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ABSTRACT: A recently popularized approach for the calculation of pseudocontact
shifts (PCSs) based on first-principles quantum chemistry (QC) leads to different results
than the classic “semiempirical” equation involving the susceptibility tensor. Studies that
attempted a comparison of theory and experiment led to conflicting conclusions with
respect to the preferred theoretical approach. In this Letter, we show that after inclusion
of previously neglected terms in the full Hamiltonian, one can deduce the semiempirical
equations from a rigorous QC-based treatment. It also turns out that in the long-distance
limit, one can approximate the complete A tensor in terms of the g tensor. By means of
Kohn−Sham density functional theory calculations, we numerically confirm the long-
distance expression for the A tensor and the theoretically predicted scaling behavior of
the different terms. Our derivation suggests a computational strategy in which one
calculates the susceptibility tensor and inserts it into the classic equation for the PCS.

In this Letter, we study a paramagnetic center and a
sufficiently far nucleus with magnetic moment MK. In an

external magnetic field B, this nucleus experiences an NMR
chemical shielding that is dipolar in origin. Thus, this shielding
originates from an additional dipolar magnetic field that is
created by the induced average magnetic moment of the
paramagnetic center. Because of the dipolar origin, the
resulting “pseudocontact shifts” (PCSs) have an inverse
cubic dependence on the distance of the nucleus from the
paramagnetic center. Consequently, their analysis provides a
wealth of structural information that was heavily exploited
during the last decades in chemistry1−6 and structural
biology.7−15 PCSs are also gaining momentum in the
characterization of the electronic structures of single ion
magnets.6,16−18

In the following, we use Hartree atomic units (ℏ = me = e =
4πϵ0 = 1) throughout. Traditionally, PCSs are often
interpreted by the “semiempirical” (SE) expression for the
chemical shielding tensor σ:
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where R is the distance vector between the nucleus and the
paramagnetic center and χ is the paramagnetic susceptibility
tensor. The PCS is then given by19,20
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where Δχax = χzz −1/2(χxx + χyy) and Δχrh = χxx − χyy are the
axial and rhombic susceptibility parameters and θ and ϕ are
the polar and azimuthal angles of the direction of the nucleus
in the principal axis system of the susceptibility tensor.
Equation 2 was described by McConnell and Robertson21 and
by Kurland and McGarvey22 in the spin Hamiltonian (SH)
approximation.
In recent years, alternative treatments of PCSs in terms of

rigorous first-principles quantum chemistry (QC) have been
developed. A very general approach was given by Van den
Heuvel and Soncini23 and leads to an expression for the
chemical shielding tensor as a mixed second partial derivative
of the electronic Helmholtz free energy F = −kBT ln Z (where
Z = ∑ie

−βEi):

Received: August 12, 2020
Accepted: September 15, 2020
Published: September 15, 2020

Letterpubs.acs.org/JPCL

© 2020 American Chemical Society
8735

https://dx.doi.org/10.1021/acs.jpclett.0c02462
J. Phys. Chem. Lett. 2020, 11, 8735−8744

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
G

L
I 

ST
U

D
I 

D
I 

FI
R

E
N

Z
E

 o
n 

Ju
ne

 1
, 2

02
2 

at
 1

0:
55

:4
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lucas+Lang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Enrico+Ravera"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giacomo+Parigi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Claudio+Luchinat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+Neese"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.0c02462&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02462?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02462?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02462?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02462?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02462?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpclcd/11/20?ref=pdf
https://pubs.acs.org/toc/jpclcd/11/20?ref=pdf
https://pubs.acs.org/toc/jpclcd/11/20?ref=pdf
https://pubs.acs.org/toc/jpclcd/11/20?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c02462?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


∑ ∑

∑

∑ ∑

σ

β

= ∂
∂ ∂

= − ⟨Ψ | ∂
∂

|Ψ ⟩⟨Ψ | ∂
∂

|Ψ ⟩

+ ⟨Ψ | ∂
∂ ∂

|Ψ ⟩

+
⟨Ψ | |Ψ ⟩⟨Ψ | |Ψ ⟩ +

−

β

νν
ν ν ν ν

ν
ν ν

νμ

ν μ μ ν

−

≠

∂
∂

∂
∂

′
′ ′

F
B M

Z
H
B

H
M

H
B M

E E

1
e

c.c.

