
PhD Program in Smart Computing

CYCLE !!!"

Coordination of swarms of robots in target search:

from bio-inspired heuristics to hyper-heuristics

Academic Discipline (SSD) ING-INF/05

PhD Candidate Advisor

 Manilo Monaco Prof. Gigliola Vaglini

 ______________________ ______________________

 Prof. Mario G.C.A. Cimino

Head of PhD Program

Prof. Stefano Berretti

Evaluation Committee

Prof. Giovanna Castellano, University of Bari Aldo Moro

Prof. Adrian Groza, Technical University of Cluj-Napoca

Years 2018/2021

To Sofia Elena,

 who fills my life with light.

Manilo Monaco

Acknowledgments

First and foremost, I would like to dedicate a special thanks to my wife Angela for

having encouraged me to open the horizon to the possibility of undertaking this adventure

when I had never thought about it. Then, I would like to thank my parents for always being

by my side, even when we were not in the same place, as if space and time did not exist. I

thank my brother Mario, who always helped me with his advice and never made me feel

alone.

My deep gratitude goes to my advisors, Prof. Gigliola Vaglini and Prof. Mario G. C.

A. Cimino, who believed in me when neither I believed in myself and gave me the

opportunity to live this amazing experience. I would like to thank Prof. Mario G. C. A.

Cimino, who contributed to light in me the Love for research, because “it is Love that moves

the sun and the other stars...”.

I would also like to express my appreciation to the reviewers of my thesis, Prof.

Giovanna Castellano and Prof. Adrian Groza, for helping to improve this work with their

useful and constructive suggestions.

Finally, yet importantly, I would like to thank all the colleagues, Professors, researchers,

students, collaborators, and friends, with whom I shared part of this wonderful journey. I

will always keep in my heart the very long afternoons spent in the Department with Federico

A. Galatolo discussing about our research, trying to connect physics and metaphysics.

Thank you all for the time you dedicated to me.

Abstract

In recent years, the problem of target search has received much attention in the research

community due to the wide range of applications domains involved, such as environmental

monitoring, precision agriculture, surveillance, or search and rescue. Essentially, it concerns

the search for stationary or dynamic targets in unstructured environments, aiming to

minimize the overall discovery time. In order to tackle this problem, solutions based on

collective search are currently of great interest in robotics. However, coordinating a multi-

robot system is a challenging problem, particularly in unstructured areas, as for example

hazardous and post-disaster scenarios where direct communication is limited. Swarm robotics

is a new and disruptive research field that studies how to manage and coordinate large groups

(swarms) of mostly simple physical robots, getting inspiration from swarm intelligence to model

the behavior of the robots.

For centuries, the concept of intelligence has been linked exclusively to human beings.

However, a simple observation of nature shows that other creatures can also develop

behaviors that are sophisticated enough to be considered intelligent. The mysterious dance

of honeybees to communicate the location of promising food sources, the amazing floating

shapes drawn in the sky by a flock of birds while foraging, the creation of impressive

cathedral mounds by termites, the trail followed by ants to quickly reach the nest from a food

source are all good examples of complex collective behaviors, unknown to individual

members of the swarm. These sophisticated collective behaviors emerge from a relatively

small set of rather simple rules, where single individuals exploit only low-level local

interactions with each other and with the environment to gain decentralized control and self-

organization. For example, in ant societies, a key factor of self-organization is the indirect

communication between individuals through changes in the environment, a process known

as stigmergy. Specifically, at the beginning the ants search for new food sources moving

randomly. However, when an ant finds a potential food source, it takes a piece and returns

to the nest, leaving pheromone trails on the way back. Other ants, while perceiving the

pheromones, follow the trail until the food source and come back to the nest, releasing

themselves new pheromones, thus reinforcing the specific route. On the other hand, these

pheromone trails evaporate over time, reducing their attractive strength. Obviously, shorter

paths are less affected by this evaporation process in short term, so they are more likely to

be eventually visited more frequently than the longer ones. In this way, nature provide a

solution to the problem of finding the shortest path between two points: the ant colony and

the food source. This and other biological mechanisms have been the inspiration for efficient

optimization methods (bio-inspired heuristics). In the context of swarm robotics, a virtual

representation of the pheromone can be used to steer the swarms towards the most favorable

areas of an application scenario, e.g. the regions with the highest probability of the presence

of targets.

The main drawbacks of bio-inspired heuristics are related to the selection of the most

suitable algorithm for the specific scenario and the parametrization costs to adapt it to new

type of missions. In fact, the hypothesis space of a bio-heuristic, i.e. the space in which to

search for a good algorithm configuration, is constrained by models of biological species. In

order to generate more adaptable logics, in this thesis it is proposed a novel design approach

based on hyper-heuristics. For a given application domain, hyper-heuristics aim to provide more

generalized solutions to optimization problems, rather than deriving techniques that perform

well for just a few problem instances. In order to achieve this result, they either select or

generate low-level heuristics, which are used to solve the problem at hand. In this thesis, two

fundamental components are considered as constructive low-level heuristics for building

decentralized and self-organized robot swarm coordination logics, i.e. stigmergy and

flocking. Moreover, Differential Evolution is used to optimize the aggregation and tuning of

these modular heuristics over realistic real-world scenarios. The experimental results

acquired from extensive simulations are promising and show the convenience of using hyper-

heuristics as a novel design methodology compared to simple bio-inspired heuristics.

Contents

LIST OF FIGURES .. I

LIST OF TABLES .. II

1 INTRODUCTION .. 1

1.1 SWARM INTELLIGENCE IN NATURAL SYSTEMS .. 3
1.2 COMPUTATIONAL SWARM INTELLIGENCE ... 5
1.3 SWARM ROBOTICS .. 6

1.3.1 Advantages and limitations ... 7
1.3.2 Target search problem ... 11

1.4 HYPER-HEURISTICS ... 13
1.5 MAIN CONTRIBUTIONS .. 15
1.6 OUTLINE OF THE THESIS ... 16

2 FROM NATURE-INSPIRED META-HEURISTICS TO HYPER-HEURISTICS 18

2.1 NATURE-INSPIRED META-HEURISTICS .. 20
2.1.1 Flocking behavior ... 21
2.1.2 Ant Colony Optimization .. 23
2.1.3 Firefly algorithm .. 29
2.1.4 Particle Swarm Optimization ... 33
2.1.5 Artificial Bee Colony Optimization .. 36
2.1.6 Differential Evolution .. 41

2.2 HYPER-HEURISTICS TO DESIGN HEURISTICS .. 47
2.2.1 Selection constructive hyper-heuristics ... 48
2.2.2 Generation constructive hyper-heuristics ... 50

3 A HYPERHEURISTIC-BASED METHODOLOGY FOR ROBOTIC SWARMS

COORDINATION ... 54

3.1 DESIGN ... 55
3.1.1 Flocking-based exploration ... 57
3.1.2 Stigmergy-based coordination .. 58
3.1.3 Stigmergy-Flocking-Evolution (SFE) algorithm ... 60

3.2 SIMULATION TESTBED ... 63
3.3 REAL-WORLD SCENARIOS .. 67

4 APPLICATIONS ... 69

4.1 COMPARISON BETWEEN SFE AND ADAPTIVE BIO-INSPIRED META-HEURISTICS ... 69
4.1.1 Problem statement .. 70
4.1.2 Experimental setup .. 72
4.1.3 Management of the stochastic behavior .. 77
4.1.4 Experimental results .. 78

4.2 TARGETS TRACKING VIA UAV SWARMS .. 82
4.3 OCEANS CLEANUP MANAGEMENT VIA USV SWARMS ... 86

5 CONCLUSION ... 90

5.1 DISCUSSION ... 90
5.2 FUTURE WORK ... 92

PUBLICATIONS ... 93

BIBLIOGRAPHY .. 94

 I

List of Figures

FIGURE 2.1 - FLOKING BEHAVIOR ONTOLOGY ... 22
FIGURE 2.2 - FLOCKING RULES: SEPARATION, ALIGNMENT, AND COHESION ... 22
FIGURE 2.3 - SEARCH AREA FOR ROBOT FLOCKING: SEPARATION AND ALIGNMENT .. 23
FIGURE 2.4 - SCHEMATIC REPRESENTATION OF THE MOTION OF A PARTICLE IN PSO ... 33
FIGURE 2.5 - SCHEMATIC REPRESENTATION OF DONOR (MUTATION) VECTOR .. 42
FIGURE 3.1 - PERCENTAGE OF TARGETS FOUND AGAINST TIME ... 56
FIGURE 3.2 - MODEL OF FLOCKING BEHAVIOR: (A) ACTIVATION REGIONS, (B) SEPARATION, (C) COHESION, (D) ALIGNMENT 57
FIGURE 3.3 - MODEL OF A PHEROMONE MARK ... 58
FIGURE 3.4 - ENVIRONMENT: DRONES, TARGETS, ATTRACTIVE AND REPULSIVE PHEROMONES, OBSTACLES .. 64
FIGURE 3.5 - ILLEGAL DUMP SCENARIO: (A) AERIAL PHOTO (GOOGLE MAPS ©), (B) VECTORIAL MODEL ... 67
FIGURE 3.6 - RURAL MINE SCENARIO: (A) AERIAL PHOTO (GOOGLE MAPS ©), (B) VECTORIAL MODEL ... 67
FIGURE 3.7 - LPG LEAK SCENARIO: (A) AERIAL MAP (PONTIGGIA, ET AL., 2011), (B) VECTORIAL MODEL .. 68
FIGURE 4.1 - TARGET SEARCH MISSION: UML ACTIVITY DIAGRAM WITH THE OVERALL WORKFLOW ... 70
FIGURE 4.2 - DE/BEST/1/BIN HYPERPARAMETERS GRID SEARCH, WITH THE ACO-E ALGORITHM AND THE ILLEGAL DUMP SCENARIO 75
FIGURE 4.3 - DE/RAND/1/BIN HYPERPARAMETERS GRID SEARCH, WITH THE ACO-E ALGORITHM AND THE ILLEGAL DUMP SCENARIO 75
FIGURE 4.4 - DE/BEST/1/BIN HYPERPARAMETERS GRID SEARCH, WITH THE SFE ALGORITHM AND THE ILLEGAL DUMP SCENARIO 76
FIGURE 4.5 - DE/RAND/1/BIN HYPERPARAMETERS GRID SEARCH, WITH THE SFE ALGORITHM AND THE ILLEGAL DUMP SCENARIO 76
FIGURE 4.6 - MISSION DURATION OPTIMIZATION: AVERAGE BEST FITNESS AGAINST NUMBER OF GENERATIONS. EXPLORATION ON (A)

DUMP, (B) RURAL MINE, (C) LPG LEAK, EXPLORATION + RECRUITMENT ON (D) DUMP, (E) RURAL MINE, (F) LPG LEAK 79
FIGURE 4.7 - ILLEGAL DUMP SCENARIO: AVERAGE PERCENTAGE OF TARGETS FOUND AGAINST TIME ACHIEVED BY SFE ALGORITHM,

BEFORE (BLUE) AND AFTER (ORANGE) DE ... 80
FIGURE 4.8 - FIRE TRACKING: SIMULATION FRAME AT TICK 1013 ... 84
FIGURE 4.9 - FIRE TRACKING: SIMULATION FRAME AT TICK 1277 ... 85
FIGURE 4.10 - PROCEDURE TO DETERMINE THE DAILY DISTRIBUTION OF PLASTICS .. 87
FIGURE 4.11 - SIMULATION OF PLASTIC COLLECTION .. 88
FIGURE 4.12 - AMOUNT OF PLASTIC COLLECTED BY THE USV SWARM ... 89

 II

List of Tables

TABLE 1.1 - COMPARISON BETWEEN SWARM ROBOTICS AND OTHER MULTI-ROBOT SYSTEMS ... 9
TABLE 1.2 - CLASSIFICATION OF HYPER-HEURISTICS ACCORDING TO TWO DIMENSIONS: (I) THE SOURCE OF FEEDBACK DURING

LEARNING, AND (II) THE NATURE OF HEURISTIC SEARCH SPACE ... 14
TABLE 3.1 - PARAMETER SPACE OF THE SFE ALGORITHM .. 62
TABLE 4.1 - PARAMETER SPACE OF THE ACO-E ALGORITHM ... 72
TABLE 4.2 - PARAMETER SPACE OF THE ACO-FTS-RR3-E ALGORITHM ... 73
TABLE 4.3 - PARAMETER SPACE OF THE ACO-PSO-RR3-E ALGORITHM .. 73
TABLE 4.4 - PARAMETER SPACE OF THE ACO-ABC-RR3-E ALGORITHM .. 73
TABLE 4.5 - PARAMETER SPACE OF THE SFE AND SFE-RR3 ALGORITHMS .. 74
TABLE 4.6 - SWARM EXPLORATION: MISSION DURATION BEFORE AND AFTER DIFFERENTIAL EVOLUTION .. 78
TABLE 4.7 - SWARM EXPLORATION + RECRUITMENT: MISSION DURATION, BEFORE AND AFTER DIFFERENTIAL EVOLUTION 78
TABLE 4.8 - AVERAGE DE OPIMIZATION DURATION FOR 40 GENERATIONS ... 81
TABLE 4.9 - MEMORY USAGE AT THE END OF THE 1ST DE GENERATION .. 81
TABLE 4.10 - CHARACTERISTICS OF DYNAMIC SCENARIOS .. 83
TABLE 4.11 - 80 UAVS SWARM PERFORMANCE OVER DYNAMIC SCENARIOS ... 85
TABLE 4.12 - FIRE TRACKING: SWARM PERFORMANCE FOR A DIFFERENT NUMBER OF UAVS .. 85
TABLE 4.13 - TECHINCAL SPECIFICATION OF THE ALBATROSS TRIMARAN ... 88

 1

Chapter 1

1 Introduction

Optimization has become increasingly important in a wide range of applications, from

engineering design and business planning to data mining and machine learning. Minimizing

energy consumption, costs, waste, travel time, and environmental impact, as well as

maximizing profit, outputs, performance, efficiency, and sustainability, are all real-world

problems that are concerned with optimization. Clearly, any application is subject to a limited

amount of resources of many kinds, such as time and money, and the goal becomes to find

optimal solutions to various design problems, which have a broad range of complex

constraints (Yang & Deb, 2014). Mathematical optimization or mathematical programming

can be used to properly formulate and model any kind of optimization problem. The

construction of the cost function or objective function represents the most important part

of the model and, usually, several design options are evaluated and compared. After

formulating the optimization problem, the goal is to find the optimal solution or a set of

optimal solutions, in order to minimize or maximize the objective function. Most real-world

problems are nonlinear in terms of both objective function and constraints, and only

sophisticated optimization algorithms can deal with such problems. Moreover, the

evaluations of objective functions can be time-consuming, particularly for problems related

to data mining and machine learning.

Despite the increasing computational power of modern computers, brute force

approaches to finding optimal solutions are not feasible. Therefore, the use of efficient

algorithms is critical in almost all applications. Algorithms for efficient optimization include

both traditional techniques, such as gradient-based algorithms, and evolutionary approaches,

such as genetic algorithms (GA) and evolutionary algorithms (EA). In recent years, this list

has grown with interesting new algorithms inspired by nature and swarm intelligence,

including ant colony optimization (ACO) (Dorigo, Birattari, & Stützle, 2006), particle swarm

optimization (PSO) (Kennedy & Eberhart, 1995), the firefly algorithm (FA) (Yang, 2009),

cuckoo search (CS) (Yang & Deb, 2014), and many others.

Among the applications where optimization can play an important role, there are

multi-robot systems. Multi-robot systems have a great potential in a variety of critical

 2

missions, such as surveillance, environmental monitoring, search and rescue. A relevant issue

is the coordination of swarms for an increasing number of robots in order to achieve pre-

defined global objectives. Regarding this issue, today biological swarms are much more

effective with respect to the artificial counterpart. Considering that in complex or open

environments robots cannot exploit static information on layout and targets locations, their

coordination is fundamental for an efficient target discovery: the key problem is how to

specify the individual robot behavior for an effective interaction at the swarm level.

A target search mission is usually organized into environmental exploration, i.e., to search

targets, and targets resolution, i.e., to collect sufficient target information. In the literature of

biological models, a fundamental strategy of exploration is carried by ants. While on the

move, ants deposit in the terrain a chemical substance called pheromone. As an example, in

Ant Colony Optimization (ACO) (Dorigo, Birattari, & Stützle, 2006) artificial ants release

pheromones while exploring the environment to temporarily mark the visited places.

Different types of pheromones, related to different meanings, enable ants to make different

decisions. Digital versions of pheromones are commonly used to orientate robots’

exploration (Alfeo, et al., Swarm coordination of mini-UAVs for target search using

imperfect sensors, 2018). Robots move according to the sensed pheromone; specifically, a

robot begins to coordinate the resolution of the target detected during exploration, by

attracting other robots towards the position indicated by the pheromone. When the recruited

robots are sufficient in number, they perform the target resolution. In the literature, three

major bio-inspired meta-heuristics are considered for recruitment: (i) the Firefly-based Team

Strategy (FTS) (Yang, 2009), an algorithm derived from swarms of fireflies; (ii) Particle

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), modelled from schools of fishes

and flocks of birds; (iii) Artificial Bee Colony (ABC) (Karaboga & Akay, 2009), based on

behavior of honey bees. The problem of coordinating swarms of robots has received

attention by many research areas, due to its potential impact on real-world applications.

Swarm coordination strategies can be divided into two categories. Explicit coordination is based

on the direct exchange of messages between robots, according to a detailed orchestration

among swarm members (Senanayake, et al., 2016). This many-to-many communication

strategy causes a poor performance of large swarms of robots. In contrast, with implicit

coordination each robot makes simple behavioral decisions, based on information gathered

through its indirect perception mediated by an environmental mechanism. Although the

single piece of information obtained by perception is not completely accurate, the robustness

of the swarm can be sensibly improved by the collective contribution (Senanayake, et al.,

2016).

 3

1.1 Swarm intelligence in natural systems

For centuries, the notion of intelligence has been linked exclusively to human beings,

without considering the possibility that other natural creatures could also develop

sophisticated behaviors. However, this assumption is contradicted by multiple examples

observed in nature, such as the collective behavior of colonies of many social animals (ants,

termites, birds, bees, and fireflies). These swarms exhibit global behaviors that go far beyond

the simple aggregations of individual behaviors. The mysterious dance of honeybees to

communicate the location of promising food sources, the amazing floating shapes drawn in

the sky by a flock of birds while foraging, the creation of impressive cathedral mounds by

termites, the trail followed by ants to quickly reach the nest from a food source are all good

examples of complex collective behaviors, unknown to individual members of the swarm.

Pierre-Paul Grassé in 1959 first investigated the nest-building behavior of termite colonies.

Termites occasionally pick up a ball of soil that is then covered with pheromone and dropped

at random. If there is already a pheromone covered mud ball nearby, there is a greater

likelihood that a second one will be placed next to it. As this stack increases in size and the

corresponding amount of pheromone increases, the chances of more pheromones being

added increase, leading to the result of creating a structured termite mound complete with

arches and chambers. This action of cascading mud balls until a complete termite mound is

built is an example of a positive feedback loop. Although a colony is composed of individual

termites apparently pursuing their own interests, the shape and state of their local

environment affects their actions and allows coordination at the swarm level (Howden,

2013).

In nature swarms can have very different sizes, from a few individuals that live in a

restricted area to wide colonies spread over a large area and made up of thousands or millions

of individuals. The fundamental feature of the swarms is that they are decentralized, in other

words, the members of the swarm are not led by a leader to complete the prefixed activities.

In general, a swarm is composed of a set of homogeneous (or quasi-homogeneous)

individuals that move in a non-synchronized way. Each member has limited intelligence and

is not able to achieve the goals of the swarm alone. It has been shown that the individuals

are able to produce sophisticated collective behaviors without having any global

understanding of the swarm. Each member has no information about the overall status of

the swarm. On the other hand, interactions between individuals occur only at the local level.

A paradigmatic example is represented by the flocking behavior of birds: each bird is aware

only of its local neighbors, but despite this the flock is capable of migrating thousands of

 4

kilometers toward a destination, following a common orientation in its movement. Another

example is fish schooling: individual fish keep track only of their close neighbors by following

with their eyes some marks on the bodies of other fishes and ignore the overall evolution of

the swarm. However, the school as a whole can change its shape and direction of movement

at amazing speed, and without collisions between its members.

It is hard to understand how such complex behaviors can result from swarms of simple

individuals with limited cognitive abilities. Surprisingly, these sophisticated collective

behaviors emerge from a relatively small set of rather simple rules, where single individuals

exploit only low-level local interactions with each other and with the environment to gain

decentralized control and self-organization. The self-organization is based on the

combination of four fundamental rules: positive feedback, negative feedback, randomness,

and multiple interactions (Bonabeau, Theraulaz, Deneubourg, Aron, & Camazine, 1997). A

key factor is the indirect communication between individuals through changes in the

environment, a process known as stigmergy. Stigmergy is a mechanism of indirect

coordination, mediated by the environment, by which the swarm is able to self-organize,

generating intelligent behavioral patterns without any form of planning, control, or even

direct communication between agents. Thanks to this indirect communication mechanism,

extremely simple agents, although with low memory and intelligence, and without awareness

of each other, achieve an efficient level of collaboration. For example, ants communicate by

releasing pheromones into the environment. Specifically, at the beginning the ants search for

new food sources moving randomly. However, when an ant finds a potential food source, it

takes a piece and returns to the nest, leaving pheromone trails on the way back. Other ants,

while perceiving the pheromones, follow the trail until the food source and come back to

the nest, releasing themselves new pheromones, thus reinforcing the specific route. On the

other hand, these pheromone trails evaporate over time, reducing their attractive strength.

Obviously, shorter paths are less affected by this evaporation process in short term, so they

are more likely to be eventually visited more frequently than the longer ones. In this way,

nature provide a solution to the problem of finding the shortest path between two points:

the ant colony and the food source. This mechanism has inspired the well-known Ant Colony

Optimization method (Dorigo, Birattari, & Stützle, 2006).

Another important property sometimes observed in natural swarms is the eusociality,

which represents the highest level of organization in social animals. A distinctive feature of

eusociality is an efficient division of labor among the members of the swarm, where several

specialized groups can be found. In many cases, this division of labor is characterized by the

existence of subgroups of individuals who have lost a behavioral skill that is instead a

 5

property of other members of the swarm. This behavioral specialization makes swarms more

efficient but also more complex, resulting in the emergence of different subgroups exhibiting

different behavioral roles, usually labeled as castes. Examples of eusociality in animal swarms

include most species of ants and termites, as well as many species of bees and wasps.

