibrahim, & Ozcan, 2014). 

Similar to manually derived heuristics, the purpose of these heuristics is to provide a starting 

point for optimization techniques. Thus, automatically generated heuristics should perform 

at least as well as manually derived heuristics. However, research in this field to date suggests 

that heuristics created by the generation constructive hyper-heuristics have been shown to 

outperform existing heuristics (Pillay & Qu, 2018). Another important issue concerns the 

interpretability of the generated constructive heuristics, i.e., whether it is needed for the 

generated heuristic to be readable to understand what it is doing, or the generation 

constructive hyper-heuristics should work as a black box. 

A formal definition of generation constructive hyper-heuristics is outlined in 

Definition 2.2. 

 

Definition 2.2: given a problem instance 𝑖 or a set of problem instances 𝐼 = {𝐼&, 𝐼), … , 𝐼?} 

and a set of problem attributes 𝐴 = {𝐴&, 𝐴), … , 𝐴A} for a problem domain, a generation 

constructive hyper-heuristic generate a new low-level constructive heuristic 𝑙𝑐ℎ, using the 

attributes in 𝐴, to produce an initial solution for either 𝑖 or the problems in 𝐼 and similar 

problems. 

 

In solving combinatorial optimization problems, the low-level derived heuristic is 

fundamentally a priority function that is used to order events or entities to be chosen to 

create a solution. As such, the low-level derived heuristic is an arithmetic function or rule 

composed of attributes and operators. Genetic programming (Poli & Koza, 2014) and its 

variants have been primarily used to generate these low-level heuristics. Hyper-heuristics 

reach generalization by using the same technique to derive heuristics for different domains 

and instances of the problem, with the only difference being the set of attribute values 𝐴 
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used, which depends on the problem. However, the derived low-level heuristic may or not 

be generalized, i.e., it may be reusable or disposable. 

The generated low-level heuristic includes problem attributes and operators. Thus, the 

methods for creating low-level heuristics combine or configure the attributes and the 

operators in some way. It is important that an appropriate set of attributes is chosen and that 

all features of the problem domain are represented. However, including too many attributes 

will result in a larger heuristic space, which can lead to high processing times or not finding 

suitable heuristics. According to (Branke, Nguyen, Pickardt, & Zhang, 2016), the attributes 

should be in their most basic form, and it should be left to hyper-heuristics to create 

aggregate features by combining them. The attributes for a problem domain also include the 

components of existing constructive low-level heuristics. In fact, the basic components that 

constitute existing constructive low-level heuristics may be more representative of the 

problem domain than the heuristic as a whole. Thus, existing low-level heuristics are 

decomposed into basic components, and these are used as attributes. For example, in the 

methodology based on hyper-heuristic described in this work, two bio-inspired meta-

heuristics have been decomposed with respect to the pheromone model used in the 

stigmergic communication mechanism and the implementation rules for flocking behavior. 

Genetic programming has been employed by generation constructive hyper-heuristics 

to generate new low-level constructive heuristics. Genetic programming is an evolutionary 

algorithm that explores a program space rather than a solution space (Poli & Koza, 2014). 

Programs can represent arithmetic functions or algorithms that, when executed, will produce 

a solution to the problem at hand. Each program is represented as an expression tree. For a 

combinatorial optimization problem, the algorithm generally employed by a generation 

constructive hyper-heuristic to solve the problem at hand is outlined in Algorithm 2.7. 

The algorithm starts with an initial population of programs, each of them is an 

expression tree representing a new constructive heuristic. A fitness function is applied to 

evaluate each program in the population, i.e., how good the program is at solving the 

problem at hand. In the case of the evolution of constructive heuristics, the fitness of each 

expression tree is calculated by the resulting solution created using the program tree. A 

selection method chooses parents based on their fitness to create the offspring of the next 

generations. Tournament selection is generally used for genetic programming (Poli & Koza, 

2014). Genetic operators that include selection, mutation, and crossover, are usually applied 

to parents to create next generation offspring. 
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Algorithm 2.7 
Generation constructive hyper-heuristic using genetic programming 

procedure 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒𝐻𝑦𝑝𝑒𝑟𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝐼, 𝐴) 
create an initial population of programs; 
while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑚𝑒𝑡 

evaluate each program in the population; 
select parents; 
apply genetic operators to the parents to create offspring of 
the new generation; 

end while 
return 𝑙𝑐ℎ and solution 𝑠; 

end procedure 
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Chapter 3 

 

3 A hyperheuristic-based methodology for robotic swarms 

coordination 

Despite the success of bio-inspired techniques (bio-heuristics), there are relevant 

algorithm selection and parameterization costs related to every new type of mission and to 

new instances of known missions. In this work an evolutionary optimization is described to 

automate the tuning of the bio-inspired coordination for target search. Experimental results 

on real-world scenarios reveal a significant improvement of the mission performance after 

optimization. 

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of 

biological species, and then, for example, it can be neither modularized nor aggregated. In 

order to overcome these limits, a novel design approach based on hyper-heuristics (HH) is 

adopted. This is a search methodology that automates the combination of modular heuristics 

to generate more adaptable logics: fundamental behavioral components for many biological 

swarms are aggregated and tuned in a unique and continuous search space. Two fundamental 

swarm behavioral components are considered: stigmergy and flocking. Stigmergy is used to 

release an attractive –	or repulsive –	stimulus when detecting the presence – or absence – of 

a target during exploration. Multiple stimuli can overlap, creating a stigmergic trail which, in 

turn, evaporates over time. As a result, stigmergy creates a kind of context-aware memory of 

the swarm (Cimino, Lazzeri, & Vaglini, Improving the Analysis of Context-Aware 

Information via Marker-Based Stigmergy and Differential Evolution, 2015). Flocking is used 

to model a robust and flexible swarm formation. It is based on the rules of cohesion, 

separation, and alignment (Alfeo, et al., Swarm coordination of mini-UAVs for target search 

using imperfect sensors, 2018). Depending on the type of mission and on the environment 

layout, flocking of different sizes and flexibility can be adaptively modelled. 

The Differential Evolution (DE) algorithm optimizes the aggregation and tuning of the 

heuristics on a unique search space and, consequently, an efficient heuristics hybridization is 

generated for a given application domain. DE is a population-based metaheuristic 

optimization algorithm, based on computational mechanisms of biological evolution, such 
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as reproduction, mutation, recombination, and selection of solutions. DE can tackle non-

linear and complex optimization problems, requiring just the objective function values. A 

modeling and optimization testbed has been developed and publicly released (Monaco, 

2021). Experimental results on real-world scenarios show that the proposed approach, called 

SFE because it is based on Stigmergy, Flocking, and Evolution, significantly outperforms the 

adaptive bio-heuristics. 

 

 

3.1 Design 

We consider a novel algorithmic design based on hyper-heuristics. In this approach, 

the logic is not constrained by models of biological species. It consists of an optimization 

method of fundamental functional components, whose aggregation and tuning are 

represented on a unique and continuous search space. Specifically, we consider two 

fundamental swarm behavioral components as bio-inspired heuristics, namely stigmergy and 

flocking (Alfeo, Cimino, & Vaglini, 2019). The differential evolution algorithm (DE) is 

adopted to optimize the aggregation and tuning of the heuristics on a problem of target 

search. The quality measure of a target search is the time needed for completing the mission, 

i.e., for discovering a given percentage of target (Alfeo, Cimino, De Francesco, Lega, & 

Vaglini, 2018). Consequently, the fitness of the DE is defined as the mission duration. 

More formally, we consider a simulated scenario Ω, composed by: 

i. simulation instants of time 𝑡 ∈ ℕ<; 

ii. a set of robots 𝑅, each robot 𝑘 having a dynamic position (𝑥#$ , 𝑦#$); 

iii. a set of targets 𝑇, each target 𝑧 having a fixed position (𝑥G , 𝑦G). 

