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Abstract

Among the possible extensions of general relativity that have been put forward to ad-
dress some long-standing issues in our understanding of the Universe, scalar-tensor
theories have received a lot of attention for their simplicity. Interestingly, some of
these predict a potentially observable non-linear phenomenon, known as spontaneous
scalarisation, in the presence of highly compact matter distributions, as in the case of
neutron stars. Spontaneous scalarisation allows some neutron stars to display strong
and potentially observable deviations from their general-relativistic counterparts, while
allowing scalar-tensor theories containing such effect to satisfy severe observational
constraints. For this reason, neutron stars are fundamental to test some of the most
studied theories of gravity alternative to general relativity. Moreover, neutron stars are
ideal laboratories for investigating the properties of matter under extreme conditions
and, in particular, they are known to harbour the strongest magnetic fields in the Uni-
verse. One of the consequences of harbouring such powerful fields is the deformation
of the neutron star structure, leading, together with rotation, to the emission of contin-
uous gravitational waves. On the one hand, the details of their internal magnetic fields
are mostly unknown. Likewise, their internal structure, encoded by the equation of
state, is highly uncertain. Unfortunately, the effects of the equation of state and of the
scalar field are in some ways degenerate, further complicating the scenario.

In this work we present a detailed study of magnetised neutron stars in general rel-
ativity and scalar-tensor theories. First, we carry out a study of the parameter space
considering the two extreme geometries of purely toroidal and purely poloidal mag-
netic fields, varying both the strength of the magnetic field and the intensity of scalari-
sation. We compare our results with magnetised general-relativistic solutions and un-
magnetised scalarised solutions, showing how the mutual interplay between magnetic
and scalar fields affect the magnetic and the scalarisation properties of neutron stars.
Then, we focus our attention to their magnetic deformation, exploring how the scalar
field affects the emission of continuous gravitational waves. In this regard, we present
a study of magnetised neutron stars for various realistic equations of state considered
viable by observations and nuclear physics constraints, showing that it is possible to
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iv Abstract

find simple relations between the magnetic deformation of a neutron star, its mass,
and its radius. Such relations are quasi-universal, meaning that they are mostly inde-
pendent from the equation of state of the neutron star. Thanks to their formulation
in terms of potentially observable quantities, as we discuss, our results could help
to constrain the magnetic properties of the neutron stars interior and to better assess
the detectability of continuous gravitational waves by isolated neutron stars, without
knowing their equation of state. These results are derived both in general relativity
and in scalar-tensor theories, in this case by also considering the scalar charge. We
show that even in this case, general relations that account for deviations from general
relativity still hold, which could potentially be used to set constraints on the gravita-
tional theory. Moreover, we show how the quasi-universal relations we find can be
used to assess the detectability of continuous gravitational waves from pulsars in the
Galaxy by gravitational waves detectors. Finally, we propose a novel way to test devi-
ations from general relativity in the vicinity of accreting neutron stars, through the use
of the Fe Kα fluorescent line at 6.4 keV. In fact, we show how the presence of a scalar
field changes the expected line shape with respect to general relativity, revealing that
even if those changes are in general of the order of a few percent, they are potentially
observable with the next generation of X-ray satellites.
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Chapter 1

Introduction

In this chapter we introduce the setting of this work, that is neutron stars (NSs) in
alternative theories of gravity (ATG). In particular, in Sect. 1.1 we present the main
reasons that hint at the need to extend general relativity (GR), while in Sect. 1.2 we de-
scribe the relevance of NSs astrophysics, both per se and in the quest to unveil possible
breakdowns of GR.

1.1 The need to extend general relativity

The theory of GR has collected an incredible number of successes in the more than 100
years since its creation. For this reason, it has been - and is currently - considered as
the standard theory that describes the gravitational interaction. However, parallel to
its successes, a number of issues and shortcomings have emerged in the last decades
which hint at the possibility that it may not be the final theory of the gravitational in-
teraction. These issues arise both from the theoretical framework on top of which GR
is built and from observations of gravitational phenomena at the galactic and cosmo-
logical scale.

1.1.1 The theoretical point of view

The search for a ‘theory of everything’ - a hypothetical theoretical framework which en-
compasses all fundamental interactions of nature and is able to link together all phys-
ical aspects of the Universe - is one of the main challenges of theoretical physics. This
goal has led, in the past decades, to several attempts to unify the laws of gravitation
to the other interactions (Capozziello & de Laurentis 2011) through the conceptual ap-
paratus of quantum mechanics to describe the fundamental physical fields permeating
the Universe. While there is no final proof that the gravitational interaction should
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2 Introduction

have some quantum representation at high energies and small scales, or even that it
should keep its nature as an interaction, there are many compelling reasons why it
seems reasonable to unify GR with the quantum theory of fields.

This problem has been tackled from two different perspectives. The ‘canonical’ ap-
proach (Witten 1962) is based on the canonical quantisation procedure and consists
in a Hamiltonian formulation of GR, such that the Hamiltonian, in the limit of flat
spacetime, assumes the role of the generator of time translations. The ‘covariant’ ap-
proach (Wallace 2000) makes use of the toolbox of quantum field theory, and consists
in splitting the spacetime metric into a kinematical, usually flat, part and a dynamical
component which is small in magnitude with respect to the flat background. The ge-
ometry of the background spacetime is the Minkowski one, which allows one to define
the notions of causality and time. Then, the quantisation procedure is applied to the
dynamical part of the metric and the quanta arising from this procedure are spin two
particles called gravitons. As suggested by these two approaches, the main problem
in unifying the gravitational and the quantum domains is the fact the spacetime onto
which the quantum fields are defined is a dynamical variable itself, and this generally
prevents the introduction of basic notions such as causality, time and evolution. The
covariant approach is the one closer to the known physics of particles and fields, in
that it is possible to extend the perturbative methods of quantum electrodynamics to
gravitation. However, covariant quantum gravity is not renormalisable at different or-
ders of perturbation (Deser 2000), thus this approach is valid only in the low energy
and large scales domain. While sufficiently far from the Planck scale GR and first or-
der corrections describe the gravitational interaction, near the Planck era a full, but
unknown, theory of gravity has to be invoked. Thus, in this approach it makes sense
to add higher order terms to the Hilbert-Einstein action, that is the action that leads
to Einstein’s equations. Indeed, one of the main classes of extentions of GR is that of
‘ f (R) theories’ (Buchdahl 1970; De Felice & Tanaka 2010), where the scalar curvature
R in the Hilbert-Einstein action is replaced with a different functional dependence. An
alternative approach is that of ‘supergravity’ (Van Nieuwenhuizen 1981), where grav-
ity is treated neglecting the other fundamental interactions. This approach comes from
the study of the electroweak interaction, where unification of the electromagnetic (EM)
and the weak interaction suggests that a consistent theory of gravitation might be pos-
sible when it is coupled to matter. Its problem is that it is non-renormalizable at orders
higher than two (Deser 2000). Finally, ‘string theories’ (Green et al. 1988) replace the
very concept of particle by that of a string, an extended object. The usual particles,
including the graviton, are considered excitations of the string. In these theories, a nat-
ural cut-off for the divergences at small scales is given by the string length, which is
of Planck size. At scales larger that the Planck scale, the action can be written in terms
of scalar and tensor fields, and this leads to an effective theory of gravitation which
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includes scalar fields non-minimally coupled to gravity, as in ‘scalar-tensor theories’
(STTs) (Brans & Dicke 1961; Wagoner 1970; Fujii & Maeda 2003). We describe in detail
the full theoretical framework of STTs in Chap. 2.

While a consistent - unitary and renormalisable - theory of quantum gravity does not
yet exist, many possible ATG have been developed that account for some of its short-
comings. In the low energy and large scales regime - with respect to Planck scales -
they show that GR can be extended by introducing in the Hilbert-Einstein action ei-
ther terms of higher order in the curvature invariants [leading to f (R) theories] or
scalar fields non-minimally coupled to gravity (leading to STTs) and, at the first order,
these generalisations lead to a consistent theory of gravitation. While these two the-
ories are, arguably, the most natural and simple extension of GR - and are, to some
extent, equivalent (Sotiriou 2006) - many other ATG have been studied. Just to name a
few, ‘Gauss-Bonnet gravity’ (Lovelock 1971), which increases the dimensionality of the
spacetime; ‘scalar-tensor-vector gravity’ (Moffat 2006), in which the gravitational in-
teraction is mediated by a scalar and a vector field, in addition to the spacetime metric;
‘bigravity’ (Rosen 1940), in which the spacetime is described by two metric tensors.

1.1.2 The observational point of view

Astronomical observations in the last few decades have shown how the theoretical
framework composed by GR and the standard model of particle physics is no longer
able to perfectly explain how gravity works at galactic, extra-galactic and cosmological
scales. Two main lines of reasoning can be followed to tackle this problem. On the
one hand, we could try to retain GR as the true theory of gravity, but then, given the
observations, we would need to suppose the existence of some kind of exotic matter-
energy (‘dark matter’ and ‘dark energy’) which fills up ∼ 95% of the content of the
Universe (Trimble 1987; Peebles & Ratra 2003). On the other hand, we could suppose
that GR may not be the final theory of gravity, and this is the approach followed by
ATG.

Our current cosmological model, the ‘Λ cold dark matter model’, assumes that the
cosmological constant Λ describes dark energy and is responsible for driving the ac-
celerated expansion of the Universe (Sahni & Starobinsky 2000). However, it fails in
explaining why the observed value of Λ is roughly 120 orders of magnitude lower than
the value predicted by particle physics (Burgess 2015). It also doesn’t explain the so-
called ‘coincidence problem’, that amounts to explain why the vacuum energy density
Λ is comparable to the matter density at the present age (Burgess 2015). A popular
tentative solution is that of ‘quintessence’ (Padmanabhan 2003; Copeland et al. 2006),
where the cosmological constant is replaced with a scalar field rolling slowly down a
potential. While successful in explaining data, the quintessence model still suffers from
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the coincidence problem: while the quintessence dark energy evolves in the same way
as matter for a long time, at late times it changes behaviour and begins to dominate
akin to a dynamical cosmological constant, causing the dark energy and dark matter
densities to be comparable just at the present era. Moreover, the supposed origin of the
quintessence scalar field is not clear, and there is an uncertainty in choosing the right
scalar field potential necessary to obtain the acceleration of the Universe. It is worth
stressing that the present-day acceleration of the Universe requires a negative pressure
component in its composition, but it tells nothing about the supposed origin or nature
of the cosmic fluid causing it. For this reason, another solution which is advocated
is that of ‘unified dark energy’ and ‘unified dark matter’ models (Kamenshchik et al.
2001; Padmanabhan 2002; Bassett et al. 2003; Nojiri & Odintsov 2006b,a), where a sin-
gle cosmic fluid takes the role of the dark sector, behaving like dark matter at high
densities and like dark energy at low densities. In this case, the coincidence problem is
naturally solved.

As anticipated, a different way to approach the problem of cosmic acceleration is that
of ATG, which suppose that the observed acceleration of the Universe does not imply
the existence of unknown cosmic fluid, but rather the signal of a breakdown of the
laws of gravitation as predicted by GR. For example, a quintessence-like behaviour
can be obtained with higher-order gravity actions, which incorporate effective funda-
mental physics models (Capozziello & Fang 2002; Nojiri & Odintsov 2006; De Felice
& Tanaka 2010; Capozziello & De Laurentis 2010; Faraoni & Capozziello 2011). These
models are able to explain observational data by providing a geometrical explanation
for the expansion of the Universe, thus eluding the problematic issue of the nature of
a quintessence scalar field.

1.1.3 Why scalar-tensor theories?

As we have seen, the approach of modifying GR to try and solve its shortcomings
can lead to a variety of different ATG. Here we explain why STTs are among the most
promising alternatives to GR. We saw that they are predicted to be the low-energy limit
of some possible theories of quantum gravity (Damour et al. 2002). In addition, most of
them respect the ‘weak equivalence principle’ (WEP) - that is they are metric theories
of gravity (Will 2014) - which has been extremely well tested (Touboul et al. 2017); how-
ever STTs violate the strong equivalence principle (SEP), which means that tests using
self-gravitating bodies are ideal to constrain them (Barausse 2017). They also seem to
be free of some of the pathologies affecting other extensions of GR (DeFelice et al. 2006;
De Felice & Tanaka 2010; Bertolami & Páramos 2016). Finally, there is a compelling ar-
gument which goes under the name of ‘Lovelock’s theorem’ (Lovelock 1971) that states
that the only second-order, local gravitational field equations derivable from an action
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depending solely on the four-dimensional metric tensor are the Einstein field equa-
tions with a cosmological constant. Then, the only possible ways to modify GR while
retaining the action principle are to (Papantonopoulos 2015, Sec. 1.2): (i) consider more
than four spacetime dimensions; (ii) add new fields other than the spacetime metric;
(iii) consider derivatives of order higher than two in the field equations; (iv) give up on
diffeomorphism invariance. Then, to modify GR, one could consider more than four
spacetime dimensions. However, all experiments so far point to the spacetime having
only four dimensions. Furthermore, considering low energy scenarios, we expect that
any possible higher-dimensional theory has a four-dimensional effective theory; if this
theory is not GR, it has to violate one of the other three assumptions. Considering
these arguments, it makes sense to restrict to spacetimes having only four dimensions,
at least in the low energy phenomenology. One could then relax the assumption of
the dependence of the gravitational action only on the metric, allowing, for example, a
dependence on a new field ϕ. Note that, if ϕ enters the matter action and couples di-
rectly to the matter fields, we would have violations on the extremely well-tested WEP.
Then it is reasonable to assume that the matter action is independent of this additional
field ϕ. The other possibility is to allow equations of motion of order higher than
two. However, theories with this feature are plagued by instabilities due to the pres-
ence of ‘ghosts’, which are fields whose Hamiltonian is not bound from below. This
aspect is called ‘Ostrogradsky’s instability’ (Ostrogradsky 1850) and is such that a non-
degenerate Lagrangian dependent on derivatives of order higher than two leads to a
Hamiltonian linear in at least one of the momenta, and as such is not bound from below
(Woodard 2015). The last way to modify GR is to give up on diffeomorphism invari-
ance. However, there exists a procedure, called ‘Stückelberg mechanism’ (Stückelberg
1938), which allows one to restore symmetries by introducing extra fields. Hence, one
can think of theories that are not invariant under diffeomorphisms as diffeomorphism-
invariant theories with extra fields. By the previous considerations, these fields should
not appear in the matter action. In the end we see that, by violating Lovelock’s theo-
rem to extend GR, the main outcome is always to add new fields to the gravitational
action, the simplest of which is the scalar field. Since GR is so well tested on Solar
System scales, ATG containing additional fields should also provide a ‘hiding mecha-
nism’, that is some mechanism that hides the extra degrees of freedom on scales where
no extra degree of freedom has been seen, while still allowing them to be present in
other regimes. The ‘spontaneous scalarisation’ phenomenon, explained in Sect. 2.3, is
one such mechanism which has boosted the viability of STTs since its discovery.
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1.2 The importance of neutron stars

The most compact material objects in the known Universe are NSs, which are known
to also harbour extremely powerful magnetic fields. Given their extreme environment,
NSs are ideal laboratories to probe the properties of matter in conditions which are not
reproducible in laboratories. While the hypothesis of their existence dates back to the
1930s (Landau 1932; Baade & Zwicky 1934), their actual discovery happened more than
thirty years later. In 1967 it was pointed out that if NSs were spinning and harboured
strong magnetic fields, they would emit electromagnetic waves (Pacini 1967); during
the same year, regular radio pulses coming from a region of the sky were discovered
(Hewish et al. 1968), and this ‘pulsar’ was later interpreted to be a NS (Gold 1968).
Since then, thousands of NSs were discovered (Manchester et al. 2005), most of them as
pulsars. A special kind of pulsar are millisecond pulsars (MSPs), pulsars with rotation
periods under ∼ 20ms. Among the variety of observed NSs, a sub-class of them hosts
the most powerful magnetic fields known to us: magnetars (Duncan & Thompson
1992; Thompson & Duncan 1993, 1995, 1996), whose name refers to NSs that were
shown to exhibit energetic bursting (soft gamma repeaters) and persistent (anomalous
X-ray pulsars) activity (Kouveliotou et al. 1998; Gavriil et al. 2002; Mereghetti et al.
2015). In fact, while the surface magnetic field of NSs has been inferred to be in the
range of 108−12G for radio and γ-ray pulsars (Asseo & Khechinashvili 2002; Spruit
2009; Ferrario et al. 2015), estimates for magnetars have reached 1015G (Olausen &
Kaspi 2014; Popov 2016). However, magnetars represent a small subset of NSs: to this
day, the known population of magnetars consists of just over 30 sources (Olausen &
Kaspi 2014)1, compared to a few thousand regular pulsars (Manchester et al. 2005)2;
nonetheless, it is believed that they might represent a significant fraction of the young
NS population (Kaspi & Beloborodov 2017).

1.2.1 The magnetic field of neutron stars

As opposed to the surface and magnetospheric magnetic field of NSs, which can be
probed and constrained with some accuracy through a variety of different methods
(Rea et al. 2010; Güver et al. 2011; Rea et al. 2012; Kontorovich 2015; Rodríguez Castillo
et al. 2016; Jankowski et al. 2017; Staubert et al. 2019), the geometry and strength of
their internal magnetic fields remain largely unknown. It has been predicted that it
may reach values as high as 1016G inside magnetars and up to 1017−18G in newly born
proto-NSs (Del Zanna & Bucciantini 2018; Ciolfi et al. 2019; Franceschetti & Del Zanna

1See the catalogue website for an up-to-date list of known magnetars: http://www.physics.mcgill.
ca/~pulsar/magnetar/main.html.

2See the catalogue website for an up-to-date list of known pulsars: https://www.atnf.csiro.au/

research/pulsar/psrcat/.

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
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2020). Indeed, the possibility of highly magnetised and rapidly rotating proto-NSs is at
the foundation of the so-called millisecond magnetar model for long and short gamma-
ray bursts (Usov 1992; Metzger et al. 2011; Rowlinson et al. 2013); moreover, it has been
suggested that these objects are a possible source of fast radio bursts (Lyubarsky 2014;
Beloborodov 2017; Hessels 2018; Metzger et al. 2019; Platts et al. 2019; Dall’Osso &
Stella 2021). What appears less clear is the geometry of their internal magnetic field.
While it is widely known that neither purely poloidal nor purely toroidal configura-
tions are stable (Prendergast 1956; Chandrasekhar & Prendergast 1956; Chandrasekhar
& Kendall 1957; Tayler 1973; Markey & Tayler 1973, 1974; Tayler 1980; Bocquet et al.
1995; Oron 2002; Braithwaite & Nordlund 2006; Braithwaite & Spruit 2006; Braithwaite
2009; Frieben & Rezzolla 2012) - meaning that mixed configurations like the twisted-
torus are more likely (Ciolfi & Rezzolla 2013; Uryū et al. 2014; Pili et al. 2014) - the
stabilising role of a rigid crust and of the external magnetosphere is yet to be evalu-
ated. Luckily these magnetic fields might have potentially observable consequences,
which might offer us a way to constrain them: they have the ability to modify the
torsional oscillations of NSs (Samuelsson & Andersson 2007; Sotani 2015), alter the
cooling properties of their crust (Page et al. 2004; Aguilera et al. 2008), and act as a
potential source of deformation (Haskell et al. 2008; Gomes et al. 2019). Among the
many physical processes which can induce a deformation on the shape of a NS, we re-
call that mountains can form on their surface due to crustal deformations (Ushomirsky
et al. 2000; Haskell et al. 2006) or due to magnetic burial in accretion processes (Melatos
& Payne 2005); oscillation modes such as the r-mode can develop an instability (Ander-
sson 1998), leading to the emission of gravitational waves (GWs) of continuous nature
(CGWs) (Abbott et al. 2021a); finally, the magnetic field itself can be the source of a
global quadrupole (Bocquet et al. 1995; Cutler 2002; Oron 2002; Dall’Osso et al. 2009;
Frieben & Rezzolla 2012; Pili et al. 2014; Gomes et al. 2019). In the last case, all that is
needed to produce CGWs is a NS whose magnetic axis is not aligned to the rotation
axis. It was shown (Cutler 2002) that a strong toroidal magnetic field would force the
NS to develop an instability, flipping it to an orthogonal rotator, thus maximising its
emission in terms of CGWs. Indeed Lander & Jones (2018) showed that, for parameters
close to those of the observed population of NSs, most configurations are expected to
evolve to orthogonal rotators. Moreover, it was found (Biryukov & Abolmasov 2021)
that accretion can lead to an increase in the misalignment between the rotation axis
and the magnetic axis.

Since magnetic fields are supposed to be stronger in the deep interior, the magnetic
deformation of NSs offers a way to probe conditions in their core, as opposed to other
source of deformation (including rotation and tidal forces) which mostly act on their
outer layers. Unfortunately, it seems that only magnetic fields of strength B & 1014G,
much higher than the surface magnetic field observed in regular pulsars (Manchester
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et al. 2005), can cause a significant deviation from spherical symmetry (Haskell et al.
2008). Barring the possibility of an interior superconducting phase, which could sub-
stantially enhance the effectiveness of the magnetic field in deforming the NS (Cutler
2002; Akgün & Wasserman 2008; Lander et al. 2012; Lander 2014), similar fields are
likely to be found only inside magnetars and newly-born proto-NSs. Given the long
spin period of observed classical magnetars, this leaves newly-born proto-NSs and
millisecond magnetars (Dall’Osso & Stella 2021) as the most promising sources of sig-
nificant CGWs emission. However, as we show in Chap. 8, also MSPs, especially if
endowed with a superconducting core, could lie within the reach of future GWs detec-
tors.

1.2.2 The equation of state of neutron stars

In addition to the uncertainties regarding the magnetic properties of NSs interiors, also
their internal composition, encoded by the equation of state (EoS), remains mostly un-
constrained. In this sense, the observation of NSs with a mass higher than 2M� [e.g. the
most massive NS observed to date, with a mass potentially reaching ∼2.28M� (Kan-
del & Romani 2020) or a ∼ 2.08M� NS (Fonseca et al. 2021)] rejected the validity of
many proposed EoS, and the first observation of GWs emitted by a binary NS merger
(Abbott et al. 2017b) set further limits on their stiffness (Abbott et al. 2018; Bauswein
2019). Moreover, if the low-mass component of the recent binary coalescence event
GW190814 (Abbott et al. 2020) is interpreted as a NS, it would set extremely stringent
limits on the maximum mass that a valid EoS must be able to reach (Kanakis-Pegios
et al. 2021; Godzieba et al. 2021; Lim et al. 2021; Rather et al. 2021; Bombaci et al. 2021).
This uncertainty is further enhanced by the fact that the strong magnetic fields inside
NSs directly affect their particle composition, for example by determining the pres-
ence of exotic particles; thus their interplay may have a key role in answering parti-
cle physics questions like the hyperon puzzle (Zdunik & Haensel 2013; Chatterjee &
Vidaña 2016), the Delta puzzle (Cai et al. 2015; Drago et al. 2016), the hadron-quark
phase transition (Avancini et al. 2012; Ferreira et al. 2014; Costa et al. 2014; Roark &
Dexheimer 2018; Lugones & Grunfeld 2019) and the possibility of the existence of a
superconducting phase (Ruderman 1995; Lander 2013; Haskell & Sedrakian 2018).

Understanding and being able to constrain the interplay of the strong magnetic field
with the EoS in determining the structure and properties of NSs is thus of great im-
portance to advance our knowledge of these objects. Given that any time-varying
deformation - like that caused by magnetic fields - leads to the emission of CGWs,
gravitational astronomy can offer an independent constraint also on the interior mag-
netic field of NSs (Gomes et al. 2019; Sieniawska & Bejger 2019; Abbott et al. 2020;
Dergachev & Papa 2020; Frederick et al. 2021; Cieślar et al. 2021).
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1.2.3 Testing general relativity through neutron stars

The recent observation of GW and EM radiation coming from the merger of a binary
neutron star system (Abbott et al. 2017b) has given us a new opportunity to test GR in
the strong-field regime (Will 2014), beyond the vacuum case of binary black hole merg-
ers (Abbott et al. 2016), and to probe the physics of compact objects in unprecedented
detail (Abbott et al. 2017c,a), fostering a renewed interest in NSs as possible probes of
new gravitational physics. Given the compactness of NSs (their typical radii are just
about 3 times larger that the Schwarzschild radius of a black hole of the same mass),
any meaningful estimate of their role as potential CGWs sources requires them to be
modeled in the strong gravitational field regime. To this point, even if GR remains to-
day the best theory to describe gravitation in the strong field regime, it has long been
known that our understanding, within its framework, of the gravitational interaction
on galactic and cosmological scales presents some issues, as we argued in Sect. 1.1.

In this scenario, the study of NSs to test GR is especially important, because since
the first work on massless mono-scalar STTs (Damour & Esposito-Farèse 1993), a non-
perturbative strong field effect called ‘scalarisation’ has been predicted, allowing the
scalar field to exponentially grow in magnitude inside compact material objects. Even
generalisations of STTs to massive scalar fields and other gravitational theories have
been shown to be subject to a similar phenomenon (Salgado et al. 1998; Ramazanoğlu
& Pretorius 2016; Ramazanoǧlu 2017; Silva et al. 2018; Andreou et al. 2019). Unfortu-
nately, black holes in STTs have been shown to fulfill the no-hair theorem (Hawking
1972; Berti et al. 2015), thus they are exactly identical as in GR and they show no useful-
ness in contraining such theories. Scalarisation can happen in various contexts: binary
systems of merging NSs can undergo a ‘dynamical scalarisation’ process (Barausse
et al. 2013), in which the initially non-scalarised NSs become scalarised once they get
closer to each other; again, in a binary NS system, one scalarised star can prompt an
‘induced scalarisation’ on its non-scalarised companion (Barausse et al. 2013); or even
in an isolated NS system, where ‘spontaneous scalarisation’ can develop (this was the
first discovered non-perturbative strong field effect in STTs, Damour & Esposito-Farèse
1993). The importance of scalarisation is that STTs which include such effects predict
strong deviations from GR only inside compact objects, while allowing the tight ob-
servational constraints in the weak-gravity regime to be fulfilled (Shao et al. 2017). As
of today, the strongest limit on the strength of spontaneous scalarisation for massless
STTs comes from observations of pulsars in binary and triple systems, in particular in
systems characterised by a large mass difference between the two stars, where STTs
predict the emission of dipole scalar waves, potentially observable in the dynamics of
the inspiral (Freire et al. 2012; Will 2014; Shao et al. 2017; Anderson et al. 2019; Voisin
et al. 2020). These, however, are systems with large separations and the constraints do
not apply in the case of screening (Yazadjiev et al. 2016; Doneva & Yazadjiev 2016). In
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fact, as we explain in greater detail in Sect. 2.4, if the scalar field in endowed with a
mass its effects are suppressed at a distance from the compact object greater than its
Compton wavelength. Being the stars in these systems far away from each other, their
dynamic is not affected by non-GR effects in the case of screening.

Scalarisation modifies the relation between the mass and radius of the NS and its cen-
tral density. In general, scalarised NSs have larger radii and higher maximum masses
than the corresponding GR solutions computed with the same EoS. Moreover, scalari-
sation is more effective at higher compactness. The presence of a strong scalar charge
could, in principle, have important consequences on the phenomenology of NSs, even
if many of these effects might be degenerate with the EoS. A different dependence of
the mass and radius from the central density could lead to appreciable changes in the
thermal evolution of NSs (Dohi et al. 2021), given the dependence of many cooling pro-
cesses on the density itself (Yakovlev et al. 2005). Changes in radii could potentially
be observable in the distribution function of millisecond pulsars (Papitto et al. 2014).
The same holds for the distribution of NS masses, and the expected maximum mass
[the recent measure of a 13km radius for a 1.44M� NS by NICER (Miller et al. 2019)
suggests larger NSs radii than previously thought (Özel & Freire 2016)]. Spontaneous
scalarisation might impact the dynamics and evolution of the post-merger remnant of
binary NSs coalescence (Abbott et al. 2017; Raithel et al. 2018). Indeed, there is some
observational evidence suggesting the presence of long lived NSs powering the X-ray
afterglow of short gamma-ray bursts (GRBs) (Rowlinson et al. 2013), suggesting values
of the maximum NS mass & 2.2M� (Gao et al. 2016; Margalit & Metzger 2017). Scalar
fields can affect the deformability of NSs (Doneva et al. 2013, 2018), leaving an imprint
in the pre-merger inspiral, and in the spin-down history of millisecond proto-magnetar
as possible engines of GRBs (Dall’Osso et al. 2009). Scalarised NSs differ in the fre-
quency of their normal modes (Sotani & Kokkotas 2005). On top of this STTs predicts
also a new scalar wave emission, potentially detectable with future GWs observatories
(Gerosa et al. 2016; Hagihara et al. 2020). Unfortunately, part of the phenomenology
of STTs is degenerate with the EoS of NSs, for example regarding their mass-radius
relation or deformability. For this reason, it is important to find ways to disentangle
them, such that a more unambiguous interpretation of observations will be possible.

In GR, the first magnetised model of NS dates back to Chandrasekhar & Fermi (1953).
Throughout the years, many magnetised models were proposed (Ferraro 1954; Roberts
1955; Prendergast 1956; Woltjer 1960; Monaghan 1965, 1966; Roxburgh 1966; Ostriker
& Hartwick 1968; Miketinac 1975), up to more recent works (Tomimura & Eriguchi
2005; Yoshida et al. 2006; Fujisawa & Eriguchi 2015). Due to the non-linearity of the
general-relativistic magnetohydrodynamics (GRMHD) equations, an accurate study
of the structure of NSs must be done in a numerical way, and only recently numerical
results in the full GR regime have appeared. Many of these models focus on either
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purely toroidal (Kiuchi & Yoshida 2008; Kiuchi et al. 2009; Frieben & Rezzolla 2012)
or purely poloidal (Bocquet et al. 1995; Konno 2001; Yazadjiev 2012) magnetic field
configurations [see also Pili et al. (2014, 2017)]. However, such models are shown to
develop an instability which causes the magnetic field to rearrange in a mixed config-
uration, called twisted torus, which is roughly axisymmetric (Prendergast 1956; Tayler
1973; Wright 1973; Braithwaite & Nordlund 2006; Braithwaite & Spruit 2006; Braith-
waite 2009; Lasky et al. 2011). Twisted torus configurations have been studied only
very recently (Ciolfi & Rezzolla 2013; Pili et al. 2014; Uryū et al. 2014; Bucciantini et al.
2015; Uryū et al. 2019), because they require to solve a large set of coupled non-linear
elliptic PDEs, which can be numerically unstable.

So far, only non-magnetised models of NSs have been studied in STTs in the full non-
linear regime (see e.g. Suvorov 2018 for a perturbative approach to the magnetised
scenario). Most of them focus on static (Damour & Esposito-Farèse 1993; Harada 1998;
Novak 1998a; Taniguchi et al. 2015; Anderson & Yunes 2019; Doneva & Yazadjiev 2020)
or slowly rotating (Damour & Esposito-Farèse 1996; Sotani 2012; Pani & Berti 2014;
Silva et al. 2015) stars, while recently some work has been done for rapidly (Doneva
et al. 2013; Doneva & Yazadjiev 2016; Pappas et al. 2019) and differentially (Doneva
et al. 2018) rotating models. Models of NSs have also been studied beyond the massless
limit, and in the presence of a screening potential (Doneva & Yazadjiev 2016; Yazadjiev
et al. 2016; Brax et al. 2017; Staykov et al. 2018; Doneva & Yazadjiev 2020; Staykov et al.
2019). Given that the powerful magnetic fields contained in NSs can heavily affect their
phenomenology, it is important to extend previous studies to the case of magnetised
models of NSs.

In this work, we present the first numerical computations of equilibrium, magnetised
NSs models in a massless STT of gravity in the full non-linear regime. We wish to
investigate how the mutual interplay of a strong magnetic field and a scalar field mod-
ifies both the magnetic properties of NSs, with respect to GR, and their scalarisation
properties with respect to the un-magnetised case. For this reason we are going to
provide a characterisation as complete as possible of our equilibrium configurations,
including a parametrisation of their deformation, and to carry a comparison with GR,
not just in terms of global quantities but also in the specific internal distribution of
density and magnetic field. The purpose is to quantify, for example, how much the
presence of a scalar field affects the magnetic deformability of NSs, which is a key
parameter to evaluate the relative importance of GW vs EM dipole emission in the
early spin-down of proto-NSs (Dall’Osso et al. 2009), and to assess the validity of the
millisecond-magnetar model for long GRBs (Metzger et al. 2011). Moreover, we study
how the presence of an additional channel for the emission of quadrupolar waves - that
of scalar waves - affects the overall emission of quadrupolar GWs, establishing the ex-
tent to which the emission of scalar waves competes with the tensor one. On the other
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hand, we also want to evaluate if the presence of a magnetic field favours or disfavours
the scalarisation of NSs, and how it changes the scalarisation range, or the maximum
NS mass. For this reason we limit our analysis only to the two extreme cases of purely
poloidal or purely toroidal magnetic fields, neglecting rotation. Building upon results
we find in the case of a simple, but widely used in the literature, polytropic EoS, we
perform a detailed analysis of the effect of a variety of different EoS allowed by the
latest observational and nuclear physics constraints in the structure of NSs, both in GR
and in a massless STT. Our aim is twofold. First, to better understand the interplay
between different EoS and the magnetic field of a NS, in order to understand whether
there exist some kind of EoS-independent relation between the NS deformation and
its observable quantities, like mass and radius; this would help to shed some light
into the properties of the internal magnetic field of NSs, or set limits on their possible
CGWs emission. Second, to look for similar relations in the case of a scalarised NS, in
which case EoS-independent scalings could be useful to disentangle the effect of the
scalar field to that of the EoS. In this sense our work is both an extension of the existing
literature on magnetised models of NSs in GR, and of un-magnetised models in STTs.

We also take the opportunity to introduce a computational strategy, which, for the
sake of simplicity, we discuss in detail just in the case of non-rotating NSs, but that
can easily be generalised to rotating (see App. A) and even dynamical regimes and
that allows a straightforward extension of well established algorithms for GRMHD to
handle magnetohydrodynamics (MHD) in STTs. Our algorithm is an extension of the
well-tested XNS solver (Pili et al. 2014, 2017) to the case of a generic STT. It is based on
the eXtended Conformally Flat Condition (XCFC) for the metric (Wilson et al. 1996;
Wilson & Mathews 2003; Cordero-Carrión et al. 2009; Bucciantini & Del Zanna 2011),
which, even if not formally exact, has proved to be highly accurate for rotating NSs
(Camelio et al. 2019). We wish to point here that the accuracy of the solution with
respect to full GR depends on which parameter, that is the central rotation rate or the
surface ellipticity, is held fixed in the comparison (larger deviations have been found
for differentially rotating models having the same surface ellipticity Iosif & Stergioulas
2014). The XCFC system has several advantages from a numerical point of view. These,
as we are going to show, are retained also in STTs, and that can easily be adapted to
the more complex case of time dependent dynamical evolution.

1.3 Outline

This work is structured as follows. In Chap. 2 we recap the main properties of STTs,
describing how the first STT was conceived, its evolution towards a general STT, the
discovery of the important phenomenon of spontaneous scalarisation and the latest ob-
servational constraints. In Chap. 3 we describe the mathematical setting of this work:
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the choice of the action describing an an ideal magnetised fluid at thermodynamic
equilibrium; the ‘3+1 formalism’, which is commonly used in GR to cast the tensorial
equations in a form which is more suitable for numerical computations, and its exten-
sion to STTs; the equations describing the spacetime metric, the scalar field and the
magnetic field. In Chap. 4 we describe the XNS code: the numerical scheme, the nu-
merical solvers and strategy and the numerical setup we used. In Chap. 5 we describe
our results regarding magnetised, equilibrium models of axisymmetric NSs in STTs,
first focusing on the uniqueness of scalarised models, then detailing the results in the
case of purely toroidal and purely poloidal magnetic field configurations in the case of
a strong scalarisation; then, we consider the case of lower scalarisation scenarios; af-
terwards, we describe our results regarding the stability of magnetised and scalarised
models. In Chap. 6 we expand on these results, focusing on the role of the scalar field
on the magnetic deformations of NSs and on the emission GWs. In Chap. 7 we build
upon these findings to extend our study to EoS allowed by observational and nuclear
physics constraints, in which case we find simple parametrisations of the magnetic de-
formation of NSs in an EoS-independent way. In Chap. 8 we apply these results to
the NSs population in the Galaxy, both observed and obtained through a population
synthesis approach, to assess the detectabilty of CGWs by future GWs detectors. In
Chap. 9 we present a novel test of GR in the setting of low-mass X-ray binary systems,
first descrbing the use of ray-tracing in vacuum STTs and then showing how modifi-
cations to the iron line emitted by these systems by a scalar field could be detected.
Finally, in Chap. 10 we present our conclusions.
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Chapter 2

Scalar-tensor theories of gravity in a
nutshell

In this chapter we introduce the full mathematical framework of STTs, focusing on
massless theories containing the spontaneous scalarisation phenomenon. In Sect. 2.1
we explain the reasoning that led to the development of the first STT, while in Sect. 2.2
we explain how it can be expanded to a more general theory. In particular, in Sect. 2.3
we focus on the important phenomenon of spontaneous scalarisation, predicted by
some STTs. Finally, in Sect. 2.4 the latest observational constraints regarding the pa-
rameters of massless STTs are shown.

In the following we assume a signature {−,+,+,+} for the spacetime metric and use
Greek letters µ, ν, λ, . . . (running from 0 to 3) for 4D spacetime tensor components,
while Latin letters i, j, k, . . . (running from 1 to 3) are employed for 3D spatial tensor
components. Moreover, we use the dimensionless units where c = G = M� = 1, and
we absorb the

√
4π factors in the definition of the EM quantities. Variables denoted

with a tilde, ·̃, are calculated in the Jordan frame, while quantities denoted with a bar,
·̄, are expressed in the Einstein frame.

