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Abstract: 

Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related mortality in 

the United States. Aggressive treatment regimens have not changed the disease course, and the 

median survival has just recently reached a year. Several mechanisms are proposed to play a role 

in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype 

with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/ 

Redox Effector Factor 1 (APE1/Ref-1) is a multi-functional protein possessing a DNA repair 

function in base excision repair and the ability to reduce oxidized transcription factors, enabling 

them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors 

involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the 

mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox 

signaling activity, which regulates the transcriptional activation of hypoxia inducible factor 1 

alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as part of the 

cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We 

hypothesized that modulating APE1/Ref-1 function will block activation of downstream 

transcription factors, STAT3 and HIF1α, interfering with hypoxia-induced gene expression. We 

demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in 

decreased HIF1α−mediated induction of CA9. Furthermore, an ex vivo 3D tumor co-culture 

model demonstrates dramatic enhancement of APE1/Ref-1-induced cell killing upon dual-

targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development, 

therefore these studies have the potential to direct novel PDAC therapeutic treatment. 
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Introduction: 

Pancreatic ductal adenocarcinoma (PDAC) continues to be the 4th leading cause of cancer 

related mortality in the United States in both genders with a five-year survival rate of 5-7% (1). 

Approximately, 80% of patients present with advanced disease due to local invasion or 

metastatic disease (1, 2). Treatment options for this patient population are limited to palliative 

chemotherapy, and even the most aggressive treatment strategies fail to extend life beyond one 

year for most patients (1, 3). The disappointing result in pancreatic cancer may be explained by 

the complexity of this disease. Several mechanisms of resistance have been proposed to play a 

role in resistance to therapy. The presence of cancer-associated fibroblasts (CAFs) as well as 

other cell types within a desmoplastic stroma, hypoperfusion of the tumor, hypoxia, multidrug 

resistance and other mechanisms have been reported (4-6). Lack of clinical efficacy is due, at 

least in part, to the fibrosis that accompanies the disease. In the studies presented here, tumor-

stroma effects were monitored as the importance of the stroma in PDAC is well-established (7, 

8). Targeting one pathway is very unlikely to alter the natural course of this disease. However 

affecting critical survival mechanisms of this cancer is crucial to produce any positive results (9, 

10).  

Hypoxic conditions in pancreatic tumors are associated with poor prognosis. Oxygen 

deprivation leads to stabilization of hypoxia inducible factor 1 alpha (HIF1α), a transcription 

factor that upregulates a variety of factors that contribute to increased drug resistance, 

proliferation, and migration/invasion in tumor cells (11-13). HIF-1 transcriptional activity 

depends on stabilization of its α subunit, which is targeted for degradation under normoxic 

conditions by proline hydroxylation and subsequent von Hippel-Lindau protein (VHL)-mediated 

ubiquitination. Stable HIF1α dimerizes with the constitutively expressed β subunit to activate 
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genes with hypoxia-response elements (HREs) in their promoters (14, 15). No HIF-1-specific 

inhibitors currently exist, so targeting its vital transcriptional targets and the enzymes that 

regulate HIF-1 activity are promising ways to modulate hypoxia signaling in cancer cells (15, 

16). 

Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) is a multifunctional 

protein that is involved in responses to oxidative stress, acting on both oxidative and alkylative 

DNA damage (via its endonuclease activity in base excision repair) (17-19) and augmenting 

activity of various transcription factors (via its redox signaling) (20-23), as well as contributing 

to clearance of RNA with damaged bases (24). APE1/Ref-1 expression and redox activity are 

increased in PDAC tissue, and its upregulation increases tumor cell migration, proliferation, and 

survival (17, 23). We previously demonstrated that APE1/Ref-1 redox activity regulates several 

transcription factors involved in pancreatic cancer signaling, including HIF-1α, as well as 

STAT3, and NFκB (20, 21).  

Carbonic Anhydrase IX (CA9) is a transmembrane protein that regulates pH in tumor 

cells under low oxygen conditions and contributes to cell proliferation and transformation (25, 

26). CA9 was reported to be an endogenous sensor to HIF-1 activity (27) and CA9 inhibitors 

were more potent in 3D culture due to the regions of hypoxia (28). One report demonstrated a 

strong correlation in vivo between pSTAT3 and CA9 expression and postulated that the 

regulation of CA9 by STAT3 could be important in invasion through IL-6 signaling (29). Both of 

these transcription factors are regulated by APE1/Ref-1, so the impact of APE1/Ref-1 redox 

activity on HIF1 activity as well as CA9 expression was evaluated in PDAC following exposure 

to hypoxia. 
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Here we describe the mechanisms by which APE1/Ref-1 regulates hypoxia signaling 

through HIF1α-mediated transcription. Inhibiting APE1/Ref-1 redox signaling with the selective 

inhibitor APX3330 (also called E3330) resulted in decreased STAT3 activity (20) and HIF1α 

activity (21) leading to decreased expression of CA9, a major HIF-1 target within cells (27). We 

also demonstrate that hypoxia stimulates interactions between APE1/Ref-1 and its redox targets, 

HIF1α and STAT3, but not NFκB in both PDAC tumor and stromal cells supporting our 

approach. 