Hence, the set of found targets 𝐹(𝑡) ⊆ 𝑇, at a given instant of time 𝑡, is the set of targets 

{𝑧} ∈ 𝑇 for which it exists a time 𝑡H ≤ 𝑡 and a related set of robots m𝑘6,Gn, with 𝑖 =

1,… ,𝑁?6A/  and 𝑁?6A/  the number of robots needed to process each target, such that the 

robots’ Euclidean distances from the target position is lower than the detection range 𝛿, i.e.: 

 

𝐹(𝑡) = �𝑧	|	∃	𝑘6,G , ∃	𝑡H ≤ 𝑡 ∶ 𝑑 ��𝑥#3,<
$= , 𝑦#3,<

$= � , (𝑥G , 𝑦G)� ≤ 𝛿�  (  3.1  ) 
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The fitness of the simulated scenario Ω is then defined as the minimum instant of time 

for which 𝐹(𝑡) has cardinality greater than or equal to 𝜗 ∙ |𝑇|, i.e.: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(Ω) = 𝑚𝑖𝑛$∈ℕ>{𝑡 ∶ 	 |𝐹(𝑡)| ≥ 𝜗 ∙ |𝑇|}   (  3.2  ) 

 

where 𝜗 is a percentage threshold close to 1 (usually set to 0.95), used to reduce the 

simulation duration without sensibly affecting the overall accuracy. In order to better explain 

the use of the threshold percentage 𝜗, we can consider the following Figure 3.1 that shows 

the number of targeted cells found (%) against time (sec.). 

 

 
Figure 3.1 - Percentage of targets found against time 

 

The plot indicates a constant trend of targets found per second, up to about 95%. 

Specifically, the scenario could include up to 5% of targets located in areas that are difficult 

to access and whose detection may result in a significant deterioration in the performance 

measure. Since this is commonly a point of trend variation, to shorten the simulation 

duration the target threshold value 𝜗 is set to 95%. 
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3.1.1 Flocking-based exploration 

Flocking is used to model a robust and flexible swarm formation. It is based on the 

rules of cohesion, separation and alignment, as illustrated in Figure 3.2. 

 

 
Figure 3.2 - Model of flocking behavior: (a) activation regions, (b) separation, (c) cohesion, (d) alignment 

 

The different rules are activated in separate regions, as in Figure 3.2(a). The separation 

rule, showed in Figure 3.2(b), maintains a certain distance among flock mates for a better 

scan of the area. The cohesion rule, showed in Figure 3.2(c), directs the robot to the flock 

center, to avoid dispersion. Finally, the alignment rule, showed in Figure 3.2(d), keeps the 

heading of each robot aligned to the average heading of its flock mates. Depending on the 

type of mission, flocking of different sizes can be modelled. 
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3.1.2 Stigmergy-based coordination 

Stigmergy is used to release an attractive (or repulsive) stimulus (pheromone) while (not) 

detecting targets. In the adopted computational model, a digital pheromone mark is released 

by the robot in the environment. Figure 3.3 illustrates the model of the pheromone mark: it 

is a truncated cone with unit height, radius top and down. 

 

 
Figure 3.3 - Model of a pheromone mark 

 

Multiple pheromone marks can overlap, creating a pheromone trail. Pheromone trails 

evaporate over time. Since the pheromone trail is maintained in a digital environment, it is 

instantly diffused, to immediately propagate information to nearby robots. More formally, 

let us consider the target 𝑧 detected by the robot 𝑘 at time 𝑡, with position (𝑥G$ , 𝑦G$) ∈ 𝑊, 

and 𝑊 ⊂ ℝ" that is the exploration area (in the computerized model it is actually a 

discretized area ℕ"). The pheromone quantity Δ𝜑#,%$  released on the cell 𝑐 located in (𝑥% , 𝑦%) 

is given by: 

 

Δ𝜑#,%$ = �

							1																								𝑖𝑓	𝑑G% ≤ 𝑟$KC															
><$+9?@A5
9)@B+9?@A5

											𝑖𝑓	𝑟$KC < 𝑑G% < 𝑟>KLA
					0																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	

  (  3.3  ) 

 

where 𝑟$KC and 𝑟>KLA are 𝑠𝑡𝑖𝑔𝑚𝑒𝑟𝑔𝑦. 𝑟𝑎𝑑𝑖𝑢𝑠𝑇𝑜𝑝 and 𝑠𝑡𝑖𝑔𝑚𝑒𝑟𝑔𝑦. 𝑟𝑎𝑑𝑖𝑢𝑠𝐷𝑜𝑤𝑛, 

respectively, and 𝑑G% is the Euclidean distance between the target 𝑧 and the cell 𝑐. The 

pheromone trail intensity in the cell 𝑐 at time 𝑡 is given by: 
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𝜑%$ = 𝑚𝑎𝑥 �0,𝑚𝑖𝑛m𝜑?(@ , 𝜑%$+) − 𝑒9($F ∙ 𝜑%$+9 + ∑ Δ𝜑#,%$
-(
#.) n� (  3.4  ) 

 

where 𝑟 is the time elapsed since the last pheromone release and 𝜑%$+9 is the trail intensity 

on the cell 𝑐 at the time 𝑡 − 𝑟 when the last pheromone mark has been released, 𝑒9($F is the 

evaporation rate, i.e. the given amount of intensity evaporated per unit time, and 𝑁/ is the 

number of robots that are able to release pheromone on the cell 𝑐. The model with a linear 

evaporation and a streamlined shape allows a good control of the aggregated trail in the 

parameter space. The perceived pheromone intensity is based on olfactory receptors, which 

can decrease in sensibility over time to prevent overstimulation (olfactory habituation). 
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3.1.3 Stigmergy-Flocking-Evolution (SFE) algorithm 

An efficient heuristics hybridization is generated for a given application domain, in 

which Differential Evolution minimizes the mission discovery time. The resulting algorithm 

is called SFE, which stands for Stigmergy, Flocking, Evolution. Since SFE can adapt his 

behavior to the problem, it can be used for both environment exploration and targets 

resolution. More specifically, a repulsive pheromone is used as an anti-stimulus during the 

exploration, while an attractive pheromone is used as a stimulus for collecting sufficient 

target information. During exploration, the robot adopts an if-then-else approach. In fact, it 

turns primarily to the maximum attractive pheromone, if detected, else follows the flocking 

rules, if flock mates are detected; otherwise, it turns to the minimum repulsive pheromone. 

More formally, the DE logic is summarized by the pseudocode presented in 

Algorithm 3.1. Moreover, Algorithm 3.2 and Algorithm 3.3 define the mutation and the 

crossover operators, respectively. 

In a simulated scenario (or mission), the swarm 𝑆6 explores an environment where 

robots, obstacles and targets are statically specified. Let 𝐾 be the number of aggregated 

parameters. In DE, 𝑆6 is a solution represented by a real 𝐾-dimensional vector called 

genotype 𝑝6 . The search time returned by the simulated mission is used as a fitness of the 

solution, 𝑓6 . DE starts with a population 𝑃(&) made by 𝑁 candidate solutions, 𝑝6
(&), randomly 

generated under user-specified parametric constraints. At each iteration 𝑡, and for each 

genotype 𝑝6$ of the current population 𝑃($), a mutant vector 𝑚 is created by applying the 

mutation of randomly selected members. Then, a trial vector 𝑝6∗ is created by crossover of 

𝑚 and 𝑝6$. In the binomial crossover algorithm (Algorithm 3.3), 𝐾 represents the number 

of aggregated parameters to be optimized. Then, the population is modified by selecting the 

best fitting vector between the fitness of the trial vector (𝑓6∗) and the fitness of the initial 

genotype (𝑓6
($)). When the termination criterion is true, i.e., number of iterations performed 

or adequate fitness reached, the vector characterizing the swarm with the best fitness (i.e. the 

shortest search time) in the current population is considered as the optimal swarm 

parameterization. The DE algorithm has at least two hyper-parameters: the scaling factor 

𝐹 ∈ [0, 2] from which results the mutant vector, and the crossover probability 𝐶𝑅. The 

smaller 𝐶𝑅 the higher the probability of producing a vector that is more similar to the target 

vector rather than to the mutant vector. 
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Algorithm 3.1 
Differential Evolution algorithm 

function 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠) 
𝑡 = 0; 
𝑃(D) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(); 
for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F

(D) in 𝑃(D) do 
𝑆F
(D) = 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚B𝑝F

(D)C; 
𝑓F
(D) = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛B𝑆F

(D), 𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠C; 
do 

for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F
(G) in 𝑃(G) do 

𝑚 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑢𝑡𝑎𝑛𝑡B𝑃(G), 𝑝F
(G)C; 

𝑝F∗ = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟B𝑝F
(G), 𝑚C; 

𝑆F∗ = 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚(𝑝F∗); 
𝑓F∗ = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛(𝑆F∗, 𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠); 

for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F
(G) in 𝑃(G) do 

if B𝑓F∗ < 𝑓F
(G)C then 

𝑝F
(GIJ) = 𝑝F∗; 
𝑓F
(GIJ) = 𝑓F∗; 

else 
𝑝F
(GIJ) = 𝑝F

(G); 
𝑓F
(GIJ) = 𝑓F

(G); 
𝑓KFL
(GIJ) = 𝑚𝑖𝑛G𝑓J

(GIJ), … , 𝑓M
(GIJ)I; 