2.1 Where it all started: the Brans-Dicke theory

The foundations of STTs were laid by Brans & Dicke (1961) in a seminal paper, in
which the authors modified the Einstein-Hilbert action of GR attempting to bring it in
conformity with Mach’s principle by replacing the gravitational constant G by a scalar
field non-minimally coupled to the spacetime metric, giving birth to the Jordan-Fierz-
Brans-Dicke theory (BD). In particular, in BD G−1 is replaced by a scalar field ϕ, which
is a function of the spacetime position. The action that gives rise to the BD equations

15
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of motion is1

S̃ =
1

16π

∫
d4x
√
−g̃
[

ϕR̃− ωBD

ϕ
g̃µν∇̃µ ϕ∇̃ν ϕ

]
, (2.1)

where g̃ is the determinant of the spacetime metric g̃µν, ∇̃µ its associated covariant
derivative, R̃ its Ricci scalar and ωBD is a constant, the only free parameter of the theory.
The field equations are found by performing the variation δS̃/δg̃µν, leading to

G̃µν =
ωBD

ϕ2

[
∇̃µ ϕ∇̃ν ϕ− 1

2
g̃µν∇̃λ ϕ∇̃λ ϕ

]
+

1
ϕ

[
∇̃µ ϕ∇̃ν ϕ− g̃µν∇̃µ∇̃µ ϕ

]
, (2.2)

where G̃µν = R̃µν − 1
2 g̃µνR̃ is the Einstein tensor and R̃µν is the Ricci tensor associated

to g̃µν. By performing the variation δS̃/δϕ, we find the equation of motion of the scalar
field:

∇̃µ∇̃µ ϕ = 0 . (2.3)

We note that the scalar field ϕ is present in Eqs. 2.2,2.3 only though its derivatives,
which implies that ϕ = const. is a solution of BD and it corresponds to a GR solution,
but with a re-scaled gravitational constant G = ϕ−1. In this sense, if ϕ is not constant,
it can be interpreted as a spacetime-varying gravitational ‘constant’, which is exactly
what guarantees the accordance between BD and Mach’s principle. Moreover, it can
be shown that if ωBD → ∞ the scalar field converges to a constant value ϕ0, meaning
that the solution approaches a GR one with a re-scaled gravitational constant. As we
show in Sect. 2.4, BD is no longer considered viable due to the extremely high value of
ωBD needed to explain observations, which means that the theory must be heavily fine
tuned and its effects in modifying GR are negligible.

2.2 Massless scalar tensor theories

The most general action SJ that describes the mutual interplay of an ideal magne-
tised fluid at thermodynamic equilibrium with a gravitational spacetime containing
one scalar field ϕ non-minimally coupled to the metric g̃µν, is invariant under space-
time diffeomorphisms, is at most quadratic in the derivatives of the fields, and which
satisfies the WEP, can be written as the sum of two terms. The first term S̃g[g̃µν, ϕ],

1In this and subsequent expressions of the gravitational actions we neglect the Gibbons-York-
Hawking boundary term, which is needed to pose a well-defined variational principle in case of a space-
time with boundary ∂M. In this regard, in STTs we need to impose both δgµν = 0 and δR = 0 on ∂M,
due to the additional scalar degree of freedom (Dyer & Hinterbichler 2009).
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encoding the information about the gravitational fields, according to the ‘Bergmann-
Wagoner formulation’ (Bergmann 1968; Wagoner 1970; Berti et al. 2015) is

S̃g =
1

16π

∫
d4x
√
−g̃
[

ϕR̃− ω(ϕ)

ϕ
∇̃µ ϕ∇̃µ ϕ−U(ϕ)

]
, (2.4)

where ω(ϕ) and U(ϕ) are, respectively, the coupling function and the potential of the
scalar field ϕ. We note that Eq. 2.4 is simply the BD action Eq. 2.1 where ωBD is replaced
with a generic function ω(ϕ) and a potential U(ϕ) has been added. The second term
S̃p[g̃µν, Ψ̃] contains information on the other physical (EM and fluid) fields Ψ̃. For now
we leave the functional form of S̃p unspecified; in Sect. 3.1 we adopt a particular choice
used for ideal fluids.

The frame where the action reads SJ = S̃g + S̃p is called the ‘Jordan frame’ (J-frame),
and quantities denoted with a tilde, ·̃, are defined in this frame. Variation of the action
with respect to the various fields leads to the Euler-Lagrange field equations (and to
the constraints). We note that, since S̃p does not depend explicitly on ϕ, the WEP is
guaranteed to hold in this frame; in other words, test particles follow the geodesics
of the spacetime metric g̃µν in the J-frame. This means that the scalar field does not
interact directly with the physical fields in this frame, but only through its effects on
the spacetime metric. The consequence of this is that the equations describing the be-
haviour of the physical quantities, i.e. MHD equations, are unaffected by the presence
of the scalar field. By performing the variation δS̃J/δg̃µν we obtain the field equations
in the J-frame (Berti et al. 2015):

G̃µν =
8π

ϕ
T̃p µν +

ω(ϕ)

ϕ2

[
∇̃µ ϕ∇̃ν ϕ− 1

2
g̃µν∇̃λ ϕ∇̃λ ϕ

]
+ (2.5)

+
1
ϕ

[
∇̃µ∇̃ν ϕ− g̃µν∇̃µ∇̃µ ϕ

]
− U(ϕ)

2ϕ
g̃µν , (2.6)

where

T̃µν
p = − 2√

−g̃
δS̃p

(
g̃µν, Ψ̃

)
δg̃µν

(2.7)

is the energy-momentum tensor of the physical fields in the J-frame and T̃p = g̃µνT̃p µν

is its trace. On the other hand, by performing the variation δS̃J/δϕ we obtain the scalar
field equation in the J-frame:

∇̃µ∇̃µ ϕ =
1

3 + 2ω(ϕ)

[
8πT̃p − 16πϕ

∂T̃p

∂ϕ
− dω

dϕ
∇̃λ ϕ∇̃λ ϕ + ϕ

dU
dϕ
− 2U(ϕ)

]
. (2.8)

The right-hand side of Eq. 2.5 contains higher-order derivatives of the scalar field, and
its associated energy density is not positively defined (Santiago & Silbergleit 2000). As
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a consequence, in the J-frame the generalisation of Einstein’s field equations has a dif-
ferent mathematical structure than in GR, implying that standard solution techniques
and algorithms developed for GR cannot be naively applied. However, it is possible to
show (Santiago & Silbergleit 2000) that, by performing a conformal transformation of
the metric,

ḡµν = ϕg̃µν , (2.9)

and introducing a new scalar field χ related to ϕ according to

dχ

d ln ϕ
=

√
ω(ϕ) + 3

4
, (2.10)

the gravitational part of the action becomes

S̄g =
1

16π

∫
d4x
√
−ḡ
[
R̄− 2∇̄µχ∇̄µχ−V(χ)

]
, (2.11)

where ḡ is the determinant of the spacetime metric ḡµν, ∇̄µ its associated covariant
derivative, R̄ its scalar curvature, and V(χ) = U(ϕ)/ϕ2 the potential of the scalar
field χ. The action of the physical fields is changed by the conformal transformation
Eq. 2.9 to S̄p[ϕ−1(χ)ḡµν, Ψ̃]. The frame where the action reads SE = S̄g + S̄p is known
as the ‘Einstein frame’ (E-frame) and quantities denoted with a bar, ·̄, are defined in
this frame. We see that now S̄p does not depend on the spacetime metric ḡµν alone, but
through the combination ϕ−1(χ)ḡµν; thus, test particles do not follow the geodesics of
the spacetime metric. In other words, the WEP does not hold in the E-frame, and as a
consequence MHD equations in the E-frame have a more complicated form that in GR.
Interestingly, Maxwell’s equations retain their form, as expected from their pre-metric
nature (van Dantzig & Dirac 1934; Cartan 1986; Delphenich 2005). As a consequence, in
the E-frame standard methods, techniques, and algorithms developed in MHD, based
on the conserved nature of the various physical quantities, and the locality of the EoS,
cannot be naively applied. In the E-frame the equations of motion of the spacetime
metric and of the scalar field are found by performing the variations δS̄E/δḡµν and
δS̄E/δχ respectively, leading to (Berti et al. 2015):

Ḡµν = 2
(
∇̄µχ∇̄νχ− 1

2
ḡµν∇̄λχ∇̄λχ

)
− 1

2
ḡµνV(χ) + 8πT̄p µν (2.12)

and
∇̄µ∇̄µχ = −4παs(χ)T̄p +

1
4

dV
dχ

, (2.13)

where Ḡµν = R̄µν − 1
2 ḡµνR̄ is the Einstein tensor, R̄µν is the Ricci tensor associated to

ḡµν,

T̄µν
p = − 2√−ḡ

δS̄p
[
ϕ−1(χ)ḡµν, Ψ̃

]
δḠµν

(2.14)
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is the E-frame physical energy-momentum tensor and T̄p = ḡµνT̄p µν its trace, and

αs(χ) = −
d ln ϕ(χ)

2dχ
. (2.15)

We note that the right-hand side of Eq. 2.12 can be written as

Ḡµν = 8π
(
T̄µν

s + T̄µν
p
)

, (2.16)

where

T̄µν
s =

1
4π

[
∇̄µχ∇̄νχ− 1

2
ḡµν∇̄λχ∇̄λχ

]
, (2.17)

is the scalar field energy-momentum tensor. Thus, we see that in the E-frame the metric
field equations are equivalent to those of GR, and the scalar field acts only as an extra
energy-momentum source term.

We note from Eq. 2.13 that the only direct sources of a massless scalar field (i.e. such
that U = V = 0) in the E-frame are those physical fields with a non-vanishing trace
of the energy-momentum tensor; as such, the EM field is not a direct source of the
scalar field, and for the same reason purely metric black holes in massless STTs are
undistinguishable from those in GR (Hawking 1972; Berti et al. 2015). Analogously,
in the ultra-relativistic asymptotically free regime of an ideal fluid the same consider-
ations apply. In the following we consider only massless STTs, thus without a scalar
potential.

The fact that MHD equations retain their usual GR form in the J-frame and the tensor-
scalar field equations are written as in GR with an additional source in the E-frame,
suggests that a simultaneous use of the E-frame (to compute the metric and scalar
fields) and of the J-frame (to compute the physical fields) by performing the conformal
transformations between the two whenever necessary, enables us to easily extend the
standard numerical techniques of GRMHD to the case of STTs, as we show in Chap. 4.

One consideration is due: we have so far introduced two different frames, the J-frame
and the E-frame, each with its own properties and set of equations, and both are pos-
sible settings to study STTs. Are the two frames physically equivalent? If not, which
one is to be considere the real, physical frame? In other words, among the infinitely-
many frames connected by conformal transformations, whose predictions are to be
compared with experiments? This issue is long-standing, with different possible inter-
pretations, and a definitive answer does not exist at this point. We report here only a
few points of view on the subject, while a more thorough overview on the problem can
be found in Capozziello & de Laurentis (2011). One argument (Dicke 1962) states that a
conformal transformation is merely a local rescaling of units and, as such, it leaves the
physics invariant; in other words, the two frames are physically equivalent provided
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that the units in the E-frame are rescaled with appropriate powers of the conformal fac-
tor. However, this argument is purely classical and, even though there doesn’t exist a
full and consistent quantum gravity theory, in some approaches that try to quantize the
metric tensor inequivalent theories are found (Capozziello & de Laurentis 2011). On
the other hand, the fact that the WEP holds in the J-frame but not in the E-frame can be
thought of as an argument against the physical equivalence of the frames. However,
one could also argue that the WEP is formulated in such a way as to be dependent on
the specific conformal frame. Moreover, the scalar field in BD can violate all of the en-
ergy conditions in the J-frame, while satisfying them in the E-frame, meaning that even
if the conformal frames turn out to be physically equivalent in this theory, their inter-
pretation is not. Furthermore, in some cosmological models the Universe accelerates
in one frame but not in the other and as such, from the point of view of observations,
they definitely do not seem to be physically equivalent (Capozziello et al. 2006). In any
case, since the WEP is observed to hold with great accuracy, we expect the J-frame to
be the physical frame, i.e. the one where observations are made. That is, any physical
variable that observations measure is the J-frame version of that quantity.

2.3 Spontaneous scalarisation

As black holes in massless STTs are equivalet to those in GR, they do not provide us an
effective way to test these STTs. Unlike black holes, NSs allow a coupling of the scalar
field to their composing matter, thus their structure changes in the presence of a mass-
less scalar field. For this reason NSs constitute a valuable probe of STTs, even more
so because of the existence of non-perturbative strong field effects like ‘spontaneous
scalarisation‘. The importance of theories contanining this non-linear phenomenon
is that they allow the scalar field to develop appreciable deviations from GR inside
compact material objects - namely NSs - while still satisfying the tight observational
constraints valid in the weak-field regime.

It is possible to get an insight in the principle behind spontaneous scalarization by
considering the limit in which the E-frame massless scalar field χ is just a small per-
turbation around a GR solution (Berti et al. 2015), that is χ̂ = χ− χ0 → 0, where χ0 is
the constant asymptotic value of the scalar field at distance r → ∞ from the NS. In this
limit αs(χ) ≈ α0 + β0χ̂. Observational constraints, as we detail in Sect. 2.4, require that
α0 be extremely small when the scalar field tends to its asymptotic value: thus, a con-
figuration with χ ≈ χ0 and α0 ≈ 0 should be an approximate solution of the STT set
of equations. Then, in this case any GR solution is a solution to the STT field equations
Eq. 2.12 at first order, while the scalar field equation Eq. 2.13 reads[

∇̄µ∇̄µ − µ2
s(xν)

]
χ̂ = 0 , (2.18)
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where µ2
s(xν) = −4πβ0T̄. We see that this is a Klein-Gordon equation for the E-frame

scalar field with an effective mass µs(xν) which depends on the spacetime position.
Depending on the sign of β0T̄, the squared effective mass can be positive or negative.
In most situations T̄ < 0; thus, if also β0 < 0, perturbations of the scalar field around
the GR solutions can devlop an instability which is associated with an exponentially
growing mode. The requirement that the modes have a wavelength which is contained
inside the NS radius leads to a condition on the compactness of the star, which must be
sufficiently high, thus revealing that compact material objects like NSs are fundamental
to test the viability of STTs. As an example, in the case of a spherically-symmetric NS
spontaneous scalarisation happens for β0 . −4.35 (Harada 1998). We note that, in the
case of strongly-interacting systems, it can happen that T̄ > 0 (Haensel et al. 2007): in
this case, spontaneous scalarisation develops for β0 > 0 (Mendes & Ortiz 2016).

Spontaneous scalarisation is associated to the growth of a scalar ‘hair’ in NSs, in a
process akin to ferromagnetism (Damour & Esposito-Farèse 1996). To see this let’s
expand the scalar field arount its asymptotic value χ0:

χ(r) = χ0 +
ωA

r
+O

(
1
r2

)
, (2.19)

where the monopole coefficient of the expansion ωA is akin to a ‘scalar charge‘ of the
NS hosting the scalar field. It can be shown that (Damour & Esposito-Farese 1992)

ωA = −∂mA

∂χ0
, (2.20)

where mA is the ADM mass (Gourgoulhon 2012) of the NS. This allows one to give
an interpretation of spontaneous scalarisation based on the well-known theory of fer-
romagnetism. Ferromagnets immersed in an external magnetic field B0, when below
the Curie temperature TC, develop a spontaneous symmetry breaking: given their free
energy E, their magnetisation

M = − ∂E
∂B0

(2.21)

is non-zero even if |B0| → 0. This is in contrast with nonferromagnetic materials,
where M and B0 are proportional, the proportionality constant being the magnetic
suceptibility. This effect is a second-order phase transition, where M is the order pa-
rameter in the case of ferromagnets; by analogy, ωA takes the role of order parameter
in the case of spontaneous scalarisation. A weakly self-gravitating object develops a
scalar charge ωA ∝ χ0, where the proportionality factor is a ‘scalar susceptibility’ ana-
logue to the magnetic one, which implies that their scalar charge vanishes in the limit
of zero external scalar field χ0. In the case of strongly self-gravitating objects, the scalar
analogues of the thermodynamic quantities are found by minimizing the total energy
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mA as a function of both the external field and the order parameter, assuming that the
Legendre transform of the energy function µ(ωA) (the Landau free energy) develops a
minimum for ωA when some control parameter varies:

mA (ωA, ϕ0) = µ(ωA)−ωA ϕ0 . (2.22)

By fixing the shape of the scalar coupling function αs we can set the control param-
eter as the baryon mass of the star m̄A, which can be thought of as the scalar ana-
logue of the temperature in thermodynamics. For example, let’s consider the Lan-
dau ansatz as a simple model exhibiting spontaneous scalarisation: µ(ωA) = a(m̄cr −
m̄A)ω

2
A/2 + bω4

A/4, where a and b are constants and m̄cr is the critical transition point.
If χ0 = 0, mA develops a minimum in ωA = 0 (the trivial solution) if m̄A < m̄cr, while
ωA = ±

√
a(m̄A − m̄cr)/b (the non-trivial solution) if m̄A > m̄cr. Thus, if the baryonic

mass of the star is sufficiently large, there appear two energetically favoured non-trivial
solutions for the scalar charge. At the critical transition point m̄A = m̄cr, dωA/dm̄A di-
verges as in a second-order phase transition. As in the ferromagnetic case, the scalar
susceptibility χA = ∂ωA/∂χ0 diverges as |m̄A − m̄cr|−1 near the critical point, while a
non-zero external field χ0 smoothes the transition.

2.4 The current status of observational constraints

Most STTs are designed to be metric theories of gravity, i.e. they respect the Einstein
equivalence principle (Will 2014). For this reason, the precision tests of the WEP, of
the local Lorentz invariance and of the local position invariance in a flat spacetime are
not useful in constraining these theories (Will 2014; Berti et al. 2015; Will 2018). On the
other hand, since these theories generally violate the SEP2, tests of this principle using
self-gravitating bodies are ideal to constrain the theory of gravity.

One class of tests of the SEP consists in measuring the effective gravitational constant
Gab entering the gravitational interaction between two bodies a and b (Voisin et al.
2020). At the Newtonian level, the acceleration of body a in the gravitational field of
body b is given by

ẍa = −Gabmb
rab

|rab|3
+O

(
c−2
)

, (2.23)

where mb is the inertial mass of body b, rab = xa − xb is the coordinate separation
between the two bodies and c is the speed of light. Since Gab depends on the properties
of the two bodies, in the weak-field limit it can be interpreted as a mismatch between

2There are arguments suggesting that GR is the only gravity theory in four spectime dimensions that
fully satisfies the SEP (Di Casola et al. 2015; Will 2018). Actually, also Nördstrom’s conformally-flat STT
fulfills the SEP, but its viability is ruled out by Solar System experiments (Deruelle 2011).
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the inertial and the gravitational masses (m and mG respectively) of the bodies:

Gab =
(mG

m

)
a

(mG

m

)
b

G . (2.24)

If one considers an isolated two-body system with unknown masses, any violation of
the SEP is degenerate with a rescaling of the masses, due to the symmetries of the equa-
tions of motion. On the other hand, if a third body enters the setting, the symmetry is
broken and one can compare the rate of free-fall of two self-gravitating objects in the
gravitational field of a third one. An example of this class of tests is the Lunar Laser
Ranging experiment (LLR) (Müller et al. 2019), where one considers the Earth-Moon
system in the gravitational field of the Sun: since the Earth and the Moon possess dif-
ferent fractional binding energies, if the SEP is violated they should fall in the Sun’s
gravitational field with a slightly different acceleration, causing a polarisation of the
Earth-Moon orbit called ‘Nordtvedt effect’ (Nordtvedt 1968). The latest results on the
Nordtvedt effect found no deviation from GR (Hofmann & Müller 2018):(mG

m

)
Earth
−
(mG

m

)
Moon

= (−3.0± 5.0)× 10−14 . (2.25)

Another class of SEP tests consists in the measurement of the ‘Shapiro delay’ (Shapiro
1964): an EM signal passing in the vicinity of a massive body will take a slightly longer
time to travel back and forth to the observer than if the body were not present, due to
the presence of a spacetime curvature. Belonging to this class of tests are the measure-
ments on the travel time of signals sent to the Cassini spacecraft (Bertotti et al. 2003). In
this case, the time delay measurements can be recast in terms of the γ Post-Newtonian
parameter, which is unity in GR. Meaningful deviations from GR have not been found:

γ− 1 = (2.1± 2.3)× 10−5 . (2.26)

By choosing a specific theory of gravity one can recast these results in terms of con-
straints on the parameters of the theory. In the quadratic, massless mono-scalar tensor
theory by Damour & Esposito-Farèse (1993), to which we focus in the present work,
the scalar coupling function is chosen to be

αs(χ) = α0 + β0χ , (2.27)

where α0 and β0 are the only two parameters of the theory. As explained in Sect. 2.3,
β0 control the non-linear effects of the scalar field - i.e. spontaneous scalarisation -
while α0 is associated to the weak-field effects. This is the most simple extension of
BD, which corresponds to α−2

0 = 2ωBD + 3 and β0 = 0. The measurements of the
deviations from GR described before can be recast in terms of constraints on α0 and β0

(Freire et al. 2012), keeping in mind that GR corresponds to α0 = β0 = 0. The results
of the LLR and Cassini measurements, along with tests of the SEP using timing of a set
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of NS-white dwarf low-eccentrity binaries (Gonzalez et al. 2011), are shown in Fig. 2.1,
where constraints coming from three binary NS systems [B1913+16 (Weisberg et al.
2010), J0737–3039 (Kramer et al. 2006), and B1534+12 (Stairs et al. 2002)] and two NS-
white dwarf systems [J1141–6545 (Bhat et al. 2008) and J1738+0333 (Freire et al. 2012)]
are also shown. While the results shown in Fig. 2.1 already show that very severe

Figure 2.1: Bounds on the α0 and β0 parameters from Solar System and binary pulsar mea-
surements. LLR stands for results of the LLR experiment, Cassini for the Shapiro delay mea-
surements using the Cassini spacecraft, and SEP for tests of the SEP using timing of a set of
NS-white dwarf low-eccentrity binaries. B1913+16, J0737–3039, and B1534+12 stand for mea-
surements obtained using three binary NS systems, while J1141–6545 and J1738+0333 are found
by observations of two NS-white dwarf systems. See text for more details. The shaded region
marks the allowed parameter space. GR is found at α0 = β0 = 0. Image reproduced from
Freire et al. (2012), copyright by the authors.

restrictions apply to spontaneous scalarisation, some of the most stringent bounds on
the α0 and β0 parameters to date were found by combining limits from binary pulsar
experiments with data from the pulsar PSR J0337+1715 (Boyles et al. 2013; Lynch et al.
2013), the only pulsar confirmed to be in a tripe stellar system (Ransom et al. 2014). An
improvement of several orders of magnitude on the SEP test over previous pulsar tests
was achieved using this triple stellar system (Archibald et al. 2018; Voisin et al. 2020).
In particular, it was found that |α0| . 1.3× 10−3 and β0 & −4.3. The constraint on
α0 translates into a lower bound on the BD parameter: ωBD > 140 000, which renders
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BD not viable in the sense that its predictions are practically equivalent to those of GR.
Moreover, we mention the recent results (Kramer et al. 2021) that build upon previous
findings (Kramer et al. 2006) regarding the double pulsar PSR J0737-3039: depending
on the EoS, the limit on β0 may be as strong as β0 & −4.

All the results described so far are valid in the case of a massless STT. For massive
scalar fields, lower values of β0 are still allowed (Yazadjiev et al. 2016), as long as
the screening radius is smaller than the binary separation. In fact, in case the scalar
field χ is endowed with a mass mχ, its effects are suppressed as we move away from
the scalarised object as χ ∼ r−1 exp{−r/λχ}, where λχ = 2π/mχ is the Compton
wavelength of the scalar field, i.e. the screening radius. This means that the dynamics
and interaction of the systems described above, if the mass is sufficiently large, are not
affected by the presence of the scalar field, which remains hidden behind the screening
radius.
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Chapter 3

The mathematical setting

This chapter deals with the full mathematical setting used in our work. In particular,
in Sect. 3.1 we focus on the action of the physical fields describing an ideal magnetised
fluid at thermodynamic equilibrium. In Sect. 3.2 we introduce the ‘3+1 formalism’ used
to cast the equations in a form which is suitable for numerical solvers and explain how
it generalises to STTs. In Sect. 3.3 we present the metric equations, focusing on the case
of static, axisymmetric, circular spacetimes which is suitable for our study. In Sect. 3.4
we describe the wave equation for the scalar field. Finally, in Sect. 3.5 we detail the
equations describing the magnetic configuration of our models, focusing on the case
of purely poloidal and purely toroidal magnetic fields.

3.1 The action of the physical fields

In Sect. 2.2 we introduced the action of monoscalar STTs as the sum of a gravitational
action and of a physical action. We now specify the form of the physical action in the
case of an ideal magnetised fluid at thermodynamic equilibrium: S̃p[g̃µν, Ñµ, Ãµ, ε̃, s̃]
contains information on the physical (matter and electromagnetic) fields and it is a
function of the mass current density Ñµ = ρ̃ũµ, expressed as a function of the rest
mass density ρ̃ and four-velocity ũµ, the specific entropy s̃, the internal energy density
ε̃(ρ̃, s̃), and the electromagnetic four-potential Ãµ. For an ideal fluid neglecting polari-
sation, magnetisation (Chatterjee et al. 2015; Franzon et al. 2016), dynamo or resistivity
(Bucciantini & Del Zanna 2013; Del Zanna et al. 2016; Del Zanna & Bucciantini 2018;
Tomei et al. 2020), it is

S̃p =
∫

d4x
√
−g̃
[

ε̃(ÑµÑµ, s̃) + ζ∇̃µÑµ + ηÑµ∇̃µ s̃F̃µν F̃µν + τνÑµ F̃µν

]
, (3.1)

27
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where F̃µν = ∇̃µ Ãν−∇̃ν Ãµ is the Faraday tensor, Ãν is the vector potential, and ζ, η, τν

are Lagrangian multipliers that enforce mass conservation, entropy conservation, and
the ideal MHD condition ũµ F̃µν = 0 respectively (Hawking & Ellis 1973; Brown 1993;
Bekenstein & Oron 2001). Variations with respect to the four potential Ãµ lead to the
inhomogeneous Maxwell’s equations:

δSJ/δÃµ = 0 ⇒ ∇̃µ F̃µν = − J̃ν , (3.2)

where J̃ν is the electromagnetic four-current. Variations with respect to the matter four-
current Ñµ lead, ultimately, to the fluid Euler’s equation and to the energy-momentum
conservation law:

δSJ/δÑµ = 0 ⇒ ∇̃µT̃µν
p = 0 , (3.3)

where the energy momentum tensor is

T̃µν
p = [ρ̃ + ε̃ + p̃]ũµũν + p̃g̃µν + F̃µ

λ F̃νλ − 1
4

F̃λκ F̃λκ g̃µν (3.4)

and p̃ is the pressure. Given that the scalar field does not enter S̃p, the equations de-
scribing the behaviour of the physical quantities are unaffected by the presence of the
scalar field. Introducing the Hodge dual of the Faraday tensor F̃?µν = 1

2 ε̃µνλκ F̃λκ, where
ε̃µνλκ = −(−g̃)1/2[µνλκ] is the Levi-Civita pseudo-tensor and [µνλκ] is the alternating
Levi-Civita symbol, one can write the energy momentum tensor of ideal MHD in terms
of the comoving magnetic field b̃µ = ũν F̃?µν as

T̃µν
p =

(
ρ̃h̃ + b̃2

)
ũµũν − b̃µb̃ν +

(
p̃ +

1
2

b̃2
)

g̃µν , (3.5)

where b̃2 = b̃µb̃µ and h̃ = 1 + (ε̃ + p̃)/ρ̃ is the specific enthalpy.

3.2 The 3+1 formalism

The idea behind the 3+1 formalism is to choose a family of spacelike hypersurfaces and
break down the covariant form of the general-relativistic equations in a process called
‘foliation’ or ‘slicing’. According to the 3+1 formalism (Alcubierre 2008; Gourgoulhon
2012), any globally hyperbolic spacetime (it makes sense to restrict ourselves to this
kind of spacetime because it covers most astrophysical and cosmological scenarios)
admits a foliation with a family of spacelike hypersurfaces Σt with normal timelike
vector nµ (which is, by definition, the velocity of the so-called ‘Eulerian observer’,
such that nµnµ = −1). Calling xµ = [t, xi] the coordinates adapted to the foliation, the
geometry in the spacetime region between two adjacent spatial hypersurfaces Σt and
Σt+dt is defined by
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• a three-dimensional ‘induced metric’ γij, with Riemannian signature (+,+,+),
which measures proper distances dl2 = γijdxidxj on each hypersurface;

• a ‘lapse function’ α(t, xi), which keeps track of the difference in proper time
dτ = αdt measured by observers moving along the worldline orthogonal to the
hypersurfaces (i.e. Eulerian observers);

• a ‘shift vector’ βi(t, xi), which measures the difference in velocity between Eule-
rian observers and the lines of constant spatial coordinates: xi(t + dt) = xi(t)−
βidt.

Since the chosen foliation is arbitrary, α and βi are not unique, and contain information
about the choice of coordinates. The three-metric induced on Σt is γµν = gµν + nµnν

(and the induced rank-3 Levi-Civita pseudo tensor is εijk = εijkµnµ). The generic line
element takes the form

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
. (3.6)

If βi = 0, the spacetimes is said to be static. Tensors nµ and γµν allow one to project
any tensor according to the foliation. The 4-dimensional metric is then

gµν =

(
−α2 + βiβ

i βi

β j γij

)
, gµν =

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
.

The 4-dimensional volume element is given by
√−g = α

√
γ, where g = det(gµν) and

γ = det(γij). The 4-vector nµ is

nµ =
(

1/α,−βi/α
)

, nµ = (−α, 0) .

Note that γij can be thought of as an orthogonal projector on Σt.

In STTs, the relation between the E-frame Eulerian observer and J-frame one is: ñµ =

An̄µ, γ̃µν = A2γ̄µν, where we have introduced the conformal function A = 1/
√

ϕ(χ)

coupling the two frames. The standard 3+1 decomposition of any vector is

Uµ = U‖n
µ + Uµ

⊥ , (3.7)

where U‖ = −nµUµ and nµUµ
⊥ = 0, while any rank-2 symmetric Xµν and antisymmet-

ric Aµν tensor can be written as

Xµν = Ynµnν + Zµnν + Zνnµ + Wµν , (3.8)

Aµν = Cµnν − Cνnµ + εµνλκDλnκ , (3.9)
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where nµZµ = 0 = nµWµν and nµCµ = nµDµ = 0. In particular, the 3+1 decomposition
of the energy-momentum and Faraday tensors are:

T̃µν
p = Ẽpñµñν + S̃µ

pñν + ñµS̃ν
p + W̃µν

p , (3.10)

T̄µν
s = Ēsn̄µn̄ν + S̄µ

s n̄ν + n̄µS̄ν
s + W̄µν

s , (3.11)

F̃µν = ñµẼν − Ẽµñν + ε̃µνλκ B̃λñκ , (3.12)

F̃?µν = ñµB̃ν − B̃µñν − ε̃µνλκ Ẽλñκ . (3.13)

The relations between the J-frame and E-frame physical energy-momentum and Fara-
day tensors are A6T̃µν = T̄µν and A4F̃µν = F̄µν, and one can easily recover the follow-
ing relations among the various projections:

Γ̃ = −ñµũµ = −n̄µūµ = Γ̄ , (3.14)

Aṽj = γ̃
j
µAũµ = γ̄

j
µūµ = v̄j , (3.15)

A4Ẽp = A−2ñµñνA6T̃µν
p = n̄µn̄νT̄µν

p = Ēp , (3.16)

A5S̃j
p = −A−1ñµγ̃

j
νA6T̃µν

p = −n̄µγ̄
j
νT̄µν

p = S̄j
p , (3.17)

A6W̃ ij
p = γ̃i

µγ̃
j
νA6T̃µν

p = γ̄i
µγ̄

j
νT̄µν

p = W̄ ij
p , (3.18)

A3B̃µ = A4F̃?µνñνA−1 = F̄?µνn̄ν = B̄µ , (3.19)

A3Ẽµ = A4F̃µνñνA−1 = F̄µνn̄ν = Ēµ , (3.20)

These relation show, for example, that the Lorentz factor Γ is the same in the two
frames. The energy conservation law in the J-frame, ∇̃µT̃µν = 0, together with the
mass conservation ∇̃(ρ̃ũµ) = 0 and Maxwell’s equations, can be cast into a system for
the evolution of the projected quantities Ẽp, S̃j

p, B̃µ, Ẽµ, once an EoS and a closure for
the electromagnetic currents (e.g. the Ideal MHD conditions) are provided, according
for example to Del Zanna et al. (2007) and Bucciantini & Del Zanna (2011). Then, the
above equations allow one to rescale those quantities to the E-frame, where they are
used to solve the 3+1 evolutionary equations for the metric and the scalar field. For
this purpose one needs also the 3+1 projection of the latter. This is only done in the
E-frame, given that it is not needed in the J-frame, according to:

∇̄µχ = Pn̄µ + Qµ , (3.21)

Ēs = n̄µn̄νT̄µν
s = Q2 + P2 , (3.22)

S̄j
s = −n̄µγ̄

j
νT̄µν

s = PQj , (3.23)

W̄ ij
s = γ̄i

µγ̄
j
νT̄µν

s = QiQj + (Q2 + P2)γ̄ij , (3.24)

where Qµ is purely spatial and Eq. 2.13 can also be cast into a set of evolutionary equa-
tions for P and Qi (Salgado 2006; Salgado et al. 2008).
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From now on, for the sake of clarity, and for ease of reading, we will drop the ·̄ and
·̃ notation. All quantities referring either to the metric or the scalar field are assumed
to be taken in the E-frame, while the MHD and fluid ones are to be considered in the
J-frame. Whenever necessary, in case of possible ambiguity, the bar and tilde notation
will be restored to specify the frame of reference for the given quantity.

3.3 The metric equations

For the problem we are interested in, we chose spherical-like coordinates xµ = [t, r, θ, φ]

and considered only configurations that are stationary and axisymmetric. This means
that there exist two commuting Killing vectors, the timelike tµ = (∂t)µ and the space-
like φµ = (∂φ)µ (Carter 1970, 2009, 2010). These two vectors span a timelike two-
plane Π = Vect(tµ, φµ). Any vector Vµ ∈ Π is said to be toroidal, and takes the form
Vµ = cttµ + cφφµ; instead, it is said to be poloidal if it lies in the spacelike two-plane
orthogonal to Π. Given the generalised Einstein’s equations for the metric, Eq. 2.12, if
both the scalar and physical energy-momentum tensors obey the relations

tµT̄µ[νtκφλ] = 0 ,

φµT̄µ[νtκφλ] = 0 ,
(3.25)

where the square brackets mean anti-symmetrisation with respect to the enclosed in-
dices, then the spacetime has the additional property of being ‘circular’ (Kundt &
Trümper 1966; Carter 1969). In this case, βr = βθ = 0, γrφ = γθφ = γrθ = 0 and
all the remaining metric components depend solely on r and θ.

In case of circular spacetimes and spherical-like coordinates, the line element simplifies
to

ds2 = −α2dt2 + ψ4
(

dr2 + r2dθ2
)
+ R2

qi
(
dφ + βφdt

)2 , (3.26)

where Rqi =
√

γφφ is the quasi-isotropic radius and ψ is the conformal factor. A metric
in the form of Eq. 3.26 is said to be ‘quasi-isotropic’. Stationarity and axisymmetry are
enough to ensure that T̄µν

s satisfies Eq. 3.25. However they are not enough to ensure the
same for the physical part T̄µν

p . Given that the energy-momentum tensor of the E and
J-frame are related by a simple conformal transformation, and the same holds for the
Killing vectors and the metric, the conditions that ensure circularity in one of them will
also ensure it in the other. For an ideal plasma, having an energy-momentum tensor as
in Eq. 3.5, on top of stationarity and axisymmetry, circularity requires the four-velocity
to be toroidal, ur = uθ = 0, and the magnetic field bµ to be either purely toroidal or
purely poloidal (in this latter case, rotation must also be uniform). On the contrary,
even if the configuration is static and axisymmetric, for a magnetic field with a mixed
configuration, Eq. 3.25 does not hold, and in principle the metric of Eq. 3.26 is no longer
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correct. However, even in this case it has been shown in GR (Oron 2002; Shibata &
Sekiguchi 2005; Dimmelmeier et al. 2006; Ott et al. 2007; Bucciantini & Del Zanna 2011;
Pili et al. 2014, 2017) that Eq. 3.26 provides a good approximation of the correct metric,
and leads to small errors in the structure of rotating stars, mostly in the outer layers
close to the surface, even in the extreme cases of a rotation at the mass-shedding limit,
and magnetic fields as strong as 1019G. Moreover it can be also shown that in GR the
difference Rqi − ψ2r sin θ is at most of order of 10−3 (Pili et al. 2017). Thus, to a good
level of accuracy, the metric can be further simplified to the conformally flat (CFC)
approximation (Wilson & Mathews 2003; Isenberg 2008), for which

ds2=−α2dt2+ψ4
[
dr2+r2dθ2+r2sin2 θ

(
dφ +βφdt

)2
]

, (3.27)

where we have a common factor multiplying all flat-space metric terms in spherical
coordinates.