1.2 Computational swarm intelligence

The expression swarm intelligence was first used by Gerardo Beni and Jing Wang in

1989 in the context of a project on cellular robotic systems (Beni & Wang, 1989). Swarm

intelligence is a branch of artificial intelligence concerned with the collective behavior of

decentralized and self-organized systems. Swarm intelligence systems typically consist of a

population of relatively simple agents that interact locally with each other and with the

environment, as well as natural swarms actually do. Indeed, several biological systems

observed in nature show very similar features (Yang, 2016). Since its introduction, swarm

intelligence has increasingly attracted the attention of the scientific community in several

fields, from computer science to artificial intelligence, from engineering to economics, and

many others. As a result, a great number of techniques based on swarm intelligence have

been developed in order to solve complex problems, such as optimization problems.

Practically all swarm behaviors observed in nature have been suitably modeled to

develop different swarm intelligence methods. For example, optimization methods were

proposed in the 1990s that are now well known, such as Ant Colony Optimization (Dorigo,

Birattari, & Stützle, 2006), Particle Swarm Optimization (Kennedy & Eberhart, 1995), and

Differential Evolution (Storn & Price, 1997). Methods based on swarm intelligence are

designed to exploit mainly the local interactions among the agents of the swarm, rather than

focusing on the structure of the agents as in the traditional approaches in artificial

intelligence. Typically, the agents have poor intelligence and are driven by a small set of rules.

However, the swarm as a whole is able to complete difficult tasks through strong cooperation

based on local interactions and division of labor, leading to the emergence of complex

behaviors never observed in a single agent. Ant algorithms represent one of the first

applications of the computational stigmergy (Dorigo, Bonabeau, & Theraulaz, 2000). These

approaches have been used in solving several computational problems, such as the traveling

salesman problem, scheduling and routing problems, and problems related to structural

engineering and digital image processing (Mohan & Baskaran, 2012).

 6

1.3 Swarm robotics

In recent years, the research community has become increasingly interested in swarm

intelligence because of its potential applications in multiple fields. The decentralized

coordination of groups of very simple self-organized robots is one of its most important

applications. In this way, complex and expensive robots can be replaced by simple and

inexpensive drones that can potentially perform highly sophisticated tasks (Arvin, Murray,

Shi, Zhang, & Yue, 2014). This interesting research area is generally referred to as swarm

robotics. Swarm robotics can be briefly defined as the discipline that studies how to handle

and coordinate large groups (swarms) of relatively simple autonomous robots by using local

rules and interactions. The design of physical components (sensors and actuators) and

controlling behaviors of the robots is also of interest for this research area (Sauter, Matthews,

Parunak, & Brueckner, 2007).

The main challenge of swarm robotics applications is that the swarm of robots must

be designed in such a way that local interactions among agents and between agents and the

environment led to the emergence of the desired collective behavior, according to the

concepts of swarm intelligence. However, in order to avoid falling into other approaches of

coordinating multi-robot systems, the design of robotic swarms must also require the

following criteria:

• The robots of the swarm are usually small and low cost, so that they can be

manufactured and deployed in large numbers.

• The robots must be autonomous and able to sense and work in a real-world

environment.

• The robots of the swarm should be homogeneous. Heterogeneous subgroups of

robots are allowed only in limited number.

• The robots are very simple and cannot solve the problem individually, or they do

so by exhibiting very poor performance. As a result, they need to cooperate in order

to solve the problem more efficiently.

• Only local sensing and communication capabilities are allowed to the robots of the

swarm. The local communication ensures that the swarm is scalable and robust and

can overcome failures of individual members.

 7

• The members of the swarm are usually controlled by very simple behavioral rules,

performed at the individual level, according to the cooperative behavior commonly

observed in natural swarms. The interaction of these rules produces a wide set of

complex collective behaviors.

• The robotic swarm is decentralized, distributed, and self-organized. As a result, it

shows high efficiency, parallelism, scalability, and robustness.

1.3.1 Advantages and limitations

Most of the advantages manifested by robotic swarm systems are similar to those

observed in natural swarms. A single robot that has to perform a difficult task requires a

sophisticated design and configuration, involving a great number of different structural

components (mechanical, electronics, optical, etc.) and several control modules for sensors

and actuators. Typically, many organizations and institutions do not have sufficient budget

to deal with the high costs of building, testing, operating, enhancing, and maintaining these

types of robots and their components. Moreover, a single expensive robot is subject to the

issue known as “single point of failure”. In other words, it becomes highly vulnerable and

prone to errors, since even the smallest component can affect the overall performance of the

whole robotic structure. Vice versa, a swarm of simple and low-cost robots can accomplish

similar tasks via strong cooperation among its members. By deploying a large number of

robots in different areas, it is possible to increase the exploration capability of the swarm

compared to a single robot, also exploiting the high parallelism. Furthermore, the loss of an

individual robot, or even some of them, does not affect, or affects only minimally, the overall

performance of the swarm, so making it less susceptible to errors and accidents.

A representative example is related to one of the worst nuclear disasters in recent

history, which is the Fukushima disaster. In 2011, a tsunami caused by a strong earthquake

reached the coast of Fukushima prefecture and the nuclear plant located nearby. This disaster

clearly highlighted the limitations of robotic technologies. In fact, the highly radioactive

environment following the disaster proved to be too extreme for many robotic units

deployed at the nuclear plant. Complex machines that were considered the cutting edge of

technology at the time were suddenly inactivated by radiation. Sophisticated and expensive

autonomous robots were disconnected or shut down, while others were trapped by fallen

structures and deformed obstacles in unexpected places. In December 2016, more than 5

 8

years after the disaster, a new powerful and sophisticated autonomous robot developed by

Toshiba was deployed at the plant. The robot was equipped with sensors to measure

radiation and temperature, and cameras to get the better viewing angles. Unfortunately, the

robot was stuck by some blocks of molten metal found on its way, after entering unit 2 of

the plant. The mission aborted after 2 hours, even though it had been planned to operate for

10 hours. After this failed attempt, Toshiba returned to the plant several times with new,

improved and smaller robots operating cooperatively. Finally, they were able to complete the

mission, providing very useful information about the state of the plant, such as radiation and

temperature measurements, and without disturbing the surrounding environment. The

robots were also able to clean out small objects in some of the indoor paths.

The main advantages of robotic swarms over a single sophisticated robot are the

following:

• Improved performance thanks to parallelization: the members of the swarm can perform

different actions in different locations at the same time, because they work following

each one its individual rules. In this way the swarm gains more flexibility and

efficiency in carrying out complex tasks, as individual robots (or groups of them) can

solve portions of a complex task independently.

• Enabling new tasks: multiple robots can complete tasks that are impossible or

extremely difficult for a single robot (e.g., dynamic target tracking, cooperative

environmental monitoring, autonomous surveillance of large areas).

• Scalability: the whole swarm does not need to be reprogrammed after adding new

robots. Interactions between robots occur only at local level, so their total number

within the system does not rise significantly although new individuals are added.

• Distributed sensing and action: the sensing range and the exploration capability of the

whole swarm are greater than a single complex robot. These features make the swarm

much more effective in multiple tasks, such as exploration and navigation (e.g., in

disaster rescue missions), or environmental monitoring (e.g., early fire detection and

tracking).

• Robustness: the failure of a single unit does not affect the completion of the given

mission due to the decentralized and self-organized nature of the swarm. If one or a

few units fail or stop the task, the swarm adapts to the change in population size by

implicitly reallocating the task.

 9

• Cost-effectiveness: the cost of a single sophisticated robot is dramatically higher than the

cost of a simple robot of a swarm. Typically, robotic swarm units are designed to be

very low-cost, so they can be manufactured in large volumes. Since these robots are

almost identical, their components are usually highly interchangeable and

maintenance costs are also very low. Moreover, the maintenance process is simpler

thanks to the less expertise required to fix simple and homogeneous robotic units.

• Energy efficiency: simpler and smaller robots need smaller batteries and less energy

power. As a result, the lifetime of the whole swarm increases.

There also exist other areas where groups of robots are used simultaneously to

complete a common mission, such as multi-robot systems, multi-agent systems, and sensor

networks. However, they generally do not have the properties of robotic swarms and cannot

be considered as such. Table 1.1 summarizes the main features among these multi-individual

systems.

Table 1.1 - Comparison between swarm robotics and other multi-robot systems

SWARM

ROBOTICS

MULTIROBOT

SYSTEM

SENSOR

NETWORK

MULTIAGENT

SYSTEM

POPULATION SIZE
Variation in great

range
Small Fixed In a small range

CONTROL
Decentralized and

autonomous

Centralized or

remote

Centralized or

remote

Centralized or

hierarchical or

network

HOMOGENEITY Homogeneous
Usually

heterogeneous
Homogeneous

Homogeneous or

heterogeneous

FLEXIBILITY High Low Low Medium

SCALABILITY High Low Medium Medium

ENVIRONMENT Unknown Known or unknown Known Known

MOTION Yes Yes No Rare

TYPICAL

APPLICATION

Post disaster relief

Military applications

Dangerous

applications

Transportation

Sensing

Robot football

Surveillance

Medical care

Environmental

protection

Net resources

management

Distributed control

Tan and Zheng (Tan & Zheng, 2013) highlight that the main differences between

robotic swarms and other multi-robot systems are related to population size, type of control,

homogeneity of the units, flexibility, and scalability. Regarding the population size, it can vary

widely in robotic swarms, differently from multi-robot and multi-agent systems where it is

 10

kept small, while it is fixed for sensor networks. Usually, robots of multi-robot and multi-

agent systems are heterogeneous, having specialized roles in the missions in which they are

involved. As a result, they are poorly suited to general-purpose problem solving because they

lack flexibility and scalability, while they are able to achieve high performance on specific

tasks. For example, the teams of robots that participate in popular competitions such as

“Robocup” cannot be considered robotic swarms, exactly because the different robots in the

team have very specialized roles. Thanks to flexibility, robotic swarms can perform different

missions using the same hardware and small changes in the software. They are able to adapt

to new environments, changing the mission completion strategy: in order to achieve this, it

is not required to reprogram the whole swarm, but is enough to perform just incremental

changes aimed at improving the current strategy, typically via machine learning approaches.

Finally, local sensing and communication features allow the swarm to be scalable. Indeed,

the many-to-many communication represents a limit for the scalability of the system, since

by adding new units the communication costs grow exponentially. Thanks to the manifest

advantages that characterize the robotic swarms, in the last twenty years many relevant

projects in this research area have arisen.

However, the robotic swarms have their own limitations and drawbacks too. The main

ones are the following:

• Potential collisions: since the robots in the swarm only communicate locally and are not

aware of other robots at a global level, they can sometimes obstruct each other or

collide in unexpected ways.

• Uncertainty: swarm coordination requires each individual to know the locations of the

other robots and what they are doing. However, local communication does not allow

robots to have complete certainty about the status of the other members of the

swarm. As a result, sometimes this can cause conflicts between robots that compete

rather than cooperate.

• Lack of specialization: since the swarm is homogeneous, highly specialized tasks can be

completed with difficulty. Vice versa, a single sophisticated and customized robot

might outperform the swarm.

• Hard to design swarm behavior: in swarm robotics, global behavioral patterns emerge

from local interactions between individuals and between individuals and the

environment, thus it is challenging to determine the implicit rules that lead to the

best performance in completing a task.

 11

1.3.2 Target search problem

The problem of collective search requires a trade-off between maximizing the area to

be covered and searching accurately. The study of distributed algorithms applied to the

problem of collective search is currently a solution of great interest in robotics. In this

context, the design aims to allow robots, without centralized coordination, to use local

information to perform search and rescue operations (Countryman, et al., 2015). The

problem of coordinating a team of robots for exploration is a challenging task, particularly

in unstructured environments, such as hazardous and post-disaster scenarios where direct

communication is limited. The ant foraging model has inspired the design of a possible

exploration algorithm. The absence of governing hierarchy, the self-organizations of robots,

and the indirect communication represent the crucial aspects of this kind of approach, where

individual robots play the key role.

In nature, ants have evolved over a long period of time and exhibit very intelligent

behaviors that are well suited to tackle complex tasks. Social insects communicate through

pheromones, that allow them to perform many social functions, such as food gathering,

aggregation, mating, recognition, and alarm propagation to other members of the colony.

Certain swarm intelligence algorithms, such as ACO, use pheromone trails as a way of

(indirect) communication between agents.

In pheromone-based coordination, robots transfer information using the environment

as a medium: each robot, depending on the type of information it wants to indirectly

communicate, deposits marks in the environment to send different types of signals. The

shared memory provided by the aggregation of trails in the environment allows simple robots

with no memory to easily coordinate, even without the need for self-awareness of other

agents. These algorithms are based on memoryless agents that exhibit very simple individual

behaviors and are entirely decentralized. Agents can only mark and move based on their local

perceptions, and thus communicate only by marking the environment. In the robotics field,

thanks to the availability of several types of sensors, the information can be encoded through

a range of environmental markers, such as chemicals, heat sources, metals, and electronic

tags (Kuyucu, Tanev, & Shimohara, 2012).

The recruitment problem is aimed at designing a low-cost coordination mechanism

that is able to organize groups of robots at those sites where targets are detected. A single

robot may not have enough resource capabilities to handle a target, so once it finds a target,

it attracts other robots in order to organize a coalition that works cooperatively to process

or disarm the target. Since the detection of a target can occur at any time during the

 12

exploration of the environment, the recruitment task is carried out in real time and possibly

at different sites in the search environment.

For this purpose, when a fast reaction is expected and countermeasures need to be

taken, direct communication may be more effective and information about found targets is

shared using wireless communication. In this case, each robot is assumed to have

transmitters and receivers and can send packets to other robots in its wireless range.

In this problem a key issue is how to avoid deadlock, i.e., the situation where robots

wait a long time for others to proceed in the target processing. In strictly collaborative tasks,

these problems are particularly relevant, since each robot has information about the

environment only locally and partially, and the robots must work collectively and adaptively

to disarm hazardous targets. The greedy approach is the most common one, where a detected

target is instantly assigned to the robots, without taking into account future events. A more

flexible strategy is possible, where the robots can react to new future events, possibly

changing the decisions made. However, each robot must make individual decisions that

could lead to stop taking into account from requests for help. In missions of this type, for

example, while reaching a target it is possible to detect another target or receive another

request, and then it is possible to change decisions in order to move in a more convenient

way from the robot's point of view. So, at each time step, the robots will be able to make the

best decision based on their positions and conditions, in response to the requests for help

received, trying at the same time to balance the two tasks.

Generally, there are two communication mechanisms that are suitable for tackling the

problem. The first communication mechanism is one-hop, where coordinating robots send

packets only to the direct neighborhood (i.e., robots within the communication range) and

no information forwarding can occur. Following this approach, different bio-inspired

algorithms can be compared. The other mechanism involves multi-hop communication,

where information can be propagated among team members. In this case, for example, an

ant-based protocol can be used.

 13

1.4 Hyper-heuristics

Bio-inspired meta-heuristic algorithms succeed in efficiently addressing many NP-hard

combinatorial optimization problems and more generally constrained nonlinear optimization

problems (Yang, 2020), and so they have recently become the cutting edge of current

research. Each of these algorithms is based on a specific successful mechanism of a biological

phenomenon found in nature, aiming to achieve the survival of the fittest individual in a

dynamically changing environment. In nature, examples of collective behavior are numerous.

These are primarily based on the direct or indirect exchange of information about the

environment among swarm members. The overall result of collective behavior is difficult to

predict, although the rules governing interactions at the local level are usually simple to

describe. However, swarms in nature are able to solve complex problems that are crucial for

their survival through simple collaboration.

Even more recently, known benchmark sets have been used to derive techniques that

improve the results obtained from existing techniques in the field of research on solving

combinatorial optimization problems such as rostering, vehicle routing, and scheduling

problems. These benchmark sets are made publicly available to compare the performance of

different techniques in solving this class of problems. The results of such research have

shown that a specific technique may produce the best results on one or two instances of the

problem, but quite often performs poorly on other instances of the problem.

The research field of hyper-heuristics arises from an attempt to provide more

generalized solutions to combinatorial optimization problems, rather than deriving

techniques that provide good results only for some instances of the problem for a certain

reference domain, showing good performance on a set of problems. Hyper-heuristics achieve

this by working in the heuristic space rather than in the solution space (Burke, et al., 2003). As

such, hyper-heuristics select or generate low-level heuristics, which in turn are used to solve the

problem at hand. In order to select or generate low-level heuristics, several techniques such

as evolutionary programming, local search, and case-based reasoning are used (Pillay & Qu,

2018).

Hyper-heuristics either select low-level heuristics to construct/improve a solution or

create new low-level heuristics. As such, low-level heuristics are categorized as constructive or

perturbative. These heuristics are usually defined for a particular problem domain and hence

are problem specific.

Constructive heuristics are usually used to create an initial solution to a problem, which

in turn serves as a starting point for other optimization techniques such as simulated

 14

annealing or tabu search in solving the problem. In the domain of examination timetabling,

for example, constructive heuristics are used to select the examination to schedule next based

on a measure of the difficulty of scheduling it.

Perturbative heuristics are used to improve an existing initial solution created by a

constructive heuristic or randomly created. Low-level perturbative heuristics have the same

effect as a move operator in local search used to explore the neighborhood of a search point

and therefore perform changes to the initial solution. The domain of the problem determines

the type of perturbation carried out. In the case of examination timetabling, for example,

perturbative heuristics can include deallocating an examination, allocating an examination,

swapping examinations between timetable periods, and swapping rows in the timetable.

Since hyper-heuristics either select existing low-level heuristics or generate new low-

level heuristics, and these heuristics can be constructive or perturbative, hyper-heuristics are

classified as being selection constructive, selection perturbative, generation constructive or

generation perturbative (Burke, et al., 2013).

Table 1.2 - Classification of Hyper-Heuristics according to two dimensions: (i) the source of feedback during learning, and (ii) the

nature of heuristic search space

 HYPER-HEURISTICS

Source of feedback

during learning
ON-LINE LEARNING / OFF-LINE LEARNING / NO LEARNING

Nature of the

search space
HEURISTIC SELECTION HEURISTIC GENERATION

Low-level

heuristics
CONSTRUCTIVE PERTURBATIVE CONSTRUCTIVE PERTURBATIVE

Constructive selection hyper-heuristics select a low-level heuristic to be applied at each

point of the solution construction. Techniques employed by hyper-heuristics to select the

low-level construction heuristic include population-based methods, local search methods,

case-based reasoning, adaptive methods, and hybrid approaches.

Perturbative selection hyper-heuristics select the low-level perturbative heuristic to be

applied to each point of the solution improvement and can perform the search on a single

point or on multiple points. In the first case, the hyper-heuristic includes two components,

one for the selection heuristic to select a low-level perturbative heuristic, and another for the

move acceptance to determine whether the move made by the selected low-level heuristic

should be accepted or not. The selection heuristic and the move acceptance can use several

 15

techniques. Perturbative selection hyper-heuristics that perform multipoint search to select

low-level heuristics use population-based methods to explore the heuristic space such as

evolutionary algorithms. The population-based technique by its nature performs both

selection heuristics and move acceptance, and thus hyper-heuristics do not contain separate

components for these functions.

Generation constructive hyper-heuristics create new low-level constructive heuristics

for the problem domain. The generated heuristics are used to create an initial solution, which

is further optimized using other techniques. Genetic programming has mainly been used by

hyper-heuristics to generate constructive heuristics. The components of low-level heuristics

include existing low-level heuristics or components of these heuristics as well as problem

characteristics. These components are combined using arithmetic operators and conditional

operators such as if-then-else. Evolved heuristics can be disposable or reusable. Disposable

heuristics are used to solve a particular instance of the problem. Reusable heuristics are

generated using one or more instances of the problem and can be applied to unknown

instances, i.e., instances of the problem not used in the induction and generation of the

heuristic.

Generation perturbative hyper-heuristics produce new low-level perturbative

heuristics through the combination of existing low-level perturbative heuristics and

acceptance criteria using conditional statements, usually if-then-else statements. For

example, the conditions used may include whether a solution has been found and whether a

local optimum has been achieved (Nguyen, Zhang, & Johnston, 2011).

1.5 Main contributions

Robotics is becoming increasingly important in real-world applications. In fact, many

expensive and high-risk tasks can be accomplished by robots autonomously. Swarm robotics

represents a key research area to deal with scenarios such as environmental monitoring,

surveillance, or search and rescue, where large areas must be covered. One of the challenges

of swarm robotics is coordination, particularly when the environment is unknown a priori

or is dynamic, and when robots cannot process all the information collected by other robots.

Unfortunately, real-world scenarios often fall into these categories, and thus manual

programming or centralized control is very difficult to apply and poorly effective.

 16

In the literature, approaches based on hyper-heuristics have been very successful in

solving complex problems. They aim to automatically generate algorithms from a given set

of operators, and the goal is to produce a good solver rather than a good solution. Of course,

hyper-heuristics have also been used in the field of robotics, for example to perform real-

time path-planning for a UAV in unknown environments (Yu, Song, & Aleti, 2019).

However, to the best of our knowledge, in the literature there are no methodologies for

coordinating robots based on hyper-heuristics that use bio-inspired behavioral mechanisms

as modular components of the low-level heuristics used to solve the problem at hand.

This thesis investigates the use of bio-inspired hyper-heuristics for coordinating

swarms of robots to solve the problem of target search in unstructured environments.

Specifically, the original contributions of this thesis are:

• a novel design methodology called SFE (Stigmergy, Flocking, and Evolution) based

on hyper-heuristics for coordinating swarms of robots in target search. The approach

combines two low-level constructive heuristics, i. e., stigmergy and flocking.

Differential evolution is used to optimize the aggregation and tuning of modular

heuristics on real-world scenarios;

• a modeling and optimization testbed that has been publicly released;

• a comparison between our swarm coordination methodology and some popular bio-

inspired meta-heuristics made adaptive through differential evolution.

1.6 Outline of the thesis

This dissertation has five chapters. In chapter 1, an overview of the main topics

considered in the thesis is outlined. In chapter 2 a theoretical background of bio-inspired

metaheuristics and hyper-heuristics is presented. Specifically, the chapter begins by defining

the concept of heuristics. Next, a review of the literature on bio-inspired metaheuristics is

carried out. This is followed by a detailed description of some of the most important bio-

inspired algorithms used in optimization problems. The second part of the chapter focuses

on hyper-heuristics as a method to design more effective heuristics. Two categories of hyper-

heuristics are investigated: the selection constructive hyper-heuristics and the generation

constructive hyper-heuristics. Chapter 3 presents a novel hyper-heuristic-based methodology

for coordinating swarms of drones in a decentralized way. First, the design of the modular

 17

components of the hyper-heuristic is detailed. Then, the simulation testbed and scenarios on

which to evaluate the performance of the algorithm are presented. Chapter 4 lists some

experimental applications of the previously described methodology: (i) the comparison

between the proposed hyper-heuristic and some adaptive bio-inspired metaheuristics in the

context of coordinating swarms of robots in target search, (ii) the tracking of dynamic targets

by using swarms of drones, and (iii) the collection of plastics in the ocean through swarms

of unmanned surface vehicles. Finally, Chapter 5 draws conclusions of the study and

discusses possible future developments.