We also show for the first time evidence using patient-derived tumor cells in the presence 

of appropriate stromal components, CAFs, 3D spheroid size and proliferation are dramatically 

reduced upon combination treatment with APE1/Ref-1 inhibitor, APX3330 and CA9 inhibitor, 

SLC-0111 (Clinical Trial NCT02215850) (30, 31). Upon blockade of multiple hypoxia signaling 

pathways with APX3330 and SLC-0111, we observe a dramatic effect on 3D tumor spheroid 

growth even in the presence of the protective environment of the CAFs. APE1/Ref-1 redox 

inhibitor APX3330 (20, 22, 32, 33) is slated for Phase 1 clinical trials in mid-2016, and the CA9 

inhibitor is currently in clinical trials. By decreasing APE1/Ref-1 redox activity we can impair 

the tumor cells’ response to hypoxia (21) and potentially improve the response to therapy. 

Therefore the combination of these agents may have proximate clinical applications. 

 

Methods and Materials: 

Cell Culture: Cells were maintained in culture as previously described (20-22). Patient-derived 

tumor cells, Pa03C, Pa02C, and Panc10.05 and CAF19 cells were a kind gift from Dr. Anirban 

Maitra (The Johns Hopkins University) (34). Upon receipt of the cells in 2011 as well as in June 

of 2015, we used STR analysis (CellCheck with IDEXX BioResearch) to confirm that we indeed 
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received the aforementioned cells from Dr. Maitra and that they were mycoplasma-free. MIA-

PaCa2 cells were purchased from and authenticated by ATCC (Manassas, VA). Cancer-

associated fibroblasts, UH1303-02 were isolated using the outgrowth method from patient tumor 

tissue as previously described (35). All patient-derived lines were passaged only 10 times before 

new stocks frozen prior to authentication were resuscitated. Hypoxia exposure was achieved 

using a Ruskinn Invivo2 200 hypoxia work station. CMV-EGFP-WT APE1/Ref-1 lentiviral 

construct was used to overexpress APE1/Ref-1 as previously described (36). To detect the cells 

for imaging, a CMV-EGFP lentiviral construct was used as previously described (36). 

Additionally, 150 pfu/cell of the pCL7TdTOMwo lentiviral vector was incubated with Pa03C 

and Panc10.05 cells for 48 hours to make cells stably express TdTomato.  

 

Western Blot Analysis: Western blots were performed as previously described (20-23) with 

antibodies for APE1/Ref-1 (Novus Biologicals; Littleton, CO), HIF1α (GeneTex; Irvine, CA), 

STAT1, STAT3, (Cell Signaling; Danvers, MA), NFκB (abcam; Cambridge, MA), CA9 (Santa 

Cruz; Dallas, Texas), Vinculin (Sigma; St. Louis, MO), and Actin (NeoMarkers; Fremont, CA). 

 

Co-immunoprecipitation: Samples were co-immunoprecipitated using the Pierce Co-IP kit 

(Thermo Scientific) with modifications as previously described (22). 

 

Transfection: PDAC and CAF cells were transfected with APE1/Ref -1 siRNA as previously 

described (20, 22, 23). siRNAs used were: #1 or scrambled control (previously reported) and two 

LifeTech validated siRNAs (#2: s1445 and #4: s1447) (22). APE1/Ref-1 siRNA #1 was used as 

the standard siRNA unless otherwise specified. 
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Transient Luciferase Reporter Assays: MIA-PaCa-2 cells were co-transfected with constructs 

containing luciferase driven by HIF1α and a Renilla luciferase reporter vector as previously 

described (22) using X-tremeGENE 9 DNA transfection reagent (Roche, Indianapolis, IN) along 

with siRNA as described above. Firefly and Renilla luciferase activities were assayed by using 

the Dual Luciferase Reporter Assay System (Promega Corp.) as before (20, 22). 