From now on we shall restrict our analysis to static configurations alone, that is to
the case of non-rotating stars, for which vi = 0 and βi = 0 (see App. A for a discus-
sion on rotators). As a consequence, the ideal-MHD electric field Ei = −ε̃ijkvjBk =

−A−3ε̄ijkvjBk = 0 and Si = 0. Then, it can be shown that the extrinsic curvature
Kij = 0, which means that maximal slicing, K = 0, holds [see Gourgoulhon (2012) for
a discussion of the properties of this kind of slicing]. Under these assumptions, Ein-
stein’s equations reduce to a system of two Poisson-like elliptic equations for ψ and
α:

∆ψ =
[
−2πÊ

]
ψ−1 , (3.28)

∆ (αψ) =
[
2π
(
Ê + 2Ŝ

)
ψ−2

]
(αψ) , (3.29)

where ∆ = f ij∇̂i∇̂j and ∇̂i are, respectively, the 3D Laplacian and nabla operator of the
flat space metric fij. We note that the two equations are decoupled, such that Eq. 3.28
can be solved before Eq. 3.29. The source terms take the form

Ê = ψ6
{
A4
[

e +
1
2

B2
]
+

1
8π

Q2
}

,

Ŝ = ψ6
{
A4
[

3p +
1
2

B2
]
− 1

8π
Q2
}

.
(3.30)

3.4 The scalar field equation

Under the same conditions, it can be shown that Eq. 2.13 reduces to

∆χ = −4πψ4αs(χ)A4Tp − ∂ ln
(

αψ2
)

∂χ , (3.31)
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where ∂ f ∂g = ∂r f ∂rg + (∂θ f ∂θg)/r2 and Tp = 3p − ε − ρ is the trace of the J-frame
energy momentum tensor. We note that the Poisson-like Eqs. 3.28,3.29 for ψ and αψ

have the form ∆u = suq. In GR (A = 1, Qi = 0) they satisfy the criterion for local
uniqueness, sq ≥ 0. In STTs (Qi 6= 0), this is no longer true; in fact, the source term
in Eq. 3.29, s = 2πψ−2{A4[ε + 6p + 3B2/2] − Q2/8π} includes an additional factor
−Q2/8π such that it cannot be excluded that in particular conditions, when the scalar
field is extremely strong one has s < 0. However we verified that this does not happen
in any of the many configurations we computed, not even the most compact ones. Still,
it remains to be verified that this holds also in the case of the collapse to a black hole.
Concerning instead Eq. 3.31 at first order in χ, neglecting the higher order second term
on the right, it has the form ∆u = s f (u). It can be shown that the condition for local
uniqueness is s(d f /du) ≥ 0. Now s = −4πψ4Tp > 0. This implies that if αs(χ)A4 is a
decreasing function of χ, as it happens to be for STTs with spontaneous scalarisation,
Eq. 3.31 will not satisfy local uniqueness, and multiple solutions are expected. This
will be further investigated and discussed in Sect. 5.1

3.5 The magnetic field equations

We begin by showing how the Grad-Shafranov formalism used in GR (Del Zanna &
Chiuderi 1996; Pili et al. 2017), for the case of equilibrium configurations with a purely
poloidal magnetic field, can be extended to the case of STTs. The solenoidal condition
of the magnetic field allows us to write it as a function of the φ-component of the vector
potential, Aφ. In conformally-flat metric

Br =
∂θ Aφ

A3ψ6r2 sin θ
, Bθ = −

∂r Aφ

A3ψ6r2 sin θ
, (3.32)

and we recall that all metric terms are in the E-frame. Function Aφ is also called the
magnetic flux function, and its iso-surfaces Aφ = const., called magnetic surfaces,
contain the magnetic poloidal field lines.

The Euler equation describing the static MHD equilibrium is

∂i p + (ε + p) ∂i ln(Aα) = εijk JiBk/A3 = Li , (3.33)

where Ji = A2α−1εijk∂j(AαBk) and Li is the Lorentz force.

Often, NSs are assumed to be well described by a barotropic EoS, that is ε = ε(ρ) and
p = p(ρ). Then, also h = h(ρ) and Eq. 3.33 becomes (Pili et al. 2014) the ‘generalised
Bernoulli integral’ 1

ln
(

h
hc

)
+ ln

(
Aα

Acαc

)
−M = 0 , (3.34)

1In analogy with the non-relativistic case, the relativistic Bernoulli integral can be defined, in hydro-
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where the magnetisation functionM(Aφ) defines the Lorentz force through

Li = ρh
dM
dAφ

∂i Aφ , (3.35)

and hc, αc, andAc are the values of h, α andA at the center of the star, respectively (we
have assumedMc = 0). By working out the derivatives of the poloidal components
of the magnetic field, one can find an equation for Jφ:

Jφ = − 1
A4ψ8r2 sin2 θ

[
∆∗Aφ + ∂Aφ∂ ln

(
αψ−2

)]
, (3.36)

where ∆∗ = ∂2
r + r−2∂2

θ− r−2(tan θ)−1∂θ. Given that, from Eq. 3.35, Jφ = ρh(dM/dAφ),
we can obtain the Grad-Shafranov equation

∆̌3Ǎφ +
∂Aφ∂ ln

(
αψ−2)

r sin θ
+A4ψ8r sin θ

(
ρh

dM
dAφ

)
= 0, (3.37)

where Ǎφ = Aφ/(r sin θ) and ∆̌3Ǎφ = ∆∗Aφ/(r sin θ). Eq. 3.37 allows one to find the
magnetic field and current components once the metric (α and ψ) is known and the
free functionM has been chosen. The simplest choice, found for example in Pili et al.
(2014), is

M = kpolAφ , (3.38)

where kpol is the poloidal magnetisation constant. This leads to dipolar magnetic field
configurations and guarantees that the currents are confined within the star.

For a purely toroidal magnetic field, M in Eq. 3.34 is no longer a function of Aφ and
Li = ρh∂iM. Deriving the generalised Bernoulli integral and writing the Lorentz force
in terms of the magnetic field components, we obtain

∂i ln h + ∂i ln(Aα) +
AαBφ∂i

(
AαBφ

)
ρhA4R2 = 0 , (3.39)

whereR2 = α2ψ4r2 sin2 θ. This equation becomes integrable if we assume that the last
term can be written as the gradient of a scalar function. Defining

G = ρhA4R2 , (3.40)

this becomes possible if

Bφ =
I(G)
Aα

, andM(G) = −
∫ I
G

dI
dG dG . (3.41)

dynamics, from the conservation law of hut along the trajectories of a stationary flow (see Friedman &
Stergioulas 2013). This is a special case of the global first integral of Euler’s equation for iso-entropic
flows which, for stationary cases, reduces to Eq. 3.34. This is the reason why we refer to Eq. 3.34 as the
generalised Bernoulli integral.
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It is customary to assume a barotropic expression for I (Kiuchi & Yoshida 2008; Frieben
& Rezzolla 2012):

I = ktorGm andM = − mk2
tor

2m− 1
G2m−1 , (3.42)

where ktor is the toroidal magnetisation constant and m ≥ 1 is the toroidal magneti-
sation index. This form of I ensures that the magnetic field is confined within the
star and that its configuration is symmetric with respect to the equatorial plane. The
generalised Bernoulli integral then becomes

ln
(

h
hc

)
+ ln

(
Aα

Acαc

)
+

mk2
tor

2m− 1

(
ρhA4R2

)2m−1
= 0 . (3.43)
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Chapter 4

The XNS code

The XNS code1 is a numerical solver for the coupled equations of the metric, scalar field
and MHD structure of a NS under the assumptions of stationarity and axisymmetry,
adopting conformal flatness and maximal slicing. It is based on an iterative scheme,
which computes the various quantities separately. It has been applied also to the case
of white dwarves (Das & Mukhopadhyay 2015) and to non-barotropic NSs (Camelio
et al. 2019). The code is built upon the routines developed for the X-ECHO code for
GRMHD in dynamical spacetimes (Bucciantini & Del Zanna 2011), which, in turn, is
based on the ECHO code (Del Zanna et al. 2007). During this Ph.D. project, we updated
the XNS code - which previously worked only in GR and for simple polytropoic EoS
(Pili et al. 2014, 2015, 2017) - in order to account for the presence of a scalar field non-
minimally coupled to the metric, i.e. to solve for the structure of a magnetised NS in a
general, massless STT. While, as previously anticipated, we focus only on one particu-
lar scalar coupling function, the code is built in such a way that it is straightforward to
consider a different massless STT. Moreover, we updated XNS to allow the use of any
tabulated, realistic EoS. In this chapter we describe the workflow of XNS (Sect. 4.1), the
numerical techniques used to solve the equations (Sect. 4.2) and the numerical setup of
our configurations (Sect. 4.3).

4.1 The numerical scheme

Given the non-linear nature of the elliptic equations described in Chap. 3, these are
solved iteratively. If the source terms do not satisfy local-uniqueness, iterative schemes
might fail to converge. This issue is particularly relevant for Eq. 3.31 for the scalar

1The downloadable versione of XNS, along with a guide on its usage, can be found at https:

//www.arcetri.inaf.it/science/ahead/XNS/html/intro.html. See App. C for a brief description of
the package contents.
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field. As we discussed, the very nature of spontaneous scalarisation is tied to the non-
uniqueness of the solutions. In the iterative scheme used to solve Eq. 3.31 we opted
to keep fixed the trace of the energy-momentum tensor in the J-frame, and not in the
E-frame. Fixing the trace in the E-frame leads to a source term of the form −4πψ4αsT̄p,
which can be shown to violate local uniqueness for all values of χ. Fixing it in the
J-frame instead leads to a source term of the form −4πψ4αsA4Tp, and it can be shown
that local uniqueness is violated only in a finite range of values for χ. This ensures at
least the boundedness of the solution.

The code computes at the beginning the solution for a spherically symmetric non-
rotating and un-magnetised NS in isotropic coordinates, at the desired central density
ρc, solving the generalisation of the Tolman-Oppenheimer-Volkoff (TOV) equations
(Tolman 1939; Oppenheimer & Volkoff 1939) to STTs - the ‘S-TOV’ system. This is
achieved with a nested shooting technique requiring that in the final solution the ratio
Qr/∂r ln α is constant outside the NS, and that the conformal factor ψ corresponds to
the Just metric (Just 1959) in isotropic coordinates. In particular, the S-TOV system of
equations can be derived setting Bi = 0 in Eqs. 3.28,3.29,3.31,3.33:

4
ψ

dψ

dr
= ξ , (4.1)

dχ

dr
= Qr , (4.2)

dξ

dr
= −ξ2

4
− 2

r
ξ − 8πψ4A4 (ρh− p)−Q2

r , (4.3)

dα

dr
=

α

4 + 2rξ

(
− r

2
ξ2 − 2ξ + 16πrA4pψ4 − 2rQ2

r

)
, (4.4)

d
dr

(
A4p

)
= −A

4ρh
α

dα

dr
+ αs(χ)A4 (4p− ρh) Qr , (4.5)

dQr

dr
= −Qr

[
1
α

dα

dr
+

ξ

2
+

2
r

]
− 4πψ4αs(χ)A4 (4p− ρh) . (4.6)

These must be supplemented by a barotropic EoS p = p(ρ), ε = ε(ρ). This system can
be solved given the value at r = 0 of the density ρc, the conformal factor ψc and the
scalar field χc (recalling that all radial derivatives of scalar quantities vanish in r = 0).
The value of the lapse function at the center, αc, is irrelevant to the solution per se,
since only its derivative appears in Eqs. 4.1-4.6. This means that the lapse function is
derived minus an arbitrary constant, which is then chosen in order to satisfy the correct
asymptotic behaviour at r → ∞.

The correct STT solution satisfies the following requirements:

• The ratio C = αQr/2∂rα must be constant outside the NS, because it can be shown
that it is equal to the ratio Qs/2M between the net scalar charge Qs and twice the
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Komar mass M̄k in the E-frame (see their definitions in App. B).

• In vacuum α and ψ must behave like the Just metric (Just 1959) in isotropic coor-
dinates.

Given that the Just metric in isotropic coordinates has no analytical form, we provide
here an approximation that proves to be accurate with a precision ∼ 10−4, already at a
couple of NS radii. If one writes the metric terms ψ and α, outside of the NS surface, as

ψ4(r) =

[
1 +

1
2r

∞

∑
i=0

mi

ri

]4

, (4.7)

α2(r) =

[
1− 1

2r

∞

∑
i=0

ni

ri

]2 [
1 +

1
2r

∞

∑
i=0

mi

ri

]−2

, (4.8)

one finds that the first values of mi for i > 0 are:

m1 = −C2m2
0 , (4.9)

m2 = −C2m3
0/6 , (4.10)

m3 = −C2(1 + 3C2)m4
0/12 , (4.11)

m4 = −C2(3 + 11C2)m5
0/120 , (4.12)

m5 = −C2(9 + 58C2 + 90C4)m4
0/720 , (4.13)

m6 = −C2(45 + 334C2 + 618C4)m5
0/10080 , (4.14)

and ni = (−1)imi. When Qs = 0 one finds m0 = n0 and mi = ni = 0 for i > 0,
recovering the GR solution.

Once the S-TOV solution has been found, starting with an initial guess, the XNS code
performs iteratively the following steps until a converged solution is found:

1. Given a distribution of the physical and scalar fields, Eqs. 3.28,3.29 for a new
spacetime metric in the E-frame are solved in sequence.

2. Using the new metric in the E-frame and the old physical fields, scalar field
Eq. 3.31 is solved, allowing one to define a new metric in the J-frame.

3. If the magnetic field is purely toroidal, Eq. 3.43 is solved, and new values of the
physical fields, including the magnetic field components through Eq. 3.41, are
found in the J-frame. If the magnetic field is purely poloidal, first the equation
for the vector potential Eq. 3.37 and then Eq. 3.34 are solved, determining the
new physical fields in the J-frame.

4. Convergence is checked and, if not reached, the new physical metric and scalar
fields are used to define a new starting model.
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4.2 The numerical solvers

As we discussed in Sects. 3.3-3.5, the equations for the scalar quantities ψ, αψ, χ involve
the ∆ operator and the Grad-Shafranov equation can be reduced to a non-linear vector
Poisson equation for Ǎφ. Due to their non-linearity, the equations for ψ and αψ are
better solved iteratively for the quantities ψn− 1 and αnψn− 1, where n is the numerical
step, effectively solving for the deviation from asymptotic flatness ψ = α = 1.

There are three main categories of numerical methods available to solve elliptic PDEs
(Grandclément et al. 2001; Dimmelmeier et al. 2005; Grandclément & Novak 2009; Buc-
ciantini & Del Zanna 2011): direct inversion, full relaxation, spectral decomposition.
Their features can be summarised as follows.

• Direct inversion methods solve the full CFC system of equations at once using
a Newton-Raphson solver on the entire computational grid. They rapidly con-
verge to the solution, but the initial guess must be close enough to the solution
to achieve convergence on the global minimum and their memory requirements
are large.

• Full relaxation schemes are fast and do not require large memory allocations, but
suffer from some poor convergence properties, for example they might fail on the
axis or center of the star because of singularities in the quantities to be solved for.

• Spectral codes are characterised by the decomposition of the CFC system of equa-
tions into a combination of spherical harmonics - in the angular direction - and
Chebyshev polynomial - in the radial direction. While this ensures a correct be-
haviour of the solution on the axis and at the center, these methods require spe-
cific grids and appropriate boundary conditions.

The metric solver of XNS is mixed, and works by decomposing the solutions into spher-
ical harmonics in the angular direction and solving the ODEs obtained for each har-
monic using direct inversion over the same grid. At second-order accuracy for the
discretisation into finite differences, the solution of the scalar Poisson equations is re-
duced to the inversion of tridiagonal matrices. In particular, the solutions for u(r, θ) =

{ψ − 1, αψ − 1, χ} are found as a sum of spherical harmonics Yl(θ) with coefficients
Al(r) according to

u(r, θ) =
∞

∑
l=0

[Al(r)Yl(θ)] , (4.15)

and similarly for the vector potential,

Ǎφ(r, θ) =
∞

∑
l=0

[Cl(r)∂θYl(θ)] , (4.16)
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where

Yl(θ) = Y0
l (θ) =

√
2l + 1

4π
Pl(cos θ) , (4.17)

with Pl the Legendre polynomial of degree l and m = 0 is set to impose the axisym-
metry condition. This choice leads to a series of radial, second order boundary values
ODEs for the coefficients Al(r) and Cl(r). In particular:

d2Al
dr2 +

2
r

dAl
dr
− l(l + 1)

r2 Al = Hl , (4.18)

where the source term is
Hl(r) =

∮
H(r, θ)Yl(θ)dΩ (4.19)

with H(r, θ) the source terms in Eqs. 3.28,3.29,3.31, dΩ = 2π sin θdθ and the integral
runs from θ = 0 to θ = π due to axisymmetry. Similarly, we obtain

d2Cl
dr2 +

2
r

dCl
dr
− l(l + 1)

r2 Cl = Hφ
l , (4.20)

where the source term is

Hφ
l (r) =

1
l(l + 1)

∮
Hφ(r, θ)∂θYl(θ)dΩ , (4.21)

Hφ(r, θ) being the source terms in Eq. 3.37.

These ODEs are solved using a tridiagonal matrix inversion. The decomposition in
terms of spherical harmonics ensures the correct behaviour of the solutions on the
symmetry axis, and allows us to enforce the proper boundary conditions at r = 0,
where Al(r) and Cl(r) go to zero with parity (−1)l, and at the outer radial boundary,
where we assume that Al(r) and Cl(r) go to zero as r−(l+1).

4.3 The numerical setup

We used a 2D numerical grid and spherical coordinates: the radial coordinate r extends
over the range r ∈ [0, 100] in dimensionless units, corresponding to a maximum range
of ∼ 150km; the angular coordinate θ extends over θ ∈ [0, π]. For the results shown
in Chap. 5,6 (Chap. 7) the grid has 400 (900) points in the r-direction, the first 200 (600)
of which are equally spaced over the range r ∈ [0, 20] (r ∈ [0, 10]) in dimensionless
units, while the remaining 200 (300) points are logarithmically spaced, meaning that
∆ri/∆ri−1 = const. The angular grid is composed of 200 (100) equally spaced points.
For the reference models shown in Sects. 5.2,5.3, the radial resolution was doubled.
We have verified that at these resolutions our results have an accuracy of the order
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of 10−3, that the radius of the outer edge is far enough not to affect the solution, and
the same holds for the choice of a stretched grid. In all cases the elliptic solvers use
up to 20 spherical harmonics. We found that in order to avoid strongly oscillatory
behaviours in the relaxation scheme of XNS, iterations over the various quantities Q
had to be under-relaxed according to: Qnew = [Qnew + Qold]/2. The results shown in
Chap. 5,6 are found using a simple polytropic EoS p = Kaργa , with an adiabatic index
γa = 2 and a polytropic constant Ka = 110 (in dimensionless units). This is done for
the ease of comparison, and in line with previous literature in GR (Bocquet et al. 1995;
Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012; Pili et al. 2014), where it was also
used as an approximation of more complex and physically motivated EoS (Lattimer
& Prakash 2007; Baym et al. 2018) above nuclear densities. In Chap. 7 we instead use
a variety of realistic, tabulated EoS, as detailed in Sect. 7.1. Concerning the magnetic
field structure, for purely toroidal magnetic fields we chose a magnetic barotropic law,
Eq. 3.42, with toroidal magnetisation index m = 1, while for purely poloidal magnetic
fields we opted for the simplest choice Eq. 3.38 (for more complex choices see Pili et al.
2014).

The coupling function A(χ) is the only free function of a STT with zero potential. As
introduced in Damour & Esposito-Farèse (1993), and used in many subsequent works
(Novak 1998b; Mendes & Ortiz 2016), we adopt the choice of an exponential coupling
function:

A (χ) = exp
[

α0χ +
β0

2
χ2
]

, (4.22)

where the parameters α0 and β0 are chosen to be α0 = −2× 10−4 and β0 ∈ {−6,−5.75,
−5.5,−5.25,−5,−4.75,−4.5}. The GR configurations correspond to α0 = β0 = 0. Such
low values are chosen to both highlight the effects of scalarisation and to show its
effects at the edge of the permitted parameter space, keeping in mind that our results
hold also for scalar fields with a mass such that their screening radius is larger than the
NS radius. In fact, as we explained in Sect. 2.4, in this case the effect of the scalar field
is suppressed outside the screening radius, i.e. outside the NS surface, but it remains
mostly untouched inside the compact object. For this reason, a massive scalar field is
expected to deform the NS interior in a similar fashion to what we find. Moreover, the
emission of dipolar waves is hindered. Since these are not observed to date and imply
extremely severe constraints on the parameters of STTs (Zhang et al. 2017, 2019), the
presence of a scalar field mass allows them to be satisfied.



Chapter 5

Axisymmetric equilibrium models of
magnetised neutron stars in
scalar-tensor theories

The results shown in this chapter were published in the paper Soldateschi et al. 2020
(hereafter SBD20).

We present here a detailed study of magnetised NSs in STTs. First, we show that,
unlike in GR, in STTs NSs with the same mass but different central density can exist
(Sect. 5.1). Then, we carry out a study of the parameter space considering the two
extreme geometries of purely toroidal (Sect. 5.2) and purely poloidal (Sect. 5.3) mag-
netic fields, varying the strength of the magnetic field, for a scalarisation parameter of
β0 = −6. Then, we consider a weaker scalarisation: β0 = −5 (Sect. 5.4) and β0 = −4.5
(Sect. 5.5). We compare our results with magnetised GR solutions and un-magnetised
scalarised solutions, showing how the mutual interplay between magnetic and scalar
fields affect the magnetic and the scalarisation properties of NSs. In particular, we
focus our discussion on magnetic deformability, maximum mass, and range of scalar-
isation. Then, we show how the interplay between the scalar and the magnetic fields
can lead to a new kind of instability (Sect. 5.6). Finally, we discuss our results (Sect. 5.7).

The global quantities used in the following are defined in App. B. It can be shown that
in the E-frame the Komar and ADM masses have the same value, while in the J-frame
they differ by an amount proportional to the scalar charge. For this reason, in the fol-
lowing, when referring generically to the mass of the NS, we always mean the Komar
mass in the E-frame (M = M̄k), and we will use the two symbols interchangeably.
On the other hand, given that the circumferential radius is a potentially measurable
quantity, when referring to it we always mean its value in the J-frame. Moreover, since

43
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the metric field equations in the E-frame have the same mathematical structure as in
GR, it is most natural to provide the quadrupole deformations in the E-frame, as this is
where GWs should be studied. In any case, we recall (see the discussion about frames
in Sect. 2.2) that this is only a matter of convenience: observations measure quanti-
ties in the J-frame, which can then be converted to the E-frame through the conformal
factor A.

5.1 Uniqueness of scalarised neutron stars

It can be shown that, given a central density ρc, NSs in STTs admit multiple solu-
tions. If A is an even function of χ then αs is an odd-function (e.g. if α0 = 0 in
Eq. 4.22) and Eq. 3.31 is invariant under the transformation χ → −χ (the same holds
for Eqs. 3.28,3.29 and Eqs. 3.34,3.43). This implies that there are three possible NS solu-
tions: one corresponding to χ = 0, identical to GR, and two with χ 6= 0, that only differ
by the sign of χ. If αs is an arbitrary function of χ, this symmetry breaks. If α0 6= 0 in
Eq. 4.22, then these three solutions split into three branches: the GR solution becomes a
‘weakly scalarised’ solution Sw, where the total scalar charge Qs is such that α0Qs > 0,
while the other two scalarised branches split into two ‘strongly scalarised’ solutions:
one, S+s , with α0Qs > 0; the other, S−s , with α0Qs < 0.

In Fig. 5.1, we illustrate qualitatively how these three branches behave in terms of their
mass M as a function of the central density ρc. The range of spontaneous scalarisation,
ρb < ρc < ρt, can be divided into 4 subregions depending on the relative values of the
masses of the branches:

• for ρb < ρc < ρ1 we have M[S−s ] < M[S+s ] < M[Sw];

• for ρ1 < ρc < ρ2 we have M[S+s ] < M[S−s ] < M[Sw];

• for ρ2 < ρc,< ρ3 we have M[S+s ] < M[Sw] < M[S−s ];

• for ρ3 < ρc,< ρt we have M[Sw] < M[S+s ] < M[S−s ].

The densities ρ1,2,3 correspond to the points where two branches have the same mass.
Almost always, the S−s branch is the one where the mass shows the largest deviation
from the GR (or from Sw) and is also the one with the maximum mass. In Tab. 5.1,
we report the values of global quantities characterising solutions of the three branches,
for few selected values of the central density, assuming α0 = −0.05 and β0 = −6
in Eq. 4.22, for spherically symmetric un-magnetised and non-rotating NSs. Such
a non-physical high value of α0 was chosen in order to enhance the differences be-
tween the S−s and S+s branches. We found that, in terms of the net scalar charge,
Qs[Sw] < Qs[S+s ] < Qs[S−s ], and similarly in terms of the NS circumferential radius
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Table 5.1: Values of various physical quantities describing the solutions Sw,S+s and S−s , for
α0 = −0.05 and β0 = −6, and for selected values of the central density ρc (in the J-frame),
corresponding from top to bottom to: ρb < ρc < ρ1, ρ3 < ρc < ρt, ρc = ρ1, ρ2, ρ3. M is
the Komar mass in the E-frame, Qs the scalar charge in the E-frame, Rc the circumferential
radius in the J-frame, W the gravitational binding energy in the E-frame. See App. B for their
definition: Eqs. B.2,B.7,B.8,B.11.

ρc[1015g cm−3] M[M�] Qs[M�] Rc[km] |W|[M�]
Sw;S+s ;S−s Sw;S+s ;S−s Sw;S+s ;S−s Sw;S+s ;S−s

1.000 1.601; 1.402; 1.307 -0.154; -0.679; 0.815 13.46; 13.68; 13.83 0.2709; 0.1304; 0.0779
2.500 1.696; 1.986; 2.166 -0.149; -0.894; 1.190 10.60; 12.40; 13.68 0.4870; 0.3607; 0.3022
1.648 1.714; 1.683; 1.683 -0.113; -0.996; 1.150 11.90; 13.33; 13.89 0.4021; 0.1562; 0.1044
1.695 1.715; 1.708; 1.715 -0.112; -1.010; 1.170 11.81; 13.33; 13.93 0.4088; 0.1618; 0.1093
1.710 1.716; 1.716; 1.726 -0.112; -1.010; 1.180 11.78; 13.33; 13.93 0.4109; 0.1637; 0.1110

Rc[Sw] < Rc[S+s ] < Rc[S−s ]. In this sense the S−s solution is the one with the largest
deviation from GR. One can compare the three branches also in terms of their com-
pactness C = M/Rc, or in terms of their gravitational binding energy, defined as the
difference between the Komar and proper masses in the E-frame, W = M − Mp. We
find that S−s is the one with the smallest compactness and highest gravitational bind-
ing energy. If we interpret spontaneous scalarisation as an effective phase-transition
(Damour & Esposito-Farèse 1996), then the difference in binding energy between the
S±s and Sw branches can be though of as an effective latent heat that the appearance
of a scalar field releases into the system, inflating the star and reducing |W|. Within
this interpretation, it is reasonable to expect that NSs undergoing spontaneous scalar-
isation should settle in the S−s branch, which is the one with the lowest |W|. Indeed
we find that our code always selects the S−s solution [we note that for α0 = 0, XNS
always selects the GR solution, and that α0 6= 0 is required to get a scalarised one; see
Bucciantini et al. (2015) for a discussion of this issue with relaxation schemes for el-
liptic equations]. It remains to be understood, in a dynamical evolving system, which
branch is selected and under what physical conditions.

In the following, we will refer to strongly scalarised solutions, in the regime where
spontaneous scalarisation leads to sizeable scalar charges, simply as ‘scalarised’, while
weakly scalarised solutions or in general solutions showing a negligible scalar charge,
will be referred to as ‘de-scalarised’ or ‘GR-like’.
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Figure 5.1: Qualitative behaviour of multiple solutions for NSs in STTs, in terms of the relation
of their mass to the central density ρc . The black, orange and red sequences represent, respec-
tively, the weakly scalarised solutions Sw and the strongly scalarised solutions S+s and S−s .
Green diamonds mark the position with central densities ρc = ρ1, ρ2, ρ3 where two branches
have the same mass; triangles select intermediate densities (see e.g. the values in Tab. 5.1); ρb

and ρt (magenta circles) represent the lower and upper limits of the central density for which
spontaneous scalarisation happens.

Figure 5.2: From left to right: meridional distribution of the magnetic field strength B =√
BφBφ, of the density ρ and of the scalar field χ for a model with a toroidal magnetic field

of maximum strength Bmax = 6.134× 1017G and central density ρc = 8.440× 1014g cm−3. The
white curve represents the surface of the star. More quantitative details on this configuration
can be found in Tab. 5.2, where it is named ‘model T’.
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Table 5.2: Global quantities (see App. B) of the reference equilibrium models with a toroidal
(T) and poloidal (P) magnetic field, displayed in Figs. 5.2,5.8 respectively, together with their
un-magnetised counterparts, T0 and P0.

Model ρc Mk M0 Qs Rc rp/re e es Φ µ

[1014g cm−3] [M�] [M�] [M�] [km] [10−1] [10−1] [1030g cm−2] [1035erg G−1]

T0 8.44 1.30 1.38 0.64 14.08 1.00 0.00 0.00 0.00 0.00
T 8.44 1.46 1.52 0.47 20.59 1.15 -8.71 1.91 1.48 0.00
P0 5.15 1.25 1.33 0.17 15.73 1.00 0.00 0.00 0.00 0.00
P 5.15 1.36 1.42 0.56 16.71 0.67 2.90 -1.52 0.00 2.20

5.2 Toroidal field models with β0 = −6

In order to illustrate how a purely toroidal magnetic field affects the properties of
scalarised NSs, and to allow a comparison with GR, in Fig. 5.2 we show the dis-

tribution of the magnetic field strength B =
√

BφBφ, of the density ρ, and of the
scalar field χ, for a reference model chosen in order to have the same central den-
sity, ρc = 8.440 × 1014g cm−3, and the same maximum value of the magnetic field,
Bmax = 6.134× 1017G, as in Pili et al. (2014), for α0 = −2× 10−4 and β0 = −6. Com-
paring Fig. 5.2 to the GR solution (Pili et al. 2014, Fig. 1), we see that the overall dis-
tribution of the magnetic field and of the density are very similar, both in their shape
and in their values: as expected for a toroidal field, the magnetic field vanishes on the
symmetry axis and reaches a maximum deep inside the star, close to its center. Again,
as expected, the star displays a prolate shape in density, caused by the magnetic field
stress, and the outer layers are inflated to large radii by the magnetic pressure. We
note that this deformation is much more pronounced in the inner parts of the star com-
pared to its outer layers, where the density isosurfaces show only a mild deviation
from a spherical shape. On the other hand, we see that the effect of the magnetic stress
on the shape of the scalar field is far less evident than on the density, and the scalar
field isosurfaces show the same level of prolateness throughout the star.

In Tab. 5.2, we give the values of various global quantities characterising this model (T).
Its mass M = 1.460M� is lower than that of its GR counterpart, 1.596M�, by roughly
10%. The same holds for the baryonic mass which now is M0 = 1.520M�, lower than
in the GR case where its value is 1.680M�. With reference to the regimes shown in
Fig. 5.1, our reference model sits between ρb and ρ2, on the S−s sequence. Interestingly,
the circumferential radius Rc = 20.59km is just 2% higher than in GR. The ‘radius ratio’
between the surface radial coordinate at the pole, rp, and at the equator, re, is rp/re =

1.15, not much higher than 1, and only marginally higher than the corresponding GR
value. The same holds for the quadrupole deformation e (see App. B for its definition).
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This might seem counterintuitive, because the scalar field is known to make NSs more

Figure 5.3: Upper panel: profile of the po-
lar (solid blue lines) and equatorial (solid
orange lines) density, and of the magnetic
field strength at the equator (solid green
lines), normalised to their maximum val-
ues, for the equilibrium model T (with
purely toroidal magnetic field) of Tab. 5.2.
These are to be compared to the corre-
sponding GR model at the same ρc and
Bmax (dashed lines), and with the den-
sity of the scalarised and un-magnetised
model at the same ρc, T0 (dotted purple
line). Lower panel: profile of the equa-
torial (orange line) and polar (blue line)
scalar field, normalised to the maximum
value, for the equilibrium model T (solid),
compared to the un-magnetised model T0

(dotted purple).

spherical (Doneva et al. 2013), in part be-
cause the contribution of the scalar field to
the quadrupole deformation has the opposite
sign with respect to the matter, in part be-
cause the scalar field pressure tends to coun-
teract matter deformations. We also provide
an estimate of the quadrupolar deformation
of the scalar field through the quantity es, that
corresponds to the quadrupolar deformation
of the trace of T̄µν

p (see App. B). It is mean-
ingful to compare our reference model also
to an un-magnetised model in STT with the
same central density, which is characterised
in Tab. 5.2 as T0. The main differences to
note are the lower values of both the Ko-
mar and baryonic mass, and of the circumfer-
ential radius with respect to the magnetised
case. This gives a quantitative estimate of
how strong the effects of the magnetic field
are and, as in GR, it shows that the magnetic
field can provide extra pressure support to
sustain a larger total mass. On the other hand,
the compactness is higher: C = 0.09 with-
out a magnetic field versus C = 0.07 in the
magnetised model. This reflects in the fact
the the scalar charge Qs is higher in the un-
magnetised model, by about one third.

To provide a more accurate comparison of
model T with the corresponding GR one, in
Fig. 5.3 we plot for both of them the profiles of
B and ρ, normalised to their maximum value.
In particular, we clearly see that the STT pro-
files are virtually coincident with the GR ones:
only the polar radius gets slightly larger. This
agrees with the fact that apart from integrated
quantities, that differ at most ∼ 10%, all
other quantities characterising those models
are very close, suggesting that it is not the dy-
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namical action of the scalar field that gives rise to the differences in mass, but more
likely changes in the volume element, associated to small changes in the metric. In the
same figure we also compare model T to the un-magnetised model T0, clearly showing
the magnetic induced deformation on the density profile, that affects mostly the low-
density outer part of the NS, nearly doubling the star’s polar radius. We also compare
the profiles of χ, normalised to its maximum value χmax. While in the central part of
the star, r . 7km, the equatorial and polar profiles are respectively steeper and shal-
lower than in the un-magnetised case, in the outer part of the star and outside it they
are both shallower than in the un-magnetised case, as expected for a lower total scalar
charge.

In line with Pili et al. (2014), in order to characterize the interplay of the scalar and
magnetic field, in Fig. 5.4, for equilibrium models having all the same baryonic mass
M0 = 1.68M�, we plot the deviations ∆ of ρc, M, Rc and e with respect to the un-
magnetised case, as functions of the maximum value of the magnetic field strength
inside the star Bmax. The deviation of a quantity f is defined as

∆ f =
f (Bmax, M0)− f (0, M0)

f (0, M0)
, (5.1)

except for e, in which case we just plot its value, since e(0, M0) = 0. The results are com-
pared with the GR sequence having the same baryonic mass. It is immediately evident
that the qualitative trends are unchanged. The sequence shows that at a fixed baryonic
mass there is a limit to the strength of the magnetic field that a NS can host. We find that
in out STT models this value is 1.05×1018G, almost twice with respect to the one of the
equivalant GR sequence, 6.13×1017G. As the magnetisation parameter km increases, so
does at the beginning also Bmax, until it reaches its limiting value. A further increase
of km leads to a reduction of the magnetic field. The central density first rises with km,
reaching a value about 10% larger at Bmax ' 9× 1017G and then beginning to decrease.
For weak magnetisations, we find that, for the same Bmax, the deviation is about one
fourth than in GR. However, once the magnetisation parameter km increases beyond
the point where the limiting magnetic field is reached, the deviation of our STT models
becomes about a factor two higher than GR. We also find that, as the magnetisation in-
creases even farther, solutions de-scalarise (cyan dotted line), becoming equivalent to
GR. When looking at ∆M or ∆Rc, one recovers similar trends, with deviations that are
smaller than in GR for weak magnetic fields. Interestingly, along the scalarised part of
our sequence, there seems to be a maximum value of ∆M = 0.05 at Bmax = 8× 1017G,
a behaviour not present in GR. Similarly, the quadrupolar deformation e is about one
fourth than that of GR for weak magnetisations and, again, GR is recovered at high
magnetisations, when the NS de-scalarises. Just focusing on the weakly magnetised
part of the sequence, before the limiting magnetic field is reached, we found that the
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Figure 5.4: Variation, with respect to the un-magnetised model, of various quantities along the
equilibrium sequence with constant M0 = 1.68M� for purely toroidal magnetic field. From
left to right, top to bottom: central density ρc, Komar mass M, circumferential radius Rc and
quadrupole deformation e. The blue lines represent our STT results, to be compared to the
red lines, describing the GR models in Pili et al. (2014, Fig. 2). The cyan dotted lines highlight
the de-scalarised configurations; it is connected by the black dashed segments to the magenta
dotted lines, which represent the same STT deviations when calculated with respect to the un-
magnetised model in GR. The arrows show the direction of increasing magnetisation.
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Figure 5.5: Scalar charge Qs, normalised to its value for the un-magnetised model (left panel),
and magnetic field energyH (right panel) as functions of Bmax along the equilibrium sequence
with constant M0 = 1.68M� and purely toroidal magnetic field. The cyan dotted line highlights
the de-scalarised configurations. The arrows show the direction of increasing magnetisation.

same deviations are usually achieved at twice the value of Bmax with respect to GR.
This indicates that NSs in STTs are far less deformable than their GR counterparts of
the same baryonic mass. The origin of this behaviour is to be looked for in the effective
pressure support provided by the scalar field. A purely toroidal magnetic field exerts a
stress on the star that leads to a prolate matter distribution. This, as a consequence, act-
ing as a source for the scalar field, leads to a prolate distribution of the scalar field itself.
Given that the effective pressure of χ depends on its gradient, a prolate distributions
leads, with respect to a spherically symmetric one, to an increased outward-pointing
force along the equator and a decreased one along the polar axis (see e.g. the scalar
field profiles on a prolate system shown in Fig. 5.3). This might seem to contradict
what was found before, where we showed only marginal differences between STT and
GR. But while previously the comparison was done at the same central density, here is
instead done at the same baryonic mass.