 18

Chapter 2

2 From nature-inspired meta-heuristics to hyper-heuristics

Most classical or conventional optimization algorithms are deterministic. For example,

in linear programming the simplex method is a deterministic algorithm. Deterministic

optimization methods that use gradient information are called gradient-based algorithms.

One of them is the well-known Newton-Raphson algorithm: in fact, it uses the values of the

objective function and their derivatives, and works incredibly well on smooth unimodal

problems. However, it no longer works well when there is some discontinuity in the objective

function. In this case, it is preferable to use gradient-free or non-gradient-based algorithms

that use no gradient at all, but only the values of the objective function. Examples of such

types of algorithms are Nelder-Mead downhill simplex and Hooke-Jeeves pattern search.

In general, stochastic algorithms can be classified into two categories, although their

difference is subtle: these are heuristics and meta-heuristics. Broadly speaking, heuristic

means "to find" or "to discover by trial and error". A hard optimization problem can be

solved by finding quality solutions in a reasonable amount of time, but there is no guarantee

that optimal solutions will be found. Generally, these algorithms work most of the time but

not all the time. This is fine when you want good solutions that are easily reachable, but it is

no longer fine when you need necessarily the best solutions.

The so-called meta-heuristic algorithms represent a further development of heuristic

algorithms. The prefix "meta" means "beyond" or "higher level", and usually these

algorithms perform better than simple heuristics. Moreover, all meta-heuristic algorithms are

characterized by a degree of trade-off between randomization and local search. There are no

agreeable definitions of heuristics and meta-heuristics in the literature. Some researchers use

the terms interchangeably. However, the most recent trend is to refer to meta-heuristics as

all those stochastic algorithms that involve both randomization and local search. Since

randomization enables the transition from local-scale search to global-scale search, almost

all meta-heuristic algorithms can be considered suitable for global optimization.

Heuristics, working by trial and error, provide a method for obtaining acceptable

solutions to a complex problem in a reasonable amount of time. In fact, every possible

solution or combination cannot be evaluated due to the complexity of the problem of

 19

interest. The goal is to find a good feasible solution in an acceptable time. Obviously, there

is no guarantee that the best solutions can be found. Furthermore, it is not even known

whether the algorithm will work, and, if so, why it will work. The important thing is to have

a practical and efficient algorithm that works in most cases by providing good quality

solutions. Among the quality solutions that the algorithm succeeds in finding, some are

expected to be near-optimal, although there is no guarantee of such optimality.

Any meta-heuristic algorithm involves two main components, which are exploration

and exploitation or diversification and intensification. Exploration aims to generate various

solutions in order to visit the search space on a global scale. Exploitation uses the information

that a good current solution has been found in a certain area in order to focus on searching

in a local region. The selection of the best solutions is combined with this behavior and

ensures that the solutions will converge towards optimality. Vice versa, through

randomization, exploration prevents solutions from being trapped in local optimum while

simultaneously increasing the diversity of solutions. Typically, global optimality can be

achieved through the right combination of these two main components.

There are many ways to classify meta-heuristic algorithms. These can be classified as

population-based and trajectory-based. For example, genetic algorithms are population-

based because they use a set of individuals. Similarly, the firefly algorithm (FA), particle

swarm optimization (PSO), and cuckoo search all use multiple agents or particles.

Vice versa, simulated annealing uses a single solution or agent that moves within the

search space or design space in a piecewise fragmented style. In this case, a better move or

solution is always accepted, while a not-so-good move may be accepted with a certain

probability. The moves or steps trace a trajectory in the search space, and the global optimum

can be achieved by this trajectory with non-zero probability.

In the next sections we will introduce a selection of popular bio-inspired metaheuristic

algorithms that have been used in this work for coordinating swarms of robots in target

search missions.

Despite the success of bio-heuristics, there are relevant algorithm selection and

parameterization costs associated with the specific application. Moreover, although adaptive,

the logic of bio-heuristics is nevertheless constrained by models of biological species, and

then, for example, it can be neither modularized nor aggregated. In order to overcome these

limits, the field of hyper-heuristics represent an attempt to provide more generalized

solutions to optimization problems. Hyper-heuristics achieve this by automating the

combination of modular heuristics to generate more adaptable logics, so they work in the

heuristic space rather than in the solution space. More specifically, a hyper-heuristic either

 20

selects or generates low-level heuristics, which are exploited to solve the problem at hand.

To select or generate low-level heuristics, a hyper-heuristic can use different techniques such

as case-based reasoning, local search, and evolutionary programming. In this work, an

evolutionary optimization is used to optimize the aggregation and tuning of the bio-heuristics

on a unique and continuous search space and, consequently, an efficient heuristics

hybridization is generated for a given application domain.

2.1 Nature-inspired meta-heuristics

In the literature, many algorithms proposed for modeling swarms of robots are

inspired by biological systems. In particular, solutions based on insect colonies manifest

interesting properties such as local control and communication, self-organization and

emergence of global behavior (Dorigo, Birattari, & Stützle, 2006) (Yang, 2009). For instance,

ants release attractive pheromone trails as a medium for self-organization to mark and

reinforce their most frequent paths. Coordination strategies for robots based on chemical

trails have been experimented; for instance, in Fujisawa et al. (Fujisawa, Dobata, Kubota,

Imamura, & Matsuno, 2008), ethanol trails have been used by robots as a medium to deposit

and follow. However, chemical trails can cause problems for environmental impact,

maintenance costs, control of transmission speed and range. For this reason, non-chemical

media are more effective (Ducatelle, Di Caro, Pinciroli, & Gambardella, 2011). Masár et al.

(Masár & Zelenka, 2012) have proposed a variant of the PSO algorithm for environment

exploration. Another significant bio-inspired algorithm is called Artificial Bee Colony (ABC):

it is based on the food foraging process of honey bees. ABC variants have been also used to

coordinate robotic systems (Contreras-Cruz, Ayala-Ramirez, & Hernandez-Belmonte, 2015).

Another well-known algorithm is the Firefly-based Team Strategy (FTS), proposed by Yang

(Yang, 2009) and based on the flashing behavior of fireflies. In this work FTS, PSO and ABC

will be considered as a reference for swarm coordination in target search missions.

Bio-inspired techniques, albeit provided with a certain variety of approaches, are still

not organized as an operational framework: design and setting costs associated with every

new type of mission and with new instances of known missions are a major drawback. The

major difficulties are due to the lack of reliable guidance on how to select the algorithms and

the parameters in different situations. When applied to real-world problems, the method

tends to become tailored and problem-specific, characterized by expensive development and

 21

maintenance. For this purpose, a promising research direction is called algorithm configuration,

whose goal is to automatically determine the appropriate parameters values for an algorithm.

The goal can be considered as a search problem in the configuration space, in which the

objective function measures the algorithm performance over a benchmark (Hutter, Hoos, &

Stützle, 2007). Another approach is called parameter control, which performs an online tuning

of the algorithm parameters at execution time (Eiben, Hinterding, & Michalewicz, 1999).

However, to automate the tuning of bio-inspired methods for target search is a challenge in

the field (Burke, et al., 2003). For this purpose, in this work evolutionary optimization is

adopted.

2.1.1 Flocking behavior

Many species of birds found in nature adopt a type of behavior called flocking, which

involves forming large groups of individuals that move together to a common destination.

Other social animals also adopt similar collective behaviors, such as fish schooling and herd

formation in ungulates. In these cases, local interactions among autonomous agents result in

the emergence of collective-level behaviors in a distributed way. These behaviors are of

interest to swarm robotics researchers, who have tried to replicate flocking in robotic swarms

by studying the mechanisms underlying animal behavior. In most existing work, robots with

limited sensing capabilities must keep a compact formation by measuring the distance and

relative orientation of their neighbors (Turgut, Çelikkanat, Gökçe, & Şahin, 2008) (Virágh,

et al., 2014) (Yasuda, Adachi, & Ohkura, 2014). Typically, the usual assumption on which

flocking studies are based is that all robots have at least one neighbor that connects them to

the rest of the swarm, while cases where individuals or groups of robots are outside the

detection and communication range of the rest of the robots are not considered.

As just stated, a key requirement for implementing flocking behavior is the capability

of a robot to measure the distance and relative orientation of neighboring robots. In real-

world scenarios, since the detection and communication range is typically limited, in practice

only a limited number of neighbors are detected by a given robot, and not the entire swarm

population. This limitation does not prevent the implementation of flocking behavior by

assuming that there are no isolated individuals or groups within the swarm. On the other

hand, if the factors of scalability and processing complexity are taken into account, this

limitation can be considered as an advantage.

 22

The most distinctive feature of flocking compared to simple aggregation is the

alignment of robot motion. This allows the group to collectively move toward a certain

direction. The ontology of flocking behavior is showed in Figure 2.1. This is performed by

simple agents, named boids in the literature, and consists of three fundamental features:

separation, alignment, and cohesion (Reynolds, 1987).

Figure 2.1 - Floking behavior ontology

Each agent moves according to the following prioritized rules:

1. Separation: the boid steers to avoid crowding flock mates. Separation prevents the

overlapping of sensing areas by maintaining a minimum distance among the flock

mates.

2. Alignment: the boid steers towards the average heading of the flock mates. Alignment

allows to align the flock heading to the average heading of nearby agents.

3. Cohesion: the boid steers to move toward the center of gravity of the flock mates.

Cohesion allows the agents to stay together.

For each rule, agents considered as flock mates are determined based on different

reference ranges, as showed in Figure 2.2.

Figure 2.2 - Flocking rules: separation, alignment, and cohesion

 23

The scatter procedure helps to maximize the sensing area, further separating nearby

agents. Alfeo et al. have verified in their work (Alfeo, Cimino, De Francesco, Lega, & Vaglini,

2018) other important properties:

• the cohesion rule is not suitable for robots moving among many obstacles.

• the separation rule can be better exploited with an area different than circular, as

represented in Figure 2.3.

Figure 2.3 - Search area for robot flocking: separation and alignment

2.1.2 Ant Colony Optimization

The study of collective phenomena such as collective exploration can be carried out

on ant colonies, which are one of the most significant examples. Exploration allows animals

to obtain food, to discover new resources, to look for a new home, or to detect the presence

of potential hazards, and consequently represents a very important task in nature. Ant

colonies coordinate their behaviors through local interactions, operating without central

control. Ants perceive only local, chemical, and tactile signals. In order to monitor their

environment and detect both resources and hazards, ants in a colony must move so that if a

food source appears or a certain event happens, some ants are likely to be close enough to

detect it (Countryman, et al., 2015). Although individual ants are very simple, ant colonies

show amazingly good results in achieving global goals. As a result, borrowing the behavior

of ants and more generally social insects is becoming increasingly popular in distributed

systems and robotics.

The natural behavior of ants to release pheromone trails and follow them has inspired

Dorigo and Stützle (Dorigo, Birattari, & Stützle, 2006) to develop the Ant Colony

Optimization (ACO) model. Ants live in colonies and the survival of the colony rather than

the survival of individuals is the goal that drives their behavior. The ACO model was inspired

 24

by the foraging behavior of ants, and in particular the way they find the shortest paths

between food sources and their nest. When searching for food, at the beginning ants

randomly explore the area surrounding their nest. As they move, ants may release a trail of

chemical pheromone on the ground and may also smell their presence. When choosing

which route to take, they tend to be more likely to follow paths marked by strong

concentrations of pheromone. After an ant identifies a food source and assesses its quantity

and quality, it takes some of it back to the nest. Such information about quantity and quality

of the food source can determine the amount of pheromone that an ant releases on the

ground during its way back. Other ants will be steered by the pheromone trails to the food

source. A parameterized probabilistic model, called pheromone model (Dorigo & Blum,

2005), represents the fundamental component of an ACO algorithm. During the last decade,

several researchers in the field of robotics have proposed and applied many versions of

Dorigo's method.

For example, taking into account the exploration problem in the domain of search and

rescue operations, the mobile and autonomous robots must be able to determine the

sequence of movements needed to explore the whole environment (Yang, 2020).

Traditionally, the development of exploration strategies relies on approaches that involve

exploring the environment incrementally by evaluating, based on a certain criterion, several

candidate observation positions (which in this case are represented by neighboring cells) and

selecting the next best position at each step. However, since finding as many targets as

possible in as little time as possible is the main goal, the problem of building a map of the

environment is not considered in this case. In search and rescue operations, time and battery

limits are strong constraints and generally the mission success depends on the amount of

areas explored rather than the quality of the built map. In addition to area exploration, robots

should be also capable of multiple functionalities, and consequently both integration into a

swarm and the ability to explore should be seamless and should not consume a large amount

of the resources of the robot. Furthermore, the effectiveness of a search strategy depends

on the ability to attract robots to unseen areas, to avoid situations where some areas are

frequently revisited while others remain unexplored.

In general, the robots operate according to the following steps:

1. The robots sense the surrounding cells using on-board sensors.

2. The robots compute the sensed information in neighbor cells, in this case the

concentration of pheromone.

3. The robots decide where to go next.

4. The robots move in their best local cell and start again from the step 1.

 25

Carrying out search and rescue operations mainly means designing a movement

strategy that allows a team of robots, each equipped only with simple sensors, to efficiently

explore potentially complex environments. Exactly as it happens in biology for ant colonies,

the principle of pheromone-based coordination is used, where each robot releases

pheromone on the visited cells in order to inform, in an indirect way, the other robots about

the already explored areas. As already pointed out, according to this approach robots do not

have to communicate directly, but advise other robots not to enter the already visited regions

through the release of pheromone on the boundaries. If on-board sensors detect the

pheromone, the robot understands that it is entering a potentially explored area, and as a

result can preemptively decide to change direction. By exploiting the physical properties that

exist in a real-world environment, it is desirable to develop a simple algorithm that, through

the use of pheromone, can enable complex collective behavior within a large group of simple

homogeneous robots. Such an algorithm does not necessarily require that the map topology

be maintained in memory. Decision making is based on probabilistic evaluations that exploit

local pheromone information. Since the main goal is to build a model that performs the

assigned task through self-adaptive decision mechanisms, issues related to pheromone

release, sensors, or controls cannot be considered.

In general, as the robots are exploring the area, they release pheromone on the visited

cells and each robot uses the pheromone distribution in its immediate neighborhood to

decide where to move. Exactly as occurs in nature, pheromone trails change both in space

and time. The pheromone released on a cell by a robot diffuses outwards cell-by-cell until a

certain distance 𝑅! such that 𝑅! ⊂ 𝐴 ⊂ ℝ" and the amount of the pheromone decreases as

the distance from the robot increases. Mathematically, the pheromone diffusion is defined

as follows. Assume that robot 𝑘 at iteration 𝑡 is located in a cell with coordinates (𝑥#$, 𝑦#$) ∈

𝐴. Then the amount of pheromone that the robot releases at cell 𝑐 with coordinates (𝑥, 𝑦)

is given by:

Δ𝜑#%$ = 1Δ𝜑&𝑒
!"#$
%& − '

('
,										𝑖𝑓	𝑟#% ≤ 𝑅!

0,																																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.1)

where 𝑟#% is the distance between the robot 𝑘 and cell 𝑐, defined as:

𝑟#% = >(𝑥#$ − 𝑥)" + (𝑦#$ − 𝑦)" (2.2)

 26

As it happens in biological systems, the pheromone spreads up to a certain distance

and after that it is no longer sensed by other robots. In addition, Δ𝜑& is the quantity of

pheromone released in the cell where robot 𝑘 is placed and it is the maximum amount of

pheromone, 𝜀 is a heuristic value (noise), and 𝜀 ∈ (0, 1). Furthermore, 𝑎) and 𝑎" are two

constants to reduce or increase the effect of the pheromone and noise. It should be noted

that if multiple robots release pheromone in the environment at the same time, then the total

amount of pheromone that can be sensed in a cell 𝑐 depends on the contribution of many

robots. Furthermore, the released pheromone concentration evaporates over time and so it

is not fixed. The rate of evaporation of pheromone is given by 𝜌	(0 ≤ 𝜌 ≤ 1), and the total

amount of pheromone evaporated in cell 𝑐 at step 𝑡 is given by the following function:

𝜉%$ = 𝜌𝜑%$ (2.3)

where 𝜑%$ is the total amount of pheromone on cell 𝑐 at iteration 𝑡. Considering the

evaporation of the pheromone and the diffusion according to the distance, the total amount

of pheromone in cell 𝑐 at iteration 𝑡 is given by:

𝜑%$ = 𝜑%
($+)) − 𝜉%

($+)) + ∑ Δ𝜑#%$-(
#.) (2.4)

where 𝑁/ is the number of robots that are able to release pheromone on the cell 𝑐.

At each time step, without knowledge of the whole area, the algorithm selects the most

appropriate cell for each robot from a set of neighboring cells. In fact, the algorithm does

not expect the robots to have global information about the environment. The aim is to avoid

any overlapping and redundant efforts. Therefore, in order to complete the mission as

quickly as possible, while avoiding any waste of resources and energy, the robots must be

highly distributed in the search area. Each robot 𝑘, at each time step 𝑡, is placed on a

particular cell 𝑐#$ that is surrounded by a set of accessible neighbor cells 𝑁(𝑐#$). Essentially,

each robot senses the pheromone released into the nearby cells, and then it chooses which

cell to move to at the next step.

At each time step, the probability for robot 𝑘 of moving from cell 𝑐#$ to cell 𝑐 ∈ 𝑁(𝑐#$)

can be calculated by:

 27

𝑝(𝑐|𝑐#$) =
01$)2

*03$)2
+

∑ 01,
) 2
*
03,
) 2
+

,∈./$#
) 0

,										∀𝑐 ∈ 𝑁(𝑐#$) (2.5)

where 𝜑%$ is the amount of pheromone in the cell 𝑐 at iteration 𝑡 and 𝜂%$ is the heuristic

variable to avoid the robots being trapped in a local minimum. In addition, 𝜇 and 𝜆 are two

constant parameters which balance the weight to be given to pheromone values and heuristic

values, respectively. Robot 𝑘 moves into the cell 𝑐 that satisfies the following condition:

𝑐 = argmin[𝑝(𝑐|𝑐#$)] (2.6)

In this way, the robots will prefer less frequently visited areas and more likely they will

direct towards unexplored regions.

The ACO-based exploration strategy applied by a swarm of robots in Forager State is

detailed in Algorithm 2.1, which provides the pseudocode for the pheromone-based control

that must be executed at each time step.

On the first iteration, Algorithm 2.1 initializes all cells with the same pheromone trail

value, set to be zero. This represents the fact that the cells have not yet been visited by any

of the robots and ensures that the initial probabilities of a cell being chosen are nearly

identical. Thus, at first the cell is chosen practically at random. Then the robots move from

one cell to another according to the cell transition rule in Eq. (2.6). In the following iterations,

the unexplored cells become more attractive to the robots. By using this approach, robots

explore the area following the direction that is opposite to the pheromone gradient. Then

the pheromone trails on the cells visited by the robots are updated using Eq. (2.4). When the

mission is completed, i.e., all targets have been performed, Algorithm 2.1 terminates

execution for each robot.

 28

Algorithm 2.1
ACO-based exploration strategy

begin
step 1: initialization

set 𝑡: {𝑡 is the time step}. Define 𝑅!, Δ𝜑&, 𝜀, 𝑎), 𝑎", 𝜌, 𝜇, 𝜆.
step 2: generation coordination system

for the whole swarm, set the initial locations in terms of 𝑥 and 𝑦
coordinates.

step 3: procedure
while the stop criteria are not satisfied do

foreach robot 𝑘 in Forager State do
evaluate the current location 𝑐#$;
evaluate neighborhood cells 𝑁(𝑐#$);
compute 𝑐 according to Eq. (2.6);
if 𝑐.hasObstacle() or 𝑐.isOccupied() or 𝑐.isInaccessible() then

choose a random cell 𝑐∗ ∈ 𝑁(𝑐#$);
move robot 𝑘 towards 𝑐∗;

else
move robot 𝑘 towards 𝑐;
release pheromone according to Eq. (2.1);

end if
end foreach
foreach cell 𝑐 ∈ 𝐴 do

update pheromone according to Eq. (2.4);
end foreach

update 𝑡;
end while

end

 29

2.1.3 Firefly algorithm

The firefly algorithm (FA) was developed by Xin-She Yang in late 2007 and published

in 2008 (Yang, 2009). In tropical and temperate regions FA is based on the flashing patterns

and behavior of tropical fireflies. The flashing light of fireflies is an amazing show in the

summer sky. There are about two thousand species of fireflies, and most of them emit short,

rhythmic flashes. The pattern of the flashes is often unique to a particular species. The

flashing light is produced by a process of bioluminescence. The actual functions of these

signaling systems are yet discussed. However, two basic functions of such flashes are to

attract mating partners (communication) and to attract potential prey (Lewis & Cratsley,

2008). Furthermore, flashing may also act as a protective warning mechanism to remind

potential predators of the bitter taste of fireflies.

The rhythmic flash, the rate of flashing, and the amount of time between flashes are

all part of the signaling system that joins the sexes (Lewis & Cratsley, 2008). In the same

species females reply to the unique flashing pattern of the male. Whereas, in some species

female fireflies may even mimic the mating flashing pattern of other species in order to attract

and then eat male fireflies, who may exchange flashes as a suitable potential mate. Some

tropical fireflies may even synchronize their flashes, thus forming an emerging self-organized

biological behavior.

It is known that the intensity of light at a particular distance 𝑟 from the light source

complies with the inverse-square law. That is to say, the light intensity 𝐼 decreases as the

distance 𝑟 increases in terms of 𝐼 ∝ 1 𝑟"⁄ . Moreover, the air absorbs the light, which gets

progressively weaker as the distance increases. These two factors combined result in most

fireflies being visible at a limited distance, usually several hundred meters at night, that is

good enough for fireflies to communicate.

The flashing light can be modeled in such a way that it is associated with the objective

function to be optimized, thus making it possible to formulate new optimization algorithms.

It is possible to idealize some of the flashing characteristics of fireflies in order to develop

firefly-inspired algorithms. To simplify the description of the standard FA, the following

three idealized rules are used:

• All fireflies are unisex, so a firefly will be attracted to other fireflies regardless of their

gender.

• The attractiveness is proportional to the brightness of a firefly. Thus, for any two

flashing fireflies, the less bright one will move toward the brighter one. Both

 30

attractiveness and brightness decrease as their distance increases. If there is no one

brighter than a specific firefly, it will move randomly.

• The brightness of a firefly is affected or determined by the design of the objective

function. For a maximization problem, the brightness may simply be proportional to

the value of the objective function. Other forms of brightness can be defined

similarly to the fitness function in genetic algorithms.

In the FA, there are two important issues: the variation of light intensity and the

formulation of attractiveness. For simplicity, we can always assume that the attractiveness of

a firefly is determined by its brightness, which in turn is associated with the encoded objective

function.

In the simplest case for maximum optimization problems, the brightness 𝐼 of a firefly

at a particular location 𝑥 can be chosen as 𝐼(𝑥) ∝ 𝑓(𝑥). However, the attractiveness 𝛽 is

relative, it should be seen in the eyes of the watcher or judged by the other fireflies. Thus, it

will vary with the distance 𝑟67 between firefly 𝑖 and firefly 𝑗. In addition, light intensity

decreases with the distance from its source, and light is also absorbed in the media, so the

attractiveness should also vary with the degree of absorption.