𝑡 = 𝑡 + 1; 
while B𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛B𝑓KFL

(G) , 𝑡C = 𝑓𝑎𝑙𝑠𝑒C; 
return 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚B𝑝KFL

(G) C; 
 

Algorithm 3.2 
Mutation for DE/rand/1/bin 

function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑢𝑡𝑎𝑛𝑡B𝑃(G), 𝑝F
(G)C 

𝑝N = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G)IO; 

𝑝NN = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G), 𝑝NIO; 

𝑝NNN = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G), 𝑝N, 𝑝NNIO; 

return 𝑝N + 𝐹 ∙ (𝑝NN − 𝑝NNN); 
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Algorithm 3.3 
Binomial crossover 

function 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟B𝑝F
(G), 𝑚C 

𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟(1, 𝐾); 
for each 𝑗-th gene 𝑝O,F

(G) in 𝑝F
(G) do 

if (𝑟𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑎𝑙(0, 1) < 𝐶𝑅)	𝑜𝑟	(𝑗 = 𝑘) then 
𝑤O = 𝑚O ; 

else 
𝑤O = 𝑝O,F

(G); 
return 𝑤; 

 

Table 3.1 shows the parameter space of the SFE algorithm, i.e. the variable parameters 

to be tuned to a target search mission, together with the corresponding units of measurement 

in a real world scenario. 

 
Table 3.1 - Parameter space of the SFE algorithm 

Parameters Unit of measurement 

stigmergy.radiusTop 
stigmergy.radiusDown 
stigmergy.evapRate 
stigmergy.olfactoryHabituation 
stigmergy.repulsiveRadius 
stigmergy.repulsiveEvapRate 
flocking.angle 
flocking.wiggleVar 
flocking.radiusSeparate 
flocking.maxSeparateTurn 
flocking.radiusAlign 
flocking.maxAlignTurn 
flocking.radiusCohere 
flocking.maxCohereTurn 

meters 
meters 

percentage 
seconds 
meters 

percentage 
degrees 
degrees 
meters 
degrees 
meters 
degrees 
meters 
degrees 

 

It is worth to be noted that when the parameters stigmergy.radiusTop, stigmergy.radiusDown, 

and stigmergy.repulsiveRadius are very small, then attractive and repulsive stigmergy are very low 

too. Similarly, if flocking.angle in Figure 3.2(a) is very small, then flocking is very low since no 

flock mate is visible. Thus, such parameters can lower/raise the contribution of each 

component in the overall workflow, in a continuous optimization space. 
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3.2 Simulation testbed 

The methodology described in the section 3.1 has been implemented within a 

modeling and optimization testbed that has been publicly released (Monaco, 2021). The 

computational models related to attractive pheromone, repulsive pheromone, stigmergy-

based behavior, and flocking behavior have been implemented by using NetLogo (Wilensky 

& Rand), that is the most popular toolkit for agent-based modeling in the socio-ecological 

modeling community. NetLogo is a java-based graphical environment for the programming 

of multi-agent systems, which allows to interact thousands of independent, heterogeneous 

and parallel agents and to reproduce in real time the dynamic aspect of the simulated 

phenomena. These characteristics allow, on one hand, the exploration of the agents’ 

behaviors at the level of local interactions and, on the other hand, the analysis of the effects 

of such interactions at a global level. NetLogo represents the most popular simulation 

platform for swarm intelligence-based systems. The NetLogo programming language is 

designed to be easy to learn. The single statements of the language are represented by English 

words, and the statement sequences appear very similar to simple sentences. Furthermore, 

NetLogo offers a series of tools very useful for representing, during a simulation, the intrinsic 

characteristics of a model in execution, as for example monitor, graphs, fields to insert textual 

values, and so on. The strength that makes this language powerful is definitely the Java core. 

Basically, NetLogo's tools and the language used to describe the models constitute an 

intermediate layer between the user and the machine, which NetLogo automatically translates 

into fast and powerful Java programs. 

In addition to environment and swarm algorithms, the testbed considers the robots 

sensing, actuation, and collision avoidance, by modeling drone size, battery duration, sensing 

radius, sensing angle, collision vision, collision angle, angular speed, acceleration, and cruise 

speed. Scenarios of different complexity have been considered. 

In Figure 3.4 it is shown an ongoing scenario of target search. We consider a swarm 

of mobile robots, or drones, deployed in an exploration area, in order to search and process 

the targets cooperatively. We assume that the environment is unstructured, i.e., obstacles or 

targets number and locations are unknown. In Figure 3.4 obstacles are represented in grey 

color. Drones are depicted as green arrowheads, and undetected/detected targets as 

red/yellow points. Finally, an attractive/repulsive pheromone is represented as blue/pink 

continuous intensity. 
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Figure 3.4 - Environment: drones, targets, attractive and repulsive pheromones, obstacles 

 

The swarm is also divided into flocks: flexible, dynamic, and autonomous groups 

communicating between themselves (flock mates) and self-organizing, splitting around 

obstacles, rejoining, and avoiding collisions with each other. Moreover, an attractive 

pheromone released by flock mates creates a short-medium term potential to compact the 

flock where multiple targets are detected. In contrast, a repulsive pheromone helps the 

drones to avoid multiple exploration of the same area whereas new targets are not detected. 

Finally, olfactory habituation is another bio-inspired form of memory: when exposed to the 

maximum intensity of attractive pheromone, the sensing saturates and becomes unable to 

sense for a while, to leave the saturated area more efficiently. 

The parametric optimization of the aggregated low-level heuristics has been performed 

using a Python language implementation of the Differential Evolution algorithm, available 

in the open-source SciPy library. In order to provide the parameter values to the NetLogo 

model and obtain the swarm performance, that, as stated earlier, represents the fitness value, 

we have used NL4Py (Gunaratne & Garibay, 2021), a controller software for Python, 
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developed with the goals of usability, fast parallel execution, and access to model parameters. 

NL4Py uses a client-server architecture via Py4J, a Python-Java bridging software. Moreover, 

it parallelizes the execution of NetLogo workspaces, instead of leaving it to the user's python 

application. 

The Figure 3.5 shows the overall software architecture of the released simulation 

testbed. The optimizer subsystem is fully developed in python language and includes the 

starting point of the hyper-heuristic methodology, identified by the file de_with_nl4py.py. The 

component uses the implementation of the differential evolution algorithm, that at each 

generation evaluates the population in parallel, exploiting all available CPUs. Each running 

objective function communicates with the NL4Py software through a singleton class 

WorkspaceManager, created according to the façade design pattern. 

NL4Py consists of two main components, a client written in Python and a server 

written in Java. The client code communicates to the NetLogoControllerServer through a soket 

enabled by the Py4J library. The client-server architecture allows NetLogo headless 

workspaces (that are essentially NetLogo models running without the GUI enabled) to be 

run in parallel as Java threads on the NetLogoControllerServer. This allows users to not have to 

manage the connection to the JVM, thread/process creation, and garbage collection of 

multiple headless workspaces from their Python application code. NetLogo provides, 

through its controlling API, headless workspaces that can be controlled via Java or Scala 

application and are implicitly thread safe. NL4Py pushes concurrency to the JVM through 

the NetLogoControllerServer. The NL4Py Python client supplies thread safe 

NetLogoHeadlessWorkspace objects to the Python application developer, created according to 

the factory design pattern. Each running objective function created by the optimizer 

component is mapped to a NetLogoHeadlessWorkspace object. In turn, each 

NetLogoHeadlessWorkspace object is mapped to a HeadlessWorkspaceController object on the 

NetLogoControllerServer, which has the responsibility to start and stop the NetLogo model, to 

send commands to the model, to query parameters, and to fetch results from the model. 
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Figure 3.5 - UML component diagram of the simulation testbed SFE 
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3.3 Real-world scenarios 

Real world scenarios of different complexity have been considered for the exploration 

simulator. The Illegal Dump scenario represents a real abusive trash map of 80,000 m2 near 

the town of Paternò	(Italy), and is composed by 11 groups of targets with an average number 

of 4 targets per group, 19 buildings of different sizes, 140 trees (www.trashout.me). Figure 

3.6(a) and Figure 3.6(b) show the aerial photo and the corresponding vectorial model, 

respectively. 