In Fig. 5.5, we show how the magnetic energy H and the scalar charge Qs change
with Bmax. As the magnetisation parameter km rises, the magnetic energy scales with
good approximation as H = 1.1× 1039(Bmax/1018G)2erg up to Bmax ' 1018G. As the
magnetisation rises beyond the point where Bmax = 1.05× 1018G, the magnetic field
energy, in the scalarised part, reaches a maximum of H = 1.46× 1039erg at Bmax =

9× 1017G, finally relaxing to the GR profile when the sequence de-scalarises around
Bmax = 3 × 1017G. The scalar charge, instead, drops with increasing magnetisation,
being about 10% smaller at Bmax = 1.05× 1018G. Beyond this point, the scalar charge
drops substantially until the NS completely de-scalarises.
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In Fig. 5.6, we show how the Komar mass changes with central density holding fixed

Figure 5.6: Mass-density sequences for
models with purely toroidal magnetic field
and β0 = −6. Upper panel: sequences
computed at fixed values of the magnetic
flux Φ (blue lines), compared with the un-
magnetised case (red line). The dotted ma-
genta lines represent the limit for sponta-
neous scalarisation. Dots mark the posi-
tion of the maximum mass models UM0

(red), TM1 (light blue) and TM2 (dark blue)
of Tab. 5.3. The yellow square represents
model T of Fig. 5.2. Middle panel: se-
quences computed at fixed baryonic mass
(green lines). Lower panel: mass differ-
ence of sequences at fixed Φ with respect
to the un-magnetised one.

the magnetic flux Φ (top panel) or the bary-
onic mass M0 (middle panel). The lower
bound for scalarised models, ρb, moves to
higher densities from ρb = 5 × 1014g cm−3

for Φ = 0 to ρb = 7.5 × 1014g cm−3 for
Φ = 2.55× 1030G cm2, while the correspond-
ing Komar (baryonic) mass changes from
1.25M� (1.33M�) to 1.75M� (1.81M�). We
find no evidence suggesting the existence of
an upper bound to the mass of the possible
de-scalarised models. Analogously, the up-
per bound ρt for scalarised models increases
from ρt = 3.5 × 1015g cm−3 for Φ = 0 to
ρt = 4 × 1015g cm−3 for Φ = 1.46 × 1030G
cm2, while the corresponding Komar (bary-
onic) mass changes from 1.60M� (1.73M�) to
1.62M� (1.71M�).

Contrary to GR, where it is found that the
maximum mass of sequences at fixed Φ in-
creases with the magnetic flux while the cen-
tral density of the related models first rises
and then drops (Pili et al. 2014, Fig. 4), in our
STT sequences we found that the behaviour
is more complex. At densities just above
ρb, the mass of magnetised models is found
to be always larger than the un-magnetised
one. However, as the density increases, the
trend is reversed and we find magnetised
models having a lower mass than the un-
magnetised configuration at the same cen-
tral density. This is reversed again once the
density exceeds 2.72×1015g cm−3 as a con-
sequence of the shift of the position of the
maximum mass. This trend is also evident
by looking at configurations at fixed baryonic
mass and when sequences are parametrised
at fixed values of Bmax or at fixed e, in Fig. 5.7.
It is interesting to notice that close to ρc '
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Table 5.3: Global quantities (see App. B) of the maximum mass models with a purely toroidal
(TM1,TM2) and purely poloidal (PM1,PM2) magnetic field, displayed in Figs. 5.6,5.11 respec-
tively, together with their un-magnetised counterpart (UM0).

Model ρc Mk M0 Qs Rc Bmax Φ µ e es

[1015g cm−3] [M�] [M�] [M�] [km] [1018]G [1030g cm−2] [1035erg G−1] [10−1] [10−1]

UM0 2.55 2.08 2.41 1.01 12.1 0.0 0.0 0.0 0.0 0.0
TM1 2.72 2.04 2.29 1.01 13.2 1.37 1.46 0.0 -0.236 0.107
TM2 2.95 2.08 2.26 1.04 15.8 1.99 2.55 0.0 -0.656 0.200
PM1 2.46 2.12 2.45 1.04 12.3 1.33 1.06 1.16 0.074 -0.048
PM2 2.42 2.15 2.49 1.04 12.5 1.76 1.40 1.57 0.118 -0.078

2.72 × 1015g cm−3 the Komar mass is independent of the magnetisation. Quantita-
tively, the density at which the maximum is reached always increases from ρc =

2.55× 1015g cm−3 for Φ = 0 to ρc = 2.95× 1015g cm−3 for Φ = 2.55× 1030G cm2,
while the value of the maximum mass drops initially from 2.08M� to 2.04M� for
Φ = 1.46 × 1030G cm2 and then rises again to 2.08M� for Φ = 2.55 × 1030G cm2.
The full characterisation of the models at maximum mass is given in Tab. 5.3.

In a similar way, in Fig. 5.7, we have also analysed how the scalar charge Qs changes
with magnetisation. The maximum of the scalar charge goes from Qs = 1.16M� at
Φ = 0,to Qs = 1.14M� when Φ = 2.55× 1030G cm2, while the density at which this
maximum is reached increases from 2.09× 1015g cm−3 to 2.46× 1015g cm−3. Globally,
this appears as a shift to higher density of the sequences. The maximum of the scalar
charge is always reached before the maximum of the mass. Analogously to the mass,
we find that close to ρc ' 2.33× 1015g cm−3 the scalar charge is independent of the
magnetisation.

5.3 Poloidal field models with β0 = −6

As it was done in the toroidal case, also for purely poloidal magnetic fields, our ref-
erence model was chosen in order to have the same central density ρc = 5.15× 1014g
cm−3 and the same maximum value of the magnetic field Bmax = 6.256× 1017G, as in
Pili et al. (2014). Analogously to the previous toroidal case, this model sits in the part of
Fig. 5.1 between ρb and ρ2, on the sequence S−s . In Fig. 5.8, we show the distribution of
the magnetic field strength B =

√
BrBr + BθBθ, of the density ρ and of the scalar field

χ for this model. Comparing them to the GR ones in Pili et al. (2014, Fig. 5), we see
that, even for a purely poloidal magnetic field, the overall distributions of the various
quantities are very similar to GR, both in their shape and in their values. As expected
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Figure 5.7: Sequences for the models with purely toroidal magnetic field and β0 = −6.
Left panel: mass-density relation computed at fixed Bmax (blue lines) compared with the un-
magnetised sequence (red line). Middle panel: mass-density relation computed at fixed e
(green lines) compared with the un-magnetised sequence (red line). Right panel: on top, scalar
charge computed at fixed Φ (blue lines) compared with the un-magnetised sequence (red line);
on bottom, trace quadrupole deformation es. In all panels, the dotted magenta lines represent
the limit for spontaneous scalarisation and the yellow square represents model T of Fig. 5.2.

for a poloidal field, the magnetic field reaches a maximum at the center of the star, and
vanishes in an equatorial ring located at r ' 12km. The star displays an oblate shape in
density, caused by the magnetic field stress, with an equatorial density profile which is
almost flat close to the center. As in GR, increasing farther the magnetic field strength
produces configurations where the density maximum is no longer at the center (analo-
gously to Pili et al. 2014, Fig. 6). Again, we see that the effect of the magnetic stress on
the shape of the scalar field is far less pronouced than on the density.

In Tab. 5.2, we give the values of various global quantities characterizing this model
(P). The Komar mass M = 1.360M�, is lower than the GR mass, 1.597M� by roughly
15%, and the same holds for the baryonic mass which is M0 = 1.42M�, compared to
the value of the GR counterpart, 1.680M�. The radius ratio rp/re = 0.67 is instead
marginally smaller than the GR value of 0.69. On the other hand, its circumferential
radius Rc = 16.71km is less than 1% smaller than the GR one. The quadrupole defor-
mation e is the same as in GR. As before, it seems that the presence of a scalar field, at
the same central density and for the same maximum magnetic field, does not affect the
distribution of fluid quantities. Moreover, we provide an estimate of the quadrupolar
deformation of the scalar field through the quantity es, which is comparable in strength
to the quadrupole deformation e.

We can also make a comparison to the un-magnetised model with the same central
density, characterised in Tab. 5.2 under the name P0. The main differences are the
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Figure 5.8: From left to right: meridional distribution of the magnetic field strength B =√
BrBr + Bθ Bθ , of the density ρ and of the scalar field χ for a model with a poloidal magnetic

field of maximum strength Bmax = 6.256× 1017G and central density ρc = 5.15× 1014g cm−3.
The white curve represents the surface of the star. The light white lines on the left panel repre-
sent magnetic surfaces. More quantitative details on this configuration can be found in Tab. 5.2,
where it is named ‘model P’.

values of the masses and of the circumferential radius, that are smaller for B = 0.
Also the compactness is slightly lower: C = 0.0795 without a magnetic field versus
C = 0.0814 in the magnetised model. Differently than in the toroidal case, the scalar
charge Qs is much higher in the magnetised model. In Fig. 5.9, we show the profiles
of the magnetic field B and and densityρ, normalised to their maximum value, for
the model P (solid lines) and for the corresponding GR model (dashed lines) with the
same Bmax and ρc together with the un-magnetised model P0. We also plot the profiles
of χ, normalised to its maximum value χmax, for the models P and P0. Again, the
STT profiles are almost coincident with the GR ones: only the equatorial radius gets
marginally increased. This is slightly different than the effect of the magnetic field,
which changes the density profile and decreases the star’s polar radius and increases
the equatorial one. The profile of the scalar field reflects the oblateness of the matter
distribution, showing deviations that are somewhat smaller than the toroidal case. The
same conclusions drawn in the toroidal case apply here too.

In Fig. 5.10, we show the deviations ∆ as it was done in Fig. 5.4. The qualitative trends
are the same as in GR, and do not show the complexity of the toroidal case. In GR there
was some evidence indicating that the maximum magnetic field for a NS of 1.68M�
could not exceed ≈ 6.2× 1017G. In STT we found instead that up to values or order
of 1× 1018G there is no evidence of a saturation or limit of the maximum value of the
magnetic field, which does not rule out the possibility that it might exist above 1018G.
The behaviour of all quantities appears to be monotonic in Bmax: the central density
decreases, while the mass, the circumferential radius and the quadrupole deformation
rise. As in the toroidal case, for a given value of Bmax the deviation appears to be about
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one fourth than in GR, while the same deviation is reached for values of Bmax about

Figure 5.9: Top panel: profile of the po-
lar (solid blue lines) and equatorial (solid
orange lines) density, and of the mag-
netic field strength (solid green lines) at
the equator, normalised to their maximum
values, for the equilibrium model P (with
purely poloidal magnetic field) of Tab. 5.2.
These are to be compared to the corre-
sponding GR model at the same ρc and
Bmax (dashed), and with the density of the
scalarised and un-magnetised model at the
same ρc, P0 (dotted purple line). Bottom
panel: profile of the equatorial (orange
line) and polar (blue line) scalar field, nor-
malised to their maximum value, for the
equilibrium model P (solid), compared to
the un-magnetised model P0 (dotted pur-
ple).

twice higher than in GR. There is no evidence
that the sequence would de-scalarise. As in
the poloidal case, this trend can again be un-
derstood based on the effective pressure sup-
port provided by the scalar field. A purely
poloidal magnetic field exerts a stress on the
star that leads to an oblate matter distribu-
tion. This leads to an oblate distribution of the
scalar field itself which, in turn, increases the
outward-pointing force along the pole and
decreases the one along the equator with re-
spect to a spherically symmetric model.

We found that, up to Bmax ≈ 1018G, the
total magnetic field energy H scales with
a good approximation as H = 0.55 ×
1039(Bmax/1018G)2erg, and the scalar charge
increases by about 2% with respect to the
un-magnetised case. We also found that
the magnetic dipole scales as µ = 1.5 ×
1035(Bmax/1018G)erg G−1, about 30% less
than in GR. Given that the dipole moment is
ultimately a measure of the net toroidal cur-
rent, this can be considered a kind of global
measure of a quantity integrated throughout
the NS; as such, even in this case strongly af-
fected by variations in the value of the vol-
ume element, related to the metric itself. In
Fig. 5.11, we show how the Komar mass
changes with central density holding fixed
the magnetic dipole moment µ or the bary-
onic mass M0 (top panel). The lower bound
ρb for scalarised models now moves to lower
densities - from ρb = 5 × 1014g cm−3 for
µ = 0 to ρb = 4.3 × 1014g cm−3 for µ =

1.57 × 1035erg/G - while the corresponding
Komar (baryonic) mass rises, going to 1.31M�
(1.38M�). Contrary to the toroidal case, we
see from Fig. 5.12 (left panel) that, for purely
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Figure 5.10: Variation, with respect to the un-magnetised model, of various quantities along
the equilibrium sequence with constant M0 = 1.68M� for purely poloidal magnetic field. From
left to right, top to bottom: central density ρc, Komar mass M, circumferential radius Rc and
quadrupole deformation e. The blue line represents our STT results, to be compared to the red
line, describing the GR models of Pili et al. (2014, Fig. 7). The arrows show the direction of
increasing magnetisation.
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poloidal magnetic fields, above a Komar mass of 1.34M� there are no de-scalarised
models. Analogously, the upper bound ρt for scalarised models decreases - from
ρt = 3.5× 1015g cm−3 for µ = 0 to ρt = 3.42× 1015g cm−3 for µ = 0.45× 1035erg/G
- while the Komar mass remains almost unchanged. As in GR, it is found that the
maximum mass of sequences at fixed µ increases with the magnetic dipole moment,
and the central density at which the maximum is reached drops. The characterisation
of the models at maximum mass is given in Tab. 5.3. Similarly to GR we found that,
at a given central density, the mass of equilibrium configurations is always above the
un-magnetised case (in the stable part of the sequence). This same trend is also evi-
dent when sequences are parametrised at fixed values of Bmax or at fixed e, in Fig. 5.12.
Again, close to ρc ' 2.72× 1015g cm−3 the Komar mass is independent on the magneti-
sation. We have also analysed in Fig. 5.12 how the scalar charge changes with magneti-
sation. The maximum of the scalar charge changes from Qs = 1.16M� to Qs = 1.21M�
when µ = 0.54× 1035erg/G, while the density at which the maximum is reached drops
to 1.96× 1015g cm−3. Globally, this appears as a shift to lower density of the sequences.
Analogously to the mass, we find that close to ρc ' 2.33× 1015g cm−3 the scalar charge
is independent on the magnetisation.

5.4 Magnetised models with β0 = −5

In order to understand how our results depend on the specific choice of the STT param-
eter β0, we have computed equilibrium configurations also for β0 = −5 and β0 = −4.5,
closer to the limit for spontaneous scalarisation, both in the case of pure toroidal and
purely poloidal magnetic fields. For β0 = −5, the un-magnetised model with bary-
onic mass Mo = 1.680M� is scalarised. It is then possible to compute deviations of
various quantities with respect to their un-magnetised values, at fixed baryonic mass
Mo = 1.680M�, as was done for β0 = −6.

In Fig. 5.13, we show how the quadrupole deformation e changes with the maximum
strength of the magnetic field Bmax. Again, we find that the scalarised part of the
sequence shows a lower quadrupole deformation than in GR, but now this difference is
not as strong as for β0 = −6. In general e is about 2/3 of the value of the corresponding
GR counterpart at the same Bmax, both in the toroidal and poloidal magnetic field case.
For purely toroidal magnetic fields, there is some indication that the scalarised part
reaches a maximum value Bmax ' 5.8× 1017G, before it de-scalarises, and then reaches
a new maximum corresponding to the GR value of 6.13 × 1017G. We can conclude
that in STTs with β0 > −5 the upper limit to Bmax is reached after the solution de-
scalarises, while for β0 < −5 it is reached for scalarised configurations. On the other
hand in models with a purely poloidal magnetic field, we observe no evidence for
de-scalarisation with increasing kpol. However, there seems to be an asymptote to a
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Figure 5.11: Mass-density sequences for models with purely poloidal magnetic field and β0 =

−6. Upper panel: sequences computed at fixed values of the magnetic dipole moment µ (blue
lines) and at fixed baryonic mass (green lines), compared with the un-magnetised case (red
line). The dotted magenta lines represent the limit for spontaneous scalarisation. Dots mark
the position of the maximum mass models UM0 (red), PM1 (light blue) and PM2 (dark blue) of
Tab. 5.3. The yellow square represents the model of Fig. 5.8. Lower panel: mass difference of
sequences at fixed µ with respect to the un-magnetised one.

maximum value of Bmax of ' 7.5 × 1017G, slightly higher than in GR for β0 = −5.
The same conclusions can be found looking at the deviations of other variables. What
we see is that changes with respect to GR depend in a strongly non-linear way on the
values of β0.

In Fig. 5.14, we repeat the same analysis of Fig. 5.6, for purely toroidal fields. We show
how the Komar mass and scalar charge change with central density holding fixed the
magnetic flux Φ, and the Komar mass for fixed values of the baryonic mass M0. The
region of de-scalarisation ρc = [ρb, ρt] is smaller, but the behaviour of the lower and
upper bounds with magnetisation is the same. The lower bound ρb moves to higher
densities, from ρb = 7.07 × 1014g cm−3 for Φ = 0 to ρc = 1.06 × 1015g cm−3 for
Φ = 2 × 1030G cm2, and the corresponding Komar (baryonic) mass from 1.461M�
(1.57M�) to 1.75M� (1.84M�). Again we find no evidence suggesting the existence
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Figure 5.12: Sequences for models with purely poloidal magnetic field and β0 = −6. Left panel:
mmass-density relation computed at fixed Bmax (blue lines) compared with the un-magnetised
sequence (red line). Middle panel: mass-density relation computed at fixed e (green lines)
compared with the un-magnetised sequence (red line). Right panel: on top, scalar charge-
density relation computed at fixed µ (blue lines) compared with the un-magnetised sequence
(red line); on bottom, trace quadrupole deformation es. In all panels, the dotted magenta lines
represent the limit for spontaneous scalarisation and the yellow square represents model P of
Fig. 5.8.

of an upper bound to the mass of the possible de-scalarised models. Analogously,
the upper bound ρt for scalarised models increases, from ρb = 2.65× 1015g cm−3 for
Φ = 0 to ρc = 3.05× 1015g cm−3 for Φ = 2× 1030G cm2, and the corresponding Komar
(baryonic) mass from 1.67M� (1.83M�) to 1.77M� (1.85M�). Again, we find that for
toroidal magnetic fields the density at which the maximum is reached increases, and
the value of the maximum mass first remains almost constant at 1.81M�, and then
rises to 1.86M� for Φ = 2 × 1030G cm2. In this case we also see that on sequences
with Φ ≥ 1.64× 1030G cm2 the mass of equilibrium models is always larger than the
relative un-magnetised counterpart at the same central density.

For poloidal magnetic fields, we observe in Fig. 5.15 a more regular trend, similar to
the case with β0 = −6, where the maximum mass initially seems to remain unchanged
to then rises at higher magnetisation. We find that, for poloidal fields, above a Komar
mass of 1.7M� there are no de-scalarised models.

It is evident that now the magnetic field plays a more dominant role that the scalar
field, and the general trends of the various sequences tend to approach what was found
in GR. However, in the region where the scalar charge reaches its maximum, the trends
are still in line with more scalarised configurations.



5.4 Magnetised models with β0 = −5 61

Figure 5.13: Value of the quadrupole deformation e along the equilibrium sequence with con-
stant M0 = 1.68M�, as a function of Bmax, for β0 = −5 (blue lines) vs GR (red lines). The cyan
dotted line highlights the un-scalarised configurations. Left panel: purely toroidal magnetic
field; right panel: purely poloidal magnetic field. The arrows show the direction of increasing
magnetisation.

Figure 5.14: Models with purely toroidal magnetic field and β0 = −5. Left panel: on top,
sequences computed at fixed values of the magnetic flux Φ (blue lines) and at fixed baryonic
mass (green lines), compared with the un-magnetised case (red line); on bottom, mass differ-
ence with respect to the un-magnetised case. Right panel: on top, scalar charge on sequences
at fixed Φ; on bottom, trace quadrupole es on the same sequences. The dotted magenta lines
represent the limit for spontaneous scalarisation.
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Figure 5.15: Models with purely poloidal magnetic field and β0 = −5. Left panel: on top,
sequences computed at fixed values of the magnetic dipole moment µ (blue lines) and at fixed
baryonic mass (green lines), compared with the un-magnetised case (red line); on bottom, mass
difference with respect to the un-magnetised case. Right panel: on top, scalar charge on se-
quences at fixed µ; on bottom, trace quadrupole es on the same sequences. The dotted magenta
lines represent the limit for spontaneous scalarisation.

5.5 Magnetised models with β0 = −4.5

We consider here the case β0 = −4.5, which is close to the upper limit on massless
STTs set by binary pulsar constraints (Freire et al. 2012; Shao et al. 2017; Anderson et al.
2019). In Fig. 5.16, we show how the Komar mass changes holding fixed the magnetic
flux Φ for configurations with a purely toroidal magnetic field. The scalarised range
is now strongly reduced. For the un-magnetised models, ρb = 9.3× 1014g cm−3 and
ρt = 2.0× 1015g cm−3, with a Komar mass that changes from 1.58M� to 1.71M�. As
the magnetic flux increases, the typical scalarised trend in the mass-density relation
becomes progressively less evident: already at Φ = 0.9× 1030G cm2 the sequence is
almost indistinguishable from GR. This is made even more evident looking at the scalar
charges in Fig. 5.16, where we observe simultaneously both a reduction of Qs and of
the scalarisation range.

In case of a purely poloidal magnetic field, the trend is instead quite different, as can
be seen in Fig. 5.16. Increasing the magnetic flux Φ, both the scalar charge and the
scalarisation range increase, with ρb moving to lower values. The maximum mass
rises, and there is no evidence for the de-scalarisation.

This difference, in part already present at lower β0, can be understood if one recalls
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that spontaneous scalarisation can be seen, from a dynamical point of view, as an in-
stability (Damour & Esposito-Farèse 1996) (see Chap. 2), which can be excited only if
the minimum wavelength of unstable modes (a function of β0) is smaller or of the or-
der of the typical highscale of the matter distribution (roughly the size of the compact
star). Detailed calculations set this limit for NSs around β0 ≈ −4.2,−4.0. It is obvious,
that close to this threshold limit, any process that modifies the distribution of matter
in compact stars can have deep consequances on their spontaneous scalarisability. A
strong toroidal magnetic field leads to a prolate distribution of density, that on average
corresponds to a reduction of the typical highscale of the matter distribution, poten-
tially pushing the NS below the threshold for spontaneous scalarisation. On the other
way a strong poloidal magnetic field leads to an oblate distribution of density, corre-
sponding to an increase of the typical highscale of the matter distribution, potentially
pushing the NS above the threshold for spontaneous scalarisation.

Figure 5.16: Left figure: models with purely toroidal magnetic field and β0 = −4.5. Upper
panel: sequences computed at fixed values of the magnetic flux Φ (blue lines) and at fixed
baryonic mass (green lines), compared with the un-magnetised case (red line). Bottom panel:
value of the scalar charge on the same sequences at fixed Φ. Right figure: models with purely
poloidal magnetic field and β0 = −4.5. Upper panel: sequences computed at fixed values of
the magnetic dipole moment µ (blue lines) and at fixed baryonic mass (green lines), compared
with the un-magnetised case (red line). Bottom panel: value of the scalar charge on the same
sequences at fixed µ.
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5.6 The stability of magnetised equilibrium models

It is well known that NSs endowed with either a purely toroidal or a purely poloidal
magnetic field are unstable against non-axisymmetric perturbations (Braithwaite &
Nordlund 2006; Braithwaite & Spruit 2006; Braithwaite 2009). This is due to a mag-
netofluid instability that, on a typical Alfvénic timescale, leads to a reconfiguration of
the magnetic field geometry toward a more tangled structure. Magnetic stability re-
quires mixed configurations, with comparable amount of energy in the poloidal and
toroidal components of the magnetic field.

With respect to axisymmetric perturbations, on the other hand, it is found that, purely
poloidal magnetic fields are stable, while the stability of purely toroidal magnetic
fields, against interchange modes, depends on their stratification. Toroidal configu-
rations with m = 1 are found to be stably stratified (Schubert 1968; Fricke 1969).

Independently of their magnetofluid stability, we are going to show that in STTs, NSs
with purely toroidal magnetic fields, are also gravitationally unstable against spon-
taneous scalarisation. The criterion for gravitational instability for non-rotating and
un-magnetised NS is

∂M0

∂ρc
≤ 0 , (5.2)

where the equality defines the maximum mass. We note that in GR and STTs it is the
baryonic mass that formally enters the criterion, and not the Komar mass, given that
the former is the dynamically conserved quantity. However in GR and STTs the Komar
mass is always a monotonically increasing function of the baryonic mass and one can
safely use it to evaluate stability. This criterion can be generalised to magnetic con-
figurations. Recalling that the flux-freezing condition of ideal MHD, ensures that the
magnetic flux Φ is conserved in axisymmetry, one has that NSs with a purely toroidal
magnetic field are unstable when

∂M0

∂ρc

∣∣∣∣
Φ
≤ 0 . (5.3)

In Fig. 5.17, we plot how the baryonic mass of various equilibrium configurations
change with density at fixed values of the magnetic flux Φ. It is immediately evident
that each sequence shows four parts:

• a gravitationally stable de-scalarised GR part;

• a gravitationally unstable scalarised part;

• a gravitationally stable scalarised part (up to the density of the model of maxi-
mum mass for the entire sequence);
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• a gravitationally unstable scalarised part (beyond the density of the model of
maximum mass for the entire sequence).

This is in sharp contrast to GR, where only two parts are found (stable and unstable),
separated by the model with maximum mass. In principle now we can have two max-
ima for the mass of NSs with purely toroidal magnetic fields: one corresponding to
the de-scalarised part and one to the scalarised one. In the mass-density diagram there
is a region where models are gravitationally unstable. Moreover, for any given value
of Φ, there is a range of masses where both de-scalarised and scalarised solutions are
possible. On the other hand, there is a lower limit to the values of the magnetic flux
that can support de-scalarised configurations of a given baryonic mass. Lowering the
magnetic flux beyond this limit could lead to a gravitational instability where the star
jumps from the de-scalarised branch to the scalarised one. This is a gravitational insta-
bility, unrelated to rearrangements of the magnetic field geometry, that will take place
on a typical scalarisation timescale, of the order of the light crossing time of the NS. For
example, with reference to Fig. 5.17, a de-scalarised configuration with M0 = 1.68M�
can only exist for Φ > 2.06× 1030G cm2 and ρc < 7.12× 1014g cm−3; below this limit-
ing value of the magnetic flux, the NS will jump at the same baryonic mass but with a
central density ρc > 1.32× 1015g cm−3, and a scalar charge Qs = 0.8M�. Interestingly,
these two limiting configurations have not just the same baryonic mass, and magnetic
flux, but also the same Komar mass M = 1.62M�. We have repeated this analysis also
for higher values of β0 and found that this effect already disappears at β0 = −5. How-
ever, for β0 = −4.5 we found that two configurations, one scalarised and the other
un-scalarised, with the same baryonic mass still exist, but in this case they have the
same central density.

Independently of the specific choice of magnetic field distribution, that in our case is
dictated by the request of an integrable form for the generalised Bernoulli equation, our
results have shown that a strong toroidal magnetic field can support de-scalarised con-
figurations, and that, in principle, if such magnetic field drops below a limiting value
(for example because of non ideal processes or magnetic instabilities) such configu-
ration can undergo a rapid ‘magnetically-induced spontaneous scalarisation’. In the
case of purely poloidal configurations, the quantity that is dynamically conserved for
axisymmetric perturbations is the net flux of the toroidal current Jφ. This can be equiv-
alently parametrised by the magnetic dipole moment. If we repeat the same analysis
done in the toroidal case, considering sequences at fixed magnetic dipole moment, we
see no evidence for the presence of an unstable part.
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Figure 5.17: Sequences at fixed magnetic flux Φ, computed in the case β0 = −6. The red
curve is the un-magnetised solution. From bottom to top the other curves are computed
at Φ = [2.55, 2.06, 1.46, 0.91] × 1030G cm2. The various parts are: gravitationally stable de-
scalarised branch (solid magenta); gravitationally unstable scalarised branch (black dashed);
gravitationally stable scalarised branch (solid blue). The yellow region corresponds to grav-
itationally unstable models. The black dot represents the de-scalarised configuration with
M0 = 1.68M� and Φ = 2.06× 1030G cm2, while the arrow points to the blue dot where the
configuration is expected to jump because of magnetically-induced spontaneous scalarisation.
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5.7 Discussion

In the work presented in this chapter we carried out a detailed study of the properties
of magnetised NSs in STT with spontaneous scalarisation, trying to characterise them
as completely as possible, not just in term of their masses or radii, but also consider-
ing how the interplay of the magnetic and scalar fields affect their internal structure
and deformation. We also tried to characterise the deformation of the scalar field, and
introduced the parameter es related to the emission of quadrupolar scalar waves. In
general, we found that the action of different configurations of the magnetic field on
the overall structure of a NS leads to qualitatively similar results: a toroidal magnetic
field produced prolate configurations, while a poloidal field leads to oblate one. How-
ever, significative changes are found when we proceed to a quantitative comparison.
When comparing STT to GR models, computed at the same central density ρc and max-
imum value of the magnetic field Bmax, we found that the distribution of density and
magnetic field vary less than few percent. This suggests that GR models can be used
as good proxy for the internal structure of magnetised NSs in STT. On the other hand,
when for the same models we compare global integrated quantities like the mass, or
the quadrupole deformation, we found deviations from GR up to 10-20%. This dif-
ference can be easily understood recalling that while the distributions of density and
magnetic field depend on the ratio α/αc (i.e. on relative changes of the metric terms),
the value of integrated quantities depends on the conformal factor ψ6 through the vol-
ume element (i.e. on the absolute values of the metric terms). On top of this, the
quadrupole deformation e, used to estimate the possible emission of GWs from de-
formed system, is properly computed in the E-frame, where the metric equations have
the same mathematical structure of GR.

We have also investigated sequences at fixed baryonic mass, which is the conserved
quantity from a dynamical and evolutionary perspective, and compared typical trends
with those of GR for the same baryonic mass. We found that, in general, the presence
of a scalar field reduces the deformability of NSs and tends to reduce the typical devi-
ations from the spherically symmetric un-magnetised configuration. This also implies
that with respect to GR, NSs at the same baryonic mass can host stronger magnetic
fields. For configurations with purely toroidal magnetic fields we also showed that
as the magnetisation rises the models de-scalarise. This effect was evaluated for var-
ious values of β0 showing that there is a strong dependency. We have then shown,
using various parametrisations, how the mass-density relation changes with the mag-
netisation of the system, revealing both how this affects the region of spontaneous
scalarisation and the location of the configuration with maximum mass, together with
its value. In particular, we have shown that while for toroidal magnetic fields there
is a de-scalarised region, for purely poloidal magnetic fields there is a limiting mass
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above which only scalarised solutions are possible. We have also shown that contrary
to GR, where the maximum mass is always an increasing function of magnetisation, in
STTs, for purely toroidal magnetic fields, the maximum mass decreases with increas-
ing magnetisation for systems with Bmax lower than a threshold magnetic field, and
then rises. We verified that the quadrupolar term arising from magnetic deformations
in the source of the scalar field equation is of the same order of the one in Einstein’s
equations, suggesting comparable levels of gravitational losses in tensor and scalar
waves.

In general, we found that for weakly magnetised models the presence of a scalar
field dominates the properties of NSs, and its effect is to counter-balance the magnetic
stresses, either by reducing the deformation, or leading to saturation of the values of
the maximum mass. We verified, by changing the value of β0, that when scalarisation
effects become smaller the typical trends of GR tend to be recovered, with the signi-
ficative difference that while for purely toroidal fields a rise in magnetisation leads to
de-scalarisation, for purely poloidal magnetic fields, on the contrary, it increases the
total scalar charge. Depending on its geometry, the magnetic field can either favour or
suppress spontaneous scalarisation when β0 is close to the threshold limit on the range
of this effect.

Finally, we have also shown that the mutual interplay of a scalar and toroidal magnetic
field, in the presence of strong scalarisation effects, leads to unstable configurations
and potentially to events of spontaneous scalarisation due to the loss of magnetic sup-
port - a ‘magnetically-induced spontaneous scalarisation’. The work presented in this
chapter is mostly devoted to a global study of the properties of magnetised NSs in STT,
with a particular focus on the comparison with their respective GR counterparts. For
this reason, we adopted a simple polytropic EoS and considered only the two extreme
cases of purely toroidal and purely poloidal magnetic fields, focusing the discussion
on the case β0 = −6 to enhance and highlight the main differences. In Chaps. 6,7 we
investigate in more detail how the deformability of NSs in STT depends on the choice
of β0 and on the EoS (Pili et al. 2016), and how it scales with the mass, radius, and com-
pactness of NSs, revealing that it is possible to derive scaling laws that can parametrise
the magnetic deformability in a similar way to what has been previously done in GR
(Pili et al. 2017).



Chapter 6

Magnetic deformation of neutron stars
in scalar-tensor theories

The results shown in this chapter were published in the paper Soldateschi et al. (2021)
(hereafter SBD21).

Given the extremely powerful magnetic fields hosted by NSs, it is important to study
the interplay between the magnetic and the scalar field in shaping their quadrupolar
deformation, even more so because of its connection to the emission of GWs. More-
over, this is relevant to the study of how the presence of an additional channel for the
emission of quadrupolar waves - that of scalar waves - affects the overall emission of
quadrupolar GWs, establishing the extent to which the emission of scalar waves com-
petes with the tensor one.

In the work presented in this chapter we build upon SBD20 (see Chap. 5), where we
studied the general problem of axisymmetric models of NSs in STTs in the presence
of spontaneous scalarisation to investigate the magnetic deformation of NSs in a class
of STTs containing spontaneous scalarisation in light of GW emissions. In SBD20, we
showed that the scalar field is expected to modify the magnetic deformation of NSs, but
we investigated just a few selected configurations for a single STT. Here we investigate
the full parameter space.

In Sect. 6.1 we show our results regarding the magnetic deformation of NSs in STTs;
then, we describe the consequences regarding the emission of gravitational and scalar
radiation in Sect. 6.2. Finally, we discuss our results in Sect. 6.3.

69
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6.1 The distortion coefficients

In the following, we focus on the case of static NSs in the weak magnetic field regime,
meaning that the effects induced by the magnetic field on the deformation of the star
are well-approximated by a perturbative approach; this was shown to be the case for
Bmax . 1017G (Pili et al. 2015; Bucciantini et al. 2015). This is much less than the critical
field strength, of the order of 1019G, set by the energy associated to the characteristic
NS density (Lattimer & Prakash 2007). Moreover, we focus only on the mass range of
stable configurations.

The Newtonian quadrupole deformation e of a NS in STTs is formally defined as in
Eq. B.14:

e =
Izz − Ixx

Izz
, (6.1)

where Izz and Ixx are the Newtonian moments of inertia in the E-frame, accounting for
both the physical and scalar fields energy density (see App. B). This definition has the
advantage that it is given as an integral over the star. As is already known in New-
tonian gravity (Wentzel 1960; Ostriker & Gunn 1969) and in GR (Frieben & Rezzolla
2012; Pili et al. 2017), in the limit of weak magnetic fields and slow rotation rates, the
quadrupole deformation can be expressed as a bilinear combination of B2

max, where
Bmax = max[

√
BiBi], with B as the NS magnetic field, and its rotation rate (Pili et al.

2017). Equivalently, instead of using B2
max one can parametrise the quadrupole defor-

mation also in terms of H/W, where H is the magnetic energy of the NS, defined in
the J-frame, and with W as its binding energy, which in STTs is properly defined in the
E-frame (see App. B). The true gravitational quadrupole moment is properly defined
from the asymptotic structure of the metric terms (Bonazzola & Gourgoulhon 1996;
Gourgoulhon 2010; Doneva et al. 2014), while the moment of inertia is only properly
defined for rotators; however, it has been found that the Netwonian approximation
is quite reliable (Pili et al. 2015). We note here that Eq. A2 in Pili et al. (2015) is not
formally correct, because it neglects frame dragging, while it can be shown that, for
compact systems like NSs, this contributes about 10-15% to the moment of inertia.

In our STT scenario, we found that e still follows a linear trend with B2
max (or H/W),

although with coefficients that bear a potentially much stronger dependence on the
baryonic mass M0 (defined as in App. B) than in GR, depending on the value of the
parameter regulating spontaneous scalarisation, β0 (see below for its definition). In
particular, in the limit Bmax → 0, keeping fixed M0 and β0:

|e| = cBB2
max +O

(
B4

max

)
, |e| = cH

H
W

+O
(
H2

W2

)
, (6.2)

where cB = cB(M0, β0) and cH = cH(M0, β0) are the ‘distortion coefficients’, and Bmax

is normalised to 1018G. We note that the distortion coefficients are defined in terms of
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the absolute value of the quadrupolar deformation: thus, while purely poloidal and
purely toroidal fields cause a quadrupolar deformation on the NS that is opposite in
sign, the distortion coefficients are always positive-definite. As a result, the distortion
coefficients of a NS endowed with a mixed field are expected to be always smaller than
those of a NS endowed with a ‘pure’ configuration.

In order to compute the distortion coefficients of NSs in the low magnetic field regime,
we computed several numerical models of magnetised NSs with stronger magnetic
fields, and then we interpolated the results according to the functional form of Eq. 6.2.
We studied only configurations belonging to the stable branch of the mass-density
diagram, that is with masses and central densities lower than that of the configura-
tion with maximum mass. We recall that we used an exponential coupling function,
A (χ) = exp

[
α0χ + β0χ2/2

]
, in which the α0 parameter controls the weak field effects

of the scalar field and β0 regulates spontaneous scalarisation. The most stringent ob-
servational constraints, as described in Sect. 2.4, require that for massless scalar fields,
|α0| . 1.3× 10−3 and β0 & −4.3 (Voisin et al. 2020; see also Will 2014 for a compre-
hensive review on tests of GR). For massive ones or for scalar fields endowed with a
screening potential, lower values are still allowed (Doneva & Yazadjiev 2016) as long
as the screening radius is smaller than the binary separation (see the discussion in
Sect. 2.4). However, as we explained in Sect. 4.3, results found in a massless STT for
the structure of NSs are also valid for screened STTs as long as the screening radius
is larger than the NS radius. This leaves open a large parameter space in terms of
screening properties. We chose α0 = −2× 10−4 and β0 ∈ [−6,−4.5]. By choosing this
range of values, we want to highlight the effects of scalarisation while also showing
its effects for values at the edge of the permitted parameter space for massless fields.
We briefly recall here that the only known formalism to compute equilibria (even mag-
netised ones) in the full non-linear regime, beyond the first order linear perturbation
theory and beyond the Cowling approximation, is through the use of the generalised
Bernoulli integral, including the case of differentially rotating stars, where the rotation
rate is taken to be a function of the specific angular momentum (Bocquet et al. 1995;
Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012; Iosif & Stergioulas 2014; Pili et al.
2017), or through mathematically equivalent approaches. This sets severe constraints
on the possible distribution of currents and, thereby, on the possible geometry of the
magnetic field (the full functional dependence of the current density distribution can
be found in Chap. 3). For example, in the case of poloidal fields, the configuration is
always dominated by the dipole term, but also contains higher order multipoles. Our
models have no surface currents. Typically, models with surface currents are not in
true equilibria because they neglect the associated surface Lorentz force.