In the simplest form, the light intensity 𝐼(𝑟) varies according to the inverse square law:

𝐼(𝑟) = 81
9'

 (2.7)

where 𝐼! is the intensity at the source. For a particular medium with a fixed light absorption

coefficient 𝛾, the light intensity 𝐼 varies with the distance 𝑟. In formula:

𝐼 = 𝐼&𝑒+:9 (2.8)

where 𝐼& is the original light intensity at zero distance 𝑟 = 0. In order to avoid the singularity

at 𝑟 = 0 in the expression 𝐼! 𝑟"⁄ , the combined effect of both the inverse-square law and

absorption can be approximated as the following Gaussian form:

𝐼(𝑟) = 𝐼&𝑒+:9
' (2.9)

Since the attractiveness of a firefly is proportional to the intensity of the light that is

seen by the neighboring fireflies, the attractiveness 𝛽 of a firefly can be defined as following:

 31

𝛽 = 𝛽&𝑒+:9
' (2.10)

where 𝛽& is the attractiveness at 𝑟 = 0. Since it is often faster to calculate 1 (1 + 𝑟")⁄ than

an exponential function, the above function, if necessary, can conveniently be approximated

as following:

𝛽 = ;2
)<:9'

 (2.11)

It may be advantageous to use this approximation in some applications. Both (2.10)

and (2.11) define a characteristic distance Γ = 1 √𝛾⁄ over which the attractiveness changes

significantly from 𝛽& to 𝛽&𝑒+) for Eq. (2.10) or 𝛽& 2⁄ for Eq. (2.11).

The distance between any two fireflies 𝑖 and 𝑗 at locations 𝑥6 and 𝑥7 , respectively, is

the Euclidean distance:

𝑟67 = ^𝑥6 − 𝑥7^ = _∑ `𝑥6,# − 𝑥7,#a
">

#.) (2.12)

where 𝑥6,# is the 𝑘-th component of the spatial coordinate 𝑥6 of 𝑖-th firefly. In the 2D case,

the distance is expressed as following:

𝑟67 = _`𝑥6 − 𝑥7a
" + `𝑦6 − 𝑦7a

"
 (2.13)

The motion of a firefly 𝑖 that is attracted by another more attractive (brighter) firefly 𝑗

is determined by:

𝑥6$<) = 𝑥6$ + 𝛽&𝑒
+:934

'
`𝑥7$ − 𝑥6$a + 𝛼𝜀6$ (2.14)

where the second term is due to the attraction. The third term is randomization, with 𝛼 being

the randomization parameter, and 𝜀6 is a vector of random numbers drawn from a uniform

distribution or Gaussian distribution. For example, in the simplest form 𝜀6 can be replaced

by the expression (𝜎 − 1 2⁄) where 𝜎 is a random number generator uniformly distributed

in [0, 1]. For most implementation, it can be taken 𝛽& = 1 and 𝛼 ∈ [0, 1].

 32

The basic steps of the FA can be summarized as the pseudo code shown in Algorithm

2.2.

Algorithm 2.2
Firefly algorithm

Data: objective functions 𝑓(𝑥)
Result: best or optimal solution
Initialization of parameters (𝑛, 𝛼, 𝛽, and 𝛾);
Generate an initial population of 𝑛 fireflies in locations 𝑥6 (𝑖 = 1, 2, … , 𝑛);
Light intensity 𝐼6 at 𝑥6 is determined by 𝑓(𝑥6);
while (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) do

for 𝑖 = 1: 𝑛	(𝑎𝑙𝑙	𝑛	𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠) do
for 𝑗 = 1: 𝑛	(𝑎𝑙𝑙	𝑛	𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠) do

if `𝐼6 < 𝐼7a then
move firefly 𝑖 towards 𝑗 (for maximization problems)
according to Eq. (2.14);

end if
vary attractiveness with distance 𝑟 via 𝑒𝑥𝑝[−𝛾𝑟"];
evaluate new solutions and update light intensity;

end for
end for
rank the fireflies and find the current global best 𝑔∗;

end while
Postprocess results and visualization;

 33

2.1.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) has been developed by Kennedy and Eberhart in

1995 (Kennedy & Eberhart, 1995), based on the behavior of swarms in nature, such as bird

flocking and fish schooling. Since then, due to its simplicity and flexibility, it has become one

of the most popular swarm intelligence-based algorithms used. PSO has been applied to

almost all areas of optimization, computational intelligence, and design applications. It uses

the randomness of real numbers and the global communication between swarm particles.

The PSO algorithm searches the space of an objective function by adjusting the

trajectories of individual agents, called particles, as the piecewise paths formed by positional

vectors in a quasi-stochastic fashion (Kennedy & Eberhart, 1995). The motion of a swarm

particle consists of two main components: a deterministic component and a stochastic

component. Each particle is attracted toward the position of the current global best 𝑔∗ and

its own best location 𝑥6∗ in history, while at the same time it has a tendency to move randomly.

When a particle finds a position that is better than any previously found positions,

PSO algorithm updates that position as the new current best for particle 𝑖. There is a current

best for all 𝑛 particles at any time step 𝑡 during iterations. The aim is to find the global best

among all the current individual best solutions until the objective function no longer

improves or after a specific number of iterations. The movement of particles is schematically

represented in Figure 2.4, where 𝑥6∗ is the current best for particle 𝑖, and 𝑔∗ = 𝑚𝑖𝑛m𝑓`𝑥7∗an

for (𝑗 = 1, 2, … , 𝑛) is the current global best at time step 𝑡.

Figure 2.4 - Schematic representation of the motion of a particle in PSO

Let 𝑥6 and 𝑣6 be the position vector and the velocity vector for particle 𝑖, respectively.

The new velocity vector is determined by the following formula:

 34

𝑣6$<) = 𝑣6$ + 𝜅)𝜀6,)$ [𝑔∗ − 𝑥6$] + 𝜅"𝜀6,"$ [𝑥6∗ − 𝑥6$] (2.15)

where 𝜀6,) and 𝜀6," are two random vectors, and each entry takes the values between 0 and

1. The parameters 𝜅) and 𝜅" are the learning parameters or acceleration constants, which

can be typically taken as 𝜅) ≈ 𝜅" ≈ 2.

The initial positions of all particles should distribute quite uniformly so that it is

possible to sample over most regions, that is particularly important for multimodal problems.

The initial velocity of a particle can be taken as zero, that is 𝑣6$.& = 0. The new position can

then be updated as the following:

𝑥6$<) = 𝑥6$ + 𝑣6$<)Δ𝑡 (2.16)

where Δ𝑡 is the time increment. Since PSO is iterative with a discrete integer time counter, it

can be set Δ𝑡 = 1 for all implementations. Although 𝑣6 can assume any values, it is usually

bounded in some range [0, 𝑣?(@].

The fundamental steps of the particle swarm optimization can be summarized as the

pseudo code shown in Algorithm 2.3.

Algorithm 2.3
Particle Swarm Optimization

Data: objective functions 𝑓(𝑥)
Result: best or optimal solution
Initialize locations 𝑥6 and velocities 𝑣6 of 𝑛 particles;
Find the global best 𝑔∗ from 𝑚𝑖𝑛{𝑓(𝑥)), … , 𝑓(𝑥A)} at 𝑡 = 0;
while (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑖𝑠	𝐹𝑎𝑙𝑠𝑒) do

for 𝑎𝑙𝑙	𝑛	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	𝑎𝑛𝑑	𝑎𝑙𝑙	𝑑	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 do
generate new velocity 𝑣6$<) using Eq. (2.15);
calculate new locations according to Eq. (2.16);
evaluate the objective function at new locations 𝑥6$<);
find the current best for each particle 𝑥6∗;

end for
find the current global best 𝑔∗;
update 𝑡 = 𝑡 + 1;

end while
Output the final results 𝑥6∗ and 𝑔∗;

 35

There are many versions that extend the standard PSO algorithm, and the most

obvious improvement is probably to use the inertia function 𝜃(𝑡) so that the velocity 𝑣6$ is

replaced by 𝜃(𝑡)𝑣6$ as following:

𝑣6$<) = 𝜃𝑣6$ + 𝜅)𝜀6,)$ [𝑔∗ − 𝑥6$] + 𝜅"𝜀6,"$ [𝑥6∗ − 𝑥6$] (2.17)

where 𝜃 takes in theory the values between 0 and 1 (Chatterjee & Siarry, 2006). In the

simplest case, the inertia function can be taken as a constant, typically 𝜃 ≈ 0.5~0.9. This is

equivalent to introduce a virtual mass to stabilize the motion of the particles, and thus the

algorithm is expected to converge more quickly.

 36

2.1.5 Artificial Bee Colony Optimization

Another evolutionary approach is the Artificial Bee Colony (ABC) algorithm by

Karaboga et al. (Karaboga & Akay, 2009). This algorithm is inspired by the foraging behavior

of honeybees when searching for a quality food source. In the ABC algorithm, there is a

population of food locations, and artificial bees change these food locations over time. The

algorithm uses a set of computational agents called honeybees to find the optimal solution.

The honeybees in ABC can be categorized into three groups: employed bees, onlooker bees,

and scout bees. The employed bees exploit food locations, while the onlooker bees wait for

information from employed bees about the nectar amount of the food locations. The

onlooker bees select food locations using information from the employed bees and exploit

the selected food locations. Finally, the scout bees find new random food locations. Each

solution, in the search space, consists of a set of optimization parameters that represent a

food location. The number of employed bees is equal to the number of food sources.

In the ABC algorithm, the location of a food source represents a possible solution to

the optimization problem, and the nectar quantity of a food source is equal to the quality

(fitness) of the corresponding solution. The number of employed bees or onlooker bees is

equal to the number of solutions in the population. At the first step, the ABC generates a

randomly distributed initial population 𝑃(𝐶 = 0) of 𝑆𝑁 solutions (food source locations),

where 𝑆𝑁 corresponds to the size of employed bees or onlooker bees. Each solution

𝑥6 	(𝑖 = 1,… , 𝑆𝑁) is a 𝐷-dimensional vector. Here, 𝐷 is the number of optimization

parameters. After initialization, the population of the locations (solutions) is subject to

repeated cycles, 𝐶 = 1, 2, … ,𝑀𝐶𝑁 (where MCN is the Maximum Cycle Number), of the

search processes of the employed bees, the onlooker bees, and the scout bees.

Each cycle of the search consists of three steps:

1) Sending the employed bees onto their food sources and evaluating their nectar

amounts.

2) After sharing the nectar information of food sources, the onlooker bees select the

regions of food sources and evaluate the nectar quantity of food sources.

3) Determining the scout bees and then sending them randomly onto possible new food

sources.

In the initialization phase, a set of food sources is randomly selected by bees and their

nectar amounts are evaluated. At the first step of the cycle, these bees enter the hive and

 37

share nectar information about the sources with bees waiting on the dance area. A bee that

waits on the dance area for making a decision to choose a food source is called an onlooker,

while the bee that goes to the food source that she has visited just before is called an

employed bee. After sharing their information with the onlookers, each employed bee goes

to the area of the food source visited in the previous cycle by herself, as that food source

exists in her memory, and then chooses a new food source by visual information in the

neighborhood of the one in her memory and evaluates its nectar quantity. In the second step,

an onlooker prefers a food source area based on nectar information shared by employed

bees on the dance area. As the nectar amount of a food source increases, the probability of

that food source being selected also increases. After arriving at the selected area, it chooses

a new food source in the neighborhood of the one in memory based on visual information

as in the case of the employed bees. The decision of the new food source is made by the

bees based on the process of visually comparing the locations of the food sources. At the

third step of the cycle, when the nectar of a food source is abandoned by the bees, a new

food source is randomly determined by a scout bee and replaced with the abandoned one.

In the model of (Karaboga & Akay, 2009), at most one scout bee exits to search for a new

food source at each cycle, and the number of employed bees and onlooker bees are selected

to be equal to each other. These three steps are repeated for a predefined number of cycles

called the Maximum Cycle Number (MCN) or until a termination criterion is met.

An artificial onlooker bee selects a food source based on the probability value assigned

to that food source, 𝑝6 , calculated by the following expression:

𝑝6 =
B6$3

∑ B6$56.
57&

 (2.18)

where 𝑓𝑖𝑡6 is the fitness value of the solution 𝑖 which is proportional to the nectar amount

of the food source in the location 𝑖 and 𝑆𝑁 is the number of food sources that is equal to

the number of employed bees or onlooker bees.

In order to produce a candidate food position from the old one in memory, the ABC

uses the following expression:

𝑣67 = 𝑥67 + 𝜙67`𝑥67 − 𝑥#7a (2.19)

where 𝑘 ∈ {1,… , 𝑆𝑁} and 𝑗 ∈ {1, … , 𝐷} are randomly chosen indexes. Although 𝑘 is

determined randomly, it must be different from 𝑖. 𝜙67 is a random number between [−1, 1].

 38

It controls the locating of nearby food sources around 𝑥67 and represents the visual

comparison of two food locations by a bee. As can be seen from (2.19), as the difference

between the parameters of 𝑥67 and 𝑥#7 decreases, the perturbation on the position 𝑥67 also

decreases. Thus, as the search comes closer to the optimum solution in the search space, the

step length is adaptively reduced. If the value of a parameter resulting from this operation

exceeds its predefined limit, the parameter can be set to an acceptable value, for example it

can be set to its limit value.

The food source whose nectar is abandoned by the bees is replaced with a new food

source by the scouts. In ABC, this is simulated by randomly generating a location and

replacing it with the abandoned one. In ABC, if a location cannot be improved further

through a predefined number of cycles, then that food source is considered abandoned. The

value of the predefined number of cycles is an important control parameter of the ABC

algorithm, which is called the “abandonment limit". Assume that the abandoned source is 𝑥6

and 𝑗 ∈ {1, … , 𝐷}, then the scout discovers a new food source to be replaced with 𝑥6 . This

operation can be defined as in the following:

𝑥6
7 = 𝑥?6A

7 + 𝑟𝑎𝑛𝑑[0, 1]`𝑥?(@
7 − 𝑥?6A

7 a (2.20)

After that each candidate source location 𝑣67 is generated and then evaluated by the

artificial bee, its performance is compared with that of the old source. If the new food source

has equal or better nectar than the old source, it is replaced with the old one in memory.

Otherwise, the old one is maintained in memory. In other words, a greedy selection

mechanism is employed as the selection operation between the old source location and the

candidate source.

Totally, ABC algorithm employs four different selection processes:

1) a global probabilistic selection process, in which the probability value is calculated by

(2.18) and used by the onlooker bees to discover promising regions.

2) a local probabilistic selection process performed in a region by the employed bees and

the onlooker bees depending on the visual information such as color, shape and

fragrance of the flowers (sources) to determine a food source around the source in

memory as described by (2.19).

3) a local selection called greedy selection process performed by onlooker and employed

bees in that if the nectar amount of the candidate source is better than that of the

 39

current source, the bee forgets the current one and stores the candidate source

generated by (2.19); otherwise, the bee keeps the current one in memory.

4) a random selection process performed by scouts as defined in (2.20).

It is clear from the above discussion that there are three control parameters in the basic

ABC: (i) the number of food sources that is equal to the number of employed or onlooker

bees (SN), (ii) the limit value for abandonment, and (iii) the maximum number of cycles

(MCN).

In the case of bees, the recruitment rate represents a measure of how quickly the bee

colony locates and exploits a newly found food source. The artificial recruitment could

similarly represent a measure of how quickly feasible or good solutions to difficult optimization

problems can be discovered. The bee colony survival and evolution depend on the rapid

discovery and efficient exploitation of the best food sources. Similarly, the successful

solution of difficult engineering problems is related to the relatively fast discovery of good

solutions especially for problems that need to be solved in real time. In a robust search process,

the exploration and exploitation processes must be performed together. In the ABC

algorithm, while the onlookers and employed bees perform the exploitation process in the

search space, the scouts control the exploration process. The detailed pseudocode of ABC

is shown in Algorithm 2.4.

 40

Algorithm 2.4
Artificial Bee Colony

Data: objective functions 𝑓(𝑥)
Result: best or optimal solution
Initialize the population of solutions 𝑥6 , 𝑖 = 1,… , 𝑆𝑁;
Evaluata the population;
𝑐𝑦𝑐𝑙𝑒 = 1;
while (𝑐𝑦𝑐𝑙𝑒 ≠ 𝑀𝐶𝑁) do

calculate new solutions 𝑣6 for the employed bees by using Eq. (2.19);
evaluate the objective function at new solutions 𝑣6 for the employed bees;
apply the greedy selection process for the employed bees;
calculate the probability values 𝑝6 for the solutions 𝑥6 by using Eq. (2.18);
calculate new solutions 𝑣6 for the onlookers from the solutions 𝑥6
selected depending on 𝑝6 ;
evaluate the objective function at new solutions 𝑣6 for the onlooker bees;
apply the greedy selection process for the onlooker bees;
determine the abandoned solution for the scout (if it exists);
replace the abandoned solution with a new randomly calculated solution
𝑥6 by using Eq. (2.20);
memorize the best solution achieved so far;
𝑐𝑦𝑐𝑙𝑒 = 𝑐𝑦𝑐𝑙𝑒 + 1;

end while
Output the best solution 𝑥6∗;

 41

2.1.6 Differential Evolution

Differential evolution, or DE, was first developed by R. Storn and K. Price in their

nominal papers in 1996 and 1997 (Storn & Price, 1997). DE is a vector-based meta-heuristic

algorithm that shows some similarity to pattern search and genetic algorithms because of its

use of crossover and mutation. DE is a stochastic search algorithm with self-organization

and does not use derivative information. Thus, it is a population-based method with no

derivatives. Also, DE uses real numbers as solution strings, so no encoding and decoding is

required.

As in genetic algorithms, the design parameters in a 𝑑-dimensional search space are

represented as vectors, and various genetic operators are applied on their string bits.

However, in contrast to genetic algorithms, differential evolution performs operations on

each component (or each dimension of the solution). Almost everything is done in terms of

vectors. For example, in genetic algorithms, mutation is performed at one site or multiple

sites on a chromosome, whereas in differential evolution, a difference vector of two

randomly chosen population vectors is used to perturb an existing vector. Such a vector

mutation can be seen as a more implementation-efficient approach. This type of perturbation

is performed on every population vector and thus can be expected to be more efficient.

Similarly, crossover is also a vector-based swapping of chromosomes or vector segments. In

addition to using mutation and crossover as differential operators, DE has explicit updating

equations. This also makes it easy to implement and design new variants.

For a 𝑑-dimensional optimization problem with 𝑑 parameters, a population of 𝑛

solution vectors 𝑥6 , where 𝑖 = 1, 2, … , 𝑛, is initially generated. For each solution 𝑥6 at any

generation 𝑡, it can be used the following formal notation:

𝑥6$ = `𝑥),6$, 𝑥",6$, … , 𝑥>,6$ a (2.21)

that consists of 𝑑-components in the 𝑑-dimensional space. This vector can be considered as

the chromosome or genome.

 DE involves three main steps:

1. Mutation.

2. Crossover.

3. Selection.

 42

Mutation is performed by the mutation scheme. For each vector 𝑥6 at any time or

generation 𝑡, three distinct vectors 𝑥C, 𝑥D , and 𝑥9 at 𝑡 are first randomly chosen, and then it

is generated a so-called donor vector by the following mutation scheme:

𝑣6$<) = 𝑥C$ + 𝐹`𝑥D$ − 𝑥9$a (2.22)

where 𝐹 ∈ [0, 2] is a parameter, frequently denoted as the differential weight. This requires that

the minimum number of the population size is 𝑛 ≥ 4. In practice, a scheme with 𝐹 ∈ [0, 1]

is more efficient and stable. In fact, almost all the studies in the literature use 𝐹 ∈ [0, 1]. In

Figure 2.5 it is shown that the perturbation 𝛿 = 𝐹`𝑥D − 𝑥9a to the vector 𝑥C is used to

calculate a donor vector 𝑣6 .

Figure 2.5 - Schematic representation of donor (mutation) vector

The crossover is controlled by a crossover parameter 𝐶9 ∈ [0, 1], that represent the

rate or probability for crossover. The crossover can be performed in two ways: binomial and

exponential. The binomial scheme carries out crossover on each of the 𝑑 components or

variables. By generating a uniformly distributed random number 𝑟7,6 ∈ [0, 1], the 𝑗-th

component of 𝑣6 is processed in the following way:

𝑢7,6$<) = �
𝑣7,6$<)										𝑖𝑓	𝑟7,6 ≤ 𝐶9
𝑥7,6$ 													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.23)

where 𝑗 = 1, 2, … , 𝑑. In this way, it can be randomly decided whether to swap each

component with the donor vector component or not.

 43

In order to ensure that 𝑣6$<) ≠ 𝑥6$, that may increase the exploratory or evolutionary

efficiency, the Eq. (2.23) can be replaced by the following:

𝑢7,6$<) = �
𝑣7,6$<)							𝑖𝑓	𝑟7,6 ≤ 𝐶9 	𝑜𝑟	𝑗 = 𝐽9 			
𝑥7,6$ 										𝑖𝑓	𝑟7,6 > 𝐶9 	𝑎𝑛𝑑	𝑗 ≠ 𝐽9

 (2.24)

where 𝐽9 ∈ {1, 2, … , 𝑑} is a random index generated by permutation.

In the exponential scheme, a segment of the donor vector is selected, and this segment

starts with a random integer 𝑘 and have a random length 𝐿, that can include more than one

component. Mathematically, this means choosing 𝑘 ∈ [0, 𝑑 − 1] and 𝐿 ∈ [1, 𝑑] randomly,

and the new vector is calculated by the following:

𝑢7,6$<) = �
𝑣7,6$<)										𝑓𝑜𝑟	𝑗 = 𝑘,… , 𝑘 + 𝐿 − 1
𝑥7,6$ 													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																								

 (2.25)

where 𝑘 + 𝐿 − 1 ∈ [1, 𝑑]. Since the binomial is easier to implement, it is used the binomial

crossover in most of the implementations.

The selection is basically the same as that used in genetic algorithms. It involves

selecting the best fit and, for a minimization problem, the minimum objective value.

Therefore, the new solution vector is given by the following:

𝑥6$<) = �
𝑢6$<)										𝑖𝑓	𝑓(𝑢6$<)) ≤ 𝑓(𝑥6$)
𝑥6$														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																

 (2.26)

All of the three DE components can be found in the pseudocode shown in Algorithm

2.5.