 

qRT-PCR Reactions: qRT-PCR was used to measure the mRNA expression levels of CA9 as 

previously described (21). Cells were treated with APE1/Ref-1 siRNA or increasing amounts of 

APX3330 in the presence or absence of hypoxia (1% and 0.2 % O2) for 24 h, then total RNA was 

extracted from cells using the QiagenRNeasy Mini kit (Valencia, CA) (37). First-strand cDNA 

synthesis and quantitative PCR were performed as previously described (21). The relative 

quantitative mRNA level was determined using the comparative Ct method using 18S rRNA, 

RPLP0, and B2M as reference genes (37, 38). The primers for CA9, 18S, RPLP0, and B2M are 

commercially available (Applied Biosystems).  

 

Inhibitors: Compounds were prepared and used as previously described: APX3330 (32, 33) and 

SLC-0111 (30, 31). The concentrations of APX3330 used are within clinically tolerated levels 

established previously by Eisai pharmaceutical company through a prior development program 

that evaluated the toxicology and phase I/II safety and clinical profile in non-cancer patients. 

Additionally, the SLC-0111 analog FC13-555A was synthesized as described in Supplemental 

Methods. The structure of each inhibitor can be seen in Supplemental Figure 1. 
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Cell Proliferation: PDAC cell proliferation in monolayer was measured using the Alamar Blue 

assay as previously described (22). Cells treated with APX3330 and SLC-0111 were exposed to 

hypoxia for six days followed by addition of Alamar Blue reagent (Invitrogen) and subsequent 

fluorescence analysis. Fold change refers to the fluorescence reading for cells treated with 

indicated inhibitors compared to cells growing in normal media. 

 

pH Assay: Intracellular pH was evaluated using the pHrodo Red AM Intracellular pH Indicator 

(LifeTech). PDAC cells treated with APX3330 and SLC-0111 were exposed to hypoxia for 48 

hours followed by analysis with pHrodo Red AM dye. Intracellular pH Calibration Buffers 

(LifeTech) were used to create a standard curve of fluorescence intensity for determination of pH 

values. Results were normalized to MTS analysis to account for changes in proliferation as 

before (20-22). Fluorescent images were acquired using a confocal/two-photon Olympus 

Fluoview FV-1000 MPE system (Olympus American) at the Indiana Center for Biological 

Microscopy facility (Indianapolis, IN). 

 

Statistical Analysis. qPCR data points for scrambled, siAPE1/Ref-1, and hypoxia treatments 

were analyzed using the 2 ∆∆  method and analysis of covariance (ANCOVA) models as 

previously described (22, 39). Data points in tests with multiple treatment groups were analyzed 

using post-hoc Multiple Comparisons Tests (Tukey, Dunnett, or Sidak as appropriate). For 

evaluation of data curves using multiple drugs, an extra-sum-of-squares F test was used to 

compare the goodness-of-fit of a nonlinear regression curve shared between groups with that of 

separate curves for each group. Differences between the treatment groups and control group were 
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considered significant if p<0.05 following Bonferroni corrections as appropriate. Statistical 

analyses were performed using SAS (Version 9.3, Copyright ©2010 SAS Institute Inc. Cary, 

NC) and Prism (Version 6.0f, Copyright ©2014 GraphPad Software Inc. La Jolla, CA). 

 

HIF-1 -/- MEF Generation: HIF-1-floxed mouse embryonic fibroblast (MEF) cells were 

generated as previously reported (40) and transduced with Ad-CMV-Cre (Cre adenovirus) or Ad-

GFP (control) vector (Vector BioLabs; Malvern, PA) for 24 hours using 5 ng/mL polybrene to 

produce HIF-1-deficient cells (40). PCR was used to verify the deletion of HIF (Supplemental 

Figure 2). 

 

3D Co-Cultures: Ultra low attachment 96-well plates (Corning Inc., Life Sciences) were used to 

generate 3-dimensional tumor spheroids in the presence and absence of CAFs (75 μL/well) as 

described previously (41, 42). Cells were stably transduced with EGFP (green) or TdTomato 

(red) as indicated to preserve the genetic characteristics of the low passage patient cells (34, 42). 

Cells were re-suspended in colorless DMEM growth media containing 3% Reduced Growth 

Factor Matrigel (RGF, BD Biosciences) and 5% FBS. Following plating, cells were treated on 

Days 4 and 8 with media containing 5% serum, 3% RGF Matrigel, and inhibitors as indicated. 

On Day 12, spheroids were analyzed using Thermo ArrayScan high-content imaging system 

(43). Images of 3D structures were captured by ArrayScan using a 2.5x objective for TdTomato 

and EGFP; then 2D projections were processed to quantify differences in total intensity and total 

area of both CAFs and tumor.  