We decided to parametrise the solution as a function of the baryonic mass M0, which
is the same in the E and J-frames. The relation with the E-frame Komar mass M is
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M ≈ M0− cM2
0, with c = 0.04 (0.05) for purely toroidal (poloidal) magnetic fields, and

is the same in STT and GR. The behaviour of cB and cH as functions of M0, for various
β0, are shown in Fig. 6.1, for NSs endowed with a purely toroidal or a purely poloidal
magnetic field. The red line represents GR. The other lines represent the cases with a
decreasing β0, starting with β0 = −4.5 and going down to β0 = −6. We note that more
scalarised sequences reach higher masses than less scalarised ones, because one of the
effects of scalarisation is to increase the maximum possible mass of a stable NS, so that
only heavily scalarised sequences are able to reach a baryonic mass as high as≈ 2.4 M�
with our EoS. The effect of scalarisation is clearly visible due to the distinctive rapid
variation in the slope as the scalarised sequences depart from the GR one. Decreasing
the value of β0 has the effect of enhancing the modifications with respect to GR and
enlarging the scalarisation range. At a fixed M0, scalarised NSs have a lower distortion
coefficient - and a lower quadrupole deformation - than the corresponding GR models
for most of the scalarisation range. In moving towards masses close to the maximum,
the difference becomes increasingly small until it changes sign at the very end of the
GR sequence.

From a more quantitative point of view, the maximum relative difference between cB in
GR and in STT in the purely toroidal case is roughly 63% for β0 = −6 and M0 ≈ 1.5M�.
This difference decreases approaching 0 as β0 increases. Moreover, as the baryonic
mass increases, we can see that all sequences tend to coincide and reconnect to the GR
one as the scalarisation range ends. As for cH, its maximum difference in STT relative
to GR is roughly 72% at M0 ≈ 1.8M�, for β0 = −6. Again, this difference decreases
as β0 increases. We note, however, that the various sequences of cH do not seem to
be reconnecting as the scalarisation range ends. This behaviour is to be attributed to
the fact that the ratio H/W depends on M0, and, as such, it too exhibits the effect of
scalarisation. In other words W, at a fixed M0, depends on β0, which implies that in
STTs cH as defined in Eq. 6.2 is not directly comparable to GR at the same H: first, it
is needed to factor out the dependence of H/W on M0 and add it to cH. The same
holds for purely poloidal magnetic fields. The maximum relative difference of cB with
respect to GR is 70% for β0 = −6 at M0 ≈ 1.5M�, while for cH it is 72% at M0 ≈ 1.8M�
for β0 = −6.

As we have seen, the distortion coefficients in STTs depart from the GR ones in a non-
trivial way. Interestingly it looks like, apart from a scaling factor, both cH and cB have
the same trend for toroidal and poloidal magnetic fields. In the case of cB, as can be
seen from Fig. 6.1, for M0 < 1.6M�, the values for toroidal magnetic fields are about
a factor 1.5 higher than the cases with poloidal magnetic field. However, at higher
masses, the trends are no longer similar between the two cases. Nonetheless, we have
found that in the full range 1.2 ≤ M0/M� . 2.4 and −6 ≤ β0 ≤ −4.5, they are
well approximated (to a few percents precision everywhere, except for the small range
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of masses in which scalarisation is triggered, where the error can reach a few tens of
percents) by a combination of power laws of three global quantities defined for the
corresponding unmagnetised model: the baryonic mass M0, the J-frame circumferen-
tial radius Rc and the E-frame scalar charge Qs (see App. B). We note that these are
not independent (for GR there is a one to one relation between mass and radius), but
treating them as independent allows us to use simple power-law scalings in terms of
global quantities. In particular:

cB ≈ c1Mα
1.6Rβ

10

[
1− c2Qγ

1 Mδ
1.6Rρ

10

]
, (6.3)

where the parameters are listed in Tab. 6.1, M1.6 is M0 in units of 1.6M�, R10 is Rc in
units of 10km, and Q1 is Qs in units of 1M�. The first term of Eq. 6.3 describes the
distortion coefficient in GR, while the second term describes the deviation due to the
presence of a scalar charge. First, for the GR term, we note that the coefficient c1 of
the models with toroidal field is about twice that of those with a poloidal one. The
mass dependence is similar, while the exponent of the radius is higher by one for the
poloidal field (this is likely due to the different geometry, prolate and oblate, of the
configurations). From the coefficients in Tab. 6.1, we see that the second term of Eq. 6.3
has a more complex behaviour: the dependence on the scalar charge is similar, there is
a weaker dependence on the mass for the poloidal field, while again the dependence on
the radius is stronger by one power of R10 in the poloidal case. The similarity between
NSs with poloidal and toroidal magnetic fields is much stronger for cH, to the point
that it is possible to derive a universal functional form over the entire mass range with
an accuracy of few percents:

cH ≈ 0.5 +F (M0)T (M0, Qs, Rc)×
{

0.65 for toroidal

1.02 for poloidal
, (6.4)

where F (M0) represents the GR part and encodes the role of the EoS, T (M0, Qs, Rc)

represents the correction due to scalarisation, and the oblate versus prolate geometry
induced by the different magnetic field is encoded in the last factor. We find that:

F (M0) = 4.98− 1.95M1.6, (6.5)

T (M0, Qs, Rc) = 1− 1.90
R2.45

10

(
Q1

M1.6

)1.3

. (6.6)

It is well known that in GR, the coefficient cH is only weakly dependent on the the
mass, to the point that it can almost be taken as a constant. This is because the specific
properties of the NS cancel out if the deformation is given as a function ofH/W. What
we found here is that the same holds in STTs. The deformation is smaller than in GR,
but the functional form of the correction is independent of the specific STT. Moreover,
the geometry of the magnetic field is completely encoded in a constant coefficient that
likely traces the oblate or prolate geometry of the star.
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Table 6.1: Values of the parameters for the approximations of cB in Eq. 6.3 for purely toroidal
and purely poloidal magnetic fields.

Parameter Toroidal Poloidal

c1 0.16 0.077
α -2.22 -1.99
β 4.86 5.80
c2 0.87 1.38
γ 1.32 1.22
δ -1.27 -0.86
ρ -2.21 -3.49

Figure 6.1: Distortion coefficients cB (top panels) and cH (bottom panels) as functions of the
baryonic mass M0 of models with a purely toroidal magnetic field (left panels) and with a
purely poloidal magnetic field (right panels), for various value of β0: from β0 = −6 (blue curve)
to β0 = −4.5 (light red curve) increasing by 0.25 with every line. The red curve corresponds to
GR.
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6.2 Gravitational waves: scalar mode vs. tensor mode

Since a quadrupolar deformation of the NS results in the emission of quadrupolar
waves, both tensor and scalar, it is interesting to analyse what fraction of the energy
contained in them is due to the quadrupole moment of the scalar field. For this pur-
pose, we define the following ratios:

S =

∣∣∣∣ qs

qg

∣∣∣∣ , G =

∣∣∣∣qg

q0
g

∣∣∣∣ , (6.7)

where

qs = 2π
∫

αsA4Tp

(
3 sin2 θ − 2

)
r4 sin θdrdθ , (6.8)

qg =
∫ [

πA4(ε + ρ)− 1
8
(∂χ)2

]
r4 sin θ

(
3 sin2 θ − 2

)
drdθ. (6.9)

These are, respectively, the Newtonian approximations of the ‘trace quadrupole’ and
of the ‘mass quadrupole’ of the NS. The mass quadrupole qg is just Izz − Ixx = eIzz

(see Eq. B.14). We found that, in the mass range we investigated, Izz ranges from
6× 1044g cm2 to 4× 1044g cm2. This is consistent with GR, where the moment of inertia
weakly depends on the mass (Lattimer & Prakash 2001), showing that the quadrupole
is primarily encoded in the parameter e. The quantities ε and ρ are respectively the J-
frame internal energy density and rest-mass density, while (∂χ)2 = (∂rχ) + r−2(∂θχ)2,
and q0

g is qg calculated in GR. The quadrupole qs is closely related to the ‘quadrupo-
lar deformation of the trace’ (see App. B), which acts as the source of scalar waves.
We note that these scalar waves are of a quadrupolar nature and differ from stan-
dard scalar monopolar GWs, which we do not consider here. In fact, a monopolar
scalar wave, being monopoles rotationally invariant, can only arise following time-
dependent monopolar variations of the structure of the NS (e.g. when the star col-
lapses, Gerosa et al. 2016) and is not triggered by the rotation of deformed NSs, to
which our present results apply. This does not mean that rotation plays no role in
monopolar waves emission since the vibrating eigenmodes depend on the NS struc-
ture, which also reflects the underlying rotational profile. We note that the distinc-
tion between monopolar and quadrupolar waves depends only on the energy distri-
bution of the waves (the multipolar pattern of the radiation), while the distinction be-
tween scalar and tensor modes depends on the nature of the waves (the spin of the
wave carriers). The quantity of S gives a measure of which fraction of the energy lost
in quadrupolar waves is contained in scalar modes, compared against tensor modes,
while G quantifies the ratio of the energy of tensor modes in STTs versus GR. We note
that the tensor GW luminosity scales approximately with e2, while it is the strain am-
plitude that scales with e, so S and G are actually a measure of the variation in the
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Figure 6.2: Ratios S (top panels) and G (bottom panels) as functions of the baryonic mass M0 of
models with a purely toroidal magnetic field (left panels) and with a purely poloidal magnetic
field (right panels), for different value of β0: from β0 = −6 (blue curve) up to β0 = −4.5 (light
red curve) increasing by 0.25 with every line. The red line corresponds to GR, where S = 0
and G = 1. Solid lines are the ratios computed by keeping Bmax fixed, while dashed lines are
obtained by keeping H/W fixed. Markers show the models with minimum G: circles for solid
lines and squares for dashed lines.

strain, and it is their square to be related to the variation in the energy loss. It is worth
pointing out that these ratios can be calculated by keeping fixed either Bmax or H/W
and that unlike Bmax, H/W depends on M0 through W in different ways for different
theories of gravity. Let’s call this dependence f (M0, β0) in our case, where the differ-
ence between STT and GR is encoded only by a varying β0. This means that, in general,
computing the ratios keeping fixed these two quantities does not yield the same result.
In particular, ratios of quantities calculated with respect to models with the same β0,
like S , are exactly the same in the two cases; instead, the ratio of a quantity in STTs
over a quantity in GR, like G, differ by a factor f (M0, β0)/ f (M0, 0).

In Fig. 6.2, we show the ratios in Eq. 6.7 for NSs endowed with a purely toroidal and a
purely poloidal magnetic field, respectively. The top panels show that, when scalarisa-
tion occurs and S departs from zero, very rapidly qs > qg for β0 . −5, while sequences
with β0 & −5 do not reach S = 1. This means that heavily scalarised NSs, once scalar-
isation kicks in, are dominated by losses due to scalar radiation, while less scalarised
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ones are always dominated by tensor radiation. Differences in S between the purely
toroidal and the purely poloidal cases are minimal, both in the scalarisation range and
in the entity of its effect. The bottom panels of Fig. 6.2 show that once scalarisation is
triggered, G quickly falls down towards very low values; then, for NSs with a higher
baryonic mass, G rises again very steeply. At a fixed M0 below a threshold mass, the
more scalarised the NS, the less energy is lost in tensor waves with respect to GR. On
the other hand, the more scalarised the NS, the more energy is injected in the scalar
mode channel, as shown before with the S ratio, which increases almost monotoni-
cally with M0. However, more massive NSs have a quadrupole deformation that is
closer to GR than less massive stars, which reflects in the rise of G at high M0. For
masses close to the maximum, tensor waves losses can be even higher than in GR. It
is interesting to note that all sequences intersect the line G = 1 at the same threshold
mass M0 ≈ 1.85M�. The reduction of the tensor GW strain is as high as 70% (75%) for
M0 = 1.50M� (1.50M�) for purely toroidal (poloidal) magnetic fields, for β0 = −6,
while it is roughly 10% for M0 = 1.80M� and β0 = −4.5, for either purely toroidal or
purely poloidal magnetic fields (see the blue and light red circles in Fig. 6.2). The same
panels also show the ratio G computed by keeping fixedH/W. We can see that, in this
case, the drop and especially the subsequent rise are less steep; in the case of a purely
poloidal magnetic field, G is almost saturated to a constant value before slightly rising.

As was done before with the distortion coefficient, we found that S is well approxi-
mated (to a few percents precision everywhere but in the small range of masses where
scalarisation occurs and the steepening is too strong to be well described by a simple
power law) by

S ≈ 1.7

(
R10

M2
1.6

)0.2

Q1.2
1 (6.10)

for both the toroidal and the poloidal cases. This shows again that it is possible to find a
unifying functional dependence, even for scalar modes. Also, the value of G looks very
similar for the poloidal and toroidal cases, except at the largest masses above 1.6M�
(we note that being a ratio with respect to GR it can only be computed up to maximum
GR mass). On the other hand, due to its more complex behaviour, we did not find a
satisfying approximation for G based on power laws of the quantities M0, Qs, Rc.

It is evident that the power emitted in tensor modes by scalarised NSs is smaller, for
masses below ≈ 1.85M�, than for the model in GR of the same mass and same EoS,
even if the minimum does not correspond to the configuration with the strongest scalar
charge. The trend changes for higher masses, where the losses in tensor modes in
STTs are higher than for the corresponding GR models. Given that the scalar modes
also contribute to the total energy losses, we see that as the mass rises, we first find a
regime at the beginning of scalarisation, where the total GW emission is suppressed
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with respect to GR, which is then followed by a regime that is closer to the maximum
mass where, due to the scalar channel, losses might even be enhanced by a factor of
between 2 and 3.

The minimum value of G (marked by the circles and squares in Fig. 6.2) scales quadrat-
ically, with β0 at fixed Bmax andH/W:

min (G)
∣∣
Bmax
≈
{

7.79 + 2.36β0 + 0.185β2
0 for toro.

7.98 + 2.44β0 + 0.190β2
0 for polo.

, (6.11)

and

min (G)
∣∣
H/W≈

{
6.91 + 2.0β0 + 0.150β2

0 for toro.

6.34 + 1.8β0 + 0.130β2
0 for polo.

. (6.12)

Analogously, the mass at which the minimum of G occurs scales linearly with β0:

M0,min
∣∣
Bmax
≈ 2.74 + 0.21β0 for toro. and polo. , (6.13)

and

M0,min
∣∣
H/W≈

{
2.45 + 0.143β0 for toro.

2.32 + 0.113β0 for polo.
. (6.14)

6.3 Discussion

In the work presented in this chapter we explore how the addition of a scalar field that
is non-minimally coupled to the metric affects the magnetic quadrupolar deformation
of a NS in the weak field regime (Bmax . 1017G). We find, as in Newtonian gravity
and in GR, in this limit the quadrupolar deformation e can be well-approximated by
a linear function of either B2

max or H/W, for fixed baryonic mass, M0, and scalarisa-
tion parameter, β0. We find that the coefficients of the linear expansion strongly depart
from those of GR for sufficiently negative values of β0: for the range of parameters
investigated here, spontaneous scalarisation can decrease the magnetic deformation of
a NS by up to ≈ 70% of the GR value, for β0 = −6. For values of β0 & −4.3, we
find that the results in massless STTs without screening are indistinguishable from GR.
This behaviour can be attributed to the interplay between various effects. First, given
a certain EoS, we find that NSs in STTs have a different central density than those in
GR with the same mass. In particular, below a threshold mass in the stable branch
of the mass-central density diagram, scalarised models have a higher central density
than the GR models with the same mass, which causes the inner region of the star to
be less prone to deformation; the opposite happens for masses above the threshold,
which are more susceptible to deformation than the corresponding GR models with
the same mass. This tendency explains why G is higher than unity for M0 & 1.85M�,
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which is very close to the threshold mass, which we found to be M0 ≈ 1.88M� for
low magnetisations. Moreover, NSs endowed with a purely toroidal magnetic field
have a prolate shape, with a more pronounced density gradient at the equator than at
the pole, which, in turn, generates a steeper gradient of the scalar field at the equator
than at the pole. Given that the effective pressure of the scalar field depends on its
spatial derivatives and has the same sign as the fluid pressure, we see that its effect is
to reduce the deformation of the star, making it more spherical. The same qualitative
behaviour is exhibited by a star endowed with a purely poloidal magnetic field and
which possesses an oblate shape with a steeper density gradient at the pole, thus caus-
ing the scalar field to apply more pressure in the polar direction than in the equatorial
one. As expected, a more pronounced scalarisation (i.e. a more negative β0) reflects
in a stronger pressure of the scalar field, rendering the star even more spherical, thus
reducing the distortion coefficients further. It is known that the scalar field can act as a
‘stabiliser’ for NSs, rendering their shape more spherical. Finally, the scalar field acts
as an effective coupling term (it replaces the inverse of the gravitational constant of
GR) between matter and the metric. In more scalarised systems, or in the NS central
region where the scalar field is larger, this coupling is weaker, and this also holds for
perturbations of the energy momentum tensor. Thus, the same structural deformation
of the NS produces a weaker metric deformation. All these effects depend on where
the deformation is located (centre versus the outer layers).

It is interesting to note that unlike the quadrupolar deformation of NSs caused by their
rotation (see e.g. Doneva et al. 2014), the magnetic quadrupolar deformation, as we
have seen, decreases in STTs with respect to GR, except for masses close to the max-
imum. This difference can be explained by the fact that rotation, unlike a magnetic
field, affects mostly the outer layers of the NS, which in scalarised systems are less
gravitationally bound than in GR (scalarized NS have larger radii than in GR), increas-
ing their deformability with respect to GR. Magnetic deformation seems to be instead
mostly regulated by the density in the central region where the magnetic field strength
peaks.

Regarding GWs, STTs predict the existence of scalar waves, which, as we show here,
can have an amplitude comparable to standard tensor waves and might even dominate
the GW losses for strongly scalarised NSs. This can lead to a point when the total
emission is even larger than in GR.

We find that a good approximation of the distortion coefficients is given by a simple
power-law dependence on M0, Rc , and Qs. More interestingly, we found that in terms
of the ratio of magnetic to binding energy the effect of a scalar field on the NS deforma-
tion and the ratio of scalar to tensor waves emission can be parametrised by a unique
function independently of the magnetic field structure or of the STT parameters. It
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seems that the presence of a scalar charge can easily be factorised. This is a generalisa-
tion of what was already known for GR, that is, with cH being almost a constant. As we
described above, the magnetic deformability of NSs heavily depends on their internal
structure, determined by the EoS. We leave to a future work to verify how much the
functional form and the coefficients entering such function depend on the EoS.

Since the quadrupolar deformation of NSs, at a fixed M0 and for most of the scalari-
sation range, is reduced in STTs with respect to GR, it is expected that the energy lost
in tensor GWs by deformed NSs is also reduced in STTs; on the other hand, it is en-
hanced for masses close to the maximum mass for a stable NS in GR. In fact, we found
that strongly scalarised stars with a baryonic mass around 1.5M� have a tensor GW
strain, h0, that is up to 75% lower than for the corresponding stars in GR, while it is
roughly 10% lower, for β0 = −4.5, for masses of 1.8M�. This means that, for values of
β0 currently allowed by observations, a less than 10% variation in h0 is to be expected
for massless scalar fields. This is much smaller than the typical uncertainties over the
distances and the strength of magnetic fields, even for well-constrained galactic ob-
jects. Higher values might hold for massive scalar fields and this could lead to serious
underestimations (or overestimations, depending on the mass) of the energetics of the
system and all that follows from that, such as its distance or the strength of its magnetic
field. If similar results on the role of the scalar field in the modification of tensor modes
hold as well for other kinds of deformation (e.g. tidal deformations of scalarised NSs
in mergers), this could have a deep impact on our understanding of binary NS merger
events (Abbott et al. 2017b). More interestingly, we found that the scalar mode can be
emitted carrying an energy comparable to the tensor one. However, its strain is sup-
pressed by a factor α0 ∼ 10−5 − 10−4, which weakens the coupling of the scalar mode
to the detector and renders the possibility of it being detected even fainter.

Our results are computed in the full non-linear regime. We also computed the quadrupole
deformation, holding both the metric and the scalar field fixed, which can be thought
of as a Cowling approximation in STTs. In this case we found that for the mass range
we investigated, the coefficients cB and cH are smaller by a factor ≈ 0.5− 0.65.

The current sensitivities of the LIGO-Virgo observatories (Abbott et al. 2018) could
be enough to detect tensor CGWs emitted by galactic neutrons stars remnants form
merger events, with millisecond period (lasting few seconds), if the quadrupole defor-
mation is e & 10−5 (Lasky 2015; Abbott et al. 2020). Future GW detector of the class of
Einstein Telescope (Punturo et al. 2010) and Cosmic Explorer (Reitze et al. 2019) could
detect deformations as low as e & 10−6. This means that, for what concerns continu-
ous scalar waves, detectors with same sensitivity could reveal them from millisecond
NSs, spinning for few seconds, only if the scalar quadrupole is α−1

0 time bigger, which
means magnetic field strength of the order of few 1017G, at the limit of the values that
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can be reached (Ciolfi et al. 2019). For the same magnetic fields, tensor waves could
be much more easily detected. Instead, the detection of scalar CGWs from slowly
spinning magnetars with internal fields of few 1017G (Olausen & Kaspi 2014; Freder-
ick et al. 2021) requires instruments with a sensitivity at least one order of magnitude
better than DECIGO (Kawamura et al. 2008) and BBO (Harry et al. 2006).

We caution the reader that there is evidence that the magnetic field at the surface or
in the magnetosphere of NSs can have strong multipoles (Bignami et al. 2003; Bilous
et al. 2019; Parthasarathy et al. 2020; Raynaud et al. 2020). However, the interpretation
of the data is not unambiguous (e.g. the magnetic field inferred from cyclotron lines
changes if either electron or proton cyclotron are assumed). It is even less clear how
these apply to the magnetic field in the interior, whose geometry is totally unknown.
From a theoretical point of view, it is reasonable to expect a difference between the
interior and surface magnetic fields. The evolution of the latter is mostly dictated by
the Hall term associated to crustal impurities, which leads to the formation of small-
scale structures and higher order multipoles (Pons & Viganò 2019; De Grandis et al.
2020), while the dissipation of the former is mostly Ohmic, preferentially suppressing
small-scale structure and higher multipoles (Haensel et al. 1990). Given that here we
are mostly interested in the deviation with respect to GR, we can consider the purely
toroidal and purely poloidal cases as two extrema of the much larger space of possible
magnetic configurations. Our results showing that the deviations with respect to GR
due to a scalar field are very similar in these two extrema lend us confidence to the con-
sideration that similar deviations with respect to GR will also apply in more complex
magnetic field geometries (Mastrano et al. 2013, 2015).
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Chapter 7

Quasi-universality of the magnetic
deformation of neutron stars in general
relativity and beyond

The results shown in this chapter were published in the paper Soldateschi, J. et al.
(2021) (hereafter SBD21EOS).

In this study we build upon the works of SBD20 (see Chap. 5) and SBD21 (see Chap. 6),
presenting a comprehensive study of the magnetic deformability of NSs in the case of
poloidal and toroidal magnetic field configurations, for a large sample of different EoS,
in GR and STTs, and for all masses in the stable range above 1M�. In this regard, the
work presented in this chapter aims to build upon and complement several previ-
ous studies: Frieben & Rezzolla (2012), who investigated the magnetic deformation of
toroidal configurations in GR for various EoS at a single NS mass of 1.4M�; Pili et al.
(2014), who investigated toroidal, poloidal, and mixed configurations in GR for var-
ious masses but only for a simple polytropic EoS; SBD21, where we studied, for the
first time, the problem of the magnetic deformation of NSs endowed by spontaneous
scalarisation with a massless scalar field for a simple polytropic EoS, for toroidal and
poloidal magnetic fields and for various masses in the stable range (see Chap. 6).

Our aim is twofold: firstly, it is to better understand the interplay between different
EoS and the magnetic field of a NS and explore whether some kind of EoS-independent
relation between the NS deformation and its observable quantities exists, such as mass
and radius. This would help to shed some light onto the properties of the internal
magnetic field of NSs or set limits on their possible CGW emission. Secondly, we look
for similar relations in the case of a scalarised NS, in the case of which EoS-independent
scalings could be useful for disentangling the effect of the scalar field to that of the
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EoS. Let us recall here that despite their over-simplicity (see the discussion in Chap. 6,
also concerning limitations related to the equilibrium formalism), purely toroidal and
purely poloidal cases represent the two extrema of the much larger space of possible
magnetic configurations (Akgün et al. 2013; Mastrano et al. 2013, 2015) and that for
any given magnetic field energy, they maximize the NS quadrupolar deformation, be it
prolate or oblate [as in mixed configurations, where the two components are expected
to balance each other out; see Tayler (1980)]. Thus, estimates in these two limits form
reliable bounds on possible CGWs emission scenarios.

This chapter is structured as follows. In Sect. 7.1 we introduce the EoS that we consid-
ered in this study, along with the rationale behind our choice. In Sect. 7.2 we explain
the setup of our numerical code and of the physical parameters we adopted. In Sect. 7.3
we show our results for the magnetic deformation of NSs in GR and STTs; first for ‘tra-
ditional’ NSs and then for strange quark stars. In Sect. 7.4 we elaborate on the possible
applications of our findings for constraining the NS EoS and magnetic structure and
their detectability by way of CGWs. Finally, we discuss our results in Sect. 7.5.

7.1 Selection of equations of state

We chose a selection of 13 different EoS that span a diverse range of calculation meth-
ods and particle contents: from zero-temperature and β-equilibrium purely nucleonic
EoS to more particle-rich and finite temperature ones, considering also EoS for strange
quark stars and a polytropic one. Moreover, all the EoS we used, except the polytropic
one (which was used as a comparison to previous works in the literature), were cho-
sen based on the fact that they were still in line with the observational constraints: 1)
reaching a maximum mass of at least ∼2.05M�; 2) satisfying various nuclear physics
constraints (Fortin et al. 2016); 3) not too stiff (Guerra Chaves & Hinderer 2019); and
4) providing a radius between ∼10km and ∼14km for 1.4M� mass models (Bauswein
et al. 2017; Bombaci & Logoteta 2018; Kim et al. 2021; Miller et al. 2021; Raaijmakers
et al. 2021; Riley et al. 2021). The scope of the work presented in this chapter is not fo-
cussed on analysing a very large sample of EoS, but a sample as diverse as possible in
terms of physics, particle content, and computational methods, within a range that is
in reasonable agreement with present constraints. In this sense, we note that the exis-
tence of strange quark stars is considered a possible way out of the hyperon and Delta
puzzles, according to which the high densities reached at the centre of hadronic stars
would soften the EoS, causing a less-than-2M� maximum mass to be reached (Drago
et al. 2016); such stars could be observed, for example, through the emission of mul-
timessenger signals caused by the conversion of a NS to a strange quark star (Kuzur
et al. 2021).
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In the following, we summarise the main feature of each EoS, grouped according to
the particle content: ‘nucleonic’ for EoS that contain only npeµ particles; ‘hyperonic’
for EoS that contain also hyperons; ‘quarkionic’ for EoS that contain an uds quark mat-
ter domain treated with the Nambu-Jona-Lasinio model; ‘strange quark matter’ for
EoS containing uds quarks treated with the MIT bag model or perturbative QCD. We
note that this last class of EoS predicts that for certain values of their parameters, the
quark matter phase has an energy-per-baryon at zero pressure lower than that of 56Fe
(Bodmer 1971; Witten 1984), leading to the possible existence of strange quark stars
(Madsen 1991; Glendenning 2000). For convenience, we provide a detailed description
of the selected EoS here, characterising their main physical properties and assump-
tions.

7.1.1 Nucleonic

APR: Zero temperature and β-equilibrium npeµ matter by Akmal et al. (1998), com-
puted using variational techniques with the two-nucleon interaction A18, the boost
correction due to nearby nucleons δv and the three-body interaction term UIX* in the
baryon number density range of 7.6× 10−2 < nb/fm−3 < 1.34 (the liquid core).
We note that this EoS is usually called APR4 in the literature. The inner crust, in the
range of 2.1 × 10−4 < nb/fm−3 < 7.6 × 10−2, is calculated with the SLy4 EoS
(Douchin & Haensel 2001) and attached to the liquid core; the outer crust, in the range
of 8× 10−15 < nb/fm−3 < 2.1× 10−4, is from Baym et al. (1971) and attached to the
inner crust. Data is taken from the CompOSE database (Typel et al. 2013)12.

SLY9: Zero temperature and beta-equilibrium npeµ matter unified EoS by Gulminelli
& Raduta (2015), taken from the CompOSE database where it is named ‘RG(SLY9)’.
Cluster energy functionals are those of Danielewicz & Lee (2009). The high density part
10−7 < nb/fm−3 < 1.51 is calculated using the effective interaction SLy9 (Chabanat
1995). This is the only Skyrme-type EoS that seems to satisfy various nuclear physics
constraints (Fortin et al. 2016). The low density part 8.6× 10−11 < nb/fm−3 < 10−7

has been added to the original CompOSE table using the EoS by Togashi et al. (2017).
Beware that the EoS from Fortin et al. (2016) (thus, also from CompOSE) has been
joined at nb = 0.04fm−3 in a thermodinamically unstable way (Raduta private com-
munication), because the pressure drops with increasing density. We adjusted this
point, but it still results in a minor density jump in the models.

BL2: Zero temperature and beta–equilibrium npeµ matter obtained using realistic two-
body and three-body nuclear interactions derived in the framework of chiral pertur-

1See the CompOSE databse website for details: https://compose.obspm.fr/home.
2We note that the pseudo-enthalpy h is not available in the CompOSE database, and was thus com-

puted when needed.

https://compose.obspm.fr/home
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bation theory, including the ∆(1232) isobar intermediate state. The high density part
8× 10−2 < nb/fm−3 < 1.29 is from Bombaci & Logoteta (2018), where it is named
N3LO∆+N2LO∆, and is derived using Brueckner-Bethe-Goldstone quantum many-
body theory in the Brueckner-Hartree-Fock approximation. The crust EoS is taken from
Douchin & Haensel (2001), in the density range of 7.9× 10−15 < nb/fm−3 < 8.0×
10−2. Data is taken from the CompOSE database, where it is named ‘BL_EOS with
crust’.

DDME2: Zero temperature and beta-equilibrium EoS by Fortin et al. (2016), computed
in the high density range of 2.5× 10−4 < nb/fm−3 < 1.2 with a relativistic-mean-
field theory model where nucleons interact via the exchange of σ, ω, ρ mesons with
density dependent meson-nucleon couplings by Lalazissis et al. (2005), where it is
named ‘DD-ME2’. The outer crust follows the SLy9 EoS by Chabanat (1995) in the
high density regime 10−7 < nb/fm−3 < 2.5× 10−4, while it is taken from Douchin
& Haensel (2001) for the low desity regime nb < 10−7fm−3. Data tables are found in
the supplemental materials of Fortin et al. (2016).

NL3ωρ: Zero temperature and beta-equilibrium EoS by Fortin et al. (2016), computed
in the high density range of 3× 10−4 < nb/fm−3 < 1.2 with a relativistic-mean-
field theory Walecka model where nucleons interact via the exchange of σ, ω, ρ mesons
with non-linear meson-meson coupling terms by Horowitz & Piekarewicz (2001). The
outer crust follows the SLy9 EoS by Chabanat (1995) in the high-density regime 10−7 <

nb/fm−3 < 3 × 10−4, while it is taken from Douchin & Haensel (2001) for the low
desity regime nb < 10−7. Data tables are found in the supplemental materials of
Fortin et al. (2016).

SFH: finite 0.1MeV temperature and beta–equilibrium npe matter EoS from Steiner
et al. (2013) in the range of 10−12 < nb/fm−3 < 1.9. It is calculated with the sta-
tistical model with excluded volume and interactions of Hempel & Schaffner-Bielich
(2010), with relativistic mean-field-theory interactions SFHo. A power-law extrapola-
tion at low densities is used to avoid the effects of finite temperature, which emerge as
a pressure saturation around nb ≈ 10−10. Data is taken from the CompOSE database3,
where it is named ‘SFHO (with electrons)’.

7.1.2 Hyperonic

DDME2-Y: Equivalent to the DDME2 EoS, but with the inclusion of the six lightest hy-
perons Λ0 (for nb > 0.34fm−3), Σ0,± (for nb > 0.41fm−3) and Ξ± (for nb > 0.37fm−3)
with the hidden strangeness vector-isoscalar φ meson. Hyperon-meson coupling co-

3See also the website https://astro.physik.unibas.ch/en/people/matthias-hempel/

equations-of-state/ for more details.

https://astro.physik.unibas.ch/en/people/matthias-hempel/equations-of-state/
https://astro.physik.unibas.ch/en/people/matthias-hempel/equations-of-state/
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efficients are calculated according to Fortin et al. (2016) using relativistic-mean-field
theory calculations. Data tables are found in the supplemental materials of Fortin et al.
(2016).

NL3ωρ-Y: equivalent to the NL3ωρ EoS, but with the inclusion of the six lightest hy-
perons Λ0 (for nb > 0.31fm−3), Σ0,± (for nb > 0.49fm−3) and Ξ± (for nb > 0.34fm−3)
with the hidden strangeness vector-isoscalar φ meson. Hyperon-meson coupling co-
efficients are calculated according to Fortin et al. (2016) using relativistic-mean-field
theory calculations. Data tables are found in the supplemental materials of Fortin et al.
(2016).

7.1.3 Quarkionic

BH8: Zero-temperature and β-equilibrium unified EoS by Baym et al. (2018)4. The EoS
is divided into four distinct domains: the crust (1.6× 10−10 < nb/fm−3 < 4.16×
10−2) is taken from Togashi et al. (2017); the nuclear liquid (4.16× 10−2 < nb/fm−3 <

0.32) is taken from Akmal et al. (1998); the hadron-quark crossover and quark matter
domains (0.32 < nb/fm−3 < 1.6) are taken from Baym et al. (2018). It is necessary to
note that the nuclear liquid contains a pion condensate, where nb jumps from 0.21fm−3

to 0.245fm−3. The quark matter EoS (including up, down, and strange quarks) is calcu-
lated using the Nambu-Jona-Lasinio model within the mean field approximation. Its
parameters (gV, H), which quantify the strength of the repulsive density-density in-
teraction and the attractive pairing interaction between quarks respectively, have been
chosen to be (0.80, 1.50)Gs, where Gs is the scalar coupling of the Nambu-Jona-Lasinio
model for quark matter, which are compatible with hadron physics. Data is taken from
the CompOSE database, where it is named ‘QHC18’.

BF9: zero-temperature and β-equilibrium unified EoS by Baym et al. (2019). The EoS
is divided into three distinct domains: the crust and nuclear liquid (7.58 × 10−11 <

nb/fm−3 < 0.32) are taken from Togashi et al. (2017), while the hadron-quark crossover
and quark matter domains (0.32 < nb/fm−3 < 1.58) are taken from Baym et al.
(2019), model-B (corresponding to gV = 0.80Gs and H = 1.49Gs). There are no phase
transitions. The quark matter EoS (including up, down, and strange quarks) is calcu-
lated using the Nambu-Jona-Lasinio model within the mean field approximation. Data
is taken from the CompOSE database, where it is named ‘QHC19-B’.

4See also the website https://user.numazu-ct.ac.jp/~sumi/eos/index.html#QHC18 for more de-
tails.

https://user.numazu-ct.ac.jp/~sumi/eos/index.html#QHC18
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7.1.4 Strange quark matter

SQM1: obtained by Alcock et al. (1986) [see also Farhi & Jaffe (1984)] using the MIT
bag model, setting the strong interaction coupling constant αc = 0 and assuming the
strange quark mass ms = 0, leading to a vanishing electron density. No pairing is
present. The MIT bag constant was chosen to be B = (141.4MeV)4, corresponding to a
zero pressure density of nb = 0.259fm−3 and a maximum mass of ∼ 2.1M�.

SQM2: based on the parametrisation of the perturbative QCD calculations at finite
chemical potential according to Fraga et al. (2014) [see also Drago et al. (2016); Pili et al.
(2016) for other works using this EoS], setting the strong interaction coupling constant
at the Z mass scale αc = 0.118 and assuming the strange quark mass ms = 94MeV (at
the 2GeV scale). The scale parameter X, which is the ratio between the renormalisation
scale and the baryon chemical potential, have been chosen to be X = 3.5, for which the
maximum mass of quark stars is 2.54M�. Quark matter is unpaired. The zero-pressure
density is nb = 0.140fm−3.

Finally, we also used the POL2 polytropic EoS, widely used in previous literature (Boc-
quet et al. 1995; Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012; Pili et al. 2014):
p = Kaργa , with Ka = 110 (in dimensionless units) and γa = 2. In the following
nucleonic, hyperonic and quarkionic EoS are generally referred as ‘standard EoS’, and
NSs that are computed via these EoS are noted as ‘standard NS’.

7.1.5 Characterisation of the equations of state

In Fig. 7.1, we plot the Komar mass Mk against the circumferential radius Rc for models
of un-magnetised, static NSs computed with the described EoS. The left panel refers to
GR, while the right panel refers to a STT with β0 = −6. The maximum mass models, as
well as the radius for the models having a Komar mass of 1.4M�, are characterised for
each EoS in Tab. 7.1, in GR and in STT with β0 = −6. From Fig. 7.1 (left panel) we see
that the NS radii have values ranging from ∼10km to ∼14km for most EoS, while the
less compact SQM2, and especially the POL2, can reach radii higher than 15− 16km.
The maximum masses are concentrated in the range of ∼2-2.2M� for most EoS, while
they can reach the exceptionally high value of ∼2.77M� for the NL3ωρ EoS, as well
as the very low value of ∼1.72M� for the POL2 EoS. We note that the versions of the
DDME2 and NL3ωρ EoS containing hyperons, DDME2-Y and NL3ωρ-Y, respectively,
detach from their non-hyperonic counterparts for models having central densities such
that the six lightest hyperons may appear, corresponding to typical masses in the range
of 1.70-1.75M�. As is known (Drago et al. 2016), the appearance of hyperons causes a
reduction of the maximum mass achievable by the NS.
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Figure 7.1: Komar mass Mk against circumferential radius Rc for un-magnetised, static models
of NSs computed with the EoS described in Sect. 7.1 in GR (left plot) and in STTs with β0 = −6
(right plot). The EoS are colour-coded, and ordered in the legend, according to the compactness
C = Mk/Rc calculated at Mk = 1.4M� in GR: red for the highest compactness and blue for the
lowest compactness.