 
(a) 

 
(b) 

Figure 3.6 - Illegal dump scenario: (a) aerial photo (Google Maps ©), (b) vectorial model 

 

The Rural Mine scenario is a real-world example of areas with landmine objects in 

Bosnia-Herzegovina, described in public available data (www.seedemining.org). It is made 

up of 28 buildings, 59 trees and 40 targets. Figure 3.7(a) and Figure 3.7(b) show the aerial 

photo and the corresponding vectorial model, respectively. 

 
(a) 

 
(b) 

Figure 3.7 - Rural mine scenario: (a) aerial photo (Google Maps ©), (b) vectorial model 
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The LPG Leak scenario is based on an accident caused by an LPG railcar rupture, 

which occurred in 2009 in the urban area of Viareggio, Italy (ref). Figure 3.8(a) and Figure 

3.8(b) show the aerial map and the corresponding vectorial model, respectively. 

 

 
(a) 

 
(b) 

Figure 3.8 - LPG leak scenario: (a) aerial map (Pontiggia, et al., 2011), (b) vectorial model 
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Chapter 4 

 

4 Applications 

In this chapter some experimental applications of the methodology described in the 

former chapter are detailed. The experimental results of these applications are published in 

an international journal paper and in peer reviewed international conferences papers. We 

start with the problem of target search via a swarm of robots and the comparison between 

some popular bio-inspired swarm algorithms, that have been made adaptive, and our SFE 

hyper-heuristic. It follows the problem of coordinating multiple Unmanned Aerial Vehicles 

(UAV) for distributed targets tracking, in different technological and environmental settings. 

Finally, we focus on the results of a simulated analysis concerning the mitigation of plastic 

pollution in oceans via a swarm of Unmanned Surface Vehicles (USV). 

 

4.1 Comparison between SFE and adaptive bio-inspired meta-

heuristics 

In the target search problem via swarms of robots, in complex or open environments, 

the robots cannot exploit static information on layout and target’s locations. Therefore, their 

coordination is fundamental for an efficient target discovery. To coordinate the swarm, the 

following popular bio-inspired swarm algorithms have been considered and made adaptive: 

Ant Colony Optimization, namely ACO (inspired by ants) for exploration; Firefly Team 

Strategy, namely FTS (inspired by fireflies), Particle Swarm Optimization, namely PSO 

(inspired by birds), and Artificial Bee Colony, namely ABC (inspired by honeybees) for 

recruitment. Parameter tuning for adaptation is performed via the Differential Evolution 

(DE) optimization. The DE is able to find the best algorithmic parameters of a bio-inspired 

algorithm for improving the mission performance. In order to overcome the design 

constraints of bio-inspired approaches, an approach based on hyper-heuristics is also 

considered. This approach is called SFE because it is based on Stigmergy, Flocking and 

Evolution. Experimental results on real-world scenarios, carried out and released as a public 

testbed, show that the SFE significantly outperforms the adaptive bio-heuristics, in both 
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exploration and recruitment. The SFE is also faster in terms of optimization duration, 

although it requires more memory. 

 

4.1.1 Problem statement 

In a target search mission, a robot can assume two major roles: explorer and 

coordinator (Palmieri, Yang, De Rango, & Marano, 2017). The purpose of exploration is to 

discover new targets, whereas the purpose of coordination is to recruit the necessary number 

of follower robots to process the discovered target. Figure 4.1 shows a UML activity diagram 

with the overall workflow carried out by each robot involved in a target search mission. 

 

 
Figure 4.1 - Target search mission: UML activity diagram with the overall workflow 

 

The process begins at the black start circle and ends at the white circle with a cross 

inside. The major activities are represented by bold round-cornered rectangles, and are 

connected by the following two core flows: 

1) 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 → 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 → 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 

2) 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ⇄ 𝑓𝑜𝑙𝑙𝑜𝑤 → 𝑟𝑒𝑎𝑑𝑦 → 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 
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Each activity is defined as a workflow of generic tasks. The implementation of a task 

can vary depending on the bio-inspired approach (e.g., ACO for exploration; FTS, PSO, and 

ABC, for recruitment (Palmieri, Yang, De Rango, & Marano, 2017). It follows the 

description of each activity: 

• Explore: the robot explores the area for discovering targets. First, it is oriented by its 

perception of a medium depending on the biological model; then, it moves to the 

next cell. If a new target is discovered, it coordinates; otherwise it dissuades from 

following its recent path by releasing some anti-stimulus. Finally, if no recruitment 

request arrives, the robot continues to explore, otherwise it follows. 

• Follow: the robot is recruited by a coordinator robot. It selects one of the manifest 

targets, then turns to it, and moves to the next cell. When the manifest target is 

detected, the drone waits for coordination (ready). 

• Coordinate: the robot becomes a coordinator when it detects a target, and after it starts 

to recruit the needed robots. The recruitment is based on stimuli depending on the 

bio-inspired approach. 

• Ready: once reached the target, a recruited robot waits until the coordinator delivers 

the authorization to perform the target. 

• Perform: the target is processed by all recruited robots. Then, a stop criterion is 

checked, e.g. a maximum time or a maximum percentage of targets found. 

Bio-inspired techniques require relevant algorithm selection and parameterization 

costs associated with every new type of mission and with new instances of known missions. 

We adopt DE for the parametric adaptation of the bio-inspired exploration and recruitment 

algorithms on target search. According to our approach, the DE finds the optimum in the 

parametric search space of the bio-inspired algorithm which, in turn, solves a target discovery 

problem in a bidimensional space, via exploration and recruitment of robots (Cimino, Lega, 

Monaco, & Vaglini, 2019). Thus, for each bio-inspired algorithm, a corresponding adaptive 

variant is adopted. 
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4.1.2 Experimental setup 

Considering the ACO for exploration, the FTS, PSO and ABC for recruitment, the 

names of the corresponding variants of the algorithms are: ACO-E, FTS-E, PSO-E and 

ABC-E, where the term “E”	 stands for Evolution. An algorithm variant solving both 

exploration and recruitment tasks includes two acronyms and is parameterized in a search 

space that is the union of the two search spaces. Since the recruitment problem varies 

significantly in complexity depending on the number of robots needed to process a target, 

namely 𝑁?6A/ , a suffix “RR*”	 is added to highlight the different complexity. For example, 

“RR3”	means an algorithm for recruitment with 𝑁?6A/ = 3, whereas no suffix means an 

algorithm without recruitment, in other words an exploration algorithm. When both 

exploration and recruitment problems are considered, the name of the algorithmic solution 

includes both acronyms. For example, ACO-ABC-RR3-E is an algorithm that involves ACO 

for exploration, ABC for recruitment, both adapted through the DE, and in which at least 

three robots are required to process a single target. Table 4.1, Table 4.2, Table 4.3, and Table 

4.4 show the parametric spaces of ACO-E, used only for exploration task, ACO-FTS-RR3-

E, ACO-PSO-RR3-E and ACO-ABC-RR3-E, used for both exploration and recruitment 

tasks, respectively. In Table 4.2 the value 𝐿 represents the maximum length between 

dimensions of the simulated scenario. In Table 4.3, the PSO algorithm considers only the 

global best particle, that, in this case, is represented by the location of the coordinator robot. 