 

Results 
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APE1/Ref-1 interactions with HIF1α and STAT3 are stimulated by hypoxia 

We previously published data demonstrating decreased STAT3, HIF1α, and NFκB activity 

following knockdown of APE1/Ref-1 and/or inhibition of APE1/Ref-1 redox signaling with the 

selective inhibitor APX3330 (also called E3330) (20, 21).  Similarly, we found that inhibition of 

APE1/Ref-1 led to a decrease in a major HIF-1 target within cells, Carbonic Anhydrase IX 

(CA9) (21, 28). To further dissect the role of APE1/Ref-1 in hypoxia signaling and more clearly 

determine whether hypoxia stimulates interactions between APE1/Ref-1 and its redox targets, 

endogenous APE1/Ref-1 was immunoprecipitated from lysates of two low passage PDAC cell 

lines (Panc10.05 and Pa03C) under normoxic and hypoxic (0.2% O2) conditions. These cell lines 

are representative of ductal adenocarcinoma, were previously sequenced (34), and have the 

common G12D mutation in KRAS as well as missense mutations in p53. Panc10.05 was derived 

from a primary PDAC tumor, is wt for p16(INK4A), but has a SMAD4 deletion; however Pa03C 

was isolated from a metastatic lesion in the liver and is wt for both p16(INK4A) and SMAD4. 

IPs were probed for HIF1α, STAT3, and NFκB. HIF1α and STAT3, but not NFκB were 

detected in the pull-down fractions under hypoxic conditions, but these interactions were not 

detected under normoxic conditions (Figure 1A-B). Controls of TNFα (NFκB) and IL-6 

(STAT3) were performed to show that interactions between APE1/Ref-1 and the transcription 

factors it regulates do indeed occur under normoxic conditions with appropriate stimulation 

(Supplemental Figure 3). Interactions of APE1/Ref-1 with HIF1α and STAT3 were obvious 

under hypoxic conditions. 

With overexpression of APE1/Ref-1, the interaction with HIF1α and STAT3 remained intact  

while NFκB was still not detected in IPs from cells overexpressing APE1/Ref-1 following 

exposure to hypoxia indicating that the amount of APE1/Ref-1 was not limiting in the above 
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panels (Figure 1C-D). To demonstrate that APE1/Ref-1’s interactions with the transcription 

factors are specific to signaling in hypoxia, we probed for another STAT family member, 

STAT1. IPs from 10.05 cells were probed for STAT1, which was not detected regardless of the 

levels of APE1/Ref-1 or oxygen conditions (Figure 1C). Due to the complexity of the disease 

and the signaling between various cell types in the pancreatic tumor microenvironment, we 

investigated APE1/Ref-1 interactions with HIF1α, STAT3, and NFκB in CAFs. These CAFs are 

non-tumorigenic and although they have activated signaling pathways due to their association 

with the tumor, they are non-transformed. The results were identical to the result with PDAC 

cells: APE1/Ref-1 interacts with HIF1α and STAT3 under hypoxia, but not NFκB 

(Supplemental Figure 4). In light of CA9 inhibitors beginning clinical trials and our previous 

data demonstrating transcriptional regulation of CA9 following APE1/Ref-1 blockade (21), we 

focused these studies on HIF1α signaling and the regulation of the downstream molecule CA9 

through APE1/Ref-1. 

 

APE1/Ref-1 protein expression contributes to hypoxia-induced HIF1α-mediated 

transcription 

 To show that the interactions between APE1/Ref-1 and HIF1α are functionally 

important, we evaluated the contribution of APE1/Ref-1 to HIF-1 transcriptional activity by co-

transfecting MIA PaCa-2 cells with HIF1α-driven firefly luciferase or pLuc-MCS (vector 

control) alongside APE1/Ref-1 siRNA or scrambled control and exposing cells to hypoxia for 24 

hrs. APE1/Ref-1 knock-down resulted in a significant reduction (~47%) in hypoxia-induced 

HIF1α activity (Figure 2A-B). 
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Effects of APE1/Ref-1 on HIF transcriptional activity were further evaluated by 

examining hypoxia-mediated transcription of HIF-1 target, CA9. We compared CA9 mRNA 

levels in two PDAC cell lines and one pancreatic CAF cell line following APE1/Ref-1 knock-

down and exposure to hypoxia. Bar graph represents the fold change of mRNA expression level 

of CA9. Hypoxia-induced CA9 mRNA levels were attenuated by APE1/Ref-1 knock-down in all 

cell lines at both levels of hypoxia (Figure 2C-E). Variability in the amount of induction in 

different cell lines may be partially attributable to the extremely low baseline CA9 expression 

under normoxic conditions. APE1/Ref-1 knock-down similarly attenuated CA9 mRNA levels 

under hypoxic conditions in two additional primary PDAC cell lines (Supplemental Figure 5). 