 44

Algorithm 2.5
Differential Evolution

Data: objective functions 𝑓(𝑥)
Result: best or optimal solution
Initialize the population 𝑥 with randomly generated solutions;
Set the weight 𝐹 ∈ [0, 2] and crossover probability 𝐶9 ∈ [0, 1];
while (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛	𝑖𝑠	𝐹𝑎𝑙𝑠𝑒) do

for 𝑖 = 1: 𝑛	(𝑎𝑙𝑙	𝑥6 	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑣𝑒𝑐𝑡𝑜𝑟𝑠) do
randomly choose three distinct vectors 𝑥C, 𝑥D and 𝑥9 ;
generate a new vector 𝑣6 by mutation scheme (2.22);
generate a random index 𝐽9 ∈ {1, 2, … , 𝑑} by permutation;
for 𝑗 = 1: 𝑑	(𝑎𝑙𝑙	𝑣7,6 	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠	𝑜𝑓	𝑣6) do

generate a randomly distributed number 𝑟7,6 ∈ [0, 1];
update by Eq. (2.24);

end for
select and update the solution by Eq. (2.26);

end for
end while
Postprocess and output the best solution;

The overall efficiency of the search is controlled by two parameters: the differential

weight 𝐹 and the crossover probability 𝐶9 . Most studies have focused on the choice of 𝐹, 𝐶9

and 𝑛 as well as the variations of Eq. (2.22). In fact, many different ways of formulating Eq.

(2.22) can be used for generating the mutation vectors. This results in various schemes with

the naming convention DE/x/y/z, where x is the mutation scheme (rand or best), y is the

number of difference vectors, and z is the crossover scheme (binomial or exponential). So,

DE/rand/1/bin means the basic DE scheme using random mutation and one difference

vector with a binomial crossover scheme.

The basic DE/rand/1/bin scheme is given in Eq. (2.22), that is:

𝑣6$<) = 𝑥C$ + 𝐹`𝑥D$ − 𝑥9$a (2.27)

If the vector 𝑥C$ is replaced by the current best 𝑥EF!$$ found so far, the previous scheme

is changed into the so-called DE/best/1/bin scheme as the following:

𝑣6$<) = 𝑥EF!$$ + 𝐹`𝑥D$ − 𝑥9$a (2.28)

 45

There is no reason why one cannot use more than three distinct vectors. For example,

if four different vectors are used plus the current best, the DE/best/2/bin scheme is

considered:

𝑣6$<) = 𝑥EF!$$ + 𝐹`𝑥#&
$ + 𝑥#'

$ + 𝑥#8
$ + 𝑥#9

$ a (2.29)

Furthermore, if five different vectors are used, the scheme becomes DE/rand/2/bin:

𝑣6$<) = 𝑥#&
$ + 𝐹)`𝑥#'

$ − 𝑥#8
$ a + 𝐹"`𝑥#9

$ − 𝑥#:
$ a (2.30)

where 𝐹) and 𝐹" are differential weights in [0, 1]. Obviously, for simplicity it can also be

taken 𝐹) = 𝐹" = 𝐹.

Following a similar strategy, it is possible to design various schemes. For example,

these variants can be written in a generalized form as follows:

𝑣6$<) = 𝑥#&
$ + ∑ 𝐹! ∙ �𝑥#',1

$ − 𝑥#8,1
$ �?

!.) (2.31)

where 𝑚 = 1, 2, 3, … and 𝐹!	(𝑠 = 1,… ,𝑚) are the scale factors. The number of vectors

involved into these schemes is equal to 2𝑚 + 1.

On the other hand, there is also another type of variants that uses an additional

influence parameter 𝜆 ∈ (0, 1). For example, DE/rand-to-best/1/* scheme can be written

as the following:

𝑣6$<) = 𝜆𝑥EF!$$ + (1 − 𝜆)𝑥#&
$ + 𝐹`𝑥#'

$ − 𝑥#8
$ a (2.32)

which introduces an extra parameter 𝜆. Again, this type of variants can be generalized as

follows:

𝑣6$<) = 𝜆𝑥EF!$$ + (1 − 𝜆)𝑥#&
$ + ∑ 𝐹!�𝑥#',1

$ − 𝑥#8,1
$ �?

!.) (2.33)

In the literature, more than 10 different schemes have been formulated (Yang, 2020).

There are also good variants of DE that include the self-adapting of the control parameters,

and others for multi-objective optimization.

 46

Differential Evolution (DE) algorithm is an evolutionary algorithm for optimization

in continuous spaces. It can tackle non-linear and complex optimization problems, requiring

just the objective function values. Nevertheless, the performance of the DE depends on the

mutation control parameters, especially when the problem is complex (Brest, Greiner,

Boskovic, Mernik, & Zumer, 2006). To balance the convergence (fitness evaluations) and

the reliability (optimum’s globality), ranges of parameters values have been studied. The

most popular variant of DE is called “DE/rand/1/bin”, where, as pointed out in the

previous section, “DE”	stands for Differential Evolution, “rand”	means that the individuals

selected to compute the mutation values are randomly chosen, “1”	is the number of pairs of

individuals chosen for mutation, and “bin”	denotes the binomial crossover. Another variant

is based on the best selection strategy: it is called “DE/best/1/bin”, because the perturbing

individual is generated from the best population member. It is known that

“DE/rand/1/bin”	is slow but robust compared to the strategies based on the best member.

Among the most sensitive parameters, the Crossover Rate (CR) is a probability of mixing

between mutant (donor) and target vectors of the current population (Zaharie, 2009).

Low/high CR values are good for uni/multi-modal problems. Good convergence can be

achieved with large CR values. Recommended CR values are in [. 2, .9]. The differential

weight 𝐹 ∈ [0, 2] controls the mutant vector: large F values allow escaping from local

optima; low values cause premature convergence; 𝐹 ≤ 1 determines a fast and reliable search

process. As a result, F is usually set in [0.4, 0.9]. The population size (NP) is another

important parameter. In the literature, there is a lack of sufficient justifications and a lot of

conflicting motivations about the manual parameter tuning of DE. To solve the issue, in our

research a grid search technique is used.

 47

2.2 Hyper-heuristics to design heuristics

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of

biological species and can be neither modularized nor aggregated. A novel design approach

based on hyper-heuristics (HH) can be used to overcome these limits. A hyper-heuristic is a

search method that automates the combination of modular heuristics to generate more

adaptable logics. In (Burke, et al., 2013) a unified classification and definition of HH able to

capture the research work in the field has been presented. The authors define HH as a search

method or a learning mechanism to select or generate heuristics solving search problems.

Specifically, in a learning HH a feedback is given from the search process. In online learning

HH the learning occurs while solving the problem, whereas in offline learning HH knowledge

is gathered from training instances and modelled as rules or programs. Considering the type

of search space, the heuristic selection chooses or selects predefined heuristics, whereas the

heuristic generation generates new heuristics from modular components. Both search paradigms

can be further divided into constructive, when iteratively extending partial candidate solutions

with missing components and perturbative, when adjusting full candidate solutions by

modifying their components. A comprehensive classification of hyper-heuristic approaches

is represented in Table 1.2.

In the literature, hybrid approaches are also used. In particular, Garrido et al. (Garrido

& Riff, 2010) have solved the dynamic vehicle routing problem via an evolutionary HH.

Their framework is based on a combination of both constructive and perturbative HH and

is evaluated on a large and complex set of problems. Results are competitive with respect to

well-known methods of the literature. The HH approach aims to provide a general method

for many application domains, rather than a better solution to a specific problem. Indeed,

the search space of HH is a space of new heuristics, rather than a space of solutions. The

difference is that a new heuristic can be potentially reused for solving many problem

instances. In the literature, a well-known method for generating heuristics is genetic

programming (Poli & Koza, 2014). It is an evolutionary computation technique evolving a

population of computer programs. Genetic programming can be considered as an HH if the

evolved programs are heuristics or heuristic’s components. For example, in (Geiger, Uzsoy,

& Aytug, 2006) Geiger et al. have illustrated the main motivations to automatically generate

heuristics in production scheduling. The research in the field has shown also that successful

components can be derived by the available human-created heuristics (Fukunaga, 2008).

Another research field, related to perturbative heuristics, is called adaptive memetic algorithms. It

 48

is an evolutionary algorithm characterized by local searchers called memes, adaptively

selected/generated during the search (Ong, Lim, Zhu, & Wong, 2006).

2.2.1 Selection constructive hyper-heuristics

In an optimization problem, selection constructive hyper-heuristics select a low-level

heuristic at each point in the construction of a solution. Low-level constructive heuristics

aim to construct a complete solution, or an initial solution for optimization. The solution of

a problem starts from an initial state, going through a certain number of intermediate states

until it reaches the final state or solution state.

In order to move from one state of the problem to the next, selection constructive

hyper-heuristics select the low-level constructive heuristics to be applied. The domain of the

problem determines the low-level heuristics. A formal definition of constructive selection

hyper-heuristics is provided in Definition 2.1.

Definition 2.1: given a problem 𝑝 and a set of low-level construction heuristics 𝐿 =

{𝐿&, 𝐿), … , 𝐿A} for the problem domain, a selection constructive hyper-heuristic constructs

a solution 𝑠 for 𝑝 by using a technique 𝑇 to select a low-level heuristic from 𝐿 and by applying

this low-level heuristic to change from one problem state 𝑠($) to the next state 𝑠($<)),

beginning at the initial state and stopping at the solution state 𝑠.

Hyper-heuristics generally exploit a high-level technique such as meta-heuristics or

case-based reasoning to select low-level heuristics. For solving a combinatorial optimization

problem, usually the algorithm that is used by a selection constructive hyper-heuristic is

outlined in Algorithm 2.6.

 49

Algorithm 2.6
Selection constructive hyper-heuristic

procedure 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒𝐻𝑦𝑝𝑒𝑟𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑝, 𝐿)
initialize solution 𝑠 to be empty;
while 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑠	𝑖𝑠	𝑛𝑜𝑡	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

use technique 𝑇 to select a low-level constructive heuristic 𝐿6 from 𝐿;
apply 𝐿6 to extend the solution 𝑠;

end while
return solution 𝑠;

end procedure

The categories of techniques employed by selection constructive hyper-heuristics to

select low-level heuristics include case-based reasoning, local search methods, population-

based methods, and hybridization and adaptive methods.

Population-based search methods explore multiple points simultaneously, in contrast

to local search methods that move from one point in the search space to the next. The

population of solutions represents different points in the search space. Evolutionary

algorithms have mainly been used in the literature to explore the heuristic space. In these

cases, genetic operators are applied to combinations of heuristics and thus perform

exploration and exploitation in the heuristic space. The performance of an EA depends, in

turn, on the configurations of the hyper-parameters: for example, mutation and crossover

probabilities, population size, and number of generations. Parameter control methods have

been proposed, such as deterministic, adaptive, and self-adaptive methods (Smith, 2008).

Each element in the population, i.e., the chromosome, is a combination of heuristics.

The combination includes low-level constructive heuristics, and each heuristic in the

combination represents a heuristic selected by the selection constructive hyper heuristic. The

selection as such is performed by the genetic algorithm through the process of fitness

evaluation, selection, and recombination. Each chromosome is applied to solve one or more

instances of the problem, and the fitness is the objective value in the case of a single instance

of the problem or a function of the objective values of different instances of the problem.

When the source of feedback is the evaluation of a problem instance, the goal is to evolve a

combination of heuristics specific to the problem at hand. In this case, the combination of

heuristics is disposable, i.e., the combination of heuristics or the evolved rule is used to solve

an instance of the problem. In contrast, when the source of feedback is the evaluation of

more than one instance, the goal is to evolve a reusable combination of heuristics. In this

case, the problem instances are divided into training and testing sets. The training set is used

 50

to evolve the combination of heuristics, while the testing set is a set of unseen problems on

which the evolved combination of heuristics is tested.

The representation used by the population-based approach affects the performance of

the hyper-heuristic. The simplest representation of a chromosome is a single combination of

low-level heuristics of a specific type. A chromosome may also include more than one type

of low-level heuristics. The set of low-level heuristics to be used to compose the

combinations of heuristics must be chosen carefully. A large set with less useful constructive

heuristics may lead to a search space that is too large to explore an optimal combination of

heuristics in a limited runtime. In addition to low-level constructive heuristics, the heuristic

space may alternatively consist of condition-action rules, where the condition represents the

states of the problem and the action the corresponding heuristic to be applied. In the

literature, it has also been shown that different low-level constructive heuristics are needed

at different points in the construction of a solution, i.e., a different heuristic is needed for

each state of the problem from the initial state to the solution state. Adaptive methods have

been shown to be effective in tailoring hybridizations or different types of constructive

heuristics at different stages of the construction of solution (Pillay & Qu, 2018).

2.2.2 Generation constructive hyper-heuristics

In solving optimization problems, a low-level constructive heuristic is used to create

an initial solution, which is a starting point for solving the problem using optimization

techniques. These heuristics are usually problem dependent. In fact, research has shown that

different low-level constructive heuristics are effective for different classes of problems, and

for some problem domains it is more effective to generate heuristics suitable for each

instance of the problem (Lu, Xin, Zhang, & Chen, 2020) (Kahar & Kendall, 2010) (Felipe,

Ortuño, Righini, & Tirado, 2014) (Paquay, Limbourg, & Schyns, 2018). Deriving

constructive heuristics is a time-consuming process due to the relevant heuristic selection

and parameterization costs associated with each new problem type and new instances of

known problems. Thus, deriving low-level constructive heuristics becomes expensive to do

manually (Drake, Hyde, Ibrahim, & Ozcan, 2014). Constructive hyper-heuristics generation

aims to automate this process by generating low-level constructive heuristics by using a given

set of problem attributes. Automating this process reduces the human hours involved in

deriving low-level heuristics and can result in the generation of new constructive heuristics

 51

that humans would not think of. This allows the constructive heuristic to be tailored to a

particular instance of the problem or to be engineered for different classes of problems.

Thus, the heuristics generated can be disposable, i.e., created for a specific problem instance,

or reusable, i.e., used to solve similar problems never seen before (Burke, et al., 2013).

Two criteria should be used to evaluate the performance of the generation constructive

hyper-heuristics, i.e., the time needed to generate the heuristics and the performance of the

generated heuristics compared to existing manually derived heuristics. The time required by

the generation constructive hyper-heuristics should be less than the time needed to manually

derive these heuristics (Burke, Hyde, Kendall, & Woodward, 2010). Moreover, the

performance of the generated low-level heuristics cannot be expected to be comparable to

the state of the art for the specific problem domain (Drake, Hyde, Ibrahim, & Ozcan, 2014).

Similar to manually derived heuristics, the purpose of these heuristics is to provide a starting

point for optimization techniques. Thus, automatically generated heuristics should perform

at least as well as manually derived heuristics. However, research in this field to date suggests

that heuristics created by the generation constructive hyper-heuristics have been shown to

outperform existing heuristics (Pillay & Qu, 2018). Another important issue concerns the

interpretability of the generated constructive heuristics, i.e., whether it is needed for the

generated heuristic to be readable to understand what it is doing, or the generation

constructive hyper-heuristics should work as a black box.

A formal definition of generation constructive hyper-heuristics is outlined in

Definition 2.2.

Definition 2.2: given a problem instance 𝑖 or a set of problem instances 𝐼 = {𝐼&, 𝐼), … , 𝐼?}

and a set of problem attributes 𝐴 = {𝐴&, 𝐴), … , 𝐴A} for a problem domain, a generation

constructive hyper-heuristic generate a new low-level constructive heuristic 𝑙𝑐ℎ, using the

attributes in 𝐴, to produce an initial solution for either 𝑖 or the problems in 𝐼 and similar

problems.

In solving combinatorial optimization problems, the low-level derived heuristic is

fundamentally a priority function that is used to order events or entities to be chosen to

create a solution. As such, the low-level derived heuristic is an arithmetic function or rule

composed of attributes and operators. Genetic programming (Poli & Koza, 2014) and its

variants have been primarily used to generate these low-level heuristics. Hyper-heuristics

reach generalization by using the same technique to derive heuristics for different domains

and instances of the problem, with the only difference being the set of attribute values 𝐴

 52

used, which depends on the problem. However, the derived low-level heuristic may or not

be generalized, i.e., it may be reusable or disposable.

The generated low-level heuristic includes problem attributes and operators. Thus, the

methods for creating low-level heuristics combine or configure the attributes and the

operators in some way. It is important that an appropriate set of attributes is chosen and that

all features of the problem domain are represented. However, including too many attributes

will result in a larger heuristic space, which can lead to high processing times or not finding

suitable heuristics. According to (Branke, Nguyen, Pickardt, & Zhang, 2016), the attributes

should be in their most basic form, and it should be left to hyper-heuristics to create

aggregate features by combining them. The attributes for a problem domain also include the

components of existing constructive low-level heuristics. In fact, the basic components that

constitute existing constructive low-level heuristics may be more representative of the

problem domain than the heuristic as a whole. Thus, existing low-level heuristics are

decomposed into basic components, and these are used as attributes. For example, in the

methodology based on hyper-heuristic described in this work, two bio-inspired meta-

heuristics have been decomposed with respect to the pheromone model used in the

stigmergic communication mechanism and the implementation rules for flocking behavior.

Genetic programming has been employed by generation constructive hyper-heuristics

to generate new low-level constructive heuristics. Genetic programming is an evolutionary

algorithm that explores a program space rather than a solution space (Poli & Koza, 2014).

Programs can represent arithmetic functions or algorithms that, when executed, will produce

a solution to the problem at hand. Each program is represented as an expression tree. For a

combinatorial optimization problem, the algorithm generally employed by a generation

constructive hyper-heuristic to solve the problem at hand is outlined in Algorithm 2.7.

The algorithm starts with an initial population of programs, each of them is an

expression tree representing a new constructive heuristic. A fitness function is applied to

evaluate each program in the population, i.e., how good the program is at solving the

problem at hand. In the case of the evolution of constructive heuristics, the fitness of each

expression tree is calculated by the resulting solution created using the program tree. A

selection method chooses parents based on their fitness to create the offspring of the next

generations. Tournament selection is generally used for genetic programming (Poli & Koza,

2014). Genetic operators that include selection, mutation, and crossover, are usually applied

to parents to create next generation offspring.

 53

Algorithm 2.7
Generation constructive hyper-heuristic using genetic programming

procedure 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒𝐻𝑦𝑝𝑒𝑟𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝐼, 𝐴)
create an initial population of programs;
while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑚𝑒𝑡

evaluate each program in the population;
select parents;
apply genetic operators to the parents to create offspring of
the new generation;

end while
return 𝑙𝑐ℎ and solution 𝑠;

end procedure

 54

Chapter 3

3 A hyperheuristic-based methodology for robotic swarms

coordination

Despite the success of bio-inspired techniques (bio-heuristics), there are relevant

algorithm selection and parameterization costs related to every new type of mission and to

new instances of known missions. In this work an evolutionary optimization is described to

automate the tuning of the bio-inspired coordination for target search. Experimental results

on real-world scenarios reveal a significant improvement of the mission performance after

optimization.

Although adaptive, the logic of bio-heuristics is nevertheless constrained by models of

biological species, and then, for example, it can be neither modularized nor aggregated. In

order to overcome these limits, a novel design approach based on hyper-heuristics (HH) is

adopted. This is a search methodology that automates the combination of modular heuristics

to generate more adaptable logics: fundamental behavioral components for many biological

swarms are aggregated and tuned in a unique and continuous search space. Two fundamental

swarm behavioral components are considered: stigmergy and flocking. Stigmergy is used to

release an attractive –	or repulsive –	stimulus when detecting the presence – or absence – of

a target during exploration. Multiple stimuli can overlap, creating a stigmergic trail which, in

turn, evaporates over time. As a result, stigmergy creates a kind of context-aware memory of

the swarm (Cimino, Lazzeri, & Vaglini, Improving the Analysis of Context-Aware

Information via Marker-Based Stigmergy and Differential Evolution, 2015). Flocking is used

to model a robust and flexible swarm formation. It is based on the rules of cohesion,

separation, and alignment (Alfeo, et al., Swarm coordination of mini-UAVs for target search

using imperfect sensors, 2018). Depending on the type of mission and on the environment

layout, flocking of different sizes and flexibility can be adaptively modelled.

The Differential Evolution (DE) algorithm optimizes the aggregation and tuning of the

heuristics on a unique search space and, consequently, an efficient heuristics hybridization is

generated for a given application domain. DE is a population-based metaheuristic

optimization algorithm, based on computational mechanisms of biological evolution, such

 55

as reproduction, mutation, recombination, and selection of solutions. DE can tackle non-

linear and complex optimization problems, requiring just the objective function values. A

modeling and optimization testbed has been developed and publicly released (Monaco,

2021). Experimental results on real-world scenarios show that the proposed approach, called

SFE because it is based on Stigmergy, Flocking, and Evolution, significantly outperforms the

adaptive bio-heuristics.

3.1 Design

We consider a novel algorithmic design based on hyper-heuristics. In this approach,

the logic is not constrained by models of biological species. It consists of an optimization

method of fundamental functional components, whose aggregation and tuning are

represented on a unique and continuous search space. Specifically, we consider two

fundamental swarm behavioral components as bio-inspired heuristics, namely stigmergy and

flocking (Alfeo, Cimino, & Vaglini, 2019). The differential evolution algorithm (DE) is

adopted to optimize the aggregation and tuning of the heuristics on a problem of target

search. The quality measure of a target search is the time needed for completing the mission,

i.e., for discovering a given percentage of target (Alfeo, Cimino, De Francesco, Lega, &

Vaglini, 2018). Consequently, the fitness of the DE is defined as the mission duration.

More formally, we consider a simulated scenario Ω, composed by:

i. simulation instants of time 𝑡 ∈ ℕ<;

ii. a set of robots 𝑅, each robot 𝑘 having a dynamic position (𝑥#$, 𝑦#$);

iii. a set of targets 𝑇, each target 𝑧 having a fixed position (𝑥G , 𝑦G).

Hence, the set of found targets 𝐹(𝑡) ⊆ 𝑇, at a given instant of time 𝑡, is the set of targets

{𝑧} ∈ 𝑇 for which it exists a time 𝑡H ≤ 𝑡 and a related set of robots m𝑘6,Gn, with 𝑖 =

1,… ,𝑁?6A/ and 𝑁?6A/ the number of robots needed to process each target, such that the

robots’ Euclidean distances from the target position is lower than the detection range 𝛿, i.e.:

𝐹(𝑡) = �𝑧	|	∃	𝑘6,G , ∃	𝑡H ≤ 𝑡 ∶ 𝑑 ��𝑥#3,<
$= , 𝑦#3,<

$= � , (𝑥G , 𝑦G)� ≤ 𝛿� (3.1)

 56

The fitness of the simulated scenario Ω is then defined as the minimum instant of time

for which 𝐹(𝑡) has cardinality greater than or equal to 𝜗 ∙ |𝑇|, i.e.:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(Ω) = 𝑚𝑖𝑛$∈ℕ>{𝑡 ∶ 	 |𝐹(𝑡)| ≥ 𝜗 ∙ |𝑇|} (3.2)

where 𝜗 is a percentage threshold close to 1 (usually set to 0.95), used to reduce the

simulation duration without sensibly affecting the overall accuracy. In order to better explain

the use of the threshold percentage 𝜗, we can consider the following Figure 3.1 that shows

the number of targeted cells found (%) against time (sec.).