kl k l

n

E
n k n n l n

n k l n

m n

n
H
B m m

H
M n

n m

2

K

0

(0) (0) (0)

K

(0)

(0)
2

K

(0)

(0) (0) (0) (0)

(0) (0)

n

k l

(0)

K

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (3)

The different operators that appear in this expression are
derivatives of the full electronic Hamiltonian H = H(B,MK)
around B = 0 and MK = 0. The summations in eq 3 are over
eigenstates |Ψnν

(0)⟩ (with eigenvalues En
(0)) of the field-free

Hamiltonian H0 = H(B = 0, MK = 0). The indices n, m, ... label
energy levels, and μ, ν, ... are additional labels for degenerate
states with the same energy. Z0 is the zeroth-order canonical
partition function, and β = 1/kBT.
If all relevant states can be described by a SH of the form

μ= · · + · · + · ·H S D S B g S I A Sspin B (4)

eq 3 turns into20,24−27
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where the “spin dyadic” ⟨SST⟩ is a matrix that depends on the
zero-field splitting tensor D and the temperature:
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The zeroth-order eigenfunctions and energies in eq 6 are
derived from the zeroth-order Hamiltonian in the SH
approximation, Hspin

(0) = S·D·S. The analogous SH expression
for the susceptibility tensor is28,29

χ πα= ·⟨ ⟩·
k T

g SS g
2

B

T T

(7)

In some previous studies on chemical shieldings based on
eq 5,28,30−33 all of the contributions to the hyperfine coupling
(HFC) tensor A except for the Fermi contact (FC) and spin-
dipolar (SD) ones were neglected. Under this assumption, the
chemical shift in the point-dipole approximation (PDA) turns
out to be26,28,30,34

Figure 1. Comparison of the exact A tensor contributions to an approximation calculated with eq 14 for the CO+ radical. The presented numbers
are the relative deviations (see eq 22) in %.
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with the unsymmetrical tensor χ′ related to χ in eq 7 by χ = χ′·
gT/ge. The appearance of this unsymmetrical tensor was
considered a necessary consequence of the more rigorous QC
treatment compared with the “semiempirical” eq 1.26,28,30 The
two approaches are ostensibly different.26 Several recent papers
prefer the use of eq 8 because it seemingly gives better
agreement with the experimental data.28,32,33 Even recent and
authoritative reviews29 indirectly contribute to endorsing the
use of eq 8. Therefore, as the use of eq 8 is becoming
increasingly attractive and the two equations can lead to
significantly different results,26,35 it is important to establish as
soon as possible and beyond doubt which of the two
expressions should be used for the calculation of PCSs.
Comparison between the calculations and the experimental
data does not resolve the issue in full: paramagnetic NMR
calculations from first principles involve the estimation of SH
parameters (the g and D tensors), which are not directly
accessible experimentally at room temperature in solution for
most metal ions. Furthermore, the uncertainties in the
calculation of these parameters can collectively be on the
same order of magnitude as the expected difference between
the two approaches. For this reason, a recent study34 has
investigated the performance of the two equations for a

copper(II) ion with S = 1/2 in an axial protein environment,
where the results are expected to differ by a factor of roughly 2.
This comparison is particularly strong, because it does not rely
on calculations of the SH parameters but rather depends on
the direct experimental measurement of the g anisotropy (with
uncertainty smaller than 1%) under the same conditions in
which the NMR data are also measured. It was found that the
“semiempirical” equation performs much better for the
prediction of the PCSs than the equation derived from first
principles.34 To date, a QC-based explanation for this result is
missing.
A first hint at possible problems with eq 8 comes from the

insight that the same orbital currents, induced by spin−orbit
coupling (SOC), are responsible for the orbital contributions
to both the g tensor and the HFC tensor. Equation 8
incorporates this orbital contribution in the former but not the
latter, i.e., in a very unsymmetrical way.20,26,35

Starting from these premises, in this Letter we go beyond the
previous QC-based treatments in two important aspects: (1)
we include in the molecular Hamiltonian the so-called gauge
correction terms,36 which are necessary to preserve gauge
invariance in the presence of SOC, and (2) we explicitly
include all of the contributions (not only the SD one) to the
magnetic hyperfine field and to the A tensor. With regard to
the electronic Hamiltonian, we assume the usual nonrelativistic
Hamiltonian with magnetic fields incorporated by adding the
magnetic vector potential to the canonical momentum