These results were validated in MIA-PaCa-2 cells exposed to hypoxia using two additional 

APE1/Ref-1-targeting siRNAs, and similar results were obtained (Figure 2F-G). To verify the 

reduction in CA9 also occurred at the protein level, hypoxia-induced CA9 protein levels were 

evaluated via western blot following APE1/Ref-1 knock-down in PDAC cells and pancreatic 

CAF cells. APE1/Ref-1 knock-down resulted in a ~70% reduction in hypoxia-induced CA9 

protein levels (Figure 2H-I). 

 

Hypoxia-induced CA9 transcription is HIF-1-dependent 

To confirm that the effects of APE1/Ref-1 and hypoxia on CA9 transcription were mediated 

by HIF-1 activity, we evaluated hypoxia-induced CA9 mRNA levels in HIF-1-deficient (-/-) 

MEFs following APE1/Ref-1 knock-down. As expected, in HIF-1 proficient MEFs, CA9 is 

induced 30-fold compared to normal oxygen controls. In HIF-1 -/- MEFs CA9 mRNA levels 

were not induced by exposure to hypoxia (Figure 3A), or affected by APE1/Ref-1 knock-down 

(Figure 3B), indicating that CA9 transcription is HIF-1-dependent, regardless of APE1/Ref-1 
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expression or oxygen levels. HIF-1 depletion in these cells was confirmed by PCR 

(Supplemental Figure 2). 

 

Inhibition of APE1/Ref-1 redox signaling affects CA9 transcription 

As a multi-functional protein, APE1/Ref-1 is also involved in base excision repair (BER) 

of DNA lesions, RNA quality control, and reduction-oxidation (redox) regulation. Knock-down 

of APE1/Ref-1 affects all of these functions. We therefore examined whether the redox function 

is responsible for the APE1/Ref-1-mediated regulation of hypoxia signaling pathways using an 

APE1/Ref-1 specific redox inhibitor that does not affect other APE1/Ref-1 functions (44, 45) and 

is slated for clinical trial in the summer of 2016. We previously showed that APX3330 decreases 

CA9 mRNA levels in Panc-1 and MIA-PaCa2 cells exposed to hypoxia (21). Here we expand 

these results to primary cells and CAF cells, as well as 3D co-cultures. Following treatment with 

APX3330 and exposure to hypoxia, CA9 mRNA levels in Pa03C cells and in pancreatic CAF 

cells were attenuated in a dose-dependent manner (Figure 3C-D). Additionally, CA9 protein 

expression was measured in a 3D co-culture model following inhibition of APE1/Ref-1 with 

APX3330. While CA9 was not detected under normoxic conditions in the patient-derived Pa03C 

cells in monolayer, when grown as spheroids, these cells now express CA9. Tumor spheroids 

grown in the presence of CAFs more strongly upregulated CA9 expression ~3-fold, likely due to 

larger spheroids containing larger regions of hypoxia, as well as the more complex signaling 

present with the stromal elements. Inhibition of APE1/Ref-1 redox signaling with APX3330 led 

to decreased CA9 expression in 3D tumor cultures in a dose-dependent manner, both in the 

presence and absence of CAF cells (Figure 3E). These data support the use of the 3D co-culture 

system for preclinical studies validating novel targets like CA9 and APE1/Ref-1 in PDAC. 
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Importantly, we evaluated CA9 and APE1/Ref-1 protein expression following exposure 

to hypoxia (0.2% oxygen) in three PDAC cell lines and found that, while CA9 levels increased 

over time, APE1/Ref-1 levels did not change significantly (Supplemental Figure 6), indicating 

that hypoxia-induced CA9 expression is not secondary to APE1/Ref-1 upregulation. 