Figure 3.1 - Percentage of targets found against time

The plot indicates a constant trend of targets found per second, up to about 95%.

Specifically, the scenario could include up to 5% of targets located in areas that are difficult

to access and whose detection may result in a significant deterioration in the performance

measure. Since this is commonly a point of trend variation, to shorten the simulation

duration the target threshold value 𝜗 is set to 95%.

 57

3.1.1 Flocking-based exploration

Flocking is used to model a robust and flexible swarm formation. It is based on the

rules of cohesion, separation and alignment, as illustrated in Figure 3.2.

Figure 3.2 - Model of flocking behavior: (a) activation regions, (b) separation, (c) cohesion, (d) alignment

The different rules are activated in separate regions, as in Figure 3.2(a). The separation

rule, showed in Figure 3.2(b), maintains a certain distance among flock mates for a better

scan of the area. The cohesion rule, showed in Figure 3.2(c), directs the robot to the flock

center, to avoid dispersion. Finally, the alignment rule, showed in Figure 3.2(d), keeps the

heading of each robot aligned to the average heading of its flock mates. Depending on the

type of mission, flocking of different sizes can be modelled.

 58

3.1.2 Stigmergy-based coordination

Stigmergy is used to release an attractive (or repulsive) stimulus (pheromone) while (not)

detecting targets. In the adopted computational model, a digital pheromone mark is released

by the robot in the environment. Figure 3.3 illustrates the model of the pheromone mark: it

is a truncated cone with unit height, radius top and down.

Figure 3.3 - Model of a pheromone mark

Multiple pheromone marks can overlap, creating a pheromone trail. Pheromone trails

evaporate over time. Since the pheromone trail is maintained in a digital environment, it is

instantly diffused, to immediately propagate information to nearby robots. More formally,

let us consider the target 𝑧 detected by the robot 𝑘 at time 𝑡, with position (𝑥G$, 𝑦G$) ∈ 𝑊,

and 𝑊 ⊂ ℝ" that is the exploration area (in the computerized model it is actually a

discretized area ℕ"). The pheromone quantity Δ𝜑#,%$ released on the cell 𝑐 located in (𝑥% , 𝑦%)

is given by:

Δ𝜑#,%$ = �

							1																								𝑖𝑓	𝑑G% ≤ 𝑟$KC															
><$+9?@A5
9)@B+9?@A5

											𝑖𝑓	𝑟$KC < 𝑑G% < 𝑟>KLA
					0																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																	

 (3.3)

where 𝑟$KC and 𝑟>KLA are 𝑠𝑡𝑖𝑔𝑚𝑒𝑟𝑔𝑦. 𝑟𝑎𝑑𝑖𝑢𝑠𝑇𝑜𝑝 and 𝑠𝑡𝑖𝑔𝑚𝑒𝑟𝑔𝑦. 𝑟𝑎𝑑𝑖𝑢𝑠𝐷𝑜𝑤𝑛,

respectively, and 𝑑G% is the Euclidean distance between the target 𝑧 and the cell 𝑐. The

pheromone trail intensity in the cell 𝑐 at time 𝑡 is given by:

 59

𝜑%$ = 𝑚𝑎𝑥 �0,𝑚𝑖𝑛m𝜑?(@ , 𝜑%$+) − 𝑒9($F ∙ 𝜑%$+9 + ∑ Δ𝜑#,%$
-(
#.) n� (3.4)

where 𝑟 is the time elapsed since the last pheromone release and 𝜑%$+9 is the trail intensity

on the cell 𝑐 at the time 𝑡 − 𝑟 when the last pheromone mark has been released, 𝑒9($F is the

evaporation rate, i.e. the given amount of intensity evaporated per unit time, and 𝑁/ is the

number of robots that are able to release pheromone on the cell 𝑐. The model with a linear

evaporation and a streamlined shape allows a good control of the aggregated trail in the

parameter space. The perceived pheromone intensity is based on olfactory receptors, which

can decrease in sensibility over time to prevent overstimulation (olfactory habituation).

 60

3.1.3 Stigmergy-Flocking-Evolution (SFE) algorithm

An efficient heuristics hybridization is generated for a given application domain, in

which Differential Evolution minimizes the mission discovery time. The resulting algorithm

is called SFE, which stands for Stigmergy, Flocking, Evolution. Since SFE can adapt his

behavior to the problem, it can be used for both environment exploration and targets

resolution. More specifically, a repulsive pheromone is used as an anti-stimulus during the

exploration, while an attractive pheromone is used as a stimulus for collecting sufficient

target information. During exploration, the robot adopts an if-then-else approach. In fact, it

turns primarily to the maximum attractive pheromone, if detected, else follows the flocking

rules, if flock mates are detected; otherwise, it turns to the minimum repulsive pheromone.

More formally, the DE logic is summarized by the pseudocode presented in

Algorithm 3.1. Moreover, Algorithm 3.2 and Algorithm 3.3 define the mutation and the

crossover operators, respectively.

In a simulated scenario (or mission), the swarm 𝑆6 explores an environment where

robots, obstacles and targets are statically specified. Let 𝐾 be the number of aggregated

parameters. In DE, 𝑆6 is a solution represented by a real 𝐾-dimensional vector called

genotype 𝑝6 . The search time returned by the simulated mission is used as a fitness of the

solution, 𝑓6 . DE starts with a population 𝑃(&) made by 𝑁 candidate solutions, 𝑝6
(&), randomly

generated under user-specified parametric constraints. At each iteration 𝑡, and for each

genotype 𝑝6$ of the current population 𝑃($), a mutant vector 𝑚 is created by applying the

mutation of randomly selected members. Then, a trial vector 𝑝6∗ is created by crossover of

𝑚 and 𝑝6$. In the binomial crossover algorithm (Algorithm 3.3), 𝐾 represents the number

of aggregated parameters to be optimized. Then, the population is modified by selecting the

best fitting vector between the fitness of the trial vector (𝑓6∗) and the fitness of the initial

genotype (𝑓6
($)). When the termination criterion is true, i.e., number of iterations performed

or adequate fitness reached, the vector characterizing the swarm with the best fitness (i.e. the

shortest search time) in the current population is considered as the optimal swarm

parameterization. The DE algorithm has at least two hyper-parameters: the scaling factor

𝐹 ∈ [0, 2] from which results the mutant vector, and the crossover probability 𝐶𝑅. The

smaller 𝐶𝑅 the higher the probability of producing a vector that is more similar to the target

vector rather than to the mutant vector.

 61

Algorithm 3.1
Differential Evolution algorithm

function 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠)
𝑡 = 0;
𝑃(D) = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛();
for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F

(D) in 𝑃(D) do
𝑆F
(D) = 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚B𝑝F

(D)C;
𝑓F
(D) = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛B𝑆F

(D), 𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠C;
do

for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F
(G) in 𝑃(G) do

𝑚 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑢𝑡𝑎𝑛𝑡B𝑃(G), 𝑝F
(G)C;

𝑝F∗ = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟B𝑝F
(G), 𝑚C;

𝑆F∗ = 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚(𝑝F∗);
𝑓F∗ = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑀𝑖𝑠𝑠𝑖𝑜𝑛(𝑆F∗, 𝑅𝑜𝑏𝑜𝑡𝑠, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, 𝑇𝑎𝑟𝑔𝑒𝑡𝑠);

for each 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑝F
(G) in 𝑃(G) do

if B𝑓F∗ < 𝑓F
(G)C then

𝑝F
(GIJ) = 𝑝F∗;
𝑓F
(GIJ) = 𝑓F∗;

else
𝑝F
(GIJ) = 𝑝F

(G);
𝑓F
(GIJ) = 𝑓F

(G);
𝑓KFL
(GIJ) = 𝑚𝑖𝑛G𝑓J

(GIJ), … , 𝑓M
(GIJ)I;

𝑡 = 𝑡 + 1;
while B𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛B𝑓KFL

(G) , 𝑡C = 𝑓𝑎𝑙𝑠𝑒C;
return 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑇𝑜𝑆𝑤𝑎𝑟𝑚B𝑝KFL

(G) C;

Algorithm 3.2
Mutation for DE/rand/1/bin

function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑢𝑡𝑎𝑛𝑡B𝑃(G), 𝑝F
(G)C

𝑝N = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G)IO;

𝑝NN = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G), 𝑝NIO;

𝑝NNN = 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 M𝑃(G) ∖ G𝑝F
(G), 𝑝N, 𝑝NNIO;

return 𝑝N + 𝐹 ∙ (𝑝NN − 𝑝NNN);

 62

Algorithm 3.3
Binomial crossover

function 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟B𝑝F
(G), 𝑚C

𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑔𝑒𝑟(1, 𝐾);
for each 𝑗-th gene 𝑝O,F

(G) in 𝑝F
(G) do

if (𝑟𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑎𝑙(0, 1) < 𝐶𝑅)	𝑜𝑟	(𝑗 = 𝑘) then
𝑤O = 𝑚O ;

else
𝑤O = 𝑝O,F

(G);
return 𝑤;

Table 3.1 shows the parameter space of the SFE algorithm, i.e. the variable parameters

to be tuned to a target search mission, together with the corresponding units of measurement

in a real world scenario.

Table 3.1 - Parameter space of the SFE algorithm

Parameters Unit of measurement

stigmergy.radiusTop
stigmergy.radiusDown
stigmergy.evapRate
stigmergy.olfactoryHabituation
stigmergy.repulsiveRadius
stigmergy.repulsiveEvapRate
flocking.angle
flocking.wiggleVar
flocking.radiusSeparate
flocking.maxSeparateTurn
flocking.radiusAlign
flocking.maxAlignTurn
flocking.radiusCohere
flocking.maxCohereTurn

meters
meters

percentage
seconds
meters

percentage
degrees
degrees
meters
degrees
meters
degrees
meters
degrees

It is worth to be noted that when the parameters stigmergy.radiusTop, stigmergy.radiusDown,

and stigmergy.repulsiveRadius are very small, then attractive and repulsive stigmergy are very low

too. Similarly, if flocking.angle in Figure 3.2(a) is very small, then flocking is very low since no

flock mate is visible. Thus, such parameters can lower/raise the contribution of each

component in the overall workflow, in a continuous optimization space.

 63

3.2 Simulation testbed

The methodology described in the section 3.1 has been implemented within a

modeling and optimization testbed that has been publicly released (Monaco, 2021). The

computational models related to attractive pheromone, repulsive pheromone, stigmergy-

based behavior, and flocking behavior have been implemented by using NetLogo (Wilensky

& Rand), that is the most popular toolkit for agent-based modeling in the socio-ecological

modeling community. NetLogo is a java-based graphical environment for the programming

of multi-agent systems, which allows to interact thousands of independent, heterogeneous

and parallel agents and to reproduce in real time the dynamic aspect of the simulated

phenomena. These characteristics allow, on one hand, the exploration of the agents’

behaviors at the level of local interactions and, on the other hand, the analysis of the effects

of such interactions at a global level. NetLogo represents the most popular simulation

platform for swarm intelligence-based systems. The NetLogo programming language is

designed to be easy to learn. The single statements of the language are represented by English

words, and the statement sequences appear very similar to simple sentences. Furthermore,

NetLogo offers a series of tools very useful for representing, during a simulation, the intrinsic

characteristics of a model in execution, as for example monitor, graphs, fields to insert textual

values, and so on. The strength that makes this language powerful is definitely the Java core.

Basically, NetLogo's tools and the language used to describe the models constitute an

intermediate layer between the user and the machine, which NetLogo automatically translates

into fast and powerful Java programs.

In addition to environment and swarm algorithms, the testbed considers the robots

sensing, actuation, and collision avoidance, by modeling drone size, battery duration, sensing

radius, sensing angle, collision vision, collision angle, angular speed, acceleration, and cruise

speed. Scenarios of different complexity have been considered.

In Figure 3.4 it is shown an ongoing scenario of target search. We consider a swarm

of mobile robots, or drones, deployed in an exploration area, in order to search and process

the targets cooperatively. We assume that the environment is unstructured, i.e., obstacles or

targets number and locations are unknown. In Figure 3.4 obstacles are represented in grey

color. Drones are depicted as green arrowheads, and undetected/detected targets as

red/yellow points. Finally, an attractive/repulsive pheromone is represented as blue/pink

continuous intensity.

 64

Figure 3.4 - Environment: drones, targets, attractive and repulsive pheromones, obstacles

The swarm is also divided into flocks: flexible, dynamic, and autonomous groups

communicating between themselves (flock mates) and self-organizing, splitting around

obstacles, rejoining, and avoiding collisions with each other. Moreover, an attractive

pheromone released by flock mates creates a short-medium term potential to compact the

flock where multiple targets are detected. In contrast, a repulsive pheromone helps the

drones to avoid multiple exploration of the same area whereas new targets are not detected.

Finally, olfactory habituation is another bio-inspired form of memory: when exposed to the

maximum intensity of attractive pheromone, the sensing saturates and becomes unable to

sense for a while, to leave the saturated area more efficiently.

The parametric optimization of the aggregated low-level heuristics has been performed

using a Python language implementation of the Differential Evolution algorithm, available

in the open-source SciPy library. In order to provide the parameter values to the NetLogo

model and obtain the swarm performance, that, as stated earlier, represents the fitness value,

we have used NL4Py (Gunaratne & Garibay, 2021), a controller software for Python,

 65

developed with the goals of usability, fast parallel execution, and access to model parameters.

NL4Py uses a client-server architecture via Py4J, a Python-Java bridging software. Moreover,

it parallelizes the execution of NetLogo workspaces, instead of leaving it to the user's python

application.

The Figure 3.5 shows the overall software architecture of the released simulation

testbed. The optimizer subsystem is fully developed in python language and includes the

starting point of the hyper-heuristic methodology, identified by the file de_with_nl4py.py. The

component uses the implementation of the differential evolution algorithm, that at each

generation evaluates the population in parallel, exploiting all available CPUs. Each running

objective function communicates with the NL4Py software through a singleton class

WorkspaceManager, created according to the façade design pattern.

NL4Py consists of two main components, a client written in Python and a server

written in Java. The client code communicates to the NetLogoControllerServer through a soket

enabled by the Py4J library. The client-server architecture allows NetLogo headless

workspaces (that are essentially NetLogo models running without the GUI enabled) to be

run in parallel as Java threads on the NetLogoControllerServer. This allows users to not have to

manage the connection to the JVM, thread/process creation, and garbage collection of

multiple headless workspaces from their Python application code. NetLogo provides,

through its controlling API, headless workspaces that can be controlled via Java or Scala

application and are implicitly thread safe. NL4Py pushes concurrency to the JVM through

the NetLogoControllerServer. The NL4Py Python client supplies thread safe

NetLogoHeadlessWorkspace objects to the Python application developer, created according to

the factory design pattern. Each running objective function created by the optimizer

component is mapped to a NetLogoHeadlessWorkspace object. In turn, each

NetLogoHeadlessWorkspace object is mapped to a HeadlessWorkspaceController object on the

NetLogoControllerServer, which has the responsibility to start and stop the NetLogo model, to

send commands to the model, to query parameters, and to fetch results from the model.

 66

Figure 3.5 - UML component diagram of the simulation testbed SFE

 67

3.3 Real-world scenarios

Real world scenarios of different complexity have been considered for the exploration

simulator. The Illegal Dump scenario represents a real abusive trash map of 80,000 m2 near

the town of Paternò	(Italy), and is composed by 11 groups of targets with an average number

of 4 targets per group, 19 buildings of different sizes, 140 trees (www.trashout.me). Figure

3.6(a) and Figure 3.6(b) show the aerial photo and the corresponding vectorial model,

respectively.

(a)

(b)

Figure 3.6 - Illegal dump scenario: (a) aerial photo (Google Maps ©), (b) vectorial model

The Rural Mine scenario is a real-world example of areas with landmine objects in

Bosnia-Herzegovina, described in public available data (www.seedemining.org). It is made

up of 28 buildings, 59 trees and 40 targets. Figure 3.7(a) and Figure 3.7(b) show the aerial

photo and the corresponding vectorial model, respectively.

(a)

(b)

Figure 3.7 - Rural mine scenario: (a) aerial photo (Google Maps ©), (b) vectorial model

 68

The LPG Leak scenario is based on an accident caused by an LPG railcar rupture,

which occurred in 2009 in the urban area of Viareggio, Italy (ref). Figure 3.8(a) and Figure

3.8(b) show the aerial map and the corresponding vectorial model, respectively.

(a)

(b)

Figure 3.8 - LPG leak scenario: (a) aerial map (Pontiggia, et al., 2011), (b) vectorial model

 69

Chapter 4

4 Applications

In this chapter some experimental applications of the methodology described in the

former chapter are detailed. The experimental results of these applications are published in

an international journal paper and in peer reviewed international conferences papers. We

start with the problem of target search via a swarm of robots and the comparison between

some popular bio-inspired swarm algorithms, that have been made adaptive, and our SFE

hyper-heuristic. It follows the problem of coordinating multiple Unmanned Aerial Vehicles

(UAV) for distributed targets tracking, in different technological and environmental settings.

Finally, we focus on the results of a simulated analysis concerning the mitigation of plastic

pollution in oceans via a swarm of Unmanned Surface Vehicles (USV).

4.1 Comparison between SFE and adaptive bio-inspired meta-

heuristics

In the target search problem via swarms of robots, in complex or open environments,

the robots cannot exploit static information on layout and target’s locations. Therefore, their

coordination is fundamental for an efficient target discovery. To coordinate the swarm, the

following popular bio-inspired swarm algorithms have been considered and made adaptive:

Ant Colony Optimization, namely ACO (inspired by ants) for exploration; Firefly Team

Strategy, namely FTS (inspired by fireflies), Particle Swarm Optimization, namely PSO

(inspired by birds), and Artificial Bee Colony, namely ABC (inspired by honeybees) for

recruitment. Parameter tuning for adaptation is performed via the Differential Evolution

(DE) optimization. The DE is able to find the best algorithmic parameters of a bio-inspired

algorithm for improving the mission performance. In order to overcome the design

constraints of bio-inspired approaches, an approach based on hyper-heuristics is also

considered. This approach is called SFE because it is based on Stigmergy, Flocking and

Evolution. Experimental results on real-world scenarios, carried out and released as a public

testbed, show that the SFE significantly outperforms the adaptive bio-heuristics, in both

 70

exploration and recruitment. The SFE is also faster in terms of optimization duration,

although it requires more memory.

4.1.1 Problem statement

In a target search mission, a robot can assume two major roles: explorer and

coordinator (Palmieri, Yang, De Rango, & Marano, 2017). The purpose of exploration is to

discover new targets, whereas the purpose of coordination is to recruit the necessary number

of follower robots to process the discovered target. Figure 4.1 shows a UML activity diagram

with the overall workflow carried out by each robot involved in a target search mission.

Figure 4.1 - Target search mission: UML activity diagram with the overall workflow

The process begins at the black start circle and ends at the white circle with a cross

inside. The major activities are represented by bold round-cornered rectangles, and are

connected by the following two core flows:

1) 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 → 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 → 𝑝𝑒𝑟𝑓𝑜𝑟𝑚

2) 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ⇄ 𝑓𝑜𝑙𝑙𝑜𝑤 → 𝑟𝑒𝑎𝑑𝑦 → 𝑝𝑒𝑟𝑓𝑜𝑟𝑚

 71

Each activity is defined as a workflow of generic tasks. The implementation of a task

can vary depending on the bio-inspired approach (e.g., ACO for exploration; FTS, PSO, and

ABC, for recruitment (Palmieri, Yang, De Rango, & Marano, 2017). It follows the

description of each activity:

• Explore: the robot explores the area for discovering targets. First, it is oriented by its

perception of a medium depending on the biological model; then, it moves to the

next cell. If a new target is discovered, it coordinates; otherwise it dissuades from

following its recent path by releasing some anti-stimulus. Finally, if no recruitment

request arrives, the robot continues to explore, otherwise it follows.

• Follow: the robot is recruited by a coordinator robot. It selects one of the manifest

targets, then turns to it, and moves to the next cell. When the manifest target is

detected, the drone waits for coordination (ready).

• Coordinate: the robot becomes a coordinator when it detects a target, and after it starts

to recruit the needed robots. The recruitment is based on stimuli depending on the

bio-inspired approach.

• Ready: once reached the target, a recruited robot waits until the coordinator delivers

the authorization to perform the target.

• Perform: the target is processed by all recruited robots. Then, a stop criterion is

checked, e.g. a maximum time or a maximum percentage of targets found.

Bio-inspired techniques require relevant algorithm selection and parameterization

costs associated with every new type of mission and with new instances of known missions.

We adopt DE for the parametric adaptation of the bio-inspired exploration and recruitment

algorithms on target search. According to our approach, the DE finds the optimum in the

parametric search space of the bio-inspired algorithm which, in turn, solves a target discovery

problem in a bidimensional space, via exploration and recruitment of robots (Cimino, Lega,

Monaco, & Vaglini, 2019). Thus, for each bio-inspired algorithm, a corresponding adaptive

variant is adopted.

 72

4.1.2 Experimental setup

Considering the ACO for exploration, the FTS, PSO and ABC for recruitment, the

names of the corresponding variants of the algorithms are: ACO-E, FTS-E, PSO-E and

ABC-E, where the term “E”	 stands for Evolution. An algorithm variant solving both

exploration and recruitment tasks includes two acronyms and is parameterized in a search

space that is the union of the two search spaces. Since the recruitment problem varies

significantly in complexity depending on the number of robots needed to process a target,

namely 𝑁?6A/ , a suffix “RR*”	 is added to highlight the different complexity. For example,

“RR3”	means an algorithm for recruitment with 𝑁?6A/ = 3, whereas no suffix means an

algorithm without recruitment, in other words an exploration algorithm. When both

exploration and recruitment problems are considered, the name of the algorithmic solution

includes both acronyms. For example, ACO-ABC-RR3-E is an algorithm that involves ACO

for exploration, ABC for recruitment, both adapted through the DE, and in which at least

three robots are required to process a single target. Table 4.1, Table 4.2, Table 4.3, and Table

4.4 show the parametric spaces of ACO-E, used only for exploration task, ACO-FTS-RR3-

E, ACO-PSO-RR3-E and ACO-ABC-RR3-E, used for both exploration and recruitment

tasks, respectively. In Table 4.2 the value 𝐿 represents the maximum length between

dimensions of the simulated scenario. In Table 4.3, the PSO algorithm considers only the

global best particle, that, in this case, is represented by the location of the coordinator robot.