 
Table 4.1 - Parameter space of the ACO-E algorithm 

Parameters Interval 

𝑅P (pheromone range) 
Δ𝜑D 
𝜀 
𝑎J 
𝑎Q 
𝜌 
𝜂 
𝜇 
𝜆 

[0, 8] 
[0, 4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1] 
[0, 2] 
[0, 2] 
[0, 1] 
[0, 2] 
[0, 2] 
[0, 2] 
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Table 4.2 - Parameter space of the ACO-FTS-RR3-E algorithm 

Parameters Interval 

𝑅R (perception range) 
𝑅P (pheromone range) 
Δ𝜑D 
𝜀 
𝑎J 
𝑎Q 
𝜌 
𝜂 
𝜇 
𝜆 
𝛽D 
𝛾 
𝛼 
𝜎 

[1, 19] 
[0, 8] 
[0, 4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1] 
[0, 2] 
[0, 2] 
[0, 1] 
[0, 2] 
[0, 2] 
[0, 2] 
[0, 1] 

1 𝐿⁄ 	(𝐿 = 𝑚𝑎𝑥{𝑚, 𝑛}) 
[0, 0.4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] 

 
Table 4.3 - Parameter space of the ACO-PSO-RR3-E algorithm 

Parameters Interval 

𝑅R (perception range) 
𝑅P (pheromone range) 
Δ𝜑D 
𝜀STU 
𝑎J 
𝑎Q 
𝜌 
𝜂 
𝜇 
𝜆 
𝜃 
𝜅 
𝜀VWU 

[1, 19] 
[0, 8] 
[0, 4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1] 
[0, 2] 
[0, 2] 
[0, 1] 
[0, 2] 
[0, 2] 
[0, 2] 
[0.4, 1] 
[0, 4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1] 

 
Table 4.4 - Parameter space of the ACO-ABC-RR3-E algorithm 

Parameters Interval 

𝑅R (perception range) 

𝑅W (pheromone range) 
Δ𝜑D 
𝜀 
𝑎J 
𝑎Q 
𝜌 
𝜂 
𝜇 
𝜆 
𝜙 

[1, 19] 
[0, 8] 
[0, 4] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1] 
[0, 2] 
[0, 2] 
[0, 1] 
[0, 2] 
[0, 2] 
[0, 2] 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[−1, 1] 
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During the recruitment task, if a robot is subject to many recruitment requests, it 

moves to the closest target in case that the coordination algorithm is FTS or PSO. Instead, 

in case of ABC algorithm, the 𝑘-th robot selects the 𝑧-th target with a probability inspired 

by Eq. (2.18), as in the following: 

 

𝑝#G =
) >#<⁄

∑ ) >#"⁄X(#
"7&

     (  4.1  ) 

 

where 𝐹𝑅# are the set of help requests (i.e., found targets) received by the 𝑘-th robot, 𝐹𝑅# ⊂

𝐹 ⊂ 𝑇, and 𝑑#G is the Euclidean distance. Moreover, the ABC algorithm takes into account 

only the Eq. (2.19) to calculate the new position of a robot recruited by a coordinator. 

Table 4.5 show the parametric space of SFE algorithm, used for both exploration and 

recruitment. 

 
Table 4.5 - Parameter space of the SFE and SFE-RR3 algorithms 

Parameters Interval 

stigmergy.radiusTop 
stigmergy.radiusDown 
stigmergy.evapRate 
stigmergy.olfactoryHabituation 
stigmergy.repulsiveRadius 
stigmergy.repulsiveEvapRate 
flocking.angle 
flocking.wiggleVar 
flocking.radiusSeparate 
flocking.maxSeparateTurn 
flocking.radiusAlign 
flocking.maxAlignTurn 
flocking.radiusCohere 
flocking.maxCohereTurn 

[1, 13] 
[13, 19] 
[0.01, 1] 
[1, 10] 
[0, 8] 

[0.01, 0.5] 
[15, 45] 
[5, 15] 
[6, 16] 
[30, 45] 
[16, 22] 
[30, 45] 
[18, 26] 
[15, 30] 

 

It is worth noting that when the parameters radiusTop, radiusDown, and repulsiveRadius 

are very small, then attractive, and repulsive stigmergy are very low too. Similarly, if the 

flocking angle is very small, then flocking is very low since no flock mate is visible. Thus, such 

parameters can lower/raise the contribution of each component in the overall workflow, in 

a continuous optimization space. 

The most sensitive hyper-parameters of Differential Evolution are the differential 

weight (F), the crossover rate (CR), and the population size (NP). We use a multiplier of the 

problem dimension for setting the total population size: the population has 4𝐷 individuals. 

Based on the literature, as discussed in the section 2.1.6.1, the range of values to consider are 
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𝐶𝑅 in [0.1, 0.9] with steps of 0.1, 𝐹 in [0.4, 0.9] with steps of 0.1. Two mutation strategies 

have been experimented. 

Figure 4.2 and Figure 4.3 show the grid search on the Illegal Dump scenario, with the 

ACO-RR1-E algorithm, for the DE/rand/1/bin (“r”	for short) and the DE/best/1/bin (“b”	

for short), respectively. We use the grid search because it is the traditional way of performing 

hyperparameter optimization and the number of combinations of hyperparameters is not 

very high. 

 

 
Figure 4.2 - DE/best/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario 

 

 
Figure 4.3 - DE/rand/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario 
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In these cases, the minimum duration of 189.3 ± 26.55 (r) and 190.0 ± 20.46 (b) is 

achieved for (𝐶𝑅, 𝐹) equals to (0.8, 0.4) (r) and (0.7, 0.4) (b), respectively. In both figures, the 

optimal values are highlighted with a small circle in the (𝐶𝑅, 𝐹) plane. 

Similarly, Figure 4.4 and Figure 4.5 show the grid search process with the SFE-RR1 

algorithm, for DE/rand/1/bin (r) and DE/best/1/bin (b), respectively. 

 

 
Figure 4.4 - DE/best/1/bin hyperparameters grid search, with the SFE algorithm and the Illegal Dump scenario 

 

 
Figure 4.5 - DE/rand/1/bin hyperparameters grid search, with the SFE algorithm and the Illegal Dump scenario 
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Here, the minimum duration of 104.8 ± 10.45 (r) and 121.0 ± 2.99 (b) is achieved for 

(𝐶𝑅, 𝐹) equals to (0.4, 0.4)	(r) and (0.6, 0.5) (b), respectively. As a result, the DE/rand/1/bin 

strategy achieves better performance than DE/best/1/bin with the SFE-RR1 algorithm and 

achieves performance similar to DE/best/1/bin with the ACO-RR1-E algorithm. Overall, 

the effectiveness of DE/rand/1/bin can be considered better. 

 

4.1.3 Management of the stochastic behavior 

An important aspect to consider is the control of the uncertainty potentially resulting 

from the initial swarm position and from the random-evaluated parameters. For this purpose, 

the initial swarm position is fixed: the swarms are initially located at the corners of the 

environment and oriented towards the center of it. However, there are two sources of non-

determinism that can further influence the algorithmic performance. 

The first source occurs at the application level of the target search, because all swarm 

algorithms inherently include random-valued parameters: 𝑤𝑖𝑔𝑔𝑙𝑒 (SFE), 𝜀NOP (ACO), 𝜎 

(FTS), 𝜀QRP (PSO), and 𝜙 (ABC). To manage this uncertainty, we adopt confidence intervals 

as a way to measure performance beyond statistical fluctuations. Furthermore, in contrast to 

the other swarm algorithms, the SFE allows to adapt the range of the wiggle via the DE 

optimization, for achieving the best cost-uncertainty ratio. 

The second source of non-determinism occurs at the optimization level provided by 

the DE. Specifically, in the Algorithm 3.1 the intializePopulation function is managed via the 

lower/upper bounds per parameter, and by a Latin Hypercube sampling to maximize the 

coverage of the available parameter space. The generateMutant also involves multiple random 

extractions, except for the DE/best/1/bin, to select the best individual as a base vector 𝑝6
($). 

Finally, the binomialCrossover includes some random extractions, managed by the parameter 

CR. To control the last two variabilities, two mutation strategies and various CR values have 

been compared in the hyperparameters search process. Finally, to further reduce the overall 

uncertainty, each fitness evaluation is measured as an average of 10 trials, and the best result 

provided by the DE is calculated as an average of 3 independent trials made by 40 

generations. 
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4.1.4 Experimental results 

The study is based on the three scenarios presented in the section 3.2. By using the 

DE/rand/1/bin and the optimal values of hyperparameters determined by the grid search, 

a comparative analysis of the different algorithms has been carried out. For each scenario 

and for each strategy, the DE optimization has been carried out 10 times, determining via a 

graphical normality test that the resulting mission duration is well modelled by a normal 

distribution. Finally, the 95% confidence intervals have been calculated. Table 4.6 and Table 

4.7 show the mission duration before and after the DE. 