 

Dual-targeting of CA9 and APE1/Ref-1 acidifies PDAC cells and inhibits cell viability 

under hypoxia 

 CA9 regulates intracellular pH under hypoxic conditions, and APE1/Ref-1 redox activity 

contributes to hypoxia-induced CA9 expression. We analyzed intracellular pH in hypoxia-

exposed PDAC cells following treatment with CA9 inhibitor, SLC-0111 and the APE1/Ref-1 

redox inhibitor, APX3330 using the pHrodo Red AM fluorescent pH indicator as a functional 

endpoint for carbonic anhydrase activity under hypoxic conditions. The analysis of intracellular 

pH was performed at an early timepoint (48 hr exposure to inhibitors and hypoxia) to avoid 

drastic changes in cell survival. Still, some viability changes were observed (Supplemental 

Figure 7), so these changes were taken into account in the analysis and normalization of the 

intracellular pH data. Dual-treatment with SLC-0111 and APX3330 results in a greater decrease 

in intracellular pH than treatment with either inhibitor alone (Figure 4A-B). 

 Inhibition of APE1/Ref-1 redox activity results in a dose-dependent decrease in PDAC 

cell viability following treatment of cells with APX3330 and hypoxia. Remarkably, the effect of 

APE1/Ref-1 inhibition on cell viability is greatly enhanced by treating with the CA9 inhibitor, 

SLC-0111 in addition to APX3330 treatment under hypoxia (Figure 4C). In support of these 

results, new CA9 inhibitors are being developed and the combination of APX3330 with SLC-

0111 analog, FC13-555A is also significantly effective at killing PDAC cells in monolayer 
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(Figure 4D), supporting the hypothesis that blockade of hypoxia signaling proteins will be 

deleterious to PDAC cells.  

 

Dual-targeting of CA9 and APE1/Ref-1 inhibits PDAC tumor growth in a 3D co-culture 

model 

 In order to more accurately mimic the tumor microenvironment, we utilized a three-

dimensional co-culture model of PDAC that included the low passage patient derived tumor cells 

as well as cancer-associated fibroblasts. As demonstrated above, the levels of CA9 were greater 

in these tumor spheroids when grown with CAF cells, and CA9 expression was attenuated by 

treatment with APX3330 (Figure 3E). Inhibition of CA9 with SLC-0111 was more potent in the 

3D model with dramatic effects on tumor cell killing observed at lower doses than in monolayer, 

as measured by reductions in area of patient-derived cells (Figure 5A-B). Cell killing was more 

dramatic in the tumor cells than in the CAFs, especially when CAF19 cells were in co-culture 

with Pa03C cells. Although these CAFs have aberrantly activated signaling pathways, they are 

non-tumorigenic and suggest that tumor cells are more greatly affected by the dual targeting 

approach as compared to normal cells. Similar trends were seen when measuring fluorescence 

intensity (data not shown). Importantly, inhibition of CA9 can effectively kill tumor cells even 

when in the protective environment of the CAFs.  

To determine if blockade of STAT3 and HIF-mediated transcription alongside the 

inhibition of CA9 activity would potentiate PDAC cell death, we combined APX3330 and SLC-

0111 in the 3D co-culture model. We can assess the effects of dual targeting on both the tumor 

alone and the tumor and CAFs in co-culture due to the different fluorescent labels in each cell 

type. As seen in hypoxia-exposed 2D cultures, addition of CA9 inhibition to APE1/Ref-1 redox 
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inhibition resulted in dramatic potentiation of the cell killing in the tumor spheroids. Spheroids 

composed of patient-derived PDAC cells (Pa03C or Panc10.05 – labeled red) and CAF cells 

(labeled green) were treated with APX3330 and SLC-0111 (Figure 5E-F), and the graphical 

representation i.e. area of red and green fluorescence were evaluated separately as markers for 

each cell type and is shown in Figure 5C-D. Dramatic enhancement of the APX3330-induced 

blockade of spheroid growth was observed with the addition of CA9 inhibition. The observed 

decrease in tumor cell area with APX3330 treatment was significantly different in the presence 

of SLC-0111, validating the effects seen in hypoxia-exposed 2D cultures. Similar trends were 

seen when measuring red and green fluorescence intensity (data not shown). 

 

Discussion: 

Elevated APE1/Ref-1 expression is associated with numerous cancers, including 

pancreatic, ovarian, gastric, breast, lung, glioblastoma, liver, and colon (18, 19, 46), and analysis 

of publicly available data from The Cancer Genome Atlas (TCGA, cancergenome.nih.gov) 

reveals a significant decrease in survival of PDAC patients with elevated APE1/Ref-1 expression 

