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Superstripes and quasicrystals in bosonic systems with hard-soft corona interactions

Bruno R. de Abreu ,1 Fabio Cinti ,2,3,4 and Tommaso Macrì 1

1Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte,
and International Institute of Physics, Natal-RN, Brazil

2Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (FI), Italy
3INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (FI), Italy

4Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

(Received 23 September 2020; accepted 4 March 2022; published 15 March 2022)

The search for spontaneous pattern formation in equilibrium phases with genuine quantum properties is a
leading direction of current research. In this paper, we investigate the effect of quantum fluctuations—zero-point
motion and exchange interactions—on the phases of an ensemble of bosonic particles with isotropic hard-soft
corona interactions. We perform extensive path-integral Monte Carlo simulations to determine their ground-state
properties. A rich phase diagram, parametrized by the density of particles and the interaction strength of the
soft-corona potential, reveals supersolid stripes, kagome, and triangular crystals in the low-density regime. In the
high-density limit, we observe patterns with 12-fold rotational symmetry compatible with periodic approximants
of quasicrystalline phases. We characterize these quantum phases by computing the superfluid density and
the bond-orientational order parameter. Finally, we highlight the qualitative and quantitative differences of our
findings with the classical equilibrium phases for the same parameter regimes.
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I. INTRODUCTION

The emergence of self-organized patterns from an initially
disordered phase is a central subject of investigation in several
branches of physics, both in the classical and in the quantum
regime [1–7]. Different physical processes, both in and out of
equilibrium, may display a spontaneous formation of struc-
tures described by appropriate symmetries, order parameters,
or topological indices.

A central direction of research is the investigation of
complex correlated phases arising from tunable two-body
interaction potentials. Long-range interactions decaying as
a power law with variable exponents and signs [8] are
a natural framework for probing quantum droplets [9–14],
stripe phases [15], hexatic or smectic crystalline phases,
and recently even supersolids [16–18]. Theoretical propos-
als demonstrated the possibility of observing quasicrystal
patterns in BECs [19,20]. Importantly, recent experiments re-
alized two-dimensional (2D) quasicrystalline lattices [21,22],
paving the way to Bose glass phases [23–25]. Likewise, finite-
range potentials with single or multiple intrinsic length scales
became relevant due to their experimental implementation
in cavities [26], Rydberg-dressed atoms [27,28], ultra-long-
range Rydberg molecules [29–32], and spin-orbit coupled
Bose-Einstein condensates [33]. A common phenomenon in
such systems is clustering [34–37], which results from the
joint effect of a two-body interaction regular at the origin
and sufficiently high densities [20,38–41]. In the opposite
case of singular interparticle interactions where clustering is
forbidden, one usually expects well-known (super)fluid and
insulating crystalline phases. However, the effects of quantum
fluctuations in systems with hard-core and multiple length-
scale potentials have yet remained unexplored.

In this paper, we investigate how the zero-point motion
affects the phases of 2D bosonic systems in the presence
of paradigmatic microscopic hard-soft corona interactions in
the zero-temperature limit. We highlight the differences with
the classical equilibrium phases mapping the quantum phase
diagram for a wide range of densities and interactions. We
analyze the (anisotropic) superfluid properties of the system
at an intermediate value of the density between the fluid and
the triangular crystal phase. In addition, upon increasing the
density to the maximum packing fraction, we show that pat-
terns with 12-fold rotational symmetry can be stabilized when
setting the length scale of the interparticle interaction to spe-
cific values. Notably, we emphasize the qualitative structural,
and quantitative differences of our results in the quantum
system with the equilibrium phases derived from classical
simulations.

II. MODEL

The Hamiltonian describing a 2D system composed of N
identical bosons of mass m is

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i< j

V (ri j ). (1)

The circularly symmetric interparticle hard-soft corona poten-
tial has the form

V (ri j ) =
⎧⎨
⎩

+∞, ri j < σ0,

h̄2ε/mσ 2
0 , σ0 < ri j < σ1,

0, ri j > σ1.

(2)

In Eq. (2) ri j is the radial distance between the particles
located at ri and r j , respectively. It is convenient to scale
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FIG. 1. (a) Representation of the worldlines of the PIMC algo-
rithm and the constraints on the acceptance of the moves due to
the hard-core interaction and the energy penalty of the soft-core
potential. (b) Left: Snapshot of a metastable 12-fold quasicrystal
configuration for σ1/σ0 = 1.95 and ε = 9 and density ρσ 2

0 = 0.954
obtained upon initializing the simulation with a square-triangle
random tiling. Centroids of the worldlines and the corresponding
hard-core circle of radius σ0 are shown. Right: Fourier transform of
the 12-fold quasicrystal, where 12 main peaks are clearly visible.
(c) Classical (left) and quantum (right) simulation equilibrium snap-
shots for the same control parameters σ1/σ0 = 2.5, ρσ 2