Figure 2. Log−log plots of the norm of the A tensor contributions versus R, the distance of the probe nucleus from the center of the CO+ radical,
with the decontracted cc-pV6Z basis set. The computed data are shown with diamond symbols for only the PSO/SOC part (top), only the gauge
correction part (middle), and their sum (bottom). Shown in red are straight lines with slope = −3 passing through the last data points.
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operator, supplemented with SOC in the effective nuclear
charge approximation.37 We incorporate two contributions

into the magnetic vector potential, one describing a
homogeneous external magnetic field and the other describing
the field created by a point magnetic dipole at the nucleus
under consideration. In order to obtain gauge-invariant results,
it is furthermore necessary to add gauge-correction terms36 to
the Hamiltonian. The detailed expressions for the complete
Hamiltonian and its derivatives are given in the Supporting
Information.
We now assume that the paramagnetic part of the system is

localized in one region of space and that the nucleus of interest
is at a large distance from this region. Our analysis is similar to
that of McConnell38 based on Ramsey’s expression for
nondegenerate ground states.39,40 RO is a position in the
region where the paramagnetic center is located, and RK is the
position of the nucleus. We use RO also as the gauge origin for
the homogeneous external magnetic field. Furthermore, we
define riO = ri − RO and riK = ri − RK, where ri is the position of
electron i. We assume that the only relevant contributions to
the chemical shift come from electrons located at the
paramagnetic center. Then riO can be assumed to be small
compared with R = RO − RK if the latter becomes large
enough, i.e., riK = riO + R ≈ R. Following McConnell, inverse
powers of riK can then be expanded in a Taylor series around
the point riO = 0, which gives38
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Table 1. Slopes of the Log−Log Plots (as in Figure 2 for
CO+) at the Beginning and End of the Data Series for
Different A Tensor Contributionsa

first two data
points (small R)

last two data
points (large R)

CO+ APSO/SOC −3.09 −2.46
Agauge −2.16 −2.02
APSO/SOC + Agauge −3.17 −3.02

H2CO
+ APSO/SOC −3.08 −3.00

Agauge −2.73 −2.12
APSO/SOC + Agauge −3.07 −3.01

H2O
+ APSO/SOC −3.02 −3.02

Agauge −3.01 −2.85
APSO/SOC + Agauge −3.02 −3.02

NF3
+b APSO/SOC −2.98 −3.00

Agauge −3.00 −3.00
APSO/SOC + Agauge −2.98 −3.00

Cu(NO3)2 APSO/SOC −3.02 −3.00
Agauge −2.82 −3.00
APSO/SOC + Agauge −3.02 −3.00

Ni(CO)3H APSO/SOC −3.05 −3.00
Agauge −3.01 −2.18
APSO/SOC + Agauge −3.05 −3.00

TiF3 APSO/SOC −2.98 −3.00
Agauge −2.98 −3.00
APSO/SOC + Agauge −2.98 −3.00

aThe used basis sets were decontracted cc-pV5Z for transition metal
complexes and decontracted cc-pV6Z for radicals. bFor NF3

+, the
calculations for the first distance (5 Å) did not converge. Hence, the
first two data points correspond to 7 and 9 Å.

Figure 3. Ratios of the norms of the gauge contribution to the A tensor and the sum of the PSO/SOC and gauge contributions. All of the values
were calculated with the decontracted cc-pV6Z basis set for the radicals and with the decontracted cc-pV5Z basis set for the transition metal
complexes.
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Inserting these expressions into the equations for the
Hamiltonian derivatives occurring in eq 3 that depend on
the nuclear position and neglecting all terms with inverse
powers of R larger than 3 (PDA), one obtains
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In eq 11, ∂H/∂MK
l contains FC, SD, paramagnetic spin−orbit

(PSO), and gauge contributions, while ∂H/∂Bm contains spin,
orbital, and gauge contributions. The commutator terms in
eq 11 originate only from the PSO and gauge correction
operators. One can observe that these expressions contain
terms that scale like R−2, apparently violating the PDA, for
which the terms with the slowest decay should scale like R−3.
This problem can be resolved by noticing that the
commutators with H0 in eq 11 lead to a cancellation with
the energy difference in the denominator of the sum-over-
states term (third term) of eq 3. The resulting R−2 term exactly
cancels the corresponding term originating from eq 12, which
has the same size but opposite sign. Such a cancellation of
slowly decaying terms was already observed in the pioneering
work by McConnell.38 A similar cancellation of R−2 terms that
follows the same kind of reasoning was observed by Helgaker
and co-workers in the long-distance limit of indirect nuclear
spin−spin coupling constants.41 As a result, eqs 11 and 12
inserted into eq 3 exactly reproduce the “semiempirical” eq 1
with the susceptibility tensor defined via the equation
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This is a generalization of the well-known van Vleck equation
first presented by Gerloch and McMeeking42 including a