(Supplemental Figure 8A, more information in Supplemental Methods) (47, 48). In tumor cells, 

reduction-oxidation (redox) of thiols of cysteines in various tumor-promoting transcription 

factors such as STAT3, NFκB, and HIF-1 by APE1/Ref-1 is a crucial step in the activation of 

these factors. These TFs are all important targets in cancer therapy and particularly PDAC, but 

have been shown to be particularly hard to drug (18, 20, 21, 46, 49, 50). While previous studies 

by us and others (23, 51, 52) have demonstrated the effect of APE1/Ref-1 knockdown on tumor 

cell growth and survival, additional studies have demonstrated the effectiveness of a small 

molecule, APX3330, in targeting and blocking the redox signaling activity of APE1/Ref-1. 
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APX3330 has been shown in multiple in vitro and in vivo models of pancreatic cancer to be 

effective in reducing tumor volume and metastases as both a single agent and in combination 

with gemcitabine (20, 21, 53). The mechanism of action has been extensively investigated and 

the drug has a direct and selective interaction with APE1/Ref-1 as demonstrated by chemical 

footprinting, mass spectrometry, and other biochemical analyses (33, 44, 54). Importantly, while 

APX3330 blocks APE1/Ref-1’s redox function, it has no effect on APE1/Ref-1 endonuclease 

DNA repair activity (45). Although multiple pathways may be modulated, unacceptable toxicity 

following APE1/Ref-1 inhibition has not been observed in animal or human studies (21, 55). 

APX3330 is slated for a Phase 1a/1b clinical trial of a dose-escalation study of APX3330 in 

patients with advanced solid tumors and a dose-expansion cohort of patients with advanced 

PDAC in mid-2016 in PDAC patients. Therefore, targeting APE1/Ref-1 with APX3330 has a 

great deal of potential in cancer therapy. 

We previously demonstrated that APE1/Ref-1 contributes to STAT3 activation and the 

consequent tumor-promoting effects of STAT3 in PDAC cells (20). The cooperative activities of 

STAT3 and HIF-1 have been demonstrated in a variety of cancers (56, 57); however the finding 

that APE1/Ref-1 binding to STAT3 is stimulated by exposure to hypoxia in PDAC cells, 

presented here for the first time, further indicates the importance of both APE1/Ref-1 and 

STAT3 as potential therapeutic targets in PDAC. These findings will be further pursued with 

preclinical STAT3 inhibitors that are being developed for eventual clinical trials (42). 

Furthermore, our results demonstrating that APX3330 treatment decreases hypoxia-induced HIF-

1 transcriptional activity and CA9 mRNA levels (21) is exciting since CA9 inhibitors are either 

entering or are in clinical trials. This latter finding is of great interest, not only because it is 
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closer to patient applicability, but builds upon our strategy of blocking various signaling 

pathways at multiple points along pathways influenced by APE1/Ref-1. 

CA9 is one of only two tumor-associated carbonic anhydrase isoenzymes known, and it 

has similarly been established as a potential therapeutic cancer target (25, 26, 30). CA9 is not 

detected in most normal tissues, but its expression in renal and other cancers often indicates 

locally advanced, hypoxic tumors and poor treatment response (58, 59). Variations in CA9 

expression by region in tumor samples make whole-tissue analysis difficult (60, 61), but analysis 

of publicly available data from Oncomine (oncomine.org) using microdissected samples reveals 

upregulation of CA9 in PDAC tissue samples, as compared to normal pancreas and pancreatic 

cancer precursor samples (Supplemental Figure 8B-D) (62, 63). Furthermore, the CA9 inhibitor 

SLC-0111 is in clinical trials to evaluate its safety and efficacy in patients with advanced solid 

tumors, including pancreatic cancer (clinicaltrials.gov ID: NCT02215850). Therefore, our 

strategy of inhibiting the HIF-CA9 axis at two points; blocking HIF-1 production of CA9 with 

APX3330 as well as blocking the activity of any CA9 that is produced using SLC-0111 (Figure 

6), is a novel approach to the targeting of hypoxic PDAC cells. That being said, not only hypoxic 

PDAC cells will be sensitive to the combination of APX3330 and SLC-0111. APX3330 is 

targeting other signaling pathways that are activated in tumor cells that are fully oxygenated, and 

SLC-0111 can also inhibit CA12, another tumor-associated carbonic anhydrase (31). Our 

findings establish this strategy resulting in additive cell acidification and inhibition of hypoxic 

PDAC cell proliferation. This combination approach is similar to the results we previously 

published using APX3330 and STAT3 inhibition as a dual hit strategy in PDAC cells (20) and 

APX3330 (HIF-1 inhibition) and Avastin (bevacizumab) for VEGF-signaling inhibition as an 

anti-angiogenesis combination strategy (45, 64, 65). 
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As discussed, APX3330 will soon be entering clinical trials for general solid tumors as 

well as pancreatic cancer. Since SLC-0111 is already in clinical trials with other CA9 inhibitors 

queued up to enter the clinic, our data demonstrating a novel two pronged approach targeting 

highly hypoxic pancreatic cancer could be clinically applicable in the foreseeable future. 