Table 4.6 - Swarm Exploration: mission duration before and after Differential Evolution 

Scenario Algorithm Mission duration before DE Mission duration after DE 

Dump 

'' 

Rural Mine 

'' 

LPG Leak 

'' 

SFE-RR1 

ACO-RR1-E 

SFE-RR1 

ACO-RR1-E 

SFE-RR1 

ACO-RR1-E 

185.97 ± 13.50 

317.10 ± 18.10 

226.67 ± 51.03 

256.80 ± 14.08 

191.57 ± 17.13 

215.43 ± 25.35 

144.87 ± 09.62 

217.87 ± 09.56 

159.53 ± 20.37 

205.00 ± 07.61 

134.87 ± 05.09 

168.80 ± 04.04 

 
Table 4.7 - Swarm Exploration + Recruitment: mission duration, before and after Differential Evolution 

Scenario Algorithm Mission duration before DE Mission duration after DE 

Dump SFE-RR3 251.87 ± 27.31 186.20 ± 04.02 

" ACO-FTS-RR3-E 331.23 ± 20.68 261.47 ± 09.10 

" ACO-PSO-RR3-E 396.00 ± 09.99 269.23 ± 03.55 

" ACO-ABC-RR3-E 575.87 ± 131.24 409.33 ± 19.93 

Rural Mine SFE-RR3 267.70 ± 24.51 193.90 ± 24.71 

" ACO-FTS-RR3-E 338.00 ± 61.86 236.67 ± 01.73 

" ACO-PSO-RR3-E 316.70 ± 30.45 262.00 ± 03.85 

" ACO-ABC-RR3-E 409.10 ± 26.56 318.00 ± 22.83 

LPG Leak SFE-RR3 220.10 ± 05.05 168.77 ± 07.44 

" ACO-FTS-RR3-E 459.77 ± 09.10 286.20 ± 21.12 

" ACO-PSO-RR3-E 482.43 ± 28.61 302.23 ± 14.45 

" ACO-ABC-RR3-E 832.43 ± 15.15 577.13 ± 19.20 

In both tables, it is apparent that the swarm exploration and recruitment carried out 

by the proposed SFE algorithm outperform the other strategies. Furthermore, it is clear that 

the DE optimization sensibly improves all the algorithms by providing adaptation to the 

specific scenario. Figure 4.6 shows the average best fitness against number of generations of 

the optimization process. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.6 - Mission duration optimization: average best fitness against number of generations. Exploration on (a) Dump, (b) Rural 
Mine, (c) LPG Leak, Exploration + Recruitment on (d) Dump, (e) Rural Mine, (f) LPG Leak 
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Moreover, to better show the improvements made by the optimization of the target 

discovery process, Figure 4.7 shows the average percentage of target found against time by 

the SFE on Illegal Dump scenario, before and after the DE, over 10 trials. 

 

 
Figure 4.7 - Illegal Dump scenario: average percentage of targets found against time achieved by SFE algorithm, before (blue) and 

after (orange) DE 

 

Finally, to show the computational efficiency, we consider the duration of DE for the 

different algorithms and for each scenario. The runtime of the DE depends linearly on the 

population size and on the number of generations. We fix the generations to 40 for all the 

algorithms. We have also to consider that implementation is engineered for parallel 

computing. The hardware and software platforms used are CPU Intel® Xeon® Gold 6140M 

at 2.2-2,3 GHz, Linux OS and Python for optimization process, and Java/NetLogo for 

coding algorithms and mission simulation. The optimization time of a mission depends on 

the scenario complexity and on the quality of the coordination mechanism, which are 

difficult to express. The optimization time can be empirically measured via the average DE 

runtime per scenario. Table 4.8 shows the average DE optimization time, over 3 runs, for 40 

generations. 

The computational model of the SFE is the most efficient for both exploration and 

recruitment. In contrast, when considering the complexity in memory, a different situation 

appears. Table 4.9 shows the memory usage for each algorithm, for the Illegal Dump 

scenario. It is apparent from Table 4.9 that the SFE is much more expensive in terms of 

memory. 
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Table 4.8 - Average DE opimization duration for 40 generations 

Scenario Algorithm Avg DE time Population size 

Dump SFE-RR1 1h 04' 01" 56 

" ACO-RR1-E 9h 49' 53" 32 

" SFE-RR3 1h 56' 26" 56 

" ACO-FTS-RR3-E 15h 29' 39" 44 

" ACO-PSO-RR3-E 1d 7h 29' 41" 44 

" ACO-ABC-RR3-E 19h 41' 13" 36 

Rural Mine SFE-RR1 1h 26' 29" 56 

" ACO-RR1-E 19h 34' 52" 32 

" SFE-RR3 2h 07' 22" 56 

" ACO-FTS-RR3-E 14h 26' 24" 44 

" ACO-PSO-RR3-E 1d 19h 39' 24" 44 

" ACO-ABC-RR3-E 14h 42' 13" 36 

LPG Leak SFE-RR1 1h 04' 16" 56 

" ACO-RR1-E 1d 1h 49' 55" 32 

" SFE-RR3 1h 59' 12" 56 

" ACO-FTS-RR3-E 22h 39' 00" 44 

" ACO-PSO-RR3-E 15h 16' 18" 44 

" ACO-ABC-RR3-E 1d 3h 13' 45" 36 

 
Table 4.9 - Memory usage at the end of the 1st DE generation 

Algorithm RAM (GB) Population size RAM (GB) per individual 

SFE-RR1 

ACO-RR1-E 

SFE-RR3 

ACO-FTS-RR3-E 

ACO-PSO-RR3-E 

ACO-ABC-RR3-E 

317 

127 

321 

201 

175 

165 

56 

32 

56 

44 

44 

36 

5.66 

3.97 

5.73 

4.57 

3.98 

4.58 
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4.2 Targets tracking via UAV swarms 

In the simulation testbed a target represents the basic element to model different types 

of objects, substances or chemical agents that should be detected, within the battery life, by 

the specific sensors that the drones are supposed to be equipped with. The scenarios 

described so far are characterized by the presence of static targets, that is, where the number 

and position of individual targets remain unchanged throughout the simulation time. 

However, this class of problems does not cover the range of possible real-world applications 

that find a natural solution in the use of Unmanned Aerial Vehicles (UAVs or drones) 

swarms. Specifically, certain dynamic phenomena such as the evolution of a fire or the 

expansion of a toxic cloud into the atmosphere need to be analyzed as a whole, possibly in 

a three-dimensional way, and not from a single perspective. As a consequence, in scenarios 

of this type, the need to use a swarm of drones has an undiscussed value especially of a 

technical nature, otherwise not achievable by other means. In fact, the observation of a 

phenomenon that can be characterized only if contextually and in parallel we have data from 

all observable points of view, is something that probably can be done only with swarms of 

drones and not with single drones. 

The possibility of being able to evaluate the coordination performance of drones also 

in the characterization of dynamic phenomena requires the need to extend the simulation 

logic. In this case, essentially, the number and position of targets may change during the 

simulation. In the case of scenarios with static targets, the performance of the coordination 

algorithm is measured by considering the time it takes to detect most (typically 95%) of the 

targets to be found (best effort). However, considering a scenario with moving targets, this 

metric is unsuitable mainly because, being the characterization of a dynamic phenomenon, 

its speed of evolution could prevent drones from ensuring such a high detection rate (real 

time). So, it is needed to introduce a different suitable metric. The use of drone swarms 

within scenarios characterized by dynamic phenomena is particularly suitable for two types 

of missions: 

• discovery of the dynamic phenomenon: the swarm of drones has the task of patrolling 

the search environment and promptly detect a possible anomaly in an early stage of 

its evolution. 

• tracking of the dynamic phenomenon: the swarm of drones has the task of 

characterizing the phenomenon during its partial or complete evolution. 
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The nature of these tasks is deeply different from the detection of a static object. In 

fact, the dynamic phenomenon to be detected or tracked is likely to occur when the swarm 

of drones is already deployed in flock to patrol an area. Unlike the case of scenarios with 

static targets, dynamic scenarios must include the possibility of deploying drones on the 

environment before the phenomenon begins to evolve. Therefore, the simulation testbed 

has been suitably adapted to this purpose. In order to make a dynamic phenomenon suitable 

for simulation, the evolution of the targets can be realized by means of a succession of frames 

obtained through the sampling of the real phenomenon at certain time instants. By adopting 

this solution, in addition to the simulated time, even the dynamics of the targets is discretized. 

This simplification does not affect the correctness of the modeling in the hypothesis in which 

the cruise speed at which the drones fly, and their analysis rate are an order of magnitude 

higher than the sampling rate of the dynamic phenomenon to be observed. For example, 

considering an adequate drone model that flies at a speed of 50 Km/h and knowing that the 

examined phenomenon is evolving, but has a speed of 5 Km/h, for a mission of about 20 

minutes we can imagine to consider only 4 or 5 frames of the evolution of the phenomenon, 

in which the phenomenon itself can be considered almost stationary. 

In the simulation testbed, the target dynamics is supplied as a sequence of frames 

whose transition is ruled by a preset time frequency. This both avoid the effort of coding the 

equations underlying the dynamics of targets and allows to use real available frames to 

recreate a new scenario. We consider three dynamic scenarios: 

• Fire Tracking comes by a propagation model developed by the Northwestern 

University (Wilensky, 1997). 