0 = 0.227,
and ε = 7. We plot the centroid and the corresponding hard-core
circle. The temperature is kBT = 0.1h̄2/mσ 2

0 . The phase diagram of
the quantum regime is discussed in Fig. 3.

lengths by the hard-core potential radius σ0 and energies by
h̄2/mσ 2

0 . The physics of the model is then controlled by the
interplay between the ratio σ1/σ0, the dimensionless strength
of the interaction ε, and the scaled particle density ρσ 2

0 . A
schematic illustration of a path-integral Monte Carlo (PIMC)
configuration of a 2D ensemble of bosons interacting via
the potential V (r) of Eq. (2) and propagating in a discrete
imaginary time τ is shown in Fig. 1(a). τ extends over the
inverse temperature interval (0, β ) where β = 1/kBT and
the parameter t = kBT/(h̄2/mσ 2

0 ) is the scaled temperature.
Configurations in the 2D plane where the interparticle dis-
tance is smaller than the diameter of the hard-core are not
allowed. When the soft coronas overlap (σ0 < ri j < σ1), the

configuration suffers an energy penalty ε, otherwise the inter-
action vanishes.

The quantum phases of this model are well known in
the two limiting cases in which either σ0 or σ1 vanishes. In
the latter case one recovers the hard-disk interaction poten-
tial, for which a liquid-solid transition takes place at ρσ 2

0 ≈
0.32 [42]. At finite temperatures, the melting transition in
two-dimensional crystals proceeds in two steps mediated by
a hexatic phase [43], which is predicted to survive down to
very low temperatures [44,45].

The soft-disk potential, in which σ0 is absent, displays an
even richer physics in the quantum regime [41,46]. Indeed,
pair potentials with a negative Fourier component favor the
formation of particle clusters, which can, in turn, crystallize to
form a so-called cluster crystal. At high particle densities, well
described by mean-field calculations, one finds modulated su-
perfluid states with broken translational symmetry in the form
of density waves [47]. Most interestingly, at low densities one
observes the emergence of defect-induced supersolid phases
in the vicinity of commensurate solid phases, as conjectured
by Andreev, Lifschitz [48], and Chester [49].

III. METHODS

We carried out PIMC simulations to determine the equilib-
rium properties of Hamiltonian (1), hence attaining its exact
ground state in the limit T → 0. Simulations have been per-
formed in the canonical ensemble with the number of particles
N in the range 100–400. We employ the worm algorithm
in continuous space to access genuine quantum macroscopic
observables such as the superfluid fraction [50–52].

An essential ingredient of the PIMC algorithm is the es-
timate of the many-body density matrix at high temperature.
To accurately account for the hard-soft corona interaction we
first perform a pair-product approximation and then separate
the contribution of the hard core and the soft core of the
interaction in Eq. (2) into the pair action

up[ρ(r, r′, β )] = − log

(
ρ(r, r′, β )

ρ0(r, r′, β )

)
= uHC

p + uSC
p . (3)

In Eq. (3), ρ(r, r′, β ) is the pair-density matrix in the center-
of-mass frame interacting through Eq. (2), and ρ0(r, r′, β )
is the density matrix for noninteracting particles. Here, r
(r′) is the relative position of the pair of particles before
(after) the evolution in imaginary time. The exact numerical
calculation of the full pair-density matrix, while possible in
principle, suffers from the strong oscillatory behavior of high
angular momentum partial waves. We overcome this issue by
evaluating uHC

p via the well-known Cao-Berne equation for
the hard-core potential in two dimensions [53,54]. Then, we
calculate the contribution uSC

p of the soft-corona interaction
semiclassically within a WKB approach (see Supplemental
Material [55] for the details of the implementation of the
algorithm, including Refs. [56–67] therein).

The results in the quantum regime are compared in
Fig. 1(c) with the classical equilibrium phases. The latter are
obtained by employing a Monte Carlo algorithm based on
classical annealing methods [67]. In several cases we observe
distinct phases in the two regimes, confirming the relevance
of quantum fluctuations at low temperatures.
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FIG. 2. High-density structural transition for an ensemble of
boltzmannons interacting via the potential in Eq. (2) with ε = 9
when initializing the system from a triangular (black), SQRT (dark
green), and a sigma phase (light green). (a) Energy per particle as
a function of the scaled density ρσ 2

0 for a system of N = 224 (tri-
angular), N = 237 (SQRT), and N = 200 (sigma phase) particles at
temperature T = 0.5 h̄2/mσ 2

0 . At low density ρσ 2
0 < 0.78 the ground

state is a triangular lattice. At high density, the system is in the sigma
phase, a periodic approximant of a 12-fold quasicrystalline phase.
The transition between the two phases takes place around 0.78 <

ρσ 2
0 < 0.95 (gray region). The dashed lines show the position of the

double tangent of the Maxwell construction. Insets: Snapshots of the
centroids in the the crystalline phase at (N, ρσ 2

0 ) = (224, 0.75) and
in the sigma phase 32434 at (N, ρσ 2

0 ) = (200, 1.00). (b) BO order
parameter χν of the ground state computed from Eq. (4) as a function
of the scaled density across the transition with ν = 6 (black) and
ν = 12 (green).