Table 7.1: Characterisation of the maximum mass models in GR (STT with β0 = −6), for
each EoS described in Sect. 7.1 and plotted in Fig. 7.1: Mmax

k is the Komar mass, Rmax
c is the

circumferential radius, ρmax
c is the central density and Qmax

s is the scalar charge. Moreover, for
each EoS the circumferential radius for the model with Mk = 1.4M�, R1.4, is listed.

EoS Mmax
k [M�] Rmax

c [km] ρmax
c [1015g cm−3] Qmax

s [M�] R1.4[km]

APR 2.20(2.54) 9.91(12.44) 1.92(1.35) (1.12) 11.33(11.41)
SQM1 2.11(2.57) 11.57(12.82) 1.55(2.21) (1.27) 11.33(11.46)
BH8 2.05(2.51) 10.36(12.52) 1.88(1.50) (1.15) 11.48(11.54)
BF9 2.07(2.55) 10.54(12.69) 1.81(1.48) (1.18) 11.58(11.61)
SFH 2.07(2.50) 10.27(12.57) 1.91(1.48) (1.13) 11.83(11.78)
BL2 2.09(2.51) 10.26(12.76) 1.93(1.45) (1.14) 12.29(12.10)
SLY9 2.16(2.61) 10.63(13.15) 1.78(1.35) (1.19) 12.47(12.28)

DDME2 2.49(3.00) 12.06(14.70) 1.36(1.02) (1.34) 13.20(13.04)
DDME2-Y 2.12(2.62) 11.73(13.59) 1.54(1.50) (1.23) 13.20(12.99)

NL3ωρ 2.77(3.28) 12.99(15.88) 1.14(0.83) (1.47) 13.74(13.58)
NL3ωρ-Y 2.35(2.90) 12.58(14.77) 1.31(1.21) (1.35) 13.74(13.56)

SQM2 2.54(2.96) 14.68(15.77) 1.00(1.79) (1.59) 13.96(13.96)
POL2 1.72(2.07) 11.79(12.15) 1.80(2.52) (1.02) 15.18(13.50)
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7.2 Model setups

In the following, we focus on magnetised, stable models of static NSs with maximum
magnetic fields Bmax . 1017G. This value is much lower than the critical field strength,
on the order of∼ 1019G, set by the energy associated with the characteristic NS density
(Lattimer & Prakash 2007).

As we discussed in Sect. 4.3, if modifications to the internal NS structure are needed,
it is worth also investigating the STT with β0 & −4.3, as representative of the effects
of screened scalar fields. We chose α0 = −2× 10−4 and β0 ∈ {−6,−5.75,−5.5,−5}.
Such low values are chosen to both highlight the effects of scalarisation and to show its
effects at the edge of the permitted parameter space, keeping in mind that our results
hold also for scalar fields with a mass such that their screening radius is larger than the
NS radius.

Our models are computed for purely poloidal and purely toroidal magnetic field con-
figurations, the details of which are explained in Sect. 3.5. The choice of these simple,
‘pure’ magnetic configurations, while simplifying the computations, also provides us
with the results for extremal magnetic configurations: a poloidal magnetic field affects
the NS deformation in an opposite way with respect to a toroidal field; as such, we
expect configurations with mixed fields to show a deformation which is, in absolute
value, smaller than those obtained with purely poloidal and toroidal configurations.

To compute the results shown in this chapter, we first used the full XNS code to com-
pute roughly 65000 numerical models with stronger magnetic fields and then we in-
terpolated the results according to the approximations in Eq. 6.2. The large number of
models used allows us to limit the errors introduced in the interpolation process. We
studied only those configurations belonging to the stable branch of the mass-density
diagram, that is, with a central density, ρc, lower than that of the maximum mass
model. Many results shown in Sect. 7.3 and, in particular, the quasi-universal rela-
tions, were obtained through a ‘principal component analysis’ (PCA). Briefly, PCA is
a dimensionality reduction technique used to find correlations among a given set of
data. In particular, the PCA algorithm computes the D ‘principal components’ of some
input D-dimensional data, namely, the hyperplanes that best fit the input data and are
orthogonal to each other. While the first principal component is the single hyperplane
that maximises the variance of data projected onto it, the last (D-th) principal compo-
nent is the hyperplane around which data is spread out the least. For this reason, the
quasi-universal relations that we show in the following are precisely the equations of
the last PCA component, that is, the hyperplane that best fits the input data. In provid-
ing the input data to the PCA algorithm, we selected only those configurations with a
mass, Mk > 1M�, both in GR and in STT, in order to analyse only models with a real-



7.3 Quasi-universal relations 91

istic mass value. Moreover, in the STT case, we selected scalar charges of Qs > 0.4M�;
this is done because, as we go on to show, in STTs, we are mostly interested in devia-
tion from GR. In this respect models with small scalar charges, especially in the small
region where spontaneous scalarisation abruptly develops, tend to be less accurate.
Let us remark, however, that in terms of the total quadrupolar deformation (excluding
such low values of the scalar charge from the PCA) does not change our results in an
appreciable way: when the value of the scalar charge approaches zero, the deviation
from GR becomes increasingly negligible, and the GR quasi-universal relations hold.
In practice, large relative errors translate into small absolute ones.

7.3 Quasi-universal relations

In this section, we first describe how different EoS affect the magnetic structure of our
NS models. Then we detail the results obtained on the distortion coefficients using all
EoS described in Sect. 7.1 and show the quasi-universal relations we found, consider-
ing only viable EoS that describe standard NSs, that is, excluding SQM1, SQM2, and
POL2. Afterwards, we comment on how these results apply to polytropes. We perform
this analysis first for GR and then for STTs. Finally, we comment on how our results
apply to models of strange quark stars.

Our poloidal models are characterised by a magnetic field whose magnitude is always
maximum at the star centre, vanishing in an equatorial current ring located typically
at ∼ 60− 70% of the NS radius, followed by smaller secondary maximum just under-
neath the surface. At the surface, the maximum is always reached at the pole and typi-
cally is ∼ 20− 25% of the central value. On the other hand, the models endowed with
a purely toroidal magnetic field possess a simpler magnetic structure: the magnitude
of the magnetic field is zero on the axis, reaches a maximum inside the NS, typically
at ∼ 40− 60% of the NS radius, and then decreases to zero at the surface. The exact
profile of the magnetic field components depends on the EoS. In fact, while the general
behaviour of the magnetic field is in line with that just described above, the particular
composition of the NS causes a shift in the location of the maxima and in the smooth-
ness of the magnetic field profile. As described in Sect. 7.1, the BH8 EoS contains a
pion condensate, leading to the appearance of a jump in density. As a consequence,
the magnetic field of purely toroidal models display a jump in the magnetic field mag-
nitude at the same location where the condensate appears. On the other hand, purely
poloidal models show no sudden change in the magnetic profile (the jump is present
in the current distribution). In the case of models described by the SQM1 and SQM2
EoS, for purely poloidal magnetic fields, the equatorial ring where the magnetic field
vanishes is located at a radius, which is∼ 10% higher than for the standard EoS. In the
case of purely toroidal models, this shift is such that the magnetic profile is abruptly
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Figure 7.2: Distortion coefficients cB and cH, calculated according to Eq. 6.2, as functions of
the Komar mass Mk for purely poloidal (left panel) and purely toroidal (right panel) magnetic
fields, in GR. The EoS are colour-coded, and ordered in the legend, according to the compact-
ness C = Mk/Rc calculated at Mk = 1.4M� in GR: red for the highest compactness and blue
for the lowest compactness.

truncated at the star surface; in some cases, the magnetic field strength monotonically
rises all the way to the surface, where it reaches its maximum and then jumps to zero.
As we comment in Sect. 7.3.3, this behaviour leads us to consider these models as not
true equilibria, since a non-vanishing Lorentz force at the NS surface remains unbal-
anced. As for the hyperonic EoS, the appearance of hyperons causes an increase in
the maximum magnitude of the magnetic field with respect to models of the same
central density computed with the corresponding non-hyperonic EoS. Finally, we note
that although the profiles of the density and of the magnetic field are affected by the
EoS (condensates, appearance of new particles, etc..) as we just described, all the inte-
grated, global quantities, such as the mass, radius, magnetic energy, scalar charges, or
quadrupolar deformation of the NS, show no sign of discontinuities or jumps.

7.3.1 General relativity

The distortion coefficients, cB and cH (see Eq. 6.2), for our NSs models, calculated in
GR, are shown in Fig. 7.2 as functions of the NS Komar mass, Mk

5. The left panel

5The distortion coefficients, cB and cH, are shown separately for each EoS described in Sect. 7.1, both
in GR and in STTs, in the supplementary materials: https://doi.org/10.5281/zenodo.5336222.

https://doi.org/10.5281/zenodo.5336222
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refers to models endowed with a purely poloidal magnetic field, while the right panel
refers to purely toroidal magnetic fields. The EoS are colour-coded according to the
compactness C = Mk/Rc, calculated at Mk = 1.4M� in GR: red for the highest com-
pactness and blue for the lowest compactness. We can see that sequences for both
coefficients are only roughly ordered according to the compactness of the EoS: mod-
els with the same mass have lower distortion coefficients for more compact EoS only
on average, the main exceptions to this rule being the SQM1, SQM2 and POL2 EoS.
This is especially true for cH in the toroidal case, where the POL2 EoS (the least com-
pact one) reaches a lower distortion coefficient than the APR EoS (the most compact
one) close to its maximum-mass model and the SQM2 EoS displays a completely dif-
ferent behaviour. We note that while it is to be expected that more compact EoS have
a lower deformation, the particular definition of compactness we use (calculated for
1.4M� models) clearly impacts the ordering of the EoS, as can be seen from the mass-
radius relations in Fig. 7.1. If we exclude the SQM1, SQM2, and POL2 EoS, we see
that all sequences are more closely packed: the relative difference, in the poloidal
(toroidal) cases, 2(c+B − c−B )/(c

+
B + c−B ) between the uppermost sequence (+ superscript,

for the NL3ωρ EoS) and the lowermost sequence (- superscript, for the APR EoS) in
the poloidal (toroidal) case is ∼ 1.26(∼ 1.14) at Mk ∼ 2.0M� and ∼ 0.83(∼ 0.79) at
Mk ∼ 1.2M�, indicating that above 1.7M�, various EoS can differ by order unity. For
cH, in the poloidal (toroidal) case, the difference 2(c+H − c−H)/(c

+
H + c−H) ranges from

∼ 0.25 (∼ 0.19) at Mk ∼ 2.0M�, to ∼ 0.07 (∼ 0.07) at Mk ∼ 1.2M� . These numbers
show that while cB vastly differs between the sequences for the APR and the NL3ωρ

EoS, the value of cH remains almost constant across the whole mass range, changing
at most by a factor of ∼ 1.5. Since the SQM1, SQM2, and POL2 EoS display such a
different behaviour, for the moment, we focus only on those EoS describing standard
NS (thus excluding SQM1 and SQM2) allowed by observations (thus excluding POL2),
which we refer to as ‘standard EoS’.

Given the similarity between the distortion coefficients for all standard EoS when plot-
ted against the Komar mass, it is reasonable to wonder whether adding the depen-
dence on other variables could further reduce the spread. We thus chose to consider
the dependence also on another potentially observable quantity, namely the circum-
ferential radius Rc, and adopted a PCA algorithm to find the best-fit relation between
cB,H, Mk, and Rc. We found that these formulas approximate cB,H to a satisfying level
of accuracy for all standard EoS:

cPCA
B =


0.13+0.03

−0.02R5.45
10 M−2.41

1.6 for poloidal,

0.25+0.03
−0.03R5.03

10 M−2.07
1.6 for toroidal,

(7.1)
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Figure 7.3: Distortion coefficients cB (top panels) and cH (bottom panels), calculated according
to Eq. 6.2 in GR, versus their approximations cPCA

B and cPCA
H , calculated with the relations in

Eqs. 7.1,7.2 (top plot in each panel). The corresponding relative deviations from the PCA are
given in the bottom plot in each panel. The top left and bottom left panels refer to purely
poloidal magnetic fields; the top right and bottom right panels refer to purely toroidal magnetic
fields. The dashed black line is cB,H = cPCA

B,H . The magenta shaded area comprises all data points
and the purple and magenta lines represent the upper and lower bounds of Eqs. 7.1,7.2. The
dark blue lines bounding the shaded blue area mark the 90th percentile error region. The
EoS are colour-coded, and ordered in the legend, according to the compactness C = Mk/Rc

calculated at Mk = 1.4M� in GR: red for the highest compactness and blue for the lowest
compactness.
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cPCA
H =



5.77+0.04
−0.06 − 0.77R10 − 4.14M1.6 − 0.27M2

1.6+

+0.07R2
10 + 2.28M1.6R10 for poloidal,

7.02+0.05
−0.07 − 5.22R10 − 2.76M1.6 − 0.12M2

1.6+

+1.92R2
10 + 1.51M1.6R10 for toroidal,

(7.2)

where R10 = Rc/10km and M1.6 = Mk/1.6M�. We refer to these formulas, as well
as the analogue ones described in the following, as ‘quasi-universal relations’, since
they hold for all standard EoS we considered. The distortion coefficients computed
using formulas from Eqs. 7.1,7.2 are plotted against their ‘real’ value, computed with
formulas Eq. 6.2, as shown in in Fig. 7.3 (top plot in each panel) for purely poloidal (left
panels) and purely toroidal (right panels) magnetic field configurations. In each panel,
the bottom plot displays the relative error |cPCA

B,H − cB,H|/cB,H committed when using
the quasi-universal relations to approximate the distortion coefficients. The dashed
black line is a reference cB,H = cPCA

B,H bisecting line, which stands for a perfect approx-
imation. The superscripts and subscripts in the first coefficient of Eqs. 7.1,7.2 are the
values that define the purple and magenta lines bounding the magenta shaded area in
Fig. 7.3, top plots in each panel. The dark blue lines, which bound the shaded blue area
in the plots of cB, mark the 90th percentile of the relative errors (the bounds containing
90% of the results). The corresponding values of these errors are showed with lines
of the same colour in the bottom plots of each panel for cB. In the case of cH, given
the form of the quasi-universal relation Eq. 7.2, the bounds in the top plots do not
correspond to a unique constant value of the relative error, thus we omit them in the
bottom plots; likewise, we omit the 90th percentile line in the top plots. We note that
the magenta regions contain all the points, and, in this sense, the bounds in Eqs. 7.1,7.2
represent the maximum spread of the results; however, in general, typical deviations
with respect to the PCA approximations are about 3/4 to 1/2 of those values. We see
that the relations for cB, in the poloidal case (top left panel), hold with a maximum
relative error of ∼ 17%, and the 90th percentile stands at ∼ 14%; in the toroidal case
(top right panel), they are ∼ 16% and ∼ 10%, respectively. The approximation for cH

is much more accurate, with a maximum relative error of ∼ 2% in both magnetic con-
figurations, and mostly under ∼ 1% in the poloidal case (bottom left panel) and under
∼ 1.5% in the toroidal case (bottom right panel). We see no dependence of the devia-
tion from the PCA results on the compactness of the EoS. We note that the coefficients
for cPCA

H in Eq. 7.2 in the toroidal case can be used also in the poloidal case, but in this
case, the 90th percentile relative error increases to ∼ 27%. However, similarly to what
we found in SBD21 for cH (see Chap. 6), performing cPCA

H → 5/3cPCA
H − 0.9 allows one

to use the toroidal coefficients in the poloidal case with a ∼ 2% error.

The distortion coefficients as defined in Eq. 6.2 contain quantities that are not directly
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accessible by observations, since they require knowledge of the details of the inter-
nal structure and magnetic field geometry of NS. In this respect, the quasi-universal
relations Eqs. 7.1,7.2 may be used to get information on the internal structure of the
magnetic field, as we discuss in Sect. 7.4. However, from an observational prospective,
it is useful to introduce another distortion coefficient, defined using a quantity that
may be observed:

|e| = csB2
s +O

(
B4

s

)
, (7.3)

where Bs is the magnetic field calculated at the pole of the NS, at the surface, nor-
malised to 1018G. Obviously this coefficient is defined only for configurations endowed
with a poloidal magnetic field (the toroidal one being hidden under the surface). As
it was done for cB and cH, we performed a PCA and found the corresponding quasi-
universal relation:

cPCA
s = 2.97+0.12

−0.23R4.61
10 M−2.80

1.6 . (7.4)

The distortion coefficient cs computed using formula Eq. 7.4 is plotted against its ‘real’
value, computed with formula Eq. 7.3, in Fig. 7.4 (top plot), along with the relative
error of the approximation (bottom panel). We note that the values of cs are roughly
one order of magnitude higher than those of cB because the magnetic field at the sur-
face is lower than the internal one, while the normalisation used is the same for both
coefficients. We see that the approximation cPCA

s holds to a satisfying accuracy, with a
maximum relative error of 8%, but mostly concentrated under 4%.

As can be seen from Fig. 7.2, applying the PCA derived from standard EoS, Eqs. 7.1,7.2,7.4,
to the model computed with the POL2 EoS leads to a large errors: the PCA approxi-
mation is larger by a factor of∼ 1.9 for cB both in the poloidal (at 1.05M�) and toroidal
(at 1.55M�) case, and a factor of ∼ 1.8 larger at 1.4M�; instead, the relative deviation
reaches ∼ 7% at 1.56M� (∼ 20% at 1.04M� ) for cH in the poloidal (toroidal) case,
while it is ∼ 6%(∼ 17%) for 1.4M� models in the poloidal (toroidal) case; similarly,
the maximum error for cs is ∼ 20% at 1.05M�, while it is ∼ 2% at 1.4M�.

7.3.2 Scalar-tensor theories

In the case of STTs, we find quasi-universal relations for ∆cB = |cB − cGR
B |, ∆cH =

|cH − cGR
H | and ∆cs = |cs − cGR

s |, where cGR
B , cGR

H and cGR
s are the relations found in the

GR case: Eqs. 7.1,7.2,7.4, respectively. We chose this approach instead of approximating
the bare distortion coefficients for two reasons: on the one hand, since we already
found satisfying approximations in GR, it makes sense to focus only on the difference
given by scalarisation; on the other hand, this allows us to exclude the few models with
a low scalar charge, which are located in the mass-radius diagram in Fig. 7.1 (right
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Figure 7.4: Distortion coefficient cs, calculated according to Eq. 7.3 in GR, versus its approxima-
tion cPCA

s calculated with the quasi-universal relation in Eq. 7.4 (top plot). The corresponding
relative deviation from the PCA is given in the bottom plot. The dashed line is cB,H = cPCA

B,H .
The magenta shaded area comprises all data points and the purple and magenta lines repre-
sent the upper and lower bounds of Eq. 7.4. The dark blue lines bounding the shaded blue area
mark the 90th percentile error region. The EoS are colour-coded, and ordered in the legend,
according to the compactness C = Mk/Rc calculated at Mk = 1.4M� in GR: red for the highest
compactness and blue for the lowest compactness.

panel), close to the sharp onset of scalarisation, and which may not be as accurately
computed as the rest of the sequence. In computing the PCA in the STT case, we
considered also the dependence of the distortion coefficients on the scalar charge, Qs.
We found the following relations:

∆cPCA
B =


0.03+0.05

−0.03R8.23
10 M−5.08

1.6 Q2.60
1 for poloidal,

0.06+0.09
−0.05R5.96

10 M−3.52
1.6 Q1.95

1 for toroidal,

(7.5)

∆cPCA
H =


1.96+0.17

−0.18R0.72
10 M−1.96

1.6 Q1.54
1 for poloidal,

1.49+0.26
−0.17R0.75

10 M−1.81
1.6 Q1.55

1 for toroidal,

(7.6)

∆cPCA
s = 0.92+0.20

−0.27R4.77
10 M−4.50

1.6 Q1.71
1 , (7.7)

where Q1 is Qs normalised to 1M�. The relations Eqs. 7.5,7.6 are plotted against the
corresponding value ∆cB and ∆cH, computed using formulas Eq. 6.2, in Fig. 7.5 (top
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plot in each panel) for purely poloidal (left panels) and purely toroidal (right panels)
magnetic field configurations. Instead, Eq. 7.7 is plotted against the corresponding
value ∆cs, computed using formula Eq. 7.3, in Fig. 7.6 (top plot). In each figure and
panel, the bottom plot displays the relative error of the quasi-universal relations. The
dashed lines are a reference ∆cB,H = ∆cPCA

B,H and ∆cs = ∆cPCA
s bisecting lines, which

stand for a perfect approximation. We see from the bottom plots in each panel of
Figs. 7.5,7.6 that the overall relative errors are larger than in the GR case. This is to be
expected for two reasons: on the one hand, we are approximating the ∆cB,H,s, which,
by definition, are computed on the difference with an already approximated quantity,
cPCA

B,H,s; on the other hand, especially at low values of the scalar charge (bottom-left of
each top plot), the onset of scalarisation causes an abrupt change in the mass-radius re-
lation compared to GR, inevitably decreasing the accuracy of NS models. We see that
the relations for ∆cB, both in the poloidal (top left panel) and in the toroidal case (top
right panel), hold with a 90th percentile relative error of ∼ 50%. The approximation
for ∆cH is more accurate, with a relative error of ∼ 5% in the poloidal case (bottom
left panel) and ∼ 7% in the toroidal case (bottom right panel). In any case, we see no
dependence of the error on the compactness of the EoS. As for ∆cs, its approximation
in Fig. 7.6 holds with a relative error mostly under∼ 10%. We note that the coefficients
for ∆cPCA

H in Eq. 7.6 in the toroidal case can be used also in the poloidal case, but in
this case the 90th percentile relative error increases to ∼ 30%. However, similarly to
what we found in the GR case, performing cPCA

H → 3/2cPCA
H − 0.2 allows one to use

the toroidal coefficients in the poloidal case with a ∼ 10% error.

If we apply Eq. 7.5 to approximate ∆cB in models computed using the POL2 EoS, errors
remain roughly the same in the poloidal case, while they increase by ∼ 20% in the
toroidal case. Instead, ∆cH approximated using Eq. 7.6 holds also for the POL2 EoS,
at the expense of an error reaching ∼ 15%(∼ 30%) in the poloidal (toroidal) case. If
we approximate ∆cs using Eq. 7.7 for models computed with the POL2 EoS, the PCA
approximation presents a deviation mostly under ∼ 40%.

We note here that the deformation coefficient, cB, computed for STT models at the same
central density is approximately the same for any value of β0 ∈ {−6,−5.75,−5.5,−5};
this happens both for purely poloidal and purely toroidal magnetic configurations.
This suggests that it is ultimately the central density that determines the deformation
coefficient cB of a NS: the role of the scalar field is that of merely shifting the central
density of a model with the same mass to different values with respect to GR. For the
same reason, models for STTs computed at a fixed Komar mass have different cB: their
central density varies with β0.

A time-varying quadrupolar deformation leads to the emission of GWs. While in GR
these are only of tensor nature (i.e. the wave carrier is a spin-2 particle), in the case
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Figure 7.5: Differences ∆cB (top panels) and ∆cH (bottom panels) between the distortion coef-
ficients cB and cH, calculated according to Eq. 6.2 for STTs, with β0 ∈ {−6,−5.75,−5.5,−5},
and the GR relations in Eq. 7.1,7.2, respectively. These are plotted versus ∆cPCA

B and ∆cPCA
H and

calculated as in Eqs. 7.5,7.6 (top plot in each panel). The corresponding relative deviations from
the PCA are given in the bottom plot in each panel. The top left and bottom left panels refer to
purely poloidal magnetic fields; the top right and bottom right panels refer to purely toroidal
magnetic fields. The dashed line is ∆cB,H = ∆cPCA

B,H . The magenta shaded area comprises all data
points and the purple and magenta lines represent the upper and lower bounds of Eqs. 7.5,7.6;
the dark blue lines bounding the shaded blue area mark the 90th percentile error region. The
EoS are colour-coded, and ordered in the legend, according to the compactness C = Mk/Rc at
Mk = 1.4M� in GR: red for the highest compactness and blue for the lowest.
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of a STT, a scalar channel is also present (whose energy is carried by a spin-0 parti-
cle). While the multipolar pattern of the energy carried by tensor GWs cannot contain
lower-than-quadrupole modes, scalar GWs can contain any multipolar component. A
time-dependent monopolar variation in the structure of a scalarised NS leads to the
emission of monopolar waves; being that monopoles rotationally invariant, this can-
not happen simply due to the rotation of the NS, but there must also be some kind
of radial time-dependent variation [for instance, when the star collapses (Gerosa et al.
2016)]. For this reason, we only focus on quadrupolar modes of GWs, both tensor
and scalar in nature. Given that NSs for GR and for STTs can posses rather differ-
ent quadrupolar deformations (see e.g. Figs. 7.5,7.6), it is interesting to compare the
amount of GWs emitted by NS in these two modes. To this end, we recall that the ratio
S (see Eq. 6.7) computed for a NS model measures in which channel that model will
emit most quadrupolar GWs, either the tensor (S < 1) or the scalar channel (S > 1).
We found that the following quasi-universal relations hold for S :

SPCA =


1.98+0.18

−0.05R−0.71
10 M−0.54

1.6 Q1.22
1 for poloidal,

1.99+0.18
−0.07R−0.74

10 M−0.60
1.6 Q1.23

1 for toroidal.

(7.8)

The values of S , computed through Eq. 6.10 for β0 ∈ {−6,−5.75,−5.5,−5}, are plot-
ted in Fig. 7.7, against their PCA approximation, computed via Eq. 7.8. We see that
the approximation is quite accurate in both the poloidal and the toroidal case, with a
maximum relative error of ∼ 8% in both cases, but mostly concentrated under ∼ 4%.
We see that the coefficients in Eq. 7.8 are practically identical in the poloidal and the
toroidal case; in fact, using the coefficients of the PCA approximation of the toroidal
case in the poloidal case leads to an only slightly larger error (around ∼ 1% higher).
As we discuss in Sect. 7.4, we believe that this similarity points to the existence of a
relation between the mass and trace quadrupoles that does not depend on either the
magnetic field geometry or the EoS.

7.3.3 Equations of state containing strange quark matter

As we see in Fig. 7.2, the EoS describing strange quark stars exhibit quite different be-
haviours in the distortion coefficients than the other EoS, especially with regard to the
SQM2 EoS, and even more so in the case of cH in the toroidal case (right panel, bottom
plot). Overall, we see that stars described by the SQM2 EoS are more deformable than
all of the other EoS, when compared at the same mass. The reason for this is easily
seen from the mass-radius relation in Fig. 7.1: at the same mass, strange quark stars
described by the SQM2 EoS possess a larger radius, and are thus less compact and
more prone to deformation. Instead, the SQM1 EoS, for masses lower than ∼ 1.3M�,
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is the most compact one; however, we note that while the compactness of an EoS is in-
deed related to its deformability as defined in Eq. B.14, it is not the only ingredient: the
interplay of the internal magnetic field of the star and its density distribution is another
effect that plays an important role on how the magnetic field deforms the star structure.
Indeed, strange quark stars possess a much ‘flatter’ density distribution than standard
NSs, in which the density gradient is larger. As we anticipated in Sect. 7.3, toroidal
models described by the SQM1 and SQM2 EoS show a discontinuity in the magnetic
field profile at the surface; since this behaviour leads to a non-vanishing Lorentz force,
we caution the reader that these models might not be true equilibria, and thus our
results in this case might not be completely accurate. Moreover, we note that the defi-
nition of the gravitational binding energy W in Eq. 6.2, being the same for all EoS, does
not include the contribution of the QCD vacuum energy: the distortion coefficient, cH,
we find is the one computed ignoring this additional energy, and is roughly a fraction
W/WQCD different from the ‘real’ coefficient, where WQCD is the binding energy which
includes the QCD vacuum. The QCD vacuum energy is expected to have a more im-
portant contribution to the binding energy in models which possess a low mass, thus
possibly explaining the different behaviour of the SQM2 curve in the bottom plot of
the right panel in Fig. 7.2. Due to the extent of these differences, applying the quasi-
universal relations we found for standard NSs to the case of SQM1 and SQM2 leads
to greater errors: in GR, cPCA

B is a factor of ∼ 0.4− 0.8 lower than cB for both purely
poloidal and toroidal magnetic fields. For cH, using Eq. 7.2 the maximum error in-
creases to ∼ 8%(∼ 12%) for purely poloidal (toroidal) magnetic fields in the case of
SQM1, and ∼ 5%(∼ 40%) for purely poloidal (toroidal) magnetic fields in the case
of SQM2. As for cPCA

s , it is at most a factor of ∼ 1.4 higher than cs. For STTs, ∆cPCA
B

in the poloidal case is around a factor of ∼ 2 lower (higher) than ∆cB for the SQM1
(SQM2) EoS, excluding a few outlier points; in the toroidal case, it is a factor of ∼ 2
lower for both SQM1 and SQM2. For ∆cH, using Eq. 7.6 the maximum error increases
to ∼ 30%(∼ 50%) for purely poloidal (toroidal) magnetic fields, again ignoring few
outlier points. In the case of ∆cPCA

s , it is around a factor of ∼ 1.7 lower than ∆cs.

7.4 EoS and magnetic structure constraints

As argued in Sect. 1.2, among the major uncertainties in NS physics are the EoS and the
magnetic field structure of their inner regions. The quasi-universal relations we found
may be useful in this sense, given that they are independent of the EoS of standard
NSs, thus leaving the NS internal magnetic structure as the only major unknown in
GR. We stress that only some of the relations we find may be considered as truly quasi-
universal: the approximations cPCA

H , cPCA
s , ∆cPCA

H , ∆cPCA
s ,SPCA are the most accurate,

their errors remaining under 10% for standard NSs. On the other hand, these relations



102 Quasi-universality of the magnetic deformation of NSs in GR and beyond

Figure 7.6: Difference, ∆cs, between the distortion coefficient cs, calculated according to Eq. 7.3
for STTs with β0 ∈ {−6,−5.75,−5.5,−5}, and the GR quasi-universal relation in Eq. 7.4. This
is plotted versus its approximation ∆cPCA

s , calculated with the relation in Eq. 7.7 (top plot). The
corresponding relative deviation from the PCA is given in the bottom plot. The dashed line is
∆cs = ∆cPCA

s . The magenta shaded area comprises all data points and the purple and magenta
lines represent the upper and lower bounds of Eq. 7.7. The dark blue lines bounding the shaded
blue area mark the 90th percentile error region. The EoS are colour-coded, and ordered in the
legend, according to the compactness C = Mk/Rc calculated at Mk = 1.4M� in GR: red for the
highest compactness and blue for the lowest compactness.

in the case of the POL2, SQM1 and SQM2 EoS, or the approximations cPCA
B and ∆cPCA

B
in all cases, are less accurate and for this reason their range of applicability is smaller.
In particular, the most promising relation is that of cs. On the one hand, cs can be
computed from its definition Eq. 7.3 if one is able to measure both the magnetic field
strength at the surface of the NS, Bs, and its quadrupolar deformation e. The latter
is in turn inferable from the strain of CGWs emitted by the NS, h0 ∝ eI, where I is
the moment of inertia of the NS along its rotation axis, which must be unaligned to
its magnetic axis. The moment of inertia, I, is a function of the NS mass and radius,
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Figure 7.7: Ratio S between scalar and tensor quadrupolar GW losses, calculated according to
Eq. 6.10 for STTs with β0 ∈ {−6,−5.75,−5.5,−5}. This is plotted versus its approximation
SPCA, calculated with the quasi-universal relations in Eq. 7.8 (top plot in each panel). The
corresponding relative devitations from the PCA are given in the bottom plot in each panel. The
left panel refers to a purely poloidal magnetic field; the right panel refers to a purely toroidal
magnetic field. The dashed line is S = SPCA. The magenta shaded area comprises all data
points and the purple and magenta lines represent the upper and lower bounds of Eq. 7.8.
The dark blue lines bounding the shaded blue area mark the 90th percentile error region. The
EoS are colour-coded, and ordered in the legend according to the compactness C = Mk/Rc

calculated at Mk = 1.4M� in GR: red for the highest compactness and blue for the lowest
compactness.

and, in principle, it depends on the EoS. However, Breu & Rezzolla (2016)6 have found
that an EoS-independent relation between I, the NS mass and its radius exists. On the
other hand, Eq. 7.4 allows us to estimate cPCA

s by knowing just the NS mass and radius
(see Fig. 7.8, where a few cPCA

s = const. isolines are plotted). Thus, three possible
informative scenarios may arise:

1. cs < cPCA
s and I is computed with the EoS-independent relation by Breu & Rez-

zolla (2016): the only assumption made is that of a very specific purely poloidal

6We note that the moment of inertia I used in Breu & Rezzolla (2016) is defined as the ratio of the an-
gular momentum to the angular velocity, and is different from the definition of Izz,xx we use in this work,
which is Newtonian. While the two moments of inertia can differ, it was found that the quadrupolar
deformation e defined as in Eq. B.14, being a ratio, is very similar in both regimes (Pili et al. 2015).
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magnetic field permeating the NS. In this case, the deformation coefficient is re-
duced by the presence of a toroidal component, which counteracts the deforma-
tion of the poloidal one. The strength of the toroidal component increases with
respect to the poloidal one the larger cs deviates from cPCA

s .

2. cs > cPCA
s and I is computed with the EoS-independent relation by Breu & Rez-

zolla (2016): Since the star is more deformed than what the extremal case of a
purely poloidal field can produce, there must be another source of deformation
other than the magnetic field .

3. cs > cPCA
s and I is computed by assuming an EoS: either there is another source

of deformation, other than the magnetic field, or the assumed EoS in not consis-
tent, because it predicts a moment of inertia, I, that is not compatible with the
deformation coefficient of the star.

If cs < cPCA
s and I is computed by assuming an EoS, not much can be said without fur-

ther information because both the magnetic field geometry and the EoS are assumed.
We stress that our analysis, and thus the three informative scenarios just described, are
valid in the case of a purely poloidal magnetic configuration that satisfies the criterion
for equilibrium in the Bernoulli formalism: different magnetic configurations should
be explored to possibly strengthen our conclusions, even if it is not clear whether
purely poloidal equilibria that significantly differ from the one we have adopted do
exist. To recap, once the quantities Mk, Rc of a NS are measured, a point in the mass-
radius diagram Fig. 7.8 can be placed. On the one hand, its deformation coefficient cs

can be computed if one is able to measure also the quantities h0, Bs; on the other hand,
cPCA

s is computed from Eq. 7.4, corresponding to a certain isoline in Fig. 7.8. Depend-
ing on whether cs < cPCA

s or cs > cPCA
s and on whether one has computed the NS

moment of inertia I through the EoS-independent relation of Breu & Rezzolla (2016)
or by assuming an EoS, various conclusions on the NS internal magnetic structure or
on the consistency of the EoS can be asserted. We recall here that, as we explained in
Sect. 2.2, all quantities are measured in the J-frame, that is the physical frame. Once a
quantity is measured, it then can be converted to the E-frame through the conformal
factor A.

Similar conclusions can be drawn if one considers the other two deformation coeffi-
cients, cB and cH, instead of cs, with the caveat that these quantities are defined also for
purely toroidal magnetic fields and require one to be able to measure the maximum
strength of the magnetic field, Bmax, or the ratio H/W, respectively. However, such
quantities are much less likely to be measured than the magnetic field at the surface.
Moreover, the applicability of the relation for cPCA

B remains more contained due to the
larger error in the approximation of the real distortion coefficient. For this reason, re-
lations Eqs. 7.1,7.2 may be more useful to constrain Bmax or H/W themselves. More



7.4 EoS and magnetic structure constraints 105

specifically, Bmax ≈ (e/cB)
1/2 and H/W ≈ e/cH; given that cB,H < cPCA

B,H , once the NS
mass and radius are known, it is possible to estimate a lower bound for both Bmax and
H/W by using the quasi-universal relations found in the purely poloidal and purely
toroidal case. We note that the relations for cB and cH, as well as that of cs, are in
any case useful for the purpose of numerical simulations and theoretical estimations,
allowing us to quickly and easily determine the distortion coefficients from the mass
and radius of a model – without going through a full numerical simulation.

In STTs, the scalar charge is also unkown. As discussed in Sect. 1.2, some of the ef-
fects of changing the NS EoS are degenerate with the presence of a non-negligible
scalar charge. For this reason, the relations in Eqs. 7.5,7.6,7.7 may help us to under-
stand whether a distortion coefficient inferred from observations, via the relations in
Eqs. 6.2,7.3, is compatible with a non-zero scalar charge of the observed NS, indepen-
dently from its EoS. To this end, the relation in Eq. 7.8 may prove to be more promising
because it does not require any knowledge of the strength of the magnetic field. In
particular, since Eq. 7.8 is essentially the same in both poloidal and toroidal magnetic
configurations, it is possible that S is independent of the magnetic field altogether. In
this case S ≈ SPCA, and the observation of CGWs from a given source of known mass,
radius, distance d and spin period P translates into an upper bound for a function of
the scalar charge: g(Qs, qs) < f (Mk, Rc, d, P, hmin

0 ), where hmin
0 is the sensitivity of a

given GW detector at the frequency 2/P and g(Qs, qs) is zero for a non-scalarised NS.