diamagnetic term that was missing in their treatment; also see
the discussion by Van den Heuvel and Soncini.23 In summary,
we have demonstrated that the use of rigorous first-principles
quantum mechanics confirms eq 1, which was originally
derived in a semiempirical way. Our derivation therefore
demonstrates that eq 1 has a solid theoretical foundation. This
is the main result of the current Letter. The alternative
expression based on the unsymmetric tensor χ′ (eq 8) is flawed
because of the neglect of contributions to the hyperfine field
beyond the SD one, which, as our derivation demonstrates, is
not justified. It is important to stress that we derived our result
in a very general way using only relatively weak assumptions.
Notably, we did not choose a particular electronic structure
method. The only assumptions that went into our derivation
are the validity of the equation for the chemical shielding given
by Van den Heuvel and Soncini (eq 3), our particular choice of
electronic Hamiltonian, and the PDA. We expect that it will be
possible to derive eq 1 also for the more exact Dirac
Hamiltonian or even without resorting to an explicit choice
of Hamiltonian at all. This will be discussed in more detail in a
forthcoming publication.
The validity of eq 1 that we just established, together with

the SH expressions eq 5 and eq 7, suggests that in the long-
distance limit one can approximate the HFC tensor as
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The validity of this equation is well-established for the spin-only
contributions to A and g.26 It was shown that within the LS
coupling approximation, the orbital contributions to A and g
also fulfill eq 14.26 Furthermore, a nonrigorous motivation for
the validity of eq 14 for the full A and g tensors was given by
Autschbach et al.43 The FC contribution to A vanishes in the
long-distance limit, where there should be no spin density at
the position of the nucleus. At the level of second-order
degenerate perturbation theory (DPT2), the remaining
contributions to g and A are36,44−46

∑ ξ δ= ⟨Ψ | [ · − ] |Ψ ⟩g
S

r r r sr r
1

( ) ( )kl
SS

i
i kl i i i

k
i
l

i
z SSgauge

0
A

A
A A O A O 0

(15)

∑ ξ

= −

×
⟨Ψ | |Ψ ⟩⟨Ψ |∑ |Ψ ⟩ +

−=

g
S

L r l s

E E

1

( ) c.c.

kl

b S S

SS k
b
SS

b
SS

i i i
l

i
z SS

b

orb/SOC

,

0 O A
A

A A 0
(0),nonrel

0
(0),nonrel

b

(16)

∑α γ ξ δ= ⟨Ψ | [ ·

− ] |Ψ ⟩

A
S

r
r

r r s

r r
1

( )
1

( )kl
SS

i
i

i
kl i i

i
k

i
l

i
z SS

gauge 2
0

A

A
A

K
3 A K

A K 0 (17)

∑

α γ

ξ

= −

×
⟨Ψ |∑ |Ψ ⟩⟨Ψ |∑ |Ψ ⟩ +

−=

A
S

r l s

E E

1

( ) c.c.

kl

b S S

SS
i

l
r b

SS
b
SS

i i i
l

i
z SS

b

PSO/SOC 2

,

0 A
A

A A 0

(0),nonrel
0
(0),nonrel

b

i
k

i

K

K
3

(18)

where the |ΨI
SS⟩ are the principal components (M = S) of the

eigenstates of the nonrelativistic zeroth-order Hamiltonian
H0

nonrel = H0 − HSOC with eigenvalues EI
(0),nonrel. Equations 16
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and 18 are the well-known orbital contributions to g and A,
which make sizable contributions for transition metals, where
SOC cannot be neglected. Equations 15 and 17 are the less
well-known contributions due to gauge correction terms in the
molecular Hamiltonian. While the gauge contribution to g has
been investigated in a number of cases,47−53 the gauge
contribution to A has only rarely been considered in the
existing literature.54,55