IV. RESULTS

To investigate the emergence of nontrivial crystalline
phases we examine the Fourier intensity of the density of par-
ticles ρ(r) = ∑N

i=1 δ(r − ri ) and the pair correlation function
g(r) [6]. In addition, we introduce the bond-orientational order
parameter (BOO) χν , which accounts for the local ordering of
pairs of particles,

χν =
〈∣∣∣∣∣∣

∑
b j

1

N ( j)
b

eiνθb

∣∣∣∣∣∣
2〉

. (4)

In Eq. (4) N (i)
b is the number of nearest-neighbor bonds of the

jth particle, and θb is the angle between a reference axis and
the bond segment. The average is performed over all particles
i belonging to the same time slice nτ [see Fig. 1(a)]. We
compute the respective dominant modes ν, for example, ν = 6
in hexatic phases and the triangular crystal and ν = 12 for a
12-fold rotational symmetry.

FIG. 3. Low-density ground-state phase diagram of a quantum
system of N = 200 particles for σ1/σ0 = 2.5, T = 0.1h̄2/mσ 2

0 as a
function of the scaled density ρσ 2

0 and the strength of the scaled
soft-corona potential ε. Superfluid (blue) and the triangular crystal
(gray) at low interactions ε � 7, and the kagome (violet) and the
triangular crystal at larger interactions. The triangular crystal phase
also appears at lower densities 0.08 � ρσ 2

0 � 0.19 for ε < 12. At
larger densities we observed a stripe phase (red), a coexistence phase
(light gray), and a kagome crystal (violet). The vertical dotted line
at ε = 8 is discussed in Fig. 4. The light gray region is a phase
coexistence region.

In Fig. 2 we discuss the high-density limit phase diagram
for σ1/σ0 = 1.95 and ε = 9. In this regime, PIMC trajecto-
ries are only affected by zero-point motion fluctuations and
it is reasonable to label those worldlines as boltzmannons
rather than bosons. We refer to boltzmannons when parti-
cles are regarded as distinguishable, i.e., excluding particle
exchanges [60,68,69].

Upon increasing ρσ 2
0 , we observe that a triangular lattice

does not spontaneously turn into a dodecagonal quasicrystal,
but a structural transition into a sigma phase is energeti-
cally favorable. It is known that a sigma phase consists of a
periodic pattern that approximates the dodecagonal quasicrys-
talline phase [35,70]. Figure 1(b) depicts a square-triangle
random tiling with prototiles given by triangles and squares
(SQRT) [71] in agreement with previous classical simula-
tions [65,66,66,72,73]. We compute the energy per particle
for a wide range of densities and identify a wide coexistence
region for 0.78 � ρ σ 2

0 � 0.95 via a Maxwell double-tangent
construction. We confirm our results reducing the temperature
to values well below the average kinetic energy per particle.
The calculation of the BOO supports our observation of the
transition from a triangular lattice at low densities into a 12-
fold symmetric pattern. Differently from the classical case,
BOO does not saturate to unitary values due to the zero-point
motion.

In Fig. 3 we show the phase diagram of the system in
the limit T → 0 and taking the ratio σ1/σ0 = 2.5 for a wide
range of ε and intermediate densities ρσ 2

0 . For small values
of ε the ground state behaves as a usual superfluid (blue
region) in agreement with the properties of a liquid with pure
hard-core interactions (ε = 0) [42,74]. Increasing the den-
sity, the system undergoes a transition from a superfluid to a
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triangular crystal (gray region) around σ 2
0 ρ ≈ 0.32. The light

gray region in between represents a coexistence phase. In the
triangular crystal, the worldlines are entirely localized. For the
pair interaction of Eq. (2), clustering of bosons that takes place
for a pure soft-disk interaction is prohibited for parameters
considered in Fig. 3.

By increasing the density ρσ 2
0 we observe a sequence

of phases breaking continuous translational symmetry into
different patterns. At ρσ 2

0 ≈ 0.075 we first have a transition
superfluid to solid, followed by a reentrant transition solid
to superfluid. Then, at ρσ 2

0 ≈ 0.2 the system enters into a
stripe phase (red). A notable feature is that this is driven
entirely by quantum fluctuations. A direct comparison for
(ε, ρσ 2

0 ) = (7.0, 0.23) between the classical and the quan-
tum phases proves that the delocalization of the worldlines
stabilizes the stripe configuration, whereas the corresponding
classical equilibrium phase is a disordered one. The snapshot
of the configuration in the classical case and the centroids
of worldlines in the quantum one are respectively shown in
Fig. 1(c). To corroborate this statement we computed the av-
erage kinetic energy of the stripe phase to be Ekin/kBT ≈ 42,
much larger than thermal fluctuations. The potential energy
contributions in the two cases are instead comparable.