Next, we comment on how our results compare to the previous findings of Cutler
(2002). There, the author found that in Newtonian theory, for an incompressible,
constant-density NS, the distortion coefficient cH = 15/4 ∼ 3.75 in the case of a purely
toroidal magnetic field, while it is cH ∼ 15/2 ∼ 7.50 for a purely poloidal model. As
we showed in Fig. 7.2, we found that cH ranges from ∼ 2 to ∼ 3 (from ∼ 2.5 to ∼ 4)
for toroidal (poloidal) models. Therefore, by using the constant coefficients of Cutler
(2002), found under some simplifying assumptions, one would find a cH that is a fac-
tor of ∼ 1.25 − 1.88(∼ 1.88 − 3.00) higher than our estimates; this could in part be
the result of having different magnetic field geometries, in turn stemming from dif-
ferent assumptions on the NS structure. Finally, as explained in Frieben & Rezzolla
(2012), when considering a NS with a superconducting core, one expects to find an
increase in cH, with respect to a non-superconducting star, which is roughly a factor of
〈BBc1〉/〈B2〉, where B is the magnitude of the magnetic field, Bc1 ≈ 1015G is the first
critical magnetic field strength and 〈. . . 〉 indicates volume average. This is valid only
as a first approximation for 〈B〉 < 1015G. Thus, in this limit, for superconducting mod-
els, we expect to find distortion coefficients that are roughly a factor of Bc1/〈B〉 higher
than what we found.
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7.5 Discussion

In the work presented in this chapter, we explore the relation among the magnetic de-
formability and the main observable quantities of NS models described by a variety of
different EoS allowed by observational and nuclear physics constraints. We did so in
the case of static, axisymmetric configurations endowed by specific choices of either
purely poloidal or purely toroidal magnetic fields based upon two different theories
of gravitation: GR and a massless STT containing the spontaneous scalarisation phe-
nomenon. We used 12 different EoS which satisfy the latest astrophysical and nuclear
physics constraints, plus a polytropic law that has been widely used in the literature.
These EoS span a wide range of calculation methods and particle contents, ranging
from zero-temperature to finite-temperature ones, from nucleonic EoS to those con-
taining hyperons or quark degreees of freedom; moreover, we considered two EoS that
are capable of describing strange quark stars.

We first obtained the distortion coefficients which describe the magnetic deforma-
tion of NSs in the limit of non-extreme magnetic fields, that is, when the quadrupo-
lar magnetic deformation of the star follows a quadratic law with the magnetic field
magnitude. In particular, we studied three different coefficients by parametrising the
quadrupolar deformation of our models with their maximum magnetic field strength,
their magnetic energy to gravitaitonal binding energy ratio, and their superficial mag-
netic field strength: cB, cH, and cs respectively. While the first two may be most useful
for the purpose of computing the deformation of NS models without going through a
full numerical simulation, the latter may be of help in constraining the magnetic prop-
erties in NS interiors. We find that while cH varies by a maximum factor of 1.5 among
all the models we studied, cB and cs exhibit a much stronger dependence on the NS
mass. Moreover, the behaviour of cB,H is qualitatively similar for poloidal and toroidal
configurations. Since the polytropic EoS POL2 and the strange quark matter EoS SQM1
and SQM2 exhibit a radically different behaviour with respect to all other EoS, we fo-
cus mainly on the ten EoS - allowed by the observations - describing standard NSs.

Subsequently, we looked for relations among the three coefficients, the NS Komar
mass, and their circumferential radius; in the case of STTs, we also consider the depen-
dence on their scalar charge. Specifically, we are most interested in EoS-independent
relations, or quasi-universal relations. We find that there are equations at hand to de-
scribe the distortion coefficients in term of the NS mass, radius, and scalar charge (in
STTs) that are valid for all the ten standard EoS to a satisfying level of accuracy. These
relations have a simple form, consisting only of power laws or polynomials. We find
that these relations can be applied also to the case of the POL2, SQM1, and SQM2 EoS,
but with a (sometimes significantly) reduced accuracy. This is due to a number of rea-
sons: the POL2 EoS is a simple polytrope, which we include only for reference, and it
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lacks all the facets of various particle contents that are described by the other EoS; the
SQM1 and SQM2, instead, describe a different type of star, which is predicted to exist -
in which case it would help to solve a number of problems regarding NS astrophysics
- but one that possesses a radically different structure than a standard NS. In particu-
lar, the density profile throughout quark stars is nearly flat, with a discontinuity at the
surface: this leads, in some cases, to a discontinuity in the toroidal magnetic field at
the star surface, thus rendering these models not accurate in terms of a true equilibria.
Moreover, strange quark stars are able to sustain very large masses with large radii,
leading to a magnetic deformation that is, in general, higher than that of standard NSs.
Finally, we do not consider the contribution of the QCD vacuum energy to the binding
energy of our models.

In the case of STTs, we find other quasi-universal relations linking the mass, radius,
and scalar charge of the NS to the ratio of the scalar-to-tensor GWs strain, S . We find
that S is, within the numerical accuracy of our code, well approximated by a single
expression, SPCA, both in the purely poloidal and purely toroidal cases. This sug-
gests that S may be a quantity which is independent of the magnetic field altogether,
although this point should be better addressed by simulations involving NS models
endowed with mixed fields.

The quasi-universal relations we find depend on potentially observable quantities. In
particular, by knowing the NS mass and radius, it is possible to directly compute its
distortion coefficients as predicted by the relations we found, which are valid in the
case of purely poloidal or purely toroidal magnetic fields. By comparing such values
with those we computed through the definitions Eqs. 6.2,7.3, we can infer information
on the magnetic structure hidden in the NS interior. This is possible because the pure
magnetic configurations we consider are extremal, in the sense that purely poloidal
and purely toroidal magnetic fields act on the quadrupolar deformation of the NS in an
opposite way; as such, a pure configuration exerts the maximum deformation on a NS,
while deviations from this case may imply a different magnetic configuration than the
one we assume. Since only the superficial magnetic field is accessible through direct
observations, we expect the relation regarding cs, Eq. 7.4, to be the most useful in this
sense. However, Eqs. 7.1,7.2 may also show their utility for computing the distortion
coefficients of a NS model by knowing only its mass and radius, without going through
a full numerical simulation. We stress that only specific choices of purely poloidal and
toroidal magnetic configurations have been investigated, and different choices of the
magnetisation functions should be explored to possibly strengthen our conclusions.

The relation involving S , namely, Eq. 7.8, along with the considerations we described
regarding pure magnetic configurations, translates into an upper bound on the scalar
charge of a NS whose mass, radius, and quadrupolar deformation are known. For this
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reason, it may be useful in constraining the theory of gravity.

Figure 7.8: Komar mass Mk against circumferential radius Rc for un-magnetised, static models
of NSs computed with the EoS described in Sect. 7.1 in GR. The EoS are colour-coded, and
ordered in the legend, according to the compactness C = Mk/Rc calculated at Mk = 1.4M� in
GR: red for the highest compactness and blue for the lowest compactness. The black dashed
lines denote cPCA

s = const. isolines. The two values cPCA
s = 4 − 19 containing the magenta

highlighted area are those found in the case of the example in Sect. 7.5.

We note that in order to obtain the quadrupolar deformation of an isolated NS, it is
necessary to detect CGWs emitted by them. While this is within the scope of cur-
rent GW observations [see e.g. Abbott et al. (2021b), where it is suggested that the
particular spin-down and glitch behaviour of pulsar PSR J0537-6910 ought to be at-
tributed to the emission of CGWs], no signature has been found yet. We can use the
quasi-universal relations we found to assess the detectability of known NSs. For ex-
ample, using Eq. 7.4 and the quasi-universal relation for I found by Breu & Rezzolla
(2016), we can set limits on the minimum surface magnetic field strength Bmin

s that
produces a deformation leading to detectable CGWs. Using the distance d = 0.16kpc
and rotation period P = 5.758ms of the closest known millisecond pulsar [J0437-4715,
see Manchester et al. (2005)], which has a mass of 1.44M�, and taking a radius in the
range of 10− 14km (corresponding to cPCA

s = 4− 19 respectively, see Fig. 7.8), we find
Bmin

s = 1.4× 1013 − 4.1× 1013G for a 2 year long observation with the advanced LIGO
detector (aLIGO), Bmin

s = 8.6× 1012− 2.6× 1013G for a 1 month long observation with
the advanced Einstein Telescope (ET) detector, Bmin

s = 4.3× 1012 − 1.3× 1013G for a
two-year long observation with ET.

When considering NSs endowed with a superconducting core, as previously explained,
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the effective magnetic field entering the distortion coefficients increases, which reflects
in a lower Bmin

s : Bmin
s = 1.8× 1011 − 1.6× 1012G for a two-year long observation with

aLIGO, Bmin
s = 7.4 × 1010 − 6.6 × 1011G for a one-month long observation with ET,

Bmin
s = 1.8× 1010 − 1.6× 1011G for a two-year long observation with ET. We note that

these values are found in the best case scenario, namely, when the magnetic and the
rotation axes are orthogonal and the latter points towards the observer. These values,
while they are not unrealistically high, they are, in the best case, about one order of
magnitude larger than the average surface dipole magnetic fields measured in millisec-
ond pulsars (Cruces et al. 2019). However, such measured values may be low because
of a variety of reasons, ranging from screening due to accreted matter (Romani 1990) to
ambipolar diffusion (Cruces et al. 2019). Since the magnetic field producing the distor-
tion in Eq. 7.3 is the one below any accreted material, namely, the un-screened one, the
possibility of the magnetic deformation producing CGWs that would be detectable by
future GW detectors may be more promising. In the case of millisecond magnetars, the
surface magnetic field is expected to be on the order of ∼ 1014−15G (Dall’Osso & Stella
2021), which would significantly enhance the possibility of their detection by CGWs
emissions.

In the work presented in this chapter, we focus only on the quadrupolar deforma-
tion of NSs due to either purely poloidal or purely toroidal magnetic fields. While we
expect that mixed-fields configurations, such as the twisted-torus one, yield deforma-
tions contained between the limiting values we found in the pure cases we studied
(and, thus, distortion coefficients which are smaller than those we found), this point
should be better addressed by numerical simulations containing mixed-fields geome-
tries. We stress that although only very special configurations have been investigated
and, therefore, the results we find can probably only give order-of-magnitude esti-
mates for other magnetic field structures, the dependence on stellar parameters might
be universal, and this aspect could be investigated with other examples. We recall
that the only known formalism to compute equilibria in the full non-linear regime is
through the approach we use, that is, through the use of the generalised Bernoulli
integral, which sets severe constraints on the possible magnetic field geometry. As
an example, poloidal configurations are dominated by the dipole term, but also con-
tain higher order multipoles. It has been found (Mastrano et al. 2013) that higher or-
der multipoles can contribute to the magnetic energy even more than the dipole field,
consequently increasing the deformation and, thus, the detectability of these systems.
Moreover, it is expected that at least some NSs contain also higher-multipole magnetic
fields, due to a mismatch between the surface magnetic field strength obtained by ob-
served X-ray spectra and the inferred dipole field (Güver et al. 2011). It would also be
interesting to understand whether a quasi-universal relation like those we find exists
also for the quadrupole deformation e, without expanding it in terms of the distortion
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coefficients.

Finally, while we opted for the PCA algorithm to search for simple relations between
the physical quantities of interest, it would be interesting to use a different technique,
for instance, autoencoders; with the main difference being that the former looks for
linear relations in the data, while the latter is a generalisation to non-linear maps. This
means that while we must adopt some analytical form of the relation we wish the PCA
to find, more freedom is allowed via the application of autoencoders.



Chapter 8

Detectability of continuous
gravitational waves from
magnetically-deformed neutron stars

The results shown in this chapter have been submitted as the paper Soldateschi &
Bucciantini (2021).

In this chapter we apply our recent results (SBD20; SBD21; SBD21EOS) (see Chaps. 5-
7) regarding a quasi-universal relation linking the NS mass, radius, magnetic defor-
mation and surface magnetic field both to the case of the Galactic pulsar population
as contained in the ATNF catalogue (Manchester et al. 2005) and simulated through
a population synthesis approach. In particular, we assess the detectability of CGWs
through the use of GW detectors, showing that a significant fraction of the MSP pop-
ulation in the Galaxy may be observable even with existing detectors when they reach
their design sensitivity, while canonical pulsars seem to be beyond the reach even of
3rd generation ones.

This chapter is structured as follows. In Sect. 8.1 we introduce the problem of com-
puting the CGWs strain emitted by NSs in the Galaxy and the approach we used to
simulate the Galactic NSs population. In Sect. 8.2 we present our results in relation
to the possibility of detection by GW observatories. Finally, we discuss our results in
Sect. 8.3.

111
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8.1 Gravitational waves by the neutron stars population
in the Galaxy

The CGWs strain h0 emitted by a NS rotating with frequency frot, at distance d from
the detector is

h0 =
16π2G

c4
Q f 2

rot
d

, (8.1)

where G is Newton’s gravitational constant, c the speed of light, andQ is the quadrupole
moment. The quadrupole moment can be written as the product of the relativistic mo-
ment of inertial I times the quadrupolar deformation of the NS, e. We recall that in the
Newtonian limit, when the deformation is caused by a purely poloidal magnetic field,
the shape of the NS is axisymmetric, and e is given by Eq. B.14:

e =
∣∣∣∣ Izz − Ixx

Izz

∣∣∣∣ (8.2)

where Ixx, Izz are the moments of inertia of the NS, computed in the Newtonian limit,
and the z axis is the symmetry axis of the system (see App. B). It was shown that
the Newtonian value of e is a good approximation for the correct GR one (Pili et al.
2015). We have found (SBD21; SBD21EOS) that, for typical magnetic fields of NSs, the
magnetic deformation e of a NS is well approximated by the formula Eq. 7.3

e ≈ csB2
s , (8.3)

where Bs is the surface magnetic field at the pole, in units of 1018G, and cs is called ‘dis-
tortion coefficient’. Moreover, we have found, by computing ∼ 65000 full GR, multi-
dimensional axisymmetric magnetised equilibrium models of NSs with the XNS code
(Bucciantini & Del Zanna 2011; Pili et al. 2014; SBD20), that cs can be approximated
with great accuracy by the quasi-universal relation Eq. 7.4:

cs = 2.97R4.61
10 M−2.80

1.6 , (8.4)

where R10 = Rc/10km, M1.6 = M/1.6M�, and Rc and M are the circularisation radius
and the Komar mass of the NS, respectively (see Gourgoulhon 2010 and Gourgoul-
hon 2012 for their definition). Incidentally, we remark that it is not the energy of the
magnetic field per se that directly gives a gravitational quadrupole, but the oblate/pro-
late distortion that magnetic pressure and tension produce in the matter distribution
inside the NS. This holds for several EoS that satisfy current observational and parti-
cle physics constraints, computed according to various techniques and with different
particle contents. We have found that this approximation holds also for two EoS de-
scribing strange quark stars, although with a smaller accuracy, and for this reason we
do not consider those EoS here. Moreover, it was previously found (Breu & Rezzolla
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2016) that also the GR moment of inertia I is well approximated by a function of just
the mass and radius of the NS, for a large sample of EoS. Then, if the rotation fre-
quency, distance, surface magnetic field, mass and radius of a NS are known, one can
estimate the strain of CGWs that it should emit, independently of the EoS. However,
the radii of NSs are a notoriously difficult quantity to measure, and for this reason we
chose to consider the two EoS which give the most different radii among the ones we
studied [the APR4 (Akmal et al. 1998; Typel et al. 2013) and the NL3ωρ (Horowitz &
Piekarewicz 2001; Fortin et al. 2016)], and use them to calculate the radii of the NSs
from their mass. With this approach, we expect that the results obtained by consider-
ing other EoS should be contained within the limits we find in these two cases.

In the following we present the results obtained from two different approaches: case
study A and case study B. In case A we generate a population of NSs with the following
characteristics. The mass is sampled from a bimodal Gaussian distribution by (Anto-
niadis et al. 2016), whose peaks are located at 1.396M� and 1.84M�. The magnetic
field is sampled from a log-normal distribution (Faucher-Giguère & Kaspi 2006) with a
mean of 1012.65G. While this distribution is consistent with the observations of canoni-
cal pulsars contained in the ATNF catalogue, magnetic fields in MSPs are observed to
have much lower values. A possible explanation for this is that the actual magnetic
field of MSPs, which distorts their shape, is somehow hidden from observations, ei-
ther through an accretion process (Bisnovatyi-Kogan & Komberg 1974; Romani 1990)
or due to ambipolar diffusion (Cruces et al. 2019). In order to avoid possible selection
biases, we chose to generate also the magnetic field of canonical pulsars, even if their
magnetic field have been measured. In fact, NSs in the ATNF catalogue tend to have a
slightly lower magnetic field than predicted by the aforementioned distribution, pos-
sibly due to the fact that pulsars with a stronger magnetic field shut off radio emission
more rapidly and have a lower chance of being detected. The rotation frequency and
the distance are taken from the ATNF catalogue (Manchester et al. 2005). This sample
consists of 2796 NSs, that is the present number of NSs contained in the ATNF cata-
logue minus few records whose period or distance are missing. Their position in the
Galaxy can be seen in Fig. 8.1. Case study B consists of a generated population of 104

NSs, which allows us to sample the strain distribution of pulsars with enough statis-
tical accuracy. The mass is computed through three possible Gaussian bimodal mass
distributions: the same as in case A (Antoniadis et al. 2016); another one peaked at
1.34M� and 1.78M�, with a maximum mass cutoff at 2.9M� (Alsing et al. 2018); a third
one peaked at 1.34M� and 1.47M�(Farrow et al. 2019). The magnetic field, as before, is
sampled from a log-normal distribution (Faucher-Giguère & Kaspi 2006). The rotation
frequency is computed by fitting the frequency distribution of the ATNF pulsars and
then sampling from it; the position is computed by sampling nine different possible
distributions (Narayan 1987; Lorimer et al. 1993, 2006; Kiel & Hurley 2009; Faucher-
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Giguère & Loeb 2010; Lorimer 2012; Grégoire & Knödlseder 2013; Hooper et al. 2013;
Ronchi et al. 2021). Thus, we considered a total of 28 different populations. We note
that both the surface magnetic field strength contained in the ATNF catalogue and the
one sampled from the expected distribution are computed from the spin-down for-
mula in the case of orthogonal spin and magnetic axii, while Bs in Eq. 7.3 is that at the
pole. For this reason, both the magnetic field taken from the catalogue and that sam-
pled from the distribution need to be multiplied by a factor of 2. Moreover, we note
that the strain of the plus and cross polarisations h+,× of CGWs emitted at twice the
rotation frequency of the NS contain a factor sin2 α, where α is the angle between the
spin and magnetic axii (Bonazzola & Gourgoulhon 1996). By using the magnetic field
induced deformation Eq. 7.3 and generating a magnetic field corresponding to that of
the spin-down formula, one can obtain h+,× without needing to specify the inclination
angle α, because the factor sin2 α gets simplified.

8.2 Detectability of continuous gravitational waves

In Fig. 8.2 we can see the predicted strain of CGWs emitted by the NSs contained in
the ATNF catalogue (case study A). Each point denotes a specific NS in the catalogue,
its position on the x−axis being the frequency at which it emits CGWs, that is twice its
rotation frequency. The colour of the points indicates which EoS has been assumed to
calculate the NS radius from its mass, either the APR (red points) or the NL3ωρ (blue
points). The lines are the minimum detectable strain of the advanced LIGO (aLIGO)
detector at design sensitivity1 (green lines), expected to be achieved during the O4
observing run (Buikema et al. 2020), and of the Einstein Telescope (ET) detector in
the D configuration2 (black lines) (Hild et al. 2011). The solid lines are the nominal
sensitivity curves, while the dot-dashed and dashed lines are the minimum detectable
strain in the case of continuous 1 month and 2 years observation time, respectively. For
a search over time T, the minimum detectable strain by a ground-based interferometer
is (Watts et al. 2008)

h0 ≈ 11.4

√
Sn

T
, (8.5)

where Sn is the power spectral density of the detector noise (thus
√

Sn is the nominal
sensitivity curve for the detectors plotted in Fig 8.2.). As can be seen from Fig. 8.2, there
are two main NSs populations contained in the ATNF catalogue, that is MSPs, emitting
CGWs at a frequency f & 50Hz, and canonical pulsars. We see that CGWs emitted by
MSPs have a much larger strain, making them potentially observable by both aLIGO

1The aLIGO design densitivity curves can be found at https://dcc.ligo.org/LIGO-T1800044/

public.
2The ET sensitivity curves can be found at http://www.et-gw.eu/index.php/etsensitivities.

https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
http://www.et-gw.eu/index.php/etsensitivities
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Figure 8.1: Face-on (top plot, in galactocentric coordinates) and edge-on (bottom plot, in ICRS
coordinates) rendition of the Galaxy along with the position of the NSs contained in the ATNF
catalogue (case study A). The color scale in the top plot was capped at ±2 kpc for ease of
visualisation. These plots were made using the mw-plot Python package: https://pypi.org/
project/mw-plot/.

https://pypi.org/project/mw-plot/
https://pypi.org/project/mw-plot/
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and ET with 1 month to 2 years observing time. Moreover, the only assumption re-
garding the EoS, that is used to compute the radii of the considered NSs, has the effect
of increasing the strain by a factor of 2 to 9 when using the NL3ωρ EoS instead of the
APR EoS. On the other hand, canonical pulsars seem to be mostly invisible to even 3rd
generation detectors.

Figure 8.2: Strain of CGWs emitted by the pulsars contained in the ATNF catalogue. Each point
is a specific NS in the catalogue, and its position on the x−axis denotes the frequency of the
emission of CGWs. The colour of the points indicates which EoS has been assumed to calculate
the NS radius from its mass, either the APR (red points) or the NL3ωρ (blue points) EoS. The
solid lines are the sensitivity curves of the aLIGO (green line) and ET detectors (black line). The
dot-dashed and dashed lines are the minimum detectable strain by aLIGO (green lines) and ET
(black lines) in the case of a continuous 1 month (dot-dashed lines) and 2 years (dashed lines)
observation time.

Since sampling from the expected distributions of mass and magnetic field has the
effect of randomly changing the strain when generating different populations, we gen-
erated another population consisting of case A randomly repeated 10 times: for each
NS in the catalogue, with its fixed rotation frequency and distance, we extracted 10
random samples from the mass and magnetic field distributions, effectively generat-
ing a population of 55920 NSs (27960 NSs for each of the two EoS). Then, we used a
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Gaussian kernel density estimation (KDE) procedure to estimate the probability den-
sity function of this population. The results are plotted in Fig. 8.3. The red contour plot
is the probability density function associated to the generated NS population, while
the two distribution on the top and right axii are the marginal distributions. The green
and black lines are the sensitivity curves of the aLIGO and ET detectors, as in Fig. 8.2.
The green and black points denote the minima of these curves, and the green and black
lines on the axis on the right refer to the values of these minima. The fraction of the NS
population that is above those lines is potentially observable with the given instrument
and observing time. In particular, using the aLIGO detector with a 1 month (2 years)
observation time, ∼ 3% (∼ 9%) of the MSP population could be detected; instead, by
using the ET telescope with a 1 month (2 years) observation time, ∼ 16% (∼ 32%) of
the MSP population could be detected. In any case, canonical pulsars seem to be out
of both detectors’ range. We note that these results are to be considered as the most
optimistic case, as they are derived under the assumption of a purely poloidal field: if
a toroidal component is present, the NSs magnetic deformation is smaller with respect
to the case of a pure geometry, resulting in a lower detection rate. Since the pulsars
we studied in case A have a corresponding name and entry in the ATNF catalogue,
we estimated the probability of detection of the 5 most promising ones. In order to do
so, we chose the 5 NSs, described by the NL3ωρ EoS, with the largest median strain
computed by considering 100 realisations of each. Then, we computed a KDE and es-
timated the probability of detection by aLIGO with a 1 month and 2 years observation
time. The results are reported in Tab. 8.1.

In order to compute the strain of a more numerous samples of NSs, we consider the
case study B, where we generate a population of 104 NSs. This sample size allows us
to sample the strain distribution of pulsars with a sufficient statistical accuracy. We
found that all the combinations of mass and position distributions give similar results
regarding the strain distribution. For this reason, in the following we show only the
combinations of one mass distribution [the same as in case A (Antoniadis et al. 2016)]
and two position distributions (Lorimer et al. 2006; Kiel & Hurley 2009), denoted in the
following as case B1 and case B2, respectively. In the first case the radial distribution of
NSs on the Galactic plane is given by a gamma distribution peaked at ∼ 5.0 kpc from
the Galactic centre [model C in the paper (Lorimer et al. 2006)], while the distribution
of their height with respect to the Galactic plane is given by an exponential distribu-
tion with a scale height of 330 pc (model S in the paper). In the second case, the radial
distribution is that of NSs at birth (Yusifov & Küçük 2004), shaped as a gamma distri-
bution peaked at ∼ 6.2 kpc from the Galactic centre, while the height at birth is given
by a uniform distribution between 150 pc and −150 pc [model C’ in the paper (Kiel
& Hurley 2009)]. We note that we considered two very different NSs populations - an
evolved population (case B1) and a population at birth (case B2) - because our results
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Figure 8.3: Plot of the probability density function (red contour plot) associated with model A
randomly repeated 10 times (see text for more details). The two distribution on the top and
right axii are the marginal distributions. The solid lines are the sensitivity curves of the aLIGO
(green line) and ET detectors (black line). The dot-dashed and dashed lines are the minimum
detectable strain by aLIGO (green lines) and ET (black lines) in the case of a continuous 1
month (dot-dashed lines) and 2 years (dashed lines) observation time. The green and black
points denote the minima of these curves, and the green and black lines on the axis on the right
refer to the values of these minima. The fraction of the NS population that is above those lines
is potentially observable with the given instrument and observing time.

show that their position in the Galaxy does not seem to significantly influence their
visibility by CGWs. Moreover, we note that the biggest difference between cases B1
and B2 lies in the distribution of heights above the Galactic plane, which has a scale
length that is much lower than that of the radial distribution. For this reason, it is ex-
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pected that these two cases give similar results. The position of the pulsar population

Table 8.1: Top 5 pulsars in the ATNF catalogue with the highest probability of detection ac-
cording to our study. The pulsar’s name, distance and period are reported, as recorded in the
ATNF catalogue. The median strain column reports the median value of the strain h0 for each
pulsar, estimated by generating 100 samples of each. The last column contains the probability
of detection of each NS by aLIGO with a 1 month (2 years) observation time.

Name Distance [kpc] Period [s] Median strain [1/
√

Hz] Detection probability

J0605+3757 0.215 0.002728 3.21×10−29 18% (36%)
J0636+5129 0.210 0.002869 3.57×10−29 15% (33%)
J0034-0534 1.348 0.001877 1.57×10−29 14% (30%)
J1400-1431 0.278 0.003084 1.91×10−29 13% (30%)
J1653-0158 0.840 0.001968 3.58×10−29 12% (28%)

generated according to case B1 and case B2 are shown in Fig. 8.4 on the left and right,
respectively. In fig. 8.5 we plot the resulting strain distributions for case study B1 and
B2 (top and bottom plots, respectively). We clearly see that the differences in the result-
ing strain distribution are minimal, even though the positions of the two populations
have a susbstantially different shape (see Fig. 8.4). In order to estimate the probability
density distribution through KDE we increased the number of samples to generate to
105 for each EoS, resulting in a total population of 2× 105 NSs. Given that cases B1 and
B2 give practically equivalent results regarding h0, we only plot the density obtained
from case B1 in Fig. 8.6. We see that, using the aLIGO detector with a 1 month (2 years)
observation time, ∼ 1% (∼ 5%) of the MSP population could be detected; instead, by
using the ET telescope with a 1 month (2 years) observation time, ∼ 10% (∼ 23%) of
the MSP population could be detected. As we found for case A, canonical pulsars seem
to be out of both detectors’ range.

In the case of a NS endowed with a superconducting core, the extent to which the
magnetic field can deform the NS is much more enhanced (Cutler 2002; Frieben &
Rezzolla 2012). In this case, we expect NS models to develop a distortion coefficient
that is roughly Bc1/〈B〉 times higher than without a superconducting core, where Bc1 ≈
1015G is the first critical magnetic field strength and 〈B〉 is the volume average of the
magnitude of the magnetic field B (SBD21EOS). As we show in Fig. 8.7, the fraction of
observable CGWs emitted by MSPs is greatly increased in this case: ∼ 18% (∼ 48%)
using the aLIGO detector with a 1 month (2 years) observation time and ∼ 69% (∼
90%) using the ET telescope with a 1 month (2 years) observation time. While the
strain of CGWs emitted by canonical pulsars is certainly enhanced by the presence of a
superconducting core, next generation telescopes like ET still fall short of the required
sensitivity of at least one order of magnitude.
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Figure 8.4: Face-on (top plot, in galactocentric coordinates) and edge-on (bottom plot, in ICRS
coordinates) rendition of the Galaxy along with the position of the NSs population gener-
ated according to the position distributions of case study B1 (left plots) and case study B2
(right plots). These plots were made using the mw-plot Python package: https://pypi.org/
project/mw-plot/.

8.3 Discussion

We have shown that the quasi-universal relation Eq. 7.4 linking the magnetic defor-
mation of a NS to its mass, radius and surface magnetic field can be used to compute
the strain of the CGWs they emit in a way that is independent of their EoS. This can
be done once the NS mass, radius, surface magnetic field, rotation period and distance
are known. Measuring directly the radius is notoriously difficult; however, once an
EoS is assumed, there is a one to one relation with the mass, a much easier quantity to
estimate, even from a statistical point of view. For this reason, we have chosen the

https://pypi.org/project/mw-plot/
https://pypi.org/project/mw-plot/
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Figure 8.5: Strain of CGWs emitted by the pulsars generated according to the models of case
study B1 (top plot) and case study B2 (bottom plot). Each point is a specific NS, and its posi-
tion on the x−axis denotes the frequency of the emission of CGWs. The colour of the points
indicates which EoS has been assumed to calculate the NS radius from its mass, either the APR
(red points) or the NL3ωρ (blue points) EoS. The solid lines are the sensitivity curves of the
aLIGO (green line) and ET detectors (black line). The dot-dashed and dashed lines are the min-
imum detectable strain by aLIGO (green lines) and ET (black lines) in the case of a continuous
1 month (dot-dashed lines) and 2 years (dashed lines) observation time.
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two EoS that give the most different radii, for the same NS mass, among the ones we
used to infer the quasi-universal relation for cs: this way, we expect that our results
regarding the detectability of the Galactic NS population should encompass a much
larger selection of possible NS EoS. As we discussed, the strain computed by adopting
these two EoS can differ by up to an order of magnitude, and this can be taken as an
estimate of the uncertainty due to our ignorance of the NS internal composition. Re-
garding the other quantities, we adopted two different approaches. In case A we used
the values for the rotation period and distance of the known pulsars in the Galaxy con-
tained in the ATNF catalogue, and we extracted their mass and surface magnetic field
from the expected distributions. In the other case B, we synthesised the whole Galactic
NS population by extracting all the necessary quantities from the expected distribu-
tions, allowing us to compute the strain of potentially undetected sources. In the last
case, we chose a variety of distributions for the mass and distance of the expected NS
population in the Galaxy, finding very similar results in all cases. Then, for each EoS
we randomly generated a large population, and estimated the probability density dis-
tribution of h0 using a KDE approach. This allows us to estimate the fraction of NSs in
the Galaxy whose CGWs are within the range of ground-based future GW detectors.
In particular, we considered the cases of the aLIGO and the ET detectors, both in the
case of a continuous 1 month and 2 years observation time. In case A (see Fig. 8.3) we
found that up to ∼ 9% and ∼ 32% of the total MSPs population lies within the reach
of aLIGO and ET, respectively, considering a 2 years observing time. This amounts to
a number of ∼ 270 and ∼ 960 detectable pulsars if one considers the expected number
∼ 3× 103 of MSPs within 5 kpc of the Sun (Lorimer 2008). We note that those are the
NSs such that the radio beaming intercepts our line of sight, and as such there exist a
fraction of the total pulsar population which the ATNF catalogue does not account for
but which may be observable through their CGWs emission. Lower fractions are ob-
tained in case B1 (see Fig. 8.6): up to∼ 5% and∼ 23% of the total MSP population with
aLIGO and ET, respectively, corresponding to ∼ 2000 and ∼ 9200 NSs considering the
∼ 4× 104 MSPs expected to be present in the Galaxy (Lorimer 2008). We believe that
this is due to a selection bias: as we see in Fig. 8.1 - top plot - the NS population that
is observed is, as expected, roughly centred on the position of the Solar System, which
lies at Galactocentric coordinates (x, y, z) = (8.122, 0, 0.021) kpc, and many more pul-
sars close to the Sun have been observed than those further away. On the other hand,
as we see in Fig. 8.4, the expected distributions of the NSs positions are computed
for all NSs in the Galaxy, thus lowering the fraction of detectable NSs. Finally, we ex-
plored the case of NSs endowed with a superconducting core. In this case, the effective
magnetic field that deforms the star is much stronger than without the effect of super-
conductivity, resulting in a greater emission of CGWs by the same NSs. In fact, in this
case the fraction of detectable MSPs can reach values up to ∼ 48% and even ∼ 90% in
the case of aLIGO and ET, respectively, for an observation of 2 years, corresponding to
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∼ 19200 and ∼ 36000 NSs. Even with just one month of observing time, ∼ 18% and
∼ 69% of the MSPs in the Galaxy lie within the reach of aLIGO and ET, amounting

Figure 8.6: Plot of the probability density function (red contour plot) associated with a NS
population of 105 samples made according to case B1 (see text for more details). The two
distribution on the top and right axii are the marginal distributions. The solid lines are the
sensitivity curves of the aLIGO (green line) and ET detectors (black line). The dot-dashed and
dashed lines are the minimum detectable strain by aLIGO (green lines) and ET (black lines) in
the case of a continuous 1 month (dot-dashed lines) and 2 years (dashed lines) observation time.
The green and black points denote the minima of these curves, and the green and black lines on
the axis on the right refer to the values of these minima. The fraction of the NS population that
is above those lines is potentially observable with the given instrument and observing time.

to ∼ 7200 and ∼ 27600 NSs respectively. In all cases we considered, CGWs emitted
by canonical pulsars seem to be far too weak even for 3rd generation ground-based
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GW detectors, due to their slow rotation period. On the one hand, given that such a

Figure 8.7: Plot of the probability density function (red contour plot) associated with a NS pop-
ulation of 105 samples made according to case B1 endowed with a superconducting core (see
text for more details). The two distribution on the top and right axii are the marginal distri-
butions. The solid lines are the sensitivity curves of the aLIGO (green line) and ET detectors
(black line). The dot-dashed and dashed lines are the minimum detectable strain by aLIGO
(green lines) and ET (black lines) in the case of a continuous 1 month (dot-dashed lines) and 2
years (dashed lines) observation time. The green and black points denote the minima of these
curves, and the green and black lines on the axis on the right refer to the values of these min-
ima. The fraction of the NS population that is above those lines is potentially observable with
the given instrument and observing time.

large fraction of MSPs could be detectable by aLIGO and ET in the case of supercon-
ductivity, the absence of any CGWs detection could itself be an indication of the lack
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of a superconducting core, effectively constraining the possibility of its existence. On
the other hand, we note that all our results assume that the magnetic field inside NSs
has a purely poloidal geometry. While this is clearly a simplifying assumption, it al-
lows one to possibily infer information on the geometry of the internal magnetic field
of MSPs: the presence of a toroidal component counteracts the effect of the poloidal
component, effectively reducing the deformation with respect to NSs endowed with
a purely poloidal field and potentially rendering invisible MSPs which, given their
characteristics, should be detectable by GW detectors according to our study. Finally,
we note that we focused on the strain h0 as a way to measure the detectability of NSs
independently from their orientation with respect to the detectors and the inclination
between the magnetic and the rotation axii. Of course, the magnetic deformation of a
NS does not lead to the emission of CGWs if the magnetic axis is aligned with the ro-
tation axis. Moerover, GW detectors have a particular antenna pattern which renders
them more or less sensitive to waves coming from certain angular positions in the sky.
While we believe our findings can give a comprehensive overview of what to expect in
terms of CGWs emission by pulsars in the Galaxy, a more in depth extension would be
to consider also the expected distribution of the relative inclination between the two
axii and to consider the time-varying angular position of the NSs systems with respect
to the ground-based detectors on Earth.
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Chapter 9

Iron line from neutron stars accretion
disks in scalar-tensor theories

The results shown in this chapter were published in the paper Bucciantini & Sol-
dateschi (2020).

In this chapter we investigate how the shape of the Fe Kα fluorescent line at 6.4 keV,
which is a powerful probe of the spacetime metric in the vicinity of accreting compact
objects, is modified in STTs with respect to GR. By taking into account both deviations
from the GR orbital dynamics of the accreting disk, where the Fe line originates, and
the changes in the light propagation around the NS, we compute line shapes for vari-
ous inclinations of the disk with respect to the observer. We find that both the intensity
of the low energy tails and the position of the high energy edge of the line change.
Moreover we verify that even if those changes are in general of the order of a few
percents, they are potentially observable with the next generation of X-ray satellites.

This chapter is structured as follows. In Sect. 9.1 we introduce the importance of the
Fe Kα fluorescent line. In Sect. 9.2 we describe the problem of ray-tracing in vacuum in
STTs. In Sect. 9.3 we present our results regarding the modification in the Fe line shape
caused by the presence of a scalar field. Finally, we discuss our results in Sect. 9.4.