Similar to eq 11, one can express the long-range limit of the
PSO operator as
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Inserting this into eq 18 and noticing as before that the
commutators with H0

nonrel can be used to cancel the energy
difference in the denominator, one obtains
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The second term (the expectation value of the commutator)
prevents APSO/SOC and gorb/SOC from fulfilling eq 14. It can also
be seen that one of the terms in the commutator scales again as
R−2, in contrast to the expected R−3. However, when
considering the long-range limit of the gauge contribution
(eq 17), one notices that the same erroneous terms appear
with opposite sign. Hence, these terms exactly cancel when the
two contributions are added:
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This concludes the proof of eq 14 for the complete A and g. A
more in-depth theoretical discussion of the results derived in
this Letter will be presented in a forthcoming publication.
In order to corroborate our theoretical results, we

investigated eq 21 numerically. We performed calculations
on the radicals H2O

+, CO+, H2CO
+, and NF3

+ and the
transition metal complexes Cu(NO3)2, Ni(CO)3H, and TiF3.
A proton serving as a probe nucleus was placed at different
distances from the paramagnetic center. A “naked” proton was
used for radicals and an HF molecule for the metal complexes.
The proton A and g tensors were then calculated with Kohn−
Sham density functional theory (KS-DFT) using the BP86
exchange−correlation functional and correlation-consistent
basis sets of different sizes. GGA functionals are not expected
to yield extremely accurate SH parameters compared with the

experiment. However, absolute accuracy is not our concern
here, since our comparison is not with the experiment but
entirely “internal”, i.e., we compare different quantities
calculated at the same level of theory. In order to provide a
measure of the “size” of the calculated tensors and their
individual contributions, we calculate the Frobenius norm

defined as ∥ ∥ = ∑ XX ij ij
2 . This allows for the definition of a

“relative deviation” Δrel as a measure of the difference between
some exact tensor and an approximation like the PDA:

Δ = ∥ − ∥
∥ ∥

X X
Xrel

exact approx

exact (22)

When we compare the exact APSO/SOC with gorb/SOC inserted
into eq 14, we denote the relative difference as Δrel

SOC; when we
compare the two sides of eq 21, we denote it as Δrel

SOC+gauge.
Among all of the investigated systems, the gauge correction

was found to be most important for the CO+ radical, for which
we present results in Figure 1. We expect that with larger
distance, where the PDA (eq 14) becomes better, the relative
deviation Δrel should get smaller. This is also what we observe
for Δrel

SOC+gauge according to eq 21, but only for the largest basis
set (decontracted cc-pV6Z). For smaller basis sets, strong
deviations from this expected behavior and slow basis set
convergence can be observed, although for some systems, like
TiF3, the convergence is much faster (see the Supporting
Information). This suggests that eq 14 is only a valid long-
distance approximation in the limit of a complete basis set, an
issue that we will discuss further in a forthcoming publication.
We note that the strong basis set dependence is solely due to
the slow convergence of the A tensor, while the g tensor
converges very quickly when the basis set size is increased. The
observed basis set dependence is in contrast to the SD
contribution to the A tensor, for which eq 14 holds irrespective
of the basis set size. In contrast to Δrel

SOC+gauge, Δrel
SOC increases

with increasing distance for all basis set sizes. This indicates
that eq 14 is not valid when only the orbital contribution is
considered without the gauge contribution, as expected from
eq 20. The presence of the R−2 scaling in the unphysical
second term of this equation means that it will increasingly
dominate APSO/SOC, which explains why the PDA for this
contribution alone becomes increasingly worse.
We now investigate how APSO/SOC, Agauge, and their sum

scale with the distance R for the CO+ radical. According to our
theoretical analysis, both APSO/SOC and Agauge have terms that
scale as R−2, and these terms cancel each other out in the sum
to give the physical R−3 scaling. In Figure 2 we show the norms
of these tensors as functions of the distance in a log−log plot,
where the slope corresponds to the exponent of R. In order to
guide the eye and emphasize deviations from the ideal R−3

scaling behavior, we have also plotted in red color a straight
line with slope −3 that passes through the last data point. For
APSO/SOC, the data points proceed roughly parallel to the red
line for small distances, indicating an approximately R−3