Within the central part of the lobe the system reorganizes
into a labyrinth phase (orange) [67,75]. Upon further increas-
ing ρσ 2

0 the labyrinth phase is replaced by a kagome lattice
(violet). Finally, for ρσ 2

0 ≈ 0.35, we encounter a phase coex-
istence phase region and again a triangular crystal for larger
densities.

In order to fully account for the bosonic nature of the sys-
tem, we include particle exchanges to calculate the superfluid
fractions along the line with ε = 8 in Fig. 3. The superfluid
fraction fS is computed via the winding number estimator

f (i)
S = m

β h̄2

L2
i

N

〈
Ŵ 2

i

〉
, (5)

where 〈· · · 〉 denotes the thermal average of the winding num-
ber operator Ŵi along the direction Li with the index i =
x, y [76,77]. The total superfluid fraction fS of the system is
given by the trace of this tensor divided by the number of
spatial dimensions of the system. The results are shown in
Fig. 4 where we plot the superfluid fraction for different values
of the scaled density ρσ 2

0 . Simultaneously, we extract the
histogram of the permutations P(L) involving L-bosons [55].

We find an insulating behavior for the triangular crys-
tal at both low (ρσ 2

0 = 0.1) and high densities (ρσ 2
0 =

0.45), and the kagome crystal [Fig. 4(c)], which display
vanishing superfluidity. For the latter we observe quasilocal
exchanges with few particles, i.e., up to L ≈ 10. Notably,
stripes [Fig. 4(a)] display a supersolid character. Along the
direction of the stripe we have f ‖

S = 0.71(7), and a finite,
nonzero signal, perpendicular to them, f ⊥

S = 0.35(6). Finally,
coexistence phases at intermediate densities also display a
finite fS .

V. DISCUSSION AND CONCLUSIONS

We analyzed the properties of the phases of an ensem-
ble of bosonic particles interacting via hard-soft corona

FIG. 4. Superfluidity for an ensemble of bosonic particles for
σ1/σ0 = 2.5, T = 0.1h̄2/mσ 2

0 , and ε = 8.0 along the vertical line
of Fig. 3. (a)–(c) Snapshots of the projected worldlines. (a) Super-
stripe phase at ρσ 2

0 = 0.23. (b) Phase coexistence at ρσ 2
0 = 0.275.

(c) Kagome crystal at ρσ 2
0 = 0.34. (d) Superfluid fraction fS as a

function of scaled density ρσ 2
0 . For low density, the system is a

uniform superfluid with unitary superfluidity. The triangular crystal
at low (ρσ 2

0 = 0.1) and high density (ρσ 2
0 = 0.45) shows vanishing

superfluidity. The superstripe phase at density ρσ 2
0 = 0.23 (red cir-

cle) displays a superfluid character both along the direction of the
stripes and perpendicularly to them.

potentials in the quantum degenerate regime. We demon-
strated that the phases display qualitative and quantitative
differences from the classical case, especially regarding the
structural properties. For instance, intricate pattern formations
such as stripe phases are stabilized by quantum fluctuations
and concurrently exhibit supersolid behavior. Extensions of
this work include the detailed analysis of the high-density
and high-interaction limit of the phase diagram to investi-
gate the (two-step) transition from the liquid and the kagome
phase to the triangular lattice [43,78]. Another interesting
line concerns the study of the Berezinskii-Kosterlitz-Thouless
(BKT) transition from a superfluid to normal fluid at interme-
diate densities both in the liquid and the stripe phase, which
might be relevant for the implementation of this model in
experimental platforms such as Rydberg systems, cavities,
or dipolar systems [19,79–82]. The interaction potential of
Eq. (2) can be implemented, e.g., via microwave shielding
techniques for the hard-core barrier [30–32], combined with
a dressing scheme for the soft corona whose strength can
be controlled via magnetic or optical Feshbach resonances
through the coupling to ultra-long-range Rydberg molecular
states [29,83].

Finally, we mention that our model is studied within a
pure 2D setup in the absence of external confinement along
the horizontal plane. It is to be expected that the introduction
of trapping along any direction (possibly anisotropic) would
change qualitatively the stability of fragile patterns such as
the quasicrystalline phase [84]. These results pave the ground
for general classifications of interaction potentials and phases
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with (quasi-)long-range orientational order, the identification
of the order of phase transitions for a wide interval of densi-
ties, and interactions in the quantum regime.
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