• H2S Leak is based on a sour gas accident occurred in December 2003, in Chongqing 

City, in a Gas Field located in the northeastern of Sichuan, China (Qingchun & 

Laibin, 2011). 

• LPG Leak is based on an accident occurred in June 2009 in Viareggio, Italy, and 

involving an LPG railcar rupture in a congested urban area (Pontiggia, et al., 2011). 

Table 4.10 summarizes the main features of each scenario. 

 
Table 4.10 - Characteristics of dynamic scenarios 

Scenario Area size (m × m) Targets animation N. of frames 

Fire Tracking 1400 × 1400 20 min. 5 

H2S Leak 4816 × 4400 48 min. 4 

LPG Leak 500 × 300 4 min. 4 
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Formally, given a simulated scenario Ω, made of: 

i. simulation instants of time 𝑡 ∈ ℕ<; 

ii. a set of drones {𝐷}, each drone having a dynamic position (𝑥$ , 𝑦$)S; 

iii. a set of targets 𝜏 ∈ 𝑇, that can change every frame transition period 𝑃, i.e., (𝑥, 𝑦)T(1), 

𝜑 = 0, 𝑃, 2𝑃,… , 𝑡𝑃, … , 𝜙, where 𝜙 = 𝑛𝑃 is the predefined final instant of the 

simulation, and 𝑛 is the number of frames of the simulation. 

The fitness of the dynamic simulated scenario Ω is then defined as the average 

percentage of targets discovered in all frames, as in the following: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(Ω) = Q
U
∑ |WX(1)|

|W(1)|
U
1.Q     (  4.2  ) 

 

where 𝑇(𝜑) is the number of targets in the frame that ends at time 𝜑, and 𝑇X(𝜑) is the 

corresponding number of found targets. 

As a pilot example, Figure 4.8 and Figure 4.9 show two frames of the Fire Tracking 

scenario. Here, drones are represented as lilac arrowheads.  The fire front to be tracked is 

represented by colored targeted cells. Thus, a single-colored targeted cell represents a small 

portion of the fire front. A targeted cell can be discovered/tracked, i.e., the yellow cell, or 

undiscovered/untracked, i.e., the red cell. The pheromone clouds are depicted in the figures 

as clusters of gray cells, where the level of gray represents the intensity of the pheromone. 

These clearly show that the swarm is tracking the fire evolutions. 

 

 
Figure 4.8 - Fire Tracking: simulation frame at tick 1013 
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Figure 4.9 - Fire Tracking: simulation frame at tick 1277 

 

Table 4.11 shows the performance of 80 UAVs swarm, adapted for each scenario, in 

terms of the 95% confidence interval over 10 repeated trials. 

 
Table 4.11 - 80 UAVs swarm performance over dynamic scenarios 

Scenario Performance 

Fire Tracking 99.88 ± 0.06 % 

H2S Leak 98.78 ± 0.17 % 

LPG Leak 93.88 ± 0.28 % 

 

Experimental results show the effectiveness of the swarm in tracking the dynamic 

phenomenon. The number of UAVs has been determined by setting incremental values and 

assessing the impact on performance. For example, Table 4.12 shows the performance of 

20, 40, 60, 80 UAVs for Fire Tracking, in terms of 95% confidence interval over 10 repeated 

trials. 

 
Table 4.12 - Fire Tracking: swarm performance for a different number of UAVs 

N. of UAVs Performance 

20 60.64 ± 2.06 % 

40 90.36 ± 0.54 % 

60 98.43 ± 0.25 % 

80 99.88 ± 0.06 % 
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4.3 Oceans cleanup management via USV swarms 

Plastic pollution is a major source of marine debris. Many plastics, including 

polypropylene, polyethylene, nylon, polystyrene, polycarbonate, and polyvinyl chloride 

(PVC) are very durable; some are predicted to persist in the marine environment for many 

years. The wind and ocean current can lead to the accumulation over time of buoyant plastic 

in specific geographical areas so inducing serious pollution problems, also related to the 

degradation of plastic materials and the formation of sea-slicks and biofilms. Europe, after 

China, is the second largest producer of plastic. The major plastic-consuming countries in 

the European Union are Germany and Italy (Villarrubia-Gómez, Cornell, & Fabres, 2018). 

Observation and mitigation represent a fundamental step to marine plastics reduction. 

Among the most common mitigation techniques we mention those based on a removing, 

cleaning-up and biotechnology strategies. 

This application focuses on the perspective use of the Albatross Unmanned Surface 

Vehicle (USV) prototype which was designed and presented in 2019 at the NASA Space 

Apps Challenge. In the literature, swarms of robots are increasingly proposed as a viable 

solution to mitigate the problem of plastic pollution in oceans. The cooperation of a USV 

swarm can sensibly increase the performances of cleaning dirty oceanic zones. The USV is 

assumed to be equipped with on-board sensors that allow it to identify the plastic debris 

(Kylili, Kyriakides, Artusi, & Hadjistassou, 2019). 

In general, the cooperation of USVs can be coordinated either in a centralized or a 

decentralized way. The centralized coordination asks for a human operator who analyses and 

collects information about dirty zones and updates the environment map of USVs. As a 

result, the swarm navigates to a new assigned dirty zone and cleans it. The main characteristic 

of a USV coordination strategy is its capability to be autonomous, robust, resilient, and 

adaptive. Centralized logic solutions are not effective for this purpose, due to the high level 

of complexity, design, and management effort. In contrast, decentralized logic approaches 

can provide a USV swarm with a certain degree of autonomy (Meng, et al., 2014). 

In this application, two swarm intelligence algorithms are compared, i.e., Ant Colony 

Optimization (ACO) (Palmieri, Yang, De Rango, & Marano, 2017) with Evolution (ACO-

E), and Stigmergy Flocking Evolution (SFE). As highlighted in the previous chapter, SFE 

includes different biological cooperation models, inspired by chemical pheromone, olfactory, 

and visual perception. Both algorithms are parametrically adaptive with respect to the layout, 

thanks to the use of Evolutionary Optimization. Simulation results show that the SFE 

algorithm sensibly overcomes the ACO in terms of amount of collected debris per month. 
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A key point of the USV swarm coordination is the capability to provide a dynamic 

update of the environment map, according to the sea current that moves the plastic debris. 

To this purpose, here the model of the Copernicus Marine Service is used (Liubartseva, 

Coppini, Lecci, & Clementi, 2018). The model provides a stream of frames with the spatial 

distribution of floating plastics, based on the pattern of ocean currents. The model has been 

created from Earth Observation data in a Numerical Weather Prediction (NWP). 

The exploration problem is modelled by discretizing the environment into a lattice of 

cells. Each cell has an area of 0.25 Km2. The temporal unit (tick) of the simulation 

environment is set to 5 minutes. The duration of the mission is statically specified and 

corresponds to one month of floating plastic movement. The target dynamics is reproduced 

by using a sequence of frames with daily transition. The USV position and direction is 

dynamic and set according to exploration and coordination rules, which can be parametrically 

adapted by Differential Evolution algorithm. 

Figure 4.10 summarizes the main steps of the procedure used to model the daily spatial 

distribution of plastics within the study area. 

 

 
(a) 

 
(b) 

Figure 4.10 - Procedure to determine the daily distribution of plastics 

 

The starting point of the procedure is given by a frame providing spatial density of 

plastics over sea. The Figure 4.10(a) represents the spatial density of plastic provided by the 

Copernicus Marine Service. This frame is used to estimate the 2D probability density 

function to find plastics at a location (latitude, longitude) over the sea. A Montecarlo 

technique is then used to sample the location of plastics over sea, to generate the vectorial 

map with the target to collect, represented as red points in Figure 4.10(b). The overall 

collected plastic by the swarm is returned by the simulated mission and is used as a fitness 

value to measure the effectiveness of each algorithm. 
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The study area covers the portion of the Tyrrhenian Sea between northeastern Corsica 

and Tuscany. Specifically, it is a 150.5 ×	150.5 Km2 area, with an overall navigable surface of 

16235 Km2. This area is often affected by the formation of non-permanent floating plastic 

islands, due to the characteristic sea currents (Fossi, et al., 2017). A realistic scenario is 

simulated by using a video animation of the sea plastic pollution made available by the 

Copernicus Marine Service (Liubartseva, Coppini, Lecci, & Clementi, 2018). For this study, 

the period from 01/07/2016 till 30/07/2016 has been selected. Figure 4.11 shows the 

pheromone clouds and the USV swarm tracking the floating plastic movements. 