Table 4.1 - Parameter space of the ACO-E algorithm

Parameters Interval

𝑅P (pheromone range)
Δ𝜑D
𝜀
𝑎J
𝑎Q
𝜌
𝜂
𝜇
𝜆

[0, 8]
[0, 4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1]
[0, 2]
[0, 2]
[0, 1]
[0, 2]
[0, 2]
[0, 2]

 73

Table 4.2 - Parameter space of the ACO-FTS-RR3-E algorithm

Parameters Interval

𝑅R (perception range)
𝑅P (pheromone range)
Δ𝜑D
𝜀
𝑎J
𝑎Q
𝜌
𝜂
𝜇
𝜆
𝛽D
𝛾
𝛼
𝜎

[1, 19]
[0, 8]
[0, 4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1]
[0, 2]
[0, 2]
[0, 1]
[0, 2]
[0, 2]
[0, 2]
[0, 1]

1 𝐿⁄ 	(𝐿 = 𝑚𝑎𝑥{𝑚, 𝑛})
[0, 0.4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1]

Table 4.3 - Parameter space of the ACO-PSO-RR3-E algorithm

Parameters Interval

𝑅R (perception range)
𝑅P (pheromone range)
Δ𝜑D
𝜀STU
𝑎J
𝑎Q
𝜌
𝜂
𝜇
𝜆
𝜃
𝜅
𝜀VWU

[1, 19]
[0, 8]
[0, 4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1]
[0, 2]
[0, 2]
[0, 1]
[0, 2]
[0, 2]
[0, 2]
[0.4, 1]
[0, 4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1]

Table 4.4 - Parameter space of the ACO-ABC-RR3-E algorithm

Parameters Interval

𝑅R (perception range)

𝑅W (pheromone range)
Δ𝜑D
𝜀
𝑎J
𝑎Q
𝜌
𝜂
𝜇
𝜆
𝜙

[1, 19]
[0, 8]
[0, 4]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[0, 1]
[0, 2]
[0, 2]
[0, 1]
[0, 2]
[0, 2]
[0, 2]

𝑈𝑛𝑖𝑓𝑜𝑟𝑚	[−1, 1]

 74

During the recruitment task, if a robot is subject to many recruitment requests, it

moves to the closest target in case that the coordination algorithm is FTS or PSO. Instead,

in case of ABC algorithm, the 𝑘-th robot selects the 𝑧-th target with a probability inspired

by Eq. (2.18), as in the following:

𝑝#G =
) >#<⁄

∑) >#"⁄X(#
"7&

 (4.1)

where 𝐹𝑅# are the set of help requests (i.e., found targets) received by the 𝑘-th robot, 𝐹𝑅# ⊂

𝐹 ⊂ 𝑇, and 𝑑#G is the Euclidean distance. Moreover, the ABC algorithm takes into account

only the Eq. (2.19) to calculate the new position of a robot recruited by a coordinator.

Table 4.5 show the parametric space of SFE algorithm, used for both exploration and

recruitment.

Table 4.5 - Parameter space of the SFE and SFE-RR3 algorithms

Parameters Interval

stigmergy.radiusTop
stigmergy.radiusDown
stigmergy.evapRate
stigmergy.olfactoryHabituation
stigmergy.repulsiveRadius
stigmergy.repulsiveEvapRate
flocking.angle
flocking.wiggleVar
flocking.radiusSeparate
flocking.maxSeparateTurn
flocking.radiusAlign
flocking.maxAlignTurn
flocking.radiusCohere
flocking.maxCohereTurn

[1, 13]
[13, 19]
[0.01, 1]
[1, 10]
[0, 8]

[0.01, 0.5]
[15, 45]
[5, 15]
[6, 16]
[30, 45]
[16, 22]
[30, 45]
[18, 26]
[15, 30]

It is worth noting that when the parameters radiusTop, radiusDown, and repulsiveRadius

are very small, then attractive, and repulsive stigmergy are very low too. Similarly, if the

flocking angle is very small, then flocking is very low since no flock mate is visible. Thus, such

parameters can lower/raise the contribution of each component in the overall workflow, in

a continuous optimization space.

The most sensitive hyper-parameters of Differential Evolution are the differential

weight (F), the crossover rate (CR), and the population size (NP). We use a multiplier of the

problem dimension for setting the total population size: the population has 4𝐷 individuals.

Based on the literature, as discussed in the section 2.1.6.1, the range of values to consider are

 75

𝐶𝑅 in [0.1, 0.9] with steps of 0.1, 𝐹 in [0.4, 0.9] with steps of 0.1. Two mutation strategies

have been experimented.

Figure 4.2 and Figure 4.3 show the grid search on the Illegal Dump scenario, with the

ACO-RR1-E algorithm, for the DE/rand/1/bin (“r”	for short) and the DE/best/1/bin (“b”	

for short), respectively. We use the grid search because it is the traditional way of performing

hyperparameter optimization and the number of combinations of hyperparameters is not

very high.

Figure 4.2 - DE/best/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario

Figure 4.3 - DE/rand/1/bin hyperparameters grid search, with the ACO-E algorithm and the Illegal Dump scenario

 76

In these cases, the minimum duration of 189.3 ± 26.55 (r) and 190.0 ± 20.46 (b) is

achieved for (𝐶𝑅, 𝐹) equals to (0.8, 0.4) (r) and (0.7, 0.4) (b), respectively. In both figures, the

optimal values are highlighted with a small circle in the (𝐶𝑅, 𝐹) plane.

Similarly, Figure 4.4 and Figure 4.5 show the grid search process with the SFE-RR1

algorithm, for DE/rand/1/bin (r) and DE/best/1/bin (b), respectively.

Figure 4.4 - DE/best/1/bin hyperparameters grid search, with the SFE algorithm and the Illegal Dump scenario

Figure 4.5 - DE/rand/1/bin hyperparameters grid search, with the SFE algorithm and the Illegal Dump scenario

 77

Here, the minimum duration of 104.8 ± 10.45 (r) and 121.0 ± 2.99 (b) is achieved for

(𝐶𝑅, 𝐹) equals to (0.4, 0.4)	(r) and (0.6, 0.5) (b), respectively. As a result, the DE/rand/1/bin

strategy achieves better performance than DE/best/1/bin with the SFE-RR1 algorithm and

achieves performance similar to DE/best/1/bin with the ACO-RR1-E algorithm. Overall,

the effectiveness of DE/rand/1/bin can be considered better.

4.1.3 Management of the stochastic behavior

An important aspect to consider is the control of the uncertainty potentially resulting

from the initial swarm position and from the random-evaluated parameters. For this purpose,

the initial swarm position is fixed: the swarms are initially located at the corners of the

environment and oriented towards the center of it. However, there are two sources of non-

determinism that can further influence the algorithmic performance.

The first source occurs at the application level of the target search, because all swarm

algorithms inherently include random-valued parameters: 𝑤𝑖𝑔𝑔𝑙𝑒 (SFE), 𝜀NOP (ACO), 𝜎

(FTS), 𝜀QRP (PSO), and 𝜙 (ABC). To manage this uncertainty, we adopt confidence intervals

as a way to measure performance beyond statistical fluctuations. Furthermore, in contrast to

the other swarm algorithms, the SFE allows to adapt the range of the wiggle via the DE

optimization, for achieving the best cost-uncertainty ratio.

The second source of non-determinism occurs at the optimization level provided by

the DE. Specifically, in the Algorithm 3.1 the intializePopulation function is managed via the

lower/upper bounds per parameter, and by a Latin Hypercube sampling to maximize the

coverage of the available parameter space. The generateMutant also involves multiple random

extractions, except for the DE/best/1/bin, to select the best individual as a base vector 𝑝6
($).

Finally, the binomialCrossover includes some random extractions, managed by the parameter

CR. To control the last two variabilities, two mutation strategies and various CR values have

been compared in the hyperparameters search process. Finally, to further reduce the overall

uncertainty, each fitness evaluation is measured as an average of 10 trials, and the best result

provided by the DE is calculated as an average of 3 independent trials made by 40

generations.

 78

4.1.4 Experimental results

The study is based on the three scenarios presented in the section 3.2. By using the

DE/rand/1/bin and the optimal values of hyperparameters determined by the grid search,

a comparative analysis of the different algorithms has been carried out. For each scenario

and for each strategy, the DE optimization has been carried out 10 times, determining via a

graphical normality test that the resulting mission duration is well modelled by a normal

distribution. Finally, the 95% confidence intervals have been calculated. Table 4.6 and Table

4.7 show the mission duration before and after the DE.

Table 4.6 - Swarm Exploration: mission duration before and after Differential Evolution

Scenario Algorithm Mission duration before DE Mission duration after DE

Dump

''

Rural Mine

''

LPG Leak

''

SFE-RR1

ACO-RR1-E

SFE-RR1

ACO-RR1-E

SFE-RR1

ACO-RR1-E

185.97 ± 13.50

317.10 ± 18.10

226.67 ± 51.03

256.80 ± 14.08

191.57 ± 17.13

215.43 ± 25.35

144.87 ± 09.62

217.87 ± 09.56

159.53 ± 20.37

205.00 ± 07.61

134.87 ± 05.09

168.80 ± 04.04

Table 4.7 - Swarm Exploration + Recruitment: mission duration, before and after Differential Evolution

Scenario Algorithm Mission duration before DE Mission duration after DE

Dump SFE-RR3 251.87 ± 27.31 186.20 ± 04.02

" ACO-FTS-RR3-E 331.23 ± 20.68 261.47 ± 09.10

" ACO-PSO-RR3-E 396.00 ± 09.99 269.23 ± 03.55

" ACO-ABC-RR3-E 575.87 ± 131.24 409.33 ± 19.93

Rural Mine SFE-RR3 267.70 ± 24.51 193.90 ± 24.71

" ACO-FTS-RR3-E 338.00 ± 61.86 236.67 ± 01.73

" ACO-PSO-RR3-E 316.70 ± 30.45 262.00 ± 03.85

" ACO-ABC-RR3-E 409.10 ± 26.56 318.00 ± 22.83

LPG Leak SFE-RR3 220.10 ± 05.05 168.77 ± 07.44

" ACO-FTS-RR3-E 459.77 ± 09.10 286.20 ± 21.12

" ACO-PSO-RR3-E 482.43 ± 28.61 302.23 ± 14.45

" ACO-ABC-RR3-E 832.43 ± 15.15 577.13 ± 19.20

In both tables, it is apparent that the swarm exploration and recruitment carried out

by the proposed SFE algorithm outperform the other strategies. Furthermore, it is clear that

the DE optimization sensibly improves all the algorithms by providing adaptation to the

specific scenario. Figure 4.6 shows the average best fitness against number of generations of

the optimization process.

 79

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.6 - Mission duration optimization: average best fitness against number of generations. Exploration on (a) Dump, (b) Rural
Mine, (c) LPG Leak, Exploration + Recruitment on (d) Dump, (e) Rural Mine, (f) LPG Leak

 80

Moreover, to better show the improvements made by the optimization of the target

discovery process, Figure 4.7 shows the average percentage of target found against time by

the SFE on Illegal Dump scenario, before and after the DE, over 10 trials.

Figure 4.7 - Illegal Dump scenario: average percentage of targets found against time achieved by SFE algorithm, before (blue) and

after (orange) DE

Finally, to show the computational efficiency, we consider the duration of DE for the

different algorithms and for each scenario. The runtime of the DE depends linearly on the

population size and on the number of generations. We fix the generations to 40 for all the

algorithms. We have also to consider that implementation is engineered for parallel

computing. The hardware and software platforms used are CPU Intel® Xeon® Gold 6140M

at 2.2-2,3 GHz, Linux OS and Python for optimization process, and Java/NetLogo for

coding algorithms and mission simulation. The optimization time of a mission depends on

the scenario complexity and on the quality of the coordination mechanism, which are

difficult to express. The optimization time can be empirically measured via the average DE

runtime per scenario. Table 4.8 shows the average DE optimization time, over 3 runs, for 40

generations.

The computational model of the SFE is the most efficient for both exploration and

recruitment. In contrast, when considering the complexity in memory, a different situation

appears. Table 4.9 shows the memory usage for each algorithm, for the Illegal Dump

scenario. It is apparent from Table 4.9 that the SFE is much more expensive in terms of

memory.

 81

Table 4.8 - Average DE opimization duration for 40 generations

Scenario Algorithm Avg DE time Population size

Dump SFE-RR1 1h 04' 01" 56

" ACO-RR1-E 9h 49' 53" 32

" SFE-RR3 1h 56' 26" 56

" ACO-FTS-RR3-E 15h 29' 39" 44

" ACO-PSO-RR3-E 1d 7h 29' 41" 44

" ACO-ABC-RR3-E 19h 41' 13" 36

Rural Mine SFE-RR1 1h 26' 29" 56

" ACO-RR1-E 19h 34' 52" 32

" SFE-RR3 2h 07' 22" 56

" ACO-FTS-RR3-E 14h 26' 24" 44

" ACO-PSO-RR3-E 1d 19h 39' 24" 44

" ACO-ABC-RR3-E 14h 42' 13" 36

LPG Leak SFE-RR1 1h 04' 16" 56

" ACO-RR1-E 1d 1h 49' 55" 32

" SFE-RR3 1h 59' 12" 56

" ACO-FTS-RR3-E 22h 39' 00" 44

" ACO-PSO-RR3-E 15h 16' 18" 44

" ACO-ABC-RR3-E 1d 3h 13' 45" 36

Table 4.9 - Memory usage at the end of the 1st DE generation

Algorithm RAM (GB) Population size RAM (GB) per individual

SFE-RR1

ACO-RR1-E

SFE-RR3

ACO-FTS-RR3-E

ACO-PSO-RR3-E

ACO-ABC-RR3-E

317

127

321

201

175

165

56

32

56

44

44

36

5.66

3.97

5.73

4.57

3.98

4.58

 82

4.2 Targets tracking via UAV swarms

In the simulation testbed a target represents the basic element to model different types

of objects, substances or chemical agents that should be detected, within the battery life, by

the specific sensors that the drones are supposed to be equipped with. The scenarios

described so far are characterized by the presence of static targets, that is, where the number

and position of individual targets remain unchanged throughout the simulation time.

However, this class of problems does not cover the range of possible real-world applications

that find a natural solution in the use of Unmanned Aerial Vehicles (UAVs or drones)

swarms. Specifically, certain dynamic phenomena such as the evolution of a fire or the

expansion of a toxic cloud into the atmosphere need to be analyzed as a whole, possibly in

a three-dimensional way, and not from a single perspective. As a consequence, in scenarios

of this type, the need to use a swarm of drones has an undiscussed value especially of a

technical nature, otherwise not achievable by other means. In fact, the observation of a

phenomenon that can be characterized only if contextually and in parallel we have data from

all observable points of view, is something that probably can be done only with swarms of

drones and not with single drones.

The possibility of being able to evaluate the coordination performance of drones also

in the characterization of dynamic phenomena requires the need to extend the simulation

logic. In this case, essentially, the number and position of targets may change during the

simulation. In the case of scenarios with static targets, the performance of the coordination

algorithm is measured by considering the time it takes to detect most (typically 95%) of the

targets to be found (best effort). However, considering a scenario with moving targets, this

metric is unsuitable mainly because, being the characterization of a dynamic phenomenon,

its speed of evolution could prevent drones from ensuring such a high detection rate (real

time). So, it is needed to introduce a different suitable metric. The use of drone swarms

within scenarios characterized by dynamic phenomena is particularly suitable for two types

of missions:

• discovery of the dynamic phenomenon: the swarm of drones has the task of patrolling

the search environment and promptly detect a possible anomaly in an early stage of

its evolution.

• tracking of the dynamic phenomenon: the swarm of drones has the task of

characterizing the phenomenon during its partial or complete evolution.

 83

The nature of these tasks is deeply different from the detection of a static object. In

fact, the dynamic phenomenon to be detected or tracked is likely to occur when the swarm

of drones is already deployed in flock to patrol an area. Unlike the case of scenarios with

static targets, dynamic scenarios must include the possibility of deploying drones on the

environment before the phenomenon begins to evolve. Therefore, the simulation testbed

has been suitably adapted to this purpose. In order to make a dynamic phenomenon suitable

for simulation, the evolution of the targets can be realized by means of a succession of frames

obtained through the sampling of the real phenomenon at certain time instants. By adopting

this solution, in addition to the simulated time, even the dynamics of the targets is discretized.

This simplification does not affect the correctness of the modeling in the hypothesis in which

the cruise speed at which the drones fly, and their analysis rate are an order of magnitude

higher than the sampling rate of the dynamic phenomenon to be observed. For example,

considering an adequate drone model that flies at a speed of 50 Km/h and knowing that the

examined phenomenon is evolving, but has a speed of 5 Km/h, for a mission of about 20

minutes we can imagine to consider only 4 or 5 frames of the evolution of the phenomenon,

in which the phenomenon itself can be considered almost stationary.

In the simulation testbed, the target dynamics is supplied as a sequence of frames

whose transition is ruled by a preset time frequency. This both avoid the effort of coding the

equations underlying the dynamics of targets and allows to use real available frames to

recreate a new scenario. We consider three dynamic scenarios:

• Fire Tracking comes by a propagation model developed by the Northwestern

University (Wilensky, 1997).

• H2S Leak is based on a sour gas accident occurred in December 2003, in Chongqing

City, in a Gas Field located in the northeastern of Sichuan, China (Qingchun &

Laibin, 2011).

• LPG Leak is based on an accident occurred in June 2009 in Viareggio, Italy, and

involving an LPG railcar rupture in a congested urban area (Pontiggia, et al., 2011).

Table 4.10 summarizes the main features of each scenario.

Table 4.10 - Characteristics of dynamic scenarios

Scenario Area size (m × m) Targets animation N. of frames

Fire Tracking 1400 × 1400 20 min. 5

H2S Leak 4816 × 4400 48 min. 4

LPG Leak 500 × 300 4 min. 4

 84

Formally, given a simulated scenario Ω, made of:

i. simulation instants of time 𝑡 ∈ ℕ<;

ii. a set of drones {𝐷}, each drone having a dynamic position (𝑥$, 𝑦$)S;

iii. a set of targets 𝜏 ∈ 𝑇, that can change every frame transition period 𝑃, i.e., (𝑥, 𝑦)T(1),

𝜑 = 0, 𝑃, 2𝑃,… , 𝑡𝑃, … , 𝜙, where 𝜙 = 𝑛𝑃 is the predefined final instant of the

simulation, and 𝑛 is the number of frames of the simulation.

The fitness of the dynamic simulated scenario Ω is then defined as the average

percentage of targets discovered in all frames, as in the following:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(Ω) = Q
U
∑ |WX(1)|

|W(1)|
U
1.Q (4.2)

where 𝑇(𝜑) is the number of targets in the frame that ends at time 𝜑, and 𝑇X(𝜑) is the

corresponding number of found targets.

As a pilot example, Figure 4.8 and Figure 4.9 show two frames of the Fire Tracking

scenario. Here, drones are represented as lilac arrowheads. The fire front to be tracked is

represented by colored targeted cells. Thus, a single-colored targeted cell represents a small

portion of the fire front. A targeted cell can be discovered/tracked, i.e., the yellow cell, or

undiscovered/untracked, i.e., the red cell. The pheromone clouds are depicted in the figures

as clusters of gray cells, where the level of gray represents the intensity of the pheromone.

These clearly show that the swarm is tracking the fire evolutions.

Figure 4.8 - Fire Tracking: simulation frame at tick 1013

 85

Figure 4.9 - Fire Tracking: simulation frame at tick 1277

Table 4.11 shows the performance of 80 UAVs swarm, adapted for each scenario, in

terms of the 95% confidence interval over 10 repeated trials.

Table 4.11 - 80 UAVs swarm performance over dynamic scenarios

Scenario Performance

Fire Tracking 99.88 ± 0.06 %

H2S Leak 98.78 ± 0.17 %

LPG Leak 93.88 ± 0.28 %

Experimental results show the effectiveness of the swarm in tracking the dynamic

phenomenon. The number of UAVs has been determined by setting incremental values and

assessing the impact on performance. For example, Table 4.12 shows the performance of

20, 40, 60, 80 UAVs for Fire Tracking, in terms of 95% confidence interval over 10 repeated

trials.

Table 4.12 - Fire Tracking: swarm performance for a different number of UAVs

N. of UAVs Performance

20 60.64 ± 2.06 %

40 90.36 ± 0.54 %

60 98.43 ± 0.25 %

80 99.88 ± 0.06 %

 86

4.3 Oceans cleanup management via USV swarms

Plastic pollution is a major source of marine debris. Many plastics, including

polypropylene, polyethylene, nylon, polystyrene, polycarbonate, and polyvinyl chloride

(PVC) are very durable; some are predicted to persist in the marine environment for many

years. The wind and ocean current can lead to the accumulation over time of buoyant plastic

in specific geographical areas so inducing serious pollution problems, also related to the

degradation of plastic materials and the formation of sea-slicks and biofilms. Europe, after

China, is the second largest producer of plastic. The major plastic-consuming countries in

the European Union are Germany and Italy (Villarrubia-Gómez, Cornell, & Fabres, 2018).

Observation and mitigation represent a fundamental step to marine plastics reduction.

Among the most common mitigation techniques we mention those based on a removing,

cleaning-up and biotechnology strategies.

This application focuses on the perspective use of the Albatross Unmanned Surface

Vehicle (USV) prototype which was designed and presented in 2019 at the NASA Space

Apps Challenge. In the literature, swarms of robots are increasingly proposed as a viable

solution to mitigate the problem of plastic pollution in oceans. The cooperation of a USV

swarm can sensibly increase the performances of cleaning dirty oceanic zones. The USV is

assumed to be equipped with on-board sensors that allow it to identify the plastic debris

(Kylili, Kyriakides, Artusi, & Hadjistassou, 2019).

In general, the cooperation of USVs can be coordinated either in a centralized or a

decentralized way. The centralized coordination asks for a human operator who analyses and

collects information about dirty zones and updates the environment map of USVs. As a

result, the swarm navigates to a new assigned dirty zone and cleans it. The main characteristic

of a USV coordination strategy is its capability to be autonomous, robust, resilient, and

adaptive. Centralized logic solutions are not effective for this purpose, due to the high level

of complexity, design, and management effort. In contrast, decentralized logic approaches

can provide a USV swarm with a certain degree of autonomy (Meng, et al., 2014).

In this application, two swarm intelligence algorithms are compared, i.e., Ant Colony

Optimization (ACO) (Palmieri, Yang, De Rango, & Marano, 2017) with Evolution (ACO-

E), and Stigmergy Flocking Evolution (SFE). As highlighted in the previous chapter, SFE

includes different biological cooperation models, inspired by chemical pheromone, olfactory,

and visual perception. Both algorithms are parametrically adaptive with respect to the layout,

thanks to the use of Evolutionary Optimization. Simulation results show that the SFE

algorithm sensibly overcomes the ACO in terms of amount of collected debris per month.

 87

A key point of the USV swarm coordination is the capability to provide a dynamic

update of the environment map, according to the sea current that moves the plastic debris.

To this purpose, here the model of the Copernicus Marine Service is used (Liubartseva,

Coppini, Lecci, & Clementi, 2018). The model provides a stream of frames with the spatial

distribution of floating plastics, based on the pattern of ocean currents. The model has been

created from Earth Observation data in a Numerical Weather Prediction (NWP).