scaling. However, for larger distances, the slope is reduced,
which indicates that the R−2 term that decays more slowly is
gaining importance. For Agauge, the slope is already significantly
different from −3 for small distances, indicating that here the
R−2 term becomes important earlier. For APSO/SOC + Agauge, the
slope is very close to −3 even at large distances, which
confirms eq 21 that suggests that the unphysical terms cancel
each other in the sum. The slopes of the different HFC tensor
contributions in the beginning (small distance) and end (large
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distance) of the data series are summarized for all of the
investigated systems in Table 1. It can be seen that CO+ is the
only investigated system for which the R−2 term changes the
scaling of APSO/SOC in the long-distance limit. For Agauge, the
R−2 term shows up in several systems, including the metal
complex Ni(CO)3H.
In order to gain an idea of the importance of the gauge

contribution, we plot the ratio of the norms of Agauge and
APSO/SOC + Agauge in Figure 3. One can observe that the gauge
contribution is more important for the radicals than for the
transition metal complexes. One can also see that in cases
where the gauge contribution has a sizable R−2 part (CO+,
H2CO

+, and Ni(CO)3H; see Table 1), its importance increases
with increasing distance. These results indicate that while
APSO/SOC has an unphysical part that scales as R−2 that will
eventually dominate at large enough distances, the prefactor of
this part might be so small that it is negligible at all distances of
interest. However, the CO+ example shows that the gauge
contribution can be essential for a correct description even for
small distances, which is why one should never neglect this
contribution. Although the gauge contribution seems to be less
important for metal complexes, it is definitely needed for the
Ni(CO)3H complex from our test set, as demonstrated in
Figure 4 (the analogue of Figure 1 for CO+).
Our results have important implications for the ab initio

treatment of PCSs. In principle, one can evaluate the chemical
shieldings directly from eq 3 (as already demonstrated by

Gendron et al.56) or more commonly from the SH
approximation (eq 5). Although such an approach would
have the advantage of going beyond the PDA, the latter case
has the disadvantage that a separate set of response equations
has to be solved in order to obtain the A tensor for each
individual nucleus. For systems with many nuclei, like proteins,
the computational cost would quickly explode. This makes the
use of the PDA attractive, as only a single electronic structure
calculation is necessary to determine the PCSs for all of the
nuclei in the system. In the context of the SH approximation,
we have shown that eq 8 with the asymmetric χ′ tensor is
fundamentally flawed because of the neglect of orbital and
gauge correction contributions to A. The incorporation of
these contributions shows that the correct equation to use is
eq 1, which confirms the classic semiempirical treatments of
PCSs. Importantly, this equation is not restricted to the SH
approximation. The susceptibility tensor can also be directly
calculated according to eq 13 using either ab initio or, for
example, ligand field models. Such an approach has been
followed already by some researchers.4,16,17,57 We expect that
this can lead to more accurate predictions than the equations
involving the g tensor, especially in situations where the
conditions for applying the SH approximation are not fulfilled.

■ COMPUTATIONAL DETAILS

All of the calculations were performed with a development
version of the ORCA electronic structure program.58 A and g

Figure 4. Comparison of the exact A tensor contributions to an approximation calculated with eq 14 for the Ni(CO)3H complex. The presented
numbers are the relative deviations (see eq 22) in %.
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tensors were calculated using KS-DFT50,59 with the BP8660,61

exchange−correlation functional, grid5 integration grids, and
without the resolution of the identity (RI) approximation. A
number of correlation-consistent basis sets of increasing
accuracy62−64 were used for the calculations. For the radicals,
we used cc-pVDZ, cc-pVQZ, cc-pV6Z, and for even higher
accuracy, the decontracted cc-pV6Z basis set. For transition
metals, cc-pV6Z is not defined, and we used cc-pV5Z and
decontracted cc-pV5Z instead. The integrals needed for the
gauge correction to the A tensor (see eq 17) diverge if nuclei K
and A are identical. Therefore, this contribution was omitted,
as is common practice.54,65 For computational tests of the PDA
behavior, we placed probe nuclei (protons) at different
distances from the center of the paramagnetic molecule (RO)
along the arbitrarily chosen unit vector −(1, 7, 4)/ 66 . We
chose distances between 5 and 45 Å in steps of 2 Å. The
centers were defined as O for H2O

+, the midpoint between C
and O for CO+, C for H2CO

+, N for NF3
+, and the metal atom

for the transition metal complexes. For the radicals, bare
protons were used as probe nuclei. For the metal complexes,
this was not possible because of their smaller ionization energy.
Therefore, the probe nucleus was chosen to be the proton of a
HF molecule. The geometries were taken from an earlier g
value study.50 More details can be found in the Supporting
Information.
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