 

 
Figure 4.11 - Simulation of plastic collection 

 

In our study, we have set the simulator with the physical and technological parameters 

of the USV prototype designed in the ALBATROSS project (ALBATROSS, Trash Cleanup, 

2019). The main characteristics of this drone are summarized in Table 4.13. 

 
Table 4.13 - Techincal specification of the ALBATROSS trimaran 

USV Parameter Real value 

cruising speed 6 Km/h 

maximum payload 6000 Kg 

net capacity 33.3 Kg 

size 25 × 13 m 
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The performances of the swarm coordination algorithm have been assessed by 

considering both ACO and SFE algorithms. Figure 4.12 shows the performance of 20 USVs 

swarm, obtained with the two coordination strategies in the same simulation configurations. 

For each strategy, the DE optimization is carried out 5 times, to calculate the 95% confidence 

intervals. 

 

 
Figure 4.12 - Amount of plastic collected by the USV swarm 

 

The results show that the SFE algorithm clearly outperforms the ACO strategy. 
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Chapter 5 

 

5 Conclusion 

This chapter draws the conclusion of this Ph.D. thesis. First, we discuss the proposed 

approach to design coordination algorithms for swarms of robots in target search. Then, a 

final section is devoted to possible future directions of this research. 

 

 

5.1 Discussion 

In this thesis, we present a novel methodology for designing heuristics for 

decentralized coordination of robot swarms. The approach is based on the use of a hyper-

heuristic that aggregates and tunes the modular components of heuristics of lower level. The 

experimental results obtained from the simulations over heterogeneous scenarios are very 

promising. This confirms the effectiveness of hyper-heuristics in providing more generalized 

solutions to optimization problem, by working well over a set of problems, rather than 

producing good results for just a few problem instances. 

Swarm robotics is the discipline that studies how to manage and coordinate large 

groups (swarms) of mostly simple autonomous robots. In practice, modeling robot behavior 

gets inspiration from swarm intelligence, where the desired collective behavior emerges from 

simple rules and local interactions. This coordination approach has been shown to have 

many advantages compared with other multi-robot systems. One of the problems in which 

swarm robotics is most used is target search in unstructured environments. Target search 

aims to discover elements of various complexity in a physical environment, by minimizing 

the overall discovery time. A target search mission is usually organized into environmental 

exploration, i.e., to search targets, and targets resolution, i.e., to collect sufficient target 

information. 

In complex and open environments, the robots cannot exploit static information on 

layout and targets locations, therefore swarm robotics is well suited for an efficient targets 

discovery. In the literature, different heuristics inspired by biological systems have been 
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proposed to guide robots to complete missions. We have considered and made adaptive 

some of these heuristics: Ant Colony Optimization (ACO), inspired by ants, for exploration 

tasks, whereas Firefly algorithm (FTS, Firefly Team Strategy), inspired by fireflies, Particle 

Swarm Optimization (PSO), inspired by birds flocking, and Artificial Bee Colony (ABC), 

inspired by honeybees, for recruitment tasks. We have adapted algorithm parameters via 

Differential Evolution optimization. Differential evolution has proven to be very effective 

in finding the best algorithmic parameters of a bio-inspired heuristic in order to improve the 

mission performance. In practice, it is not easy to select the most suitable heuristic for a 

specific mission. Moreover, although adaptive, the logic of bio-heuristics is constrained by 

models of biological species and requires relevant parametrization costs related to every new 

type of mission and to new instances of known missions. 

In order to overcome the design constraints of bio-inspired approaches, we propose a 

novel methodology based on hyper-heuristics. Basically, a hyper-heuristic is a search method 

or a learning mechanism to select or generate heuristics that solve search problems. We have 

considered two fundamental behavioral components: stigmergy and flocking. Stigmergy is 

used to release an attractive,	 or repulsive,	 pheromone while detecting the presence, or 

absence, of a target during exploration. Flocking uses simple rules to model a robust and 

flexible swarm formation. We have parametrized the pheromone model and the flocking 

rules to obtain modular components. Then, in our design approach, for a given application 

domain the Differential Evolution optimizes the aggregation and tuning of the basic 

behavioral components in a unique and continuous search space. The proposed hyper-

heuristic is called SFE because it is based on Stigmergy, Flocking, and Evolution. 

Experimental results on real-world scenarios, carried out and released as a public 

simulation testbed, have shown that searching in the heuristic space allows to obtain more 

efficient coordination logics, in both exploration and recruitment. Indeed, the SFE 

significantly outperforms the other adaptive bio-heuristics in all considered scenarios. The 

SFE is also faster in terms of optimization duration, although it requires more memory. The 

technique has also proven effective when considering the problem of tracking dynamic 

targets. Experimental results obtained by using swarms of Unmanned Aerial Vehicles on 

real-world scenarios involving early fires and early toxic and dangerous gas dispersion are 

very promising. Moreover, we have considered another important and current topic, that is 

the problem of mitigation of plastic pollution in oceans. In this context, a realistic scenario 

has been simulated considering a dataset provided by the Copernicus Marine Service. We 

have configured the simulation testbed by using the technical specification of an Unmanned 

Surface Vehicle prototype designed in the ALBATROSS project. Comparative results with 
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the ACO algorithm have clearly shown that the SFE algorithm is more suitable in 

coordinating swarms of USVs to collect plastic. 

 

 

5.2 Future work 

In the problem of coordinating swarms of robots searching for targets in unstructured 

environments, the approach based on hyper-heuristics has proved to be successful compared 

to the use of simple adaptive bio-heuristics. However, parametric optimization of modular 

heuristics considers the accuracy of the solution as the only goal, in terms of minimizing 

target search time in static scenarios or maximizing detected targets in dynamic scenarios. 

The limit of this approach lies in the difficulty to understand the solution with respect to the 

specific application context. In missions where it is useful to employ robot swarms, it would 

be desirable to consider both accuracy and transparency requirements in order to acquire a 

knowledge base that is accessible to human users. In this regard, one possible research 

direction could be to optimize the transparency of the system. In other words, a first goal 

could be to understand, through a proper design of the experimental plan, the relationship 

between some relevant features of the application scenarios (e.g., target density, target 

distribution, obstacle size, obstacle distribution, etc.) and the parameters related to stigmergy 

and flocking. Later, the rules extracted from the experimental results could be used to address 

the optimization of new types of missions or new instances of known missions. As a result, 

by intelligently and comprehensibly constraining the search space, it should be possible to 

reduce the variance of the solutions and obtain more statistically significant results. 
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Peer Reviewed International Conferences Papers 

• Manilo Monaco, Mario G.C.A. Cimino, Gigliola Vaglini, Francesco Fusai, Giovanni 

Nico, “Managing the Oceans Cleanup via Sea Current Analysis and Bio-Inspired 

Coordination of USV Swarms”, In: Proceedings of the 2021 IEEE 

International Geoscience and Remote Sensing Symposium IGARSS, pp. 8344-8347, Brussels, 

Belgium, 11-16 July 2021. 

• Cimino Mario G.C.A., Lega Massimiliano, Monaco Manilo, Vaglini Gigliola, 

“Adaptive Exploration of a UAVs Swarm for Distributed Targets Detection and 

Tracking”, In: Proceedings of the 8th International Conference on Pattern Recognition 

Applications and Methods, (ICPRAM 2019), pp. 837-844, Prague, Czech Republic, 19-

21 February 2019. 

• Manilo Monaco, Giovanni Nico, Pier Francesco Biagi, Anita Ermini, Aleksandra 

Nina, Mario G.C.A. Cimino, Gigliola Vaglini, “Using VLF Time Series from the 

INFREP Network for the Study of Pre-Seismic Radio Anomalies”, In: Proceedings 

of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 

8624-8627, Brussels, Belgium, 11-16 July 2021. 

• Cimino Mario G.C.A., Dalla Bona Federico, Foglia Pierfrancesco, Monaco Manilo, 

Prete Cosimo A., Vaglini Gigliola, “Stock Price Forecasting Over Adaptive 

Timescale Using Supervised Learning and Receptive Fields”, In: Groza A., Prasath 

R. (eds) Mining Intelligence and Knowledge Exploration, (MIKE 2018), Cluj-Napoca, 

Romania, 20-22 December 2018, Lecture Notes in Computer Science, vol 11308. 

Springer, Cham. 
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