9.1 The iron line in low-mass X-ray binary systems

As we describe in Chaps. 1,2, the presence of a scalar field leads to new wave modes
in binary NSs systems, beyond the standard quadrupole gravitational wave emission.
However, the present limits on STTs based on the study of the orbital decay of binary
pulsars (Shao et al. 2017; Anderson et al. 2019) can be easily accommodated introduc-
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ing screening potentials or assuming massive scalar fields (Yazadjiev et al. 2016). On
the other hand it is not clear how, and how much a scalar field modifies the final phases
of binary NS inspiral before merger to a degree observable with current instruments,
and with specific signatures that cannot be attributed to other causes (e.g. the EoS).
Even the measure of the mass radius relation might not prove to be enough, if limited
to few objects, given its degeneracy with the EoS. What we lack at present is a way
to probe deviations from GR in the close vicinity of NSs. One of the most powerful
probes of the space time geometry close to compact objects is light propagation. Light
bending has been widely used in binary pulsar systems (Demorest et al. 2010; Anto-
niadis et al. 2013), and more recently in the case of the BH at the center of M87 (Event
Horizon Telescope Collaboration et al. 2019). In accreting systems, one can also use
emission from the accretion disk, and in particular the shape of the Fe Kα fluorescent
line at 6.4 keV (Miller 2007; Dauser et al. 2016). This line has been extensively used in
acceting BHs to measure their spin (Risaliti et al. 2013; Parker et al. 2018; Kammoun
et al. 2018). Recently its has also been investigated in alternative gravitational theories
that predict deviation also for the BH metric (Yang et al. 2018; Nampalliwar et al. 2018).
Despite the fact that this technique has been used just for BHs, we know of many ac-
creting NSs systems where we observe the presence of this line (Laor 1991; Matt et al.
1992; Degenaar et al. 2015; Coughenour et al. 2018; Homan et al. 2018). In principle Fe
Kα could be used to constrain the metric properties outside the NS itself. It has been
suggested that the Fe line in accreting NSs could be used to set limit on the NS radius,
by modeling the effect on the shape of the line due to the disk occultation by the sur-
face of the NS itself (Cackett et al. 2008; La Placa et al. 2020). However in general these
effects are found to be small, of the order of few percents, and thus not measurable
with current instruments. They might in principle be within reach of next generation
X-ray satellites (Barret et al. 2016). In the line of Sotani (2017), who investigates light
propagation from hot spots on the surface of a scalarized NS, here we investigate how
the Fe line emission from an accreting disk around a NS is modified by the presence of
a scalar field with respect to GR, including the effect of the possible occultation/trun-
cation of the disk by the NS itself. In order to simplify the discussion, this study is
mostly structured as a proof-of principle, and not as a full fledged investigation of the
possible parameter space. For these reasons, neither we compute realistic NS mod-
els based on physical EoS, nor we include rotation, and for the same reason we opted
for the simplest STT, trying to parametrise the vacuum solution outside, in order to
provide a flexible estimate of the expected changes.
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9.2 Metric and ray-tracing in the vacuum of scalar-tensor
theories

If one assumes steady state, ∂t = 0, and spherical symmetry (a reasonable approxima-
tion for NSs not rotating close to the break-up frequency), then it is possible to show
that the line element in the E-frame can be written in spherical coordinates [r, θ, φ] as
(Just 1959; Doneva et al. 2014):

ds2 = − f (r)adt2 + f (r)−adr2 + r2 f (r)1−a[dθ2 + sin2 θdφ2] (9.1)

where the function f (r) and the exponent a depend on the E-frame Komar mass M =

Mk and scalar charge Qs of the NS according to:

f (r) =
(

1− 2
√

M2 + Q2
s /r
)

, a = M/
√

M2 + Q2
s , (9.2)

while the scalar field is:

χ =
Qs

2
√

M2 + Q2
s

ln
(

1− 2
√

M2 + Q2
s /r
)

. (9.3)

However, in the E-frame, contrary to the J-frame, the WEP does not hold. In order to
compute ray-tracing using the standard geodesic equations, one needs to move back
to the J-frame and, to do so, to know the relation between the E-frame scalar field, χ,
and the J-frame one, ϕ. One of the simplest possible choices is to take ϕ = A−2(χ) =

Exp[−2α0χ− β0χ2]. The parameter α0 sets how strong deviations from GR are in the
weak field regime, and Solar system experiments constrain it to be less than ≈ 10−4.
On the other hand, β0 sets how strong scalarization effects can be in compact objects,
and if smaller than ' −4, it gives rise to strongly scalarized systems (Will 2014). The
J-frame metric is then fully parametrised by the quantities M, Qs, α0, and β0.

If one makes the further assumption α0 = 0, it is then possible to derive an analytical
expression for the Keplerian frequency of matter orbiting the NS, using the effective
potential approach (Abramowicz & Kluźniak 2005; Doneva et al. 2014):

Ωk =
−
(
1− 2M

ar
)2a

[2M2

a + β0Q2
s ln

(
1− 2M

ar
)
]

r2
(
1− 2M

ar
)
[2M2

a + 2M2

a2 − 2Mr
a − β0Q2

s ln
(
1− 2M

ar
)
]
, (9.4)

which allows one to compute the radius of the innermost stable circular orbit (ISCO).
Once the metric and the four-velocity of matter orbiting in the disk are known it is
possible to reconstruct the shape of the Fe line, as in Psaltis & Johannsen (2012). Given
an observer that sees the NS-disk system at an inclination ψ (the angle between the
observer direction and the perpendicular to the disk plane) light rays are traced from
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an image plane at the location of the observer, until they reach the disk (or until the
intercept the surface of the NS in those cases, and for those inclinations, for which the
NS can occult/truncate the disk). Then one can reconstruct the shape of the line, by
integrating over the image plane (with coordinates [η, ζ]), the intensity due to the emis-
sion of the disk. Ray-tracing maps each point [η, ζ] of the image plane to a point on the
equatorial plane where the disk is located. For each point we can compute a transfer
function that maps the frequency of the emitted photon ν0 to that of the observed pho-
ton ν according to ν/ν0 = (kνuν

obs)/(kνuν
disk) = F, where kν is the photon wave four-

vector (either at the position of the observer or of the emitter in the disk) whose value is
provided by the geodesic equations of the ray-tracing, while uν

obs and uν
disk are respec-

tively the four velocity of the observer (taken at rest) and of the matter in the disk. The
intensity Iobs at the observer position can be computed, once the intensity of the radia-
tion emitted in the disk Idisk is known, recalling that Iobs/(kνuν

obs)
3 = Idisk/(kνuν

disk)
3.

Then, the spectrum can be derived integrating the intensity over the plane [η, ζ] at the
observer location:

I(ν) =
∫

Iobs(η, ζ)δ(ν− ν0)F(η, ζ)dηdζ (9.5)

In general one assumes that there is no emission coming from regions inside the ISCO,
while in the disk the emissivity scales as a power-law of the circumferential radius,
rγ

c = rγ g̃γ/2
φφ , where the equality comes from the definition of the circumferential radius

itself. A typical value is γ = −3, and we use it in the following. The dependence on
the radius is then steep enough that one can truncate the disk emission around a few
ISCO radii without affecting the shape of the line.

9.3 Modifications to the iron-line profile

Given that we do not want to select a specific EoS, or scalar field coupling, to keep
the discussion as general as possible we treat the NS E-frame Komar mass M (which
is the same as in the J-frame, since α0 = 0), its J-frame circumferential radius Rc and
the total scalar charge Qs as independent quantities. This is not true, given that those
three quantities are strongly related. This relation, however, is non trivial. Moreover,
leaving these three quantities free, the result can be easily applied to any scalarised NS
model. We chose α0 = 0 and β0 = −6. Lowering β0 to values around the limit for
spontaneous scalarization does not substantially modify the results.

Before investigating how STTs, and scalarized NSs, change the shape of the Fe line,
we begin by discussing under what conditions one can have a NS that causes occulta-
tion of the ISCO. In Fig. 9.1 we show the minimal coordinate radius, and the minimal
circumferential radius (the only invariant quantity that can be physically measured),
such that the NS occults the ISCO, for various inclination angles, together with the ra-
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Figure 9.1: Minimal coordinate radius (left panel) and circumferential radius (right panel) for
ISCO occultation by a NS as a function of the ratio of total scalar charge over the mass (Qs/M =

0 is GR), for various inclination of the observer with respect to the normal of the disk plane.
The thick blue line is the ISCO radius as a function of the scalar charge.

dius of the ISCO itself. It is evident that occultation/truncation can take place only if
the inclination angle of the observer is ψ > 30◦. Interestingly this threshold does not
depend on the presence of a scalar field. In GR, for systems seen edge on, when the in-
clination angle of the observer is ψ = 90◦, occultation/truncation of the ISCO requires
the NS coordinate radius to be > 5M. In STTs this threshold increases by about 10%
for a scalar charge Qs = 0.8M. This difference between GR and STTs holds also for
different viewing angles. Instead, in terms of the circumferential radius, we see that
the threshold radius for occultation of scalarized NSs is smaller for large inclinations,
and marginally larger approaching a viewing angle of ψ ∼ 30◦. Given that one of the
most relevant effect of a scalar field on the structure of NSs, is that scalarized NSs have
larger circumferential radii than their GR counterparts of the same gravitations mass,
occultation might be a more common phenomenon in scalarized systems than in GR.
In particular, given that there is a mass threshold for spontaneous scalarization, one
would expect occultation to be substantially more frequent above this mass.

In Fig. 9.2 we show the shape of the iron line for a viewing angle of ψ = 30◦ in the
absence of occultation, for various values of Qs/M. It is intersting to note that the
location of the edge at ' 6.74 keV does not depend on the presence of a scalar charge.
On the other hand the effects of the scalar charge are more evident in the shape of the
line. In particular, the intensity in the range [5.9− 6.6]keV is smaller than in GR, from
∼ 2% for Qs = 0.3M, to ∼ 7% at Qs = 0.8M. For Qs > 0.5M differences with respect
to GR emerge also in the low energy tail. In particular we observe the formation of a
‘second horn’ at ' 5.6keV, and a tail which is about 2% brighter, and extends down to
3.2keV, with respect to the low energy limit of 3.7keV in GR.
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Figure 9.2: Upper panel: shape of the Fe Kα line, normalised to the maximum, for a viewing
angle of 30◦, and different values of the ratio of total scalar charge over the mass. The thick
dotted blue line is the GR case. Lower panel: percentage deviation of the line shape as a
function of the scalar charge with respect to GR.

In Fig. 9.3 we show the shape of the iron line for various viewing angles, and for se-
lected values of the scalar charge. It is evident that the way a scalar field modifies the
line shape depends strongly on the viewing geometry. At ψ = 20◦, the largest devi-
ations are found in the intensity and shape of the low energy tail, and only partially
in the shape of the [6.0− 6.5] keV part. At ψ = 45◦ instead the deviations are much
smaller, while at ψ = 70◦ they emerge again but now in the position of the high energy
edge, which moves from ' 8.2 keV to ' 8.7 keV, while the rest of the line shape is
unaffected. The reason for this change with viewing angle is due to the fact that, for
small viewing angles the shape of the line is mostly affected by gravitational redshift,
and light bending, whose effects are more prominent in the low energy tails. This is
where deviations from GR have the largest impact. On the other hand, when the incli-
nation rises, and the disk is progressively seen more edge on, special relativistic effects
due to orbital motion, and the related Doppler boosting, become dominant. The shape
of the line now is more a tracer of the location and dynamics of the ISCO, which im-
pacts mostly the high energy part of the line and the location of the edge. In general
deviations in the intensity in the body of the line are small, at most few percents.

In terms of occultation, for an observer inclination of ψ = 70◦, the effect are small
(less than few percents) and mostly concentrated in the low energy part of the line.
However, when the NSs radius become larger than the ISCO (or in case the disk is
truncated at radii larger than the ISCO radius), the high energy edge of the line begins
to move to lower energy. For Qs = 0.8M and Rc = 7M (greater than the ISCO radius
for any Qs/M) the leading edge is located at ' 8.4keV. For an observer inclination of
ψ = 30◦, when occultation does not take place, the effect of a NS that truncates the
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Figure 9.3: Shape of the Fe Kα line, normalised to the maximum, for various viewing angles
(20◦ left, 45◦ center, 70◦ right), and different values of the ratio of total scalar charge over the
mass. The thick dotted blue line is the GR case.

Figure 9.4: Shape of the Fe Kα line for 30◦ viewing angle, and various values of the scalar charge
and NS radius normalised to the maximum (thick dotted blue line is unocculted GR). Lower
panel percentage deviation of the line shape as a function of the ratio of total scalar charge over
the mass, with respect to unocculted GR.

disk at radii larger than the ISCO, is mostly concentrated in the intermediate part of
the line. Again the differences between the GR case, and STT are only few percents, as
shown in Fig. 9.4.

9.4 Discussion

In the work presented in this chapter we have investigated how the spacetime de-
viations produced by a non-minimally coupled scalar field, as hypothesised in some
alternative theory of gravity, could be probed using the shape of the Fe Kα line in ac-
creting NS systems. Given that STTs satisfy the WEP, standard ray tracing techniques
of GR can easily be applied. The presence of a scalar field affects the shape of the
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line in two ways: on one hand, it changes the spacetime, affecting the gravitational
redshift and light bending; on the other, it modifies the Keplerian dynamics of matter
orbiting in the disk, and the location of the ISCO, which leads to further deviations in
the line shape associated to special relativistic Doppler boosting. We found that such
deviations however are at most a few percents, and only for large total scalar charges
Qs > 0.5M. However, given that the typical luminosity of low mass X-ray binaries
(LMXBs), where the Fe line has been detected, is usually a sizeable fraction 0.05− 0.11
of the Eddington luminosity, and that the intensity of the Fe line is typically 5-10% of
the continuum, with the next generation of large collecting area X-ray satellites like
ATHENA (whose expected effective area at 6 keV is ' 2500 cm2, Barcons et al. 2017)
we predict that deviations in the intensity of the line of the order of few percents could
be detected with typical exposure times ranging from 105s in the brightest sources like
Sco X-1 e Ser X-1 to a few 105s for weaker ones like 4U1608-52. More interesting is
the fact that for large viewing angles, the high-energy edge can move enough to be
revealed even with a low spectral resolution. This, in our opinion, could be the easiest
deviation to measure.

There are of course several other issues, that can play a role in the correct modelling of
the line shape (Miller 2007; Dauser et al. 2016). It is well known that the choice of the
illuminator for example can affect it. The correct modelling of the background plays
also a crucial role, as well as the presence of other lines that can blend (Iaria et al. 2009).
Not to talk about the assumption of a disk truncated at the ISCO. It is also possible that
scalarized NSs, having in general larger radii than in GR (Damour & Esposito-Farèse
1993), could lead to stronger occultation effects. However, even if this could provide
an alternative way to measure the radius of the NS, it is not clear how degenerate the
information it provides is with respect to the EoS.

We stress again that the work presented in this chapter was organised as a proof of
principle, and we opted for the simplest possible approach to test the viability of this
effect. Given however the potential of this kind of measure as a possible indepen-
dent test of GR and its alternatives, we deem that a more accurate evaluations of the
expected results, considering specific STTs, or more realistic EoS, to account for the
mutual relation between mass, scalar charge and NS radius, and specifically targeted
to known systems, is worth a further analisys.
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Conclusions

The extreme conditions that set the environment of NSs make them incredibly interest-
ing objects to study. In order to be able to extract meaningful inferences from observa-
tions, NSs models must be as accurate as possible. Due to the strong gravitational field
generated by their extreme density conditions, this means that they should be studied
according the laws of GR. Moreover, the strength of their magnetic fields is so large
that it induces potentially observable modifications to their structure, for example by
causing the appearance of different particles or by deforming their shape, leading to
the emission of CGWs, and for this reason also magnetic fields should be included in
their modelling. Finally, the complex structure of NSs cannot be accurately probed
without the use of physically motivated EoS, which attempt to capture all the nuances
of their composition. While the study of NSs magnetic fields and EoS is an interest-
ing subject per se, an even more challenging scenario arises when one begins to doubt
the validity of the laws of GR themselves. In fact, both theoretical and observational
arguments suggest that GR may not be the definitive theory that explains the laws of
gravitation, and for this reason many ATG have been proposed to make up for these
shortcomings, STTs being arguably the most studied. In particular, theories predicting
the existence of non-linear strong field effects, like spontaneous scalarisation, are espe-
cially interesting because they can cause the appearance of observable modifications
to the phenomenology of NSs, while satisfying severe observational constraints. Har-
bouring such a unique and complex environment, NSs possess a rich phenomenology
which is determined by several factors, among which are their magnetic field, their
EoS and the laws of gravitation. For this reason, these aspects are entangled and de-
generate in complex ways, and in order to infer even more meaningful information on
their structure - and on the validity of GR - an effort to separate their effects is needed.

The purpose of this Ph.D. project goes in this direction. In particular, we studied for the
first time magnetised models of NSs in STTs, both with simple and realistic EoS, in the
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full non-linear regime. In order to do so, we updated the well tested XNS code in order
to study axisymmetric, magnetised NSs in a particular class of massless STTs, allow-
ing also the use of realistic, tabulated EoS. We considered the case of purely toroidal
and purely poloidal magnetic fields, which set the extreme boundaries of a real NS,
which is expected to possess a mixed field magnetic structure. We have shown how
to develop a strategy, within the framework of the 3+1 formalism, to extend standard
techniques developed for GRMHD to the case of STTs, by making simultaneous use
of the E-frame (where the metric equation have the same mathematical structure as in
GR, and the same numerical schemes can be applied) and the J-frame (where the MHD
equations retain their conservative, quasi-hyperbolic form, and thus are amenable to
be treated with standard finite volume or finite difference conservative schemes for
fluid dynamics).

Our formalism is based on the XCFC approximation, which has proved to be very ac-
curate in GR - even for strongly deformed NSs - and in the fully dynamical regime,
also for systems undergoing collapse to black hole, as long as one is not interested in
the GW emission. The XCFC approach has several advantages in GR: the source terms
of the metric equations are the same conserved variables evolved by the conserva-
tive algorithm for the fluid dynamics; the equations are decoupled and can be solved
sequentially; local uniqueness is satisfied. We have verified that in STTs, the XCFC ap-
proach retains these properties. Even if, in principle, because of the sign of the scalar
field term in the equation for αψ, local uniqueness could be violated, we have checked
that, practically, this is never the case, even for the most scalarised of our configura-
tions. We have shown that spontaneous scalarisation leads to multiple solutions for
NSs, either weakly or strongly scalarised, and we have shown and characterised how
the symmetry of the strongly scalarised branch is broken if one chooses a value α0 6= 0.
In particular, we verified that our numerical algorithm always selects the S−s branch
(see Chap. 5). We also showed that the S−s solutions are not always the ones with the
largest deviation from GR in the mass-density diagram, but are always the ones with
the largest scalar charge and smallest compactness.

For simplicity and ease of discussion, we have focused on the case of static config-
urations, illustrating how the equations that describe the density and magnetic field
distribution change in the presence of a scalar field, and how the effects of a scalar
field can be fully encapsulated in the conformal scaling factor A. While we focused on
a particular, well-known form ofA, which allows the existence of spontaneous scalari-
sation, our approach is more general, and XNS is able to solve for the coupled Einstein-
Maxwell-scalar system of equations in massless STTs defined by different forms of the
coupling function. In Chap. 5 we first carried out a study of how the combined pres-
ence of a magnetic and a scalar field alters the properties of NSs, focusing both on
the radial distribution of quantities like the density or the scalar field strength and on
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global quantities like the mass and the magnetic deformation. In order to untangle
the effects of the magnetic and of the scalar fields, we compared our solutions to both
un-magnetised and un-scalarised solutions, finding for example that the radial struc-
ture of NSs is not heavilty affected by the presence of a scalar field; instead, global
quantities like the mass and deformation of the NS can significantly differ from the GR
counterparts. In any case, we highlighted the fact that in order to make a meaning-
ful comparison with respect to GR models it is necessary to specify which quantity is
held constant. Moreover, we found that scalarised NSs endowed with a toroidal field
can undergo a novel type of scalarisation, induced by a diminishing magnetic field,
which can happen, for example, in the presence of non ideal processes or magnetic
instabilities.

After having tackeld the general problem of axisymmetric, magnetised NSs in STTs, we
focused on the magnetic deformation of such models in Chap. 6. The magnetic defor-
mation is a quantity which contains information about the distortion of a NS from the
spherical shape, induced by its magnetic field. It is of particular importance in the con-
text of CGWs: real NSs present a misalignment between the magnetic and the rotation
axii, and this time-varying quadrupole moment leads to the emission of CGWs. Many
efforts are being devoted to detect CGWs generated by NSs, emitted either because
of their magnetic deformation or due to other kinds of distortions, unluckily without
a confirmed detection at the present day. However, next generation GWs detectors
should possess a much higher chance of detection of these faint signals, and even non-
detections with current detectors are useful to constrain the degree of deformation that
NSs are expected to display. The additional presence of a scalar field may in principle
hinder the emission of CGWs in two ways. On the one hand, scalar fields tend to re-
duce the deformation of a NS in GR with the same mass. On the other hand, in STTs a
new channel for the emission of GWs is open: while in GR only GWs of tensor nature
exist, in STTs also those of scalar nature are possible. In order to tackle this problem,
we adopted a particular parametrisation of the magnetic deformation, that of distor-
tion coefficients, and we applied it to the case of scalarised NSs. Distortion coefficients
allow one to expand the magnetic deformation of weakly magnetised models (where
the strength of these magnetic fields is still entirely realistic with respect to what is
their expected strength inside a real NS) as a simple function of either the maximum
magnetic field or the magnetic to binding energy ratio. While in GR these coefficients
depend only on the NS mass, in STTs we found that they are heavily dependent on the
scalarisation parameter β0, where a high scalarisation causes a important reduction of
their value with respect to the GR model at the same mass. More interestingly, we
found that in the full range of masses and scalarisation degrees of our study, distor-
tion coefficients can be written as a simple power law of three quantities characterising
the NS, namely its mass, its radius and its scalar charge. As distortion coefficients are
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lower in STTs with respect to GR models with the same mass, a lower magnetic de-
formation is expected in STTs models with respect to their counterparts in GR. As we
mentioned, the combination of this effect and the opening of a new channel for the
emission of GWs imply an expected hindrance in the amount of CGWs that can be de-
tected by GWs detectors. In order to study this problem from a quantitative point of
view, we introduced two quantities which describe what fraction of the energy emitted
in quadrupolar GWs is due to the quadrupolar moment of the mass distribution and to
that of the scalar field distribution. We found that, depending on the mass, scalarised
NSs can emit in the scalar channel almost double the energy they emit in tensor GWs.
This leads to a reduction of the amount of tensor GWs that are emitted with respect to
GR models with the same mass. As GWs detectors are mostly sensitive to tensor GWs,
this may lead to uncorrect estimations of the energetics of the emitting system and
of any quantity that is derived from it, as the distance or the strength of its magnetic
field. Instead, the detection of scalar CGWs is heavily suppressed by the coupling of
the scalar field to the detector, rendering their discovery even more unlikely.

While these previous studies were carried out in the case of NSs described by a poly-
tropic EoS commonly used in previous works in the literature, it is important to model
NSs with a realistic EoS. For this reason, we carried out an extension of our previous
work using a selection of different EoS allowed by current observational and nuclear
physics constraints, as showed in Chap. 7. We chose thirteen EoS that differ both in
the methods used to compute them and in their particle content. Moreover, two of
them describe strange quark stars, a different kind of NS that has been proposed to
exist and whose observation may solve some puzzles regarding the physics of NSs, in
particular regarding the large masses they are observed to reach. We computed the
distortion coefficients for a large number of models, both in GR and in STTs, and in-
troduced a new coefficient which allows the expansion of the magnetic deformation
as a function of the magnetic field at the surface of the NS. In fact, while the former
two coefficients are based on the internal magnetic field of the NS, which is not easily
inferred, the latter is based on a quantity which is much more likely to be observed.
Then, we looked for dependencies of these coefficients in terms of the NSs mass, ra-
dius and scalar charge. While, in general, each EoS predicts a different deformation at
the same mass (or radius, or scalar charge), we found that there exist particular combi-
nations of these quantities which render the distortion coefficients independent of the
EoS. In other words, there exist some relations that allow one to compute the coeffi-
cients by knowing only the NSs mass, radius and scalar charge, but not the EoS. While
this can be useful also for the purpose of computing the magnetic deformation of NSs
models by knowing just these quantities, without going through a full numerical sim-
ulation, the fact that the distortion coefficient we introduced depends on an observable
quantity, the surface magnetic field, renders that relation important from an observa-
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tional point of view. In fact, the confrontation between the computed coefficient and
that inferred from CGWs observations in GR can be used to extrapolate information
on the internal magnetic field geometry of the observed NS without knowing its EoS.
Moreover, we found that a quasi-universal relation also exists for the ratio between
the scalar and the tensor quadrupole moments introduced in our previous work (see
Chap. 6). Given that this ratio seems to be independent of the magnetic field configu-
ration altogether (although this should be verified with further studies using models
with a mixed field geometry), using the corresponding quasi-universal relation in con-
currency with the detection of CGWs from a known source can be used to infer bounds
on the scalar charge of that object.

As we described, the quasi-universal relations we found can be used to compute the
magnetic deformation of a NS without knowing its EoS. In our following work, de-
scribed in Chap. 8, we applied the relation involving the surface magnetic field to the
problem of estimating the probability of detection of CGWs by NSs in the Galaxy. In
order to do so, we computed the strain of CGWs emitted both by known sources, us-
ing the ATNF catalogue of radio pulsars, and by a synthetic population generated by
using expected distributions of the Galactic NSs population. Then, we compared these
results with the sensitivity of two GWs detectors: aLIGO at design sensitivity, expected
to be reached in the next years, and the future 3rd generation detector ET. Interestingly,
we found that while canonical pulsars are beyond the reach of even ET, a certain frac-
tion of MSPs could be detected even by aLIGO when at design sensitivity. Given that
our results are computed in the case of a purely poloidal magnetic field, these are to be
considered as upper limits, since a real NS is expected to possess a mixed field and, as
a consequence, a lower deformation, leading to lower CGWs strain. Since the pulsars
in the ATNF catalogue do indeed exist, we also identified some of the NSs which have,
according to our study, the highest chance of being detected. Finally, we considered
also the case of NSs endowed by a superconducting core, in which case the effective
magnetic field distorting the star is greatly boosted. In this situation, we found that a
considerable fraction of all MSPs in the Galaxy is expected to be detected by means of
CGWs in the next years; of course, also a non-detection can be used to put bounds on
the possible existence of a superconducting core in MSPs.

Finally, as described in Chap. 9 we introduced a novel way to test GR in the vicinity
of LMXBs, by means of the light bending property of the spacetime around compact
objects. These are systems where accretion of matter onto a NS generates an accretion
disk. A particular feature of these systems is the possibility of the emission of the flu-
orescent Fe Kα line at 6.4 KeV. As already known, observations of this line can be used
to infer limits on the radius of the NS by modelling the effect of the disk occultation on
the line by the NS itself. We applied this idea to the case of NSs in STTs. Given that
scalarised NSs possess different radii than their GR counterparts at the same mass, we
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found that the degree of scalarisation indeed affects the occultation of the accretion
disk. As a consequence, the characterising shape of the Fe Kα line is modified with
respect to GR in a way that depends on the scalar charge of the NS. While, in general,
this effect is very small, we found that next generation X-ray satellites may be able to
detect such small deviations with a reasonable observation time.

While our work already constitues an in depth exploration of the modelling of magne-
tised NSs in GR and in massless STTs, some extensions would allow one to infer even
more meaningful information both on the structure of the NSs and on the properties
of their CGWs emission. While the use of a purely poloidal and purely toroidal mag-
netic field allows us to describe the extreme boundaries of the possible magnetic field
geometries, the modelling of mixed field configurations would allow to draw more
precise conclusions when comparing models to observations. Moreover, the inclusion
of rotation, possibly with realistic profiles, which is already implemented in XNS (see
also App. A), would allow to model more realistic NSs, at the cost of enlarging the
paramater space to explore. Finally, while the results we found concern the internal
structure of NSs, and as such these are valid also in the case of STTs where the scalar
field has a mass, as argued in Chap. 2, the remaining parameter space that is deemed
valid for massless STTs is small. For this reason, it is important to generalise what we
found to the case of scalar fields endowed with a mass. In this sense, our work can be
regarded as the foundations onto which one can build more complex studies of magne-
tised NSs in more general STTs. As an example, we recall that STTs are just a subset of
a more extended class of alternative theories of gravity, TeVeS (Bekenstein 2004), which
predict also the possible existence of non-minimally coupled vector fields. As in STTs,
even theories with vector fields can present phenomena of ‘spontaneous vectorisation’
(Hellings & Nordtvedt 1973; Heisenberg 2014; Kase et al. 2018, 2020). Interestingly
the mathematics behind spontaneous vectorisation is not dissimilar to the one used to
model non-linear current terms in magnetised NSs (Pili et al. 2014), and spontaneous
magnetic-vectorisation has already been treated and discussed within the framework
of the standard techniques that we have illustrated here (Bucciantini et al. 2015). This
shows that the algorithms and approaches we have introduced, even if developed in
the context of the specific case of magnetic fields, have a far larger applicability to vec-
tor fields in general.
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XCFC for a rotating scalarised neutron
star

We show here how the standard techniques of XNS, based on the XCFC approach to the
solution of the metric functions, can be adapted to take into account the presence of a
scalar field. For simplicity we are going to consider here only un-magnetised rotators.
The generalisation to magnetised ones is trivial and strictly follows what was done in
Pili et al. (2017). In the E-frame the standard set of XCFC equations is:

∆LW i = 8π f ijŜj , (A.1)

∆ψ = −2πÊψ−1 − 1
8 fik f jl Âij Âklψ−7 , (A.2)

∆(αψ) = [2π(Ê + 2Ŝ)ψ−2 + 7
8 fik f jl Âij Âklψ−8]αψ, (A.3)

∆Lβi = 16παψ−6 f ijŜj + 2Âij∇̂j(αψ−6) , (A.4)

where fijis the flat 3-metric, ∇̂i is the flat covariant derivative (∇̂k fij = 0), and ∆ =

∇̂i∇̂i is the usual Laplacian operator in flat 3-space. ∆L is defined as:

∆LXi = ∆Xi + 1
3∇̂

i(∇̂jX j) (A.5)

and

Âij = ∇̂iW j + ∇̂jW i − 2
3 f ij(∇̂kWk) . (A.6)

The source terms come from the 3+1 decomposition of the energy-momentum tensor
in the E-frame:

Ê = ψ6n̄µn̄ν(T̄
µν
p + T̄µν

s ) , (A.7)

Ŝj = ψ6n̄µγ̄jν(T̄
µν
p + T̄µν

s ) , (A.8)

Ŝ = ψ6γ̄
j
µγ̄jν(T̄

µν
p + T̄µν

s ) . (A.9)
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For stationary (∂t = 0) and axisymmetric (∂φ = 0) configurations, for the metric given
by Eq. 3.27 (where the only non vanishing component of the shift vector is βφ), as-
suming that the only non vanishing component of the velocity is vφ, it can be shown
that

Ê = ψ6
{
A4
[
Γ2(e + p)− p

]
+ 1

8π Q2
}

, (A.10)

Ŝr = Ŝθ = 0 , (A.11)

Ŝφ = ψ6A3(e + p)Γvφ , (A.12)

Ŝ = ψ6
{
A4
[
Γ2(e + p)v2 + 3p

]
− 1

8π Q2
}

, (A.13)

where e, p, and v2 = γ̃ijvivj are all in the J-frame and Q2 = γ̄ijQiQj is instead in the
E-frame.

If on a time slice the values of the physical quantities are provided as well as the scalar
field, then the XCFC set of equations can be solved for the metric component in the
E-frame. It is evident that the XCFC scheme retains its main interesting property of de-
coupling the various equations, allowing to solve them separately, one after the other.
This holds also in the more general time dependent case. In fact 3+1 schemes for GRHD
and MHD evolve the conserved quantities in the J-frame ψ6A3Ẽp and ψ6A3S̃p

i . Com-
bined with a scheme that evolves also the 3+1 components of the scalar field P and Qi,
the XCFC equations can then be used to solve for the metric.
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Global quantities

In this appendix we list the main global quantities used in this work. We give their
general form, valid also in the case of a non-static, but stationary, spacetime.

The Komar mass in the E-frame is

M̄k = 2
∫

Σt

(
T̄µν −

1
2

T̄gµν

)
nµξν√γd3x =

= 2π
∫
A4
[

2p + (ε + ρ + p)Γ2
(

1 + vivi − 2α−1Aviβ
i
)
+

+ EiEi + BiBi + εijkα−1βiA2EjBk
]√
−gdrdθ ,

(B.1)

where Σt is a spacelike hypersurface of constant coordinate time t and ξν is the time-
like Killing vector associated to the stationarity of the spacetime. In our static case it
reduces to

M̄k = 2π
∫
A4
[
ε + ρ + 3p + BiBi

]
αψ6r2 sin θdrdθ. (B.2)

The baryonic mass, which is the same in the E-frame and in the J-frame, is

M0 =
∫

Σt
A3ρΓ

√
γd3x , (B.3)

which in our case is
M0 = 2π

∫
A3ρψ6r2 sin θdrdθ . (B.4)

The proper mass, which is the same in the E-frame and in the J-frame, is

Mp = 2π
∫
A3 (ε + ρ)ψ6r2 sin θdrdθ . (B.5)
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The scalar charge of the star in the E-frame, Q̄s, is defined as the monopole component
of the scalar field at asymptotically large radii:

lim
r→∞

χ(r) =
Q̄s

r
. (B.6)

By integrating Eq. 2.13 over a spherical volume of asymptotically large radius, using
Stokes’ theorem and using the fact that T̄p = 0 outside the star’s surface, we obtain

Q̄s = 2π
∫

ααs(χ)A4Tpψ6r2 sin θdrdθ , (B.7)

where Tp = 3p− ε− ρ. The circumferential radius in the J-frame is

R̃c =
[
Aψ2r

]
θ=π/2

(B.8)

The magnetic energy in the J-frame is

H̃ = −
∫

Σt

1
2

(
BiBi + EiEi

)
A2uνnν√γd3x , (B.9)

which reduces to
H̃ = π

∫
BiBiA3ψ6r2 sin θdrdθ . (B.10)

The binding energy of the star in the E-frame is defined as

W̄ = Mp −Mk + H̄ . (B.11)

The flux of the toroidal magnetic field, which is the same in the E-frame and in the
J-frame, is

Φ =
∫

rA2
√

BiBiψ
4drdθ . (B.12)

The magnetic dipole moment in the J-frame is

µ̃ = Ǎφ
4r3

4r + Mk

∣∣∣∣
r�Rc

. (B.13)

The value converges already for r ' 5− 10Rc.

The quadrupole deformation of the star in the E-frame is defined as

ē =
Īp
zz + Īs

zz − Īp
xx − Īs

xx

Īp
zz

, (B.14)
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where the physical and scalar field moments of inertia around the polar axis z and the
x axis are, respectively,

Īp
zz = 2π

∫
A4 (ε + ρ) r4 sin3 θdrdθ , (B.15)

Īs
zz = −

1
4

∫
ψ4Q2r4 sin3 θdrdθ , (B.16)

Īp
xx = π

∫
A4 (ε + ρ) r4 sin θ

(
1 + cos2 θ

)
drdθ , (B.17)

Īs
xx = −1

8

∫
ψ4Q2r4 sin θ

(
1 + cos2 θ

)
drdθ . (B.18)

We note that we defined the moments of inertia of the scalar field in the same way as
the usual physical ones: as integrals of the energy density T̄00

s .

The quadrupolar deformation of the trace ēs is related to the quadrupolar and monopo-
lar distributions of the scalar field at asimptotically large radii, and is defined as

ēs =

∫
αs(χ)A4Tp

(
2− 3 sin2 θ

)
r4 sin θdrdθ

r2
e
∫

αs(χ)A4Tpr2 sin θdrdθ
. (B.19)

We note that the denominator is the Newtonian equivalent of Q̄sR̄2
c .
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Appendix C

The XNS package

The XNS code is written in the Fortran 90 language and consists of several files. In
this appendix we briefly describe the modifications which have been done in the new
version of XNS, how the code can be compiled and the contents of each file. A more in-
depth explanation can be found in the official documentation: https://www.arcetri.
inaf.it/science/ahead/XNS/html/intro.html.

The new version (4.0) of XNS allows to compute axisymmetric, magnetised, rotating
models of NSs both in GR and in massless STTs. The magnetic configuration can be
chosen to be purely poloidal, purely toroidal and the twisted torus one. Various rota-
tion laws have been introduced, both uniform and differential, and the possibility to
use a tabulated EoS has been added. We note that scalarised models were not tested
neither using the twisted torus magnetic configuration nor rotation.

XNS can be compiled in three different ways:

• make serial: the standard way to compile XNS. In this case a single solution is
found with the specified central density.

• make nwtrps: compiles XNS using a Newton-Raphson method to converge on the
quantity specified by the user, either the gravitational or the baryonic mass.

• make parspace: compiles XNS various times with different initial conditions, in
order to sample the parameter space spanned by the magnetic, rotation and den-
sity parameters. The computation of the various models is made in parallel using
the MPI framework.

The files contained in the XNS package are:

• XNS.f90: the main program, which makes consistency checks and invokes XNSMAIN.f90.
Depending on the compiling options, it can simply call XNSMAIN.f90 (if XNS was
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compiled using the make serial option), perform a Newton-Raphson search to
converge on a specified quantity (if the make nwtrps option was used) or com-
pute many models in parallel with different initial conditions (if make parspace

was used).

• XNSMAIN.f90: the main kernel of the code, which defines the numerical grid,
builds a 2D initial guess based on the 1D S-TOV output of TOVINIMOD.f90, per-
forms the convergence loop calling all the various metric solvers and procedures
in the appropriate order. When the loop is over, it writes all the outputs.

• TOVINIMOD.f90: solves the 1D S-TOV (either in GR or in STTs) equations in isotropic
coordinates to provide the initial guess. It uses a relaxation method to achieve
convergence.

• HYDROEQ.f90: given the CFC metric and a value of the central density, it computes
the equilibrium configuration for the corresponding Bernoulli integral. Then, it
computes local equilibrium quantities.

• PHYSICS.f90: contains functions used to define the numerical grid and to per-
form EoS-related computations.

• ROTATION.f90: contains functions related to the rotation profile of the NS.

• FUNCTIONS.f90: contains functions of generic use, like those used to solve linear
systems or for interpolation.

• SYSTEMXNS.f90: contains the definition of common arrays used throughout the
code and all parameters used by XNS, including those that must be specified by
the user.

Included are some visualisation routines:

• starplot_polo.py, starplot_toro.py, starplot_unmag.py: plots a section of the
star in the x-z plane along with the contours of the magnetic field (if the model is
magnetised), the scalar field or the density.

• profiles_polo.py, profiles_toro.py, profiles_unmag.py: plots the radial pro-
files, both at the pole and at the equator, of the density, pressure, conformal factor,
lapse function, scalar field and magnetic field (if the model is magnetised).



Bibliography

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, Living Rev. Relativ., 21, 3
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys. Rev. Lett., 116, 061102
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, ApJ, 848, L13
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, Phys. Rev. Lett., 119, 161101
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017c, ApJ, 848, L12
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, ApJ, 851, L16
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, Phys. Rev. Lett., 121, 161101
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, arXiv e-prints, arXiv:2104.14417
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021b, ApJ, 913, L27
Abbott, R., Abbott, T. D., Abraham, S., et al. 2020, ApJ, 902, L21
Abbott, R., Abbott, T. D., Abraham, S., et al. 2020, ApJ, 896, L44
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