The exploration problem is modelled by discretizing the environment into a lattice of

cells. Each cell has an area of 0.25 Km2. The temporal unit (tick) of the simulation

environment is set to 5 minutes. The duration of the mission is statically specified and

corresponds to one month of floating plastic movement. The target dynamics is reproduced

by using a sequence of frames with daily transition. The USV position and direction is

dynamic and set according to exploration and coordination rules, which can be parametrically

adapted by Differential Evolution algorithm.

Figure 4.10 summarizes the main steps of the procedure used to model the daily spatial

distribution of plastics within the study area.

(a)

(b)

Figure 4.10 - Procedure to determine the daily distribution of plastics

The starting point of the procedure is given by a frame providing spatial density of

plastics over sea. The Figure 4.10(a) represents the spatial density of plastic provided by the

Copernicus Marine Service. This frame is used to estimate the 2D probability density

function to find plastics at a location (latitude, longitude) over the sea. A Montecarlo

technique is then used to sample the location of plastics over sea, to generate the vectorial

map with the target to collect, represented as red points in Figure 4.10(b). The overall

collected plastic by the swarm is returned by the simulated mission and is used as a fitness

value to measure the effectiveness of each algorithm.

 88

The study area covers the portion of the Tyrrhenian Sea between northeastern Corsica

and Tuscany. Specifically, it is a 150.5 ×	150.5 Km2 area, with an overall navigable surface of

16235 Km2. This area is often affected by the formation of non-permanent floating plastic

islands, due to the characteristic sea currents (Fossi, et al., 2017). A realistic scenario is

simulated by using a video animation of the sea plastic pollution made available by the

Copernicus Marine Service (Liubartseva, Coppini, Lecci, & Clementi, 2018). For this study,

the period from 01/07/2016 till 30/07/2016 has been selected. Figure 4.11 shows the

pheromone clouds and the USV swarm tracking the floating plastic movements.

Figure 4.11 - Simulation of plastic collection

In our study, we have set the simulator with the physical and technological parameters

of the USV prototype designed in the ALBATROSS project (ALBATROSS, Trash Cleanup,

2019). The main characteristics of this drone are summarized in Table 4.13.

Table 4.13 - Techincal specification of the ALBATROSS trimaran

USV Parameter Real value

cruising speed 6 Km/h

maximum payload 6000 Kg

net capacity 33.3 Kg

size 25 × 13 m

 89

The performances of the swarm coordination algorithm have been assessed by

considering both ACO and SFE algorithms. Figure 4.12 shows the performance of 20 USVs

swarm, obtained with the two coordination strategies in the same simulation configurations.

For each strategy, the DE optimization is carried out 5 times, to calculate the 95% confidence

intervals.

Figure 4.12 - Amount of plastic collected by the USV swarm

The results show that the SFE algorithm clearly outperforms the ACO strategy.

 90

Chapter 5

5 Conclusion

This chapter draws the conclusion of this Ph.D. thesis. First, we discuss the proposed

approach to design coordination algorithms for swarms of robots in target search. Then, a

final section is devoted to possible future directions of this research.

5.1 Discussion

In this thesis, we present a novel methodology for designing heuristics for

decentralized coordination of robot swarms. The approach is based on the use of a hyper-

heuristic that aggregates and tunes the modular components of heuristics of lower level. The

experimental results obtained from the simulations over heterogeneous scenarios are very

promising. This confirms the effectiveness of hyper-heuristics in providing more generalized

solutions to optimization problem, by working well over a set of problems, rather than

producing good results for just a few problem instances.

Swarm robotics is the discipline that studies how to manage and coordinate large

groups (swarms) of mostly simple autonomous robots. In practice, modeling robot behavior

gets inspiration from swarm intelligence, where the desired collective behavior emerges from

simple rules and local interactions. This coordination approach has been shown to have

many advantages compared with other multi-robot systems. One of the problems in which

swarm robotics is most used is target search in unstructured environments. Target search

aims to discover elements of various complexity in a physical environment, by minimizing

the overall discovery time. A target search mission is usually organized into environmental

exploration, i.e., to search targets, and targets resolution, i.e., to collect sufficient target

information.

In complex and open environments, the robots cannot exploit static information on

layout and targets locations, therefore swarm robotics is well suited for an efficient targets

discovery. In the literature, different heuristics inspired by biological systems have been

 91

proposed to guide robots to complete missions. We have considered and made adaptive

some of these heuristics: Ant Colony Optimization (ACO), inspired by ants, for exploration

tasks, whereas Firefly algorithm (FTS, Firefly Team Strategy), inspired by fireflies, Particle

Swarm Optimization (PSO), inspired by birds flocking, and Artificial Bee Colony (ABC),

inspired by honeybees, for recruitment tasks. We have adapted algorithm parameters via

Differential Evolution optimization. Differential evolution has proven to be very effective

in finding the best algorithmic parameters of a bio-inspired heuristic in order to improve the

mission performance. In practice, it is not easy to select the most suitable heuristic for a

specific mission. Moreover, although adaptive, the logic of bio-heuristics is constrained by

models of biological species and requires relevant parametrization costs related to every new

type of mission and to new instances of known missions.

In order to overcome the design constraints of bio-inspired approaches, we propose a

novel methodology based on hyper-heuristics. Basically, a hyper-heuristic is a search method

or a learning mechanism to select or generate heuristics that solve search problems. We have

considered two fundamental behavioral components: stigmergy and flocking. Stigmergy is

used to release an attractive,	 or repulsive,	 pheromone while detecting the presence, or

absence, of a target during exploration. Flocking uses simple rules to model a robust and

flexible swarm formation. We have parametrized the pheromone model and the flocking

rules to obtain modular components. Then, in our design approach, for a given application

domain the Differential Evolution optimizes the aggregation and tuning of the basic

behavioral components in a unique and continuous search space. The proposed hyper-

heuristic is called SFE because it is based on Stigmergy, Flocking, and Evolution.

Experimental results on real-world scenarios, carried out and released as a public

simulation testbed, have shown that searching in the heuristic space allows to obtain more

efficient coordination logics, in both exploration and recruitment. Indeed, the SFE

significantly outperforms the other adaptive bio-heuristics in all considered scenarios. The

SFE is also faster in terms of optimization duration, although it requires more memory. The

technique has also proven effective when considering the problem of tracking dynamic

targets. Experimental results obtained by using swarms of Unmanned Aerial Vehicles on

real-world scenarios involving early fires and early toxic and dangerous gas dispersion are

very promising. Moreover, we have considered another important and current topic, that is

the problem of mitigation of plastic pollution in oceans. In this context, a realistic scenario

has been simulated considering a dataset provided by the Copernicus Marine Service. We

have configured the simulation testbed by using the technical specification of an Unmanned

Surface Vehicle prototype designed in the ALBATROSS project. Comparative results with

 92

the ACO algorithm have clearly shown that the SFE algorithm is more suitable in

coordinating swarms of USVs to collect plastic.

5.2 Future work

In the problem of coordinating swarms of robots searching for targets in unstructured

environments, the approach based on hyper-heuristics has proved to be successful compared

to the use of simple adaptive bio-heuristics. However, parametric optimization of modular

heuristics considers the accuracy of the solution as the only goal, in terms of minimizing

target search time in static scenarios or maximizing detected targets in dynamic scenarios.

The limit of this approach lies in the difficulty to understand the solution with respect to the

specific application context. In missions where it is useful to employ robot swarms, it would

be desirable to consider both accuracy and transparency requirements in order to acquire a

knowledge base that is accessible to human users. In this regard, one possible research

direction could be to optimize the transparency of the system. In other words, a first goal

could be to understand, through a proper design of the experimental plan, the relationship

between some relevant features of the application scenarios (e.g., target density, target

distribution, obstacle size, obstacle distribution, etc.) and the parameters related to stigmergy

and flocking. Later, the rules extracted from the experimental results could be used to address

the optimization of new types of missions or new instances of known missions. As a result,

by intelligently and comprehensibly constraining the search space, it should be possible to

reduce the variance of the solutions and obtain more statistically significant results.

 93

Appendix A

Publications

International Journal Paper

• Mario G.C.A. Cimino, Domenico Minici, Manilo Monaco, Stefano Petrocchi,

Gigliola Vaglini, “A hyper-heuristic methodology for coordinating swarms of robots

in target search”, Computers & Electrical Engineering, Volume 95, 2021, 107420.

Peer Reviewed International Conferences Papers

• Manilo Monaco, Mario G.C.A. Cimino, Gigliola Vaglini, Francesco Fusai, Giovanni

Nico, “Managing the Oceans Cleanup via Sea Current Analysis and Bio-Inspired

Coordination of USV Swarms”, In: Proceedings of the 2021 IEEE

International Geoscience and Remote Sensing Symposium IGARSS, pp. 8344-8347, Brussels,

Belgium, 11-16 July 2021.

• Cimino Mario G.C.A., Lega Massimiliano, Monaco Manilo, Vaglini Gigliola,

“Adaptive Exploration of a UAVs Swarm for Distributed Targets Detection and

Tracking”, In: Proceedings of the 8th International Conference on Pattern Recognition

Applications and Methods, (ICPRAM 2019), pp. 837-844, Prague, Czech Republic, 19-

21 February 2019.

• Manilo Monaco, Giovanni Nico, Pier Francesco Biagi, Anita Ermini, Aleksandra

Nina, Mario G.C.A. Cimino, Gigliola Vaglini, “Using VLF Time Series from the

INFREP Network for the Study of Pre-Seismic Radio Anomalies”, In: Proceedings

of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp.

8624-8627, Brussels, Belgium, 11-16 July 2021.

• Cimino Mario G.C.A., Dalla Bona Federico, Foglia Pierfrancesco, Monaco Manilo,

Prete Cosimo A., Vaglini Gigliola, “Stock Price Forecasting Over Adaptive

Timescale Using Supervised Learning and Receptive Fields”, In: Groza A., Prasath

R. (eds) Mining Intelligence and Knowledge Exploration, (MIKE 2018), Cluj-Napoca,

Romania, 20-22 December 2018, Lecture Notes in Computer Science, vol 11308.

Springer, Cham.

 94

Bibliography

Alfeo, A. L., Cimino, M. G., & Vaglini, G. (2019). Enhancing biologically inspired swarm behavior:

Metaheuristics to foster the optimization of UAVs coordination in target search. Computers

& Operations Research, 110, 34-47.

Alfeo, A. L., Cimino, M. G., De Francesco, N., Lazzeri, A., Lega, M., & Vaglini, G. (2018). Swarm

coordination of mini-UAVs for target search using imperfect sensors. Intelligent Decision

Technologies, vol. 12(no. 2), pp. 149-162.

Alfeo, A. L., Cimino, M. G., De Francesco, N., Lega, M., & Vaglini, G. (2018). Design and

simulation of the emergent behavior of small drones swarming for distributed target

localization. Journal of Computational Science, 29, 19-33.

Arvin, F., Murray, J. C., Shi, L., Zhang, C., & Yue, S. (2014). Development of an autonomous

micro robot for swarm robotics. IEEE International Conference on Mechatronics and Automation

(pp. 635-640). IEEE.

Beni, G., & Wang, J. (1989). Swarm intelligence in cellular robotic systems. Robots and Biological

Systems: Towards a new Bionics? Proceedings of the NATO Advanced Workshop on Robots and

Biologica Systems (pp. 703-712). Springer.

Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization

in social insects. Trends in Ecology & Evolution, vol. 12(5), 188-193.

Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2016). Automated Design of Production

Scheduling Heuristics: A Review. IEEE Transactions on Evolutionary Computation, 20(1), 110-

124.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-Adapting Control

Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark

Problems. IEEE Transactions on Evolutionary Computation, 10(6), 646-657.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2013). Hyper-

heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64, 1695-

1724.

Burke, E. K., Hyde, M., Kendall, G., & Woodward, J. (2010). A Genetic Programming Hyper-

Heuristic Approach for Evolving 2-D Strip Packing Heuristics. IEEE Transactions on

Evolutionary Computation, 14(6), 942-958.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., & Schulenburg, S. (2003). Hyper-Heuristics:

An Emerging Direction in Modern Search Technology. Glover F., Kochenberger G.A. (eds)

Handbook of Metaheuristics. International Series in Operations Research & Management Science, 57,

457-474.

 95

Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in

particle swarm optimization. Computers & Operations Research, 33(3), 859-871.

Cimino, M. G., Lazzeri, A., & Vaglini, G. (2015). Improving the Analysis of Context-Aware

Information via Marker-Based Stigmergy and Differential Evolution. International Conference

on Artificial Intelligence and Soft Computing. vol. 9120, pp. 341-352. Springer.

Cimino, M. G., Lega, M., Monaco, M., & Vaglini, G. (2019). Adaptive exploration of a UAVs

swarm for distributed targets detection and tracking. The 8th International Conference on Pattern

Recognition Applications and Methods (ICPRAM) (pp. 837-844). Prague: SciTePress.

Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot

path planning using artificial bee colony and evolutionary programming. Applied Soft

Computing, 30, 319-328.

Countryman, S. M., Stumpe, M. C., Crow, S. P., Adler, F. R., Greene, M. J., Vonshak, M., &

Gordon, D. M. (2015). Collective search by ants in microgravity. Frontiers in Ecology and

Evolution, 3, 25.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: a survey. Theoretical Computer Science,

344(2-3), 243-278.

Dorigo, M., Birattari, M., & Stützle, T. (2006). Ant colony optimization. IEEE Computational

Intelligence Magazine. vol.1, no. 4, pp. 28-39. IEEE.

Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation

Computer Systems, 16(8), 851-871.

Drake, J. H., Hyde, M., Ibrahim, K., & Ozcan, E. (2014). A genetic programming hyper-heuristic

for the multidimensional knapsack problem. Kybernetes, 43(9/10), 1500-1511.

Ducatelle, F., Di Caro, G. A., Pinciroli, C., & Gambardella, L. M. (2011). Self-organized

cooperation between robotic swarms. Swarm Intelligence, 5(2), 73-96.

Eiben, A., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms.

IEEE Transactions on Evolutionary Computation, 3(2), 124-141.

Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green

vehicle routing problem with multiple technologies and partial recharges. Transportation

Research Part E: Logistics and Transportation Review, 71, 111-128.

Fossi, M. C., Romeo, T., Baini, M., Panti, C., Marsili, L., Campani, T., . . . Lapucci, C. (2017). Plastic

Debris Occurrence, Convergence Areas and Fin Whales Feeding Ground in the

Mediterranean Marine Protected Area Pelagos Sanctuary: A Modeling Approach. Frontiers

in Marine Science, 4(167).

 96

Fujisawa, R., Dobata, S., Kubota, D., Imamura, I., & Matsuno, F. (2008). Dependency by

Concentration of Pheromone Trail for Multiple Robots. International Conference on Ant Colony

Optimization and Swarm Intelligence. vol. 5217, pp. 283-290. Springer.

Fukunaga, A. S. (2008). Automated Discovery of Local Search Heuristics for Satisfiability Testing.

Evolutionary Computation, 16(1), 31-61.

Garrido, P., & Riff, M. C. (2010). DVRP: a hard dynamic combinatorial optimisation problem

tackled by an evolutionary hyper-heuristic. Journal of Heuristics, 16(6), 795-834.

Gasa, K., Vinci, A. E., Puccinelli, E., Modafferi, L. M., & Sophie. (2019). ALBATROSS, Trash

Cleanup. Retrieved from NASA Space Apps Challenge at University of Pisa:

https://2019.spaceappschallenge.org/challenges/earths-oceans/trash-

cleanup/teams/albatross/project

Geiger, C. D., Uzsoy, R., & Aytug, H. (2006). Rapid Modeling and Discovery of Priority

Dispatching Rules: An Autonomous Learning Approach. Journal of Scheduling, 9(1), 7-34.

Gunaratne, C., & Garibay, I. (2021). NL4Py: Agent-based modeling in Python with parallelizable

NetLogo workspaces. SoftwareX, 16, 100801.

Howden, D. J. (2013). Fire Tracking with Collective Intelligence using Dynamic Priority Maps.

IEEE Congress on Evolutionary Computation (pp. 2610-2617). Cancun, Mexico: IEEE.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic Algorithm Configuration based on Local

Search. The 22nd AAAI Conference on Artificial Intelligence (pp. 1152-1157). AAAI.

Kahar, M., & Kendall, G. (2010). The examination timetabling problem at Universiti Malaysia

Pahang: Comparison of a constructive heuristic with an existing software solution. European

Journal of Operational Research, 207(2), 557-565.

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied

Mathematics and Computation, vol. 214(1), 108-132.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. ICNN'95 - International Conference

on Neural Networks. vol. 4, pp. 1942-1948. IEEE.

Kuyucu, T., Tanev, I., & Shimohara, K. (2012). Evolutionary Optimization of Pheromone-Based

Stigmergic Communication. European Conference on the Applications of Evolutionary Computation,

7248, 63-72.

Kylili, K., Kyriakides, I., Artusi, A., & Hadjistassou, C. (2019). Identifying floating plastic marine

debris using a deep learning approach. Environmental Science and Pollution Research, 26, 17091–

17099.

Lewis, S. M., & Cratsley, C. K. (2008). Flash Signal Evolution, Mate Choice, and Predation in

Fireflies. Annual Review of Entomology, 53(2), 293-321.

 97

Liubartseva, S., Coppini, G., Lecci, R., & Clementi, E. (2018). Tracking plastics in the

Mediterranean: 2D Lagrangian model. Marine Pollution Bulletin, 129(1), 151-162.

Lu, S., Xin, B., Zhang, H., & Chen, J. (2020). Agent-based Self-organized Constructive Heuristics

for Travelling Salesman Problem. 2020 59th IEEE Conference on Decision and Control (CDC)

(pp. 1164-1169). Jeju, Korea (South): IEEE.

Masár, M., & Zelenka, J. (2012). Modification of PSO algorithm for the purpose of space

exploration. IEEE The 16th International Conference on Intelligent Engineering Systems (INES)

(pp. 51-54). Lisbon, Portugal: IEEE.

Meng, W., He, Z., Su, R., Shehabinia, A. R., Lin, L., Teo, R., & Xie, L. (2014). Decentralized Control

of Multi-UAVs for Target Search, Tasking and Tracking. IFAC Proceedings Volumes, 47(3),

10048-10053.

Mohan, B. C., & Baskaran, R. (2012). A survey: Ant Colony Optimization based recent research

and implementation on several engineering domain. Expert Systems with Applications, 39(4),

4618-4627.

Monaco, M. (2021). GitHub. Retrieved from Stigmergy Flocking Evolution repository:

https://github.com/mlpi-unipi/sfe

Nguyen, S., Zhang, M., & Johnston, M. (2011). A genetic programming based hyper-heuristic

approach for combinatorial optimisation. The 13th annual Conference on Genetic and

Evolutionary Computation GECCO'11 (pp. 1299-1306). ACM Digital Library.

Ong, Y.-S., Lim, M.-H., Zhu, N., & Wong, K.-W. (2006). Classification of adaptive memetic

algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 36(1), 141-152.

Palmieri, N., Yang, X.-S., De Rango, F., & Marano, S. (2017). Comparison of bio-inspired

algorithms applied to the coordination of mobile robots considering the energy

consumption. Neural Computing and Applications, 31(1), 263-286.

Paquay, C., Limbourg, S., & Schyns, M. (2018). A tailored two-phase constructive heuristic for the

three-dimensional Multiple Bin Size Bin Packing Problem with transportation constraints.

European Journal of Operational Research, 267(1), 52-64.

Pillay, N., & Qu, R. (2018). Hyper-Heuristics: Theory and Applications. Springer.

Poli, R., & Koza, J. (2014). Genetic Programming. In Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques (pp. 143-185). Springer.

Pontiggia, M., Landucci, G., Busini, V., Derudi, M., Alba, M., Scaioni, M., . . . Rota, R. (2011). CFD

model simulation of LPG dispersion in urban areas. Atmospheric Environment, 45(24), 3913-

3923.

 98

Qingchun, M., & Laibin, Z. (2011). CFD simulation study on gas dispersion for risk assessment: A

case study of sour gas well blowout. Safety Science, 49(8-9), 1289-1295.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. The 14th annual

conference on Computer graphics and interactive techniques SIGGRAPH '87 (pp. 25-34). ACM

Digital Library.

Sauter, J. A., Matthews, R., Parunak, H. V., & Brueckner, S. A. (2007). Effectiveness of digital

pheromones controlling swarming vehicles in military scenarios. Journal of Aerospace

Computing, Information, and Communication, 4(5), 753-769.

Senanayake, M., Senthooran, I., Barca, J. C., Chung, H., Kamruzzaman, J., & Murshed, M. (2016).

Search and tracking algorithms for swarms of robots: A survey. Robotics and Autonomous

Systems, vol. 75(Part B), 422-434.

Smith, J. E. (2008). Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation.

In Adaptive and Multilevel Metaheuristics. Studies in Computational Intelligence. (Vol. 136, pp. 31-

57). Springer.

Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. Journal of Global Optimization, 11, 341-359.

Tan, Y., & Zheng, Z.-y. (2013). Research Advance in Swarm Robotics. Defence Technology, 9(1), 18-

39.

Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile

robot swarms. Swarm Intelligence, 2(2-4), 97-120.

Villarrubia-Gómez, P., Cornell, S. E., & Fabres, J. (2018). Marine plastic pollution as a planetary

boundary threat – The drifting piece in the sustainability puzzle. Marine Policy, 96, 213-220.

Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., Somorjai, G., Nepusz, T., & Vicsek, T. (2014).

Flocking algorithm for autonomous flying robots. Bioinspiration & Biomimetics, 9(2), 049501.

Wilensky, U. (1997). NetLogo Fire Model. Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL. Retrieved from

http://ccl.northwestern.edu/netlogo/models/Fire

Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: modeling natural, social, and

engineered complex systems with NetLogo. Cambridge: MIT Press.

Yang, X.-S. (2009). Firefly Algorithms for Multimodal Optimization. The 5th International Symposium

on Stochastic Algorithms: Foundations and Applications. vol. 5792, pp. 169-178. Springer.

Yang, X.-S. (2016). Nature-Inspired Computation in Engineering. Springer International Publishing.

Yang, X.-S. (2020). Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and

Applications. London: Academic Press. An imprint of Elsevier.

Yang, X.-S. (2020). Nature-Inspired Optimization Algorithms. Academic Press, Elsevier.

 99

Yang, X.-S., & Deb, S. (2014). Cuckoo search: recent advances and applications. Neural Computing

and Applications, vol. 24, pp. 169-174.

Yasuda, T., Adachi, A., & Ohkura, K. (2014). Self-organized flocking of a mobile robot swarm by

topological distance-based interactions. 2014 IEEE/SICE International Symposium on System

Integration (pp. 106-111). Tokyo: IEEE.

Yu, S., Song, A., & Aleti, A. (2019). A study on online hyper-heuristic learning for swarm robots.

2019 IEEE Congress on Evolutionary Computation (CEC) (p. 2721-2728). IEEE.

Zaharie, D. (2009). Influence of crossover on the behavior of Differential Evolution Algorithms.

Applied Soft Computing, 9(3), 1126-1138.