Additionally, given data demonstrating elevated expression of APE1/Ref-1, STAT3, and CA9 in 

a variety of other solid tumors (59, 66), these combination approaches should have applicability 

beyond pancreatic cancer (30, 32, 59).  

In conclusion, the data presented here provides continued evidence of the close 

relationship between APE1/Ref-1, STAT3, and HIF-1 signaling and CA9 production in PDAC as 

well as the first evidence that the combination of two small molecule inhibitors, each showing 

minimal toxicity, may be an important next step in the treatment of PDAC, a disease for which 

effective treatment remains elusive. 
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Figure Legends: 

Figure 1: APE1/Ref-1 interactions with HIF1α and STAT3 are stimulated by hypoxia in 
PDAC cells 
Cell extracts were prepared from Panc10.05 (A) and Pa03C (B) cells and also from cells that 
overexpress APE1/Ref-1 (C, D) following exposure to hypoxia (0.2%) for 24 hr. Extracts were 
immunoprecipitated with anti-APE1/Ref-1 antibody or IgG.  The immunoprecipitated complexes 
were then probed for HIF1α, STAT3, NFkB, STAT1, or APE1/Ref-1. n = 3-4 per experiment. 
Typical results shown.  
Figure 2: APE1/Ref-1 protein expression contributes to hypoxia-induced HIF1α-mediated 
transcription 
MIA-PaCa2 cells were assayed for HIF1 activity using a luciferase and Renilla reporter assay 
following  APE1/Ref-1 knock-down. A. Knock-down of APE1/Ref-1 was confirmed via western 
blot. B. HIF1α-driven luciferase expression was evaluated following hypoxia (24 hr, 0.2% 
oxygen vs. normoxia controls; n=3). C-E. Following APE1/Ref-1 knock-down and 24 hrs in 
hypoxia, CA9 mRNA levels were evaluated via qPCR in the cell lines described (n=3). F. 
APE1/Ref-1 knock-down in MIA-PaCa2 cells with three different siRNAs was confirmed via 
western blot. G. CA9 mRNA levels were evaluated via qPCR in SC and knocked-down samples 
from three siRNAs following hypoxic conditions (24 hrs, 0.2% oxygen vs. normoxia controls; 
representative experiment of n=3). H-I. CA9 protein levels were evaluated via western blot in 
10.05 and CAF19 cells following transfection with SC or APE1/Ref-1 siRNA and hypoxia (24 
hr, 1% oxygen, representative blots of n=3). *p<0.001 (Tukey’s Multiple Comparisons Test); 
**p<0.01 & #p<0.001 (ANCOVA). For CA9 western blots (H-I), p<0.05 for SC vs. siAPE under 
hypoxia (Tukey’s Multiple Comparisons Test).  
Figure 3: APE1/Ref-1 redox signaling affects CA9 transcription in a HIF-1-dependent 
manner 
A. HIF-1-proficient (+/+) and HIF-1-deficient (-/-) mouse embryonic fibroblasts (MEFs) were 
exposed to 0.2% oxygen for 24 hrs, and CA9 mRNA levels were evaluated by qPCR, 
representative experiment of n=3. B. HIF-1 -/- MEFs were transfected with SC or APE1/Ref-1-
directed siRNA and incubated at 0.2% oxygen for 24 hrs and CA9 mRNA levels were evaluated 
via qPCR, representative experiment of n=3. C-D. CA9 mRNA levels were evaluated via qPCR 
following APX3330 treatment and hypoxia (24 hr, 1% oxygen; representative graph of n=3). E. 
Pa03C cells were collected from monolayer (2D) cultures and 3D tumor spheroid cultures grown 
in the presence or absence of CAFs following treatment with APX3330, and CA9 protein levels 
were evaluated via western blot (representative blot of n=2). *p<0.01 & **p<0.001 (Tukey’s 
Multiple Comparisons Test).   
Figure 4: Dual-targeting of CA9 and APE1/Ref-1 acidifies PDAC cells and inhibits cell 
viability under hypoxia 
A. Panc10.05 cells were treated with APX3330 and SLC-0111 and exposed to hypoxia (0.2% 
O2) for 48 hrs prior to analysis of intracellular pH (Avg + SE, n=3). Representative images from 
pH experiments are shown in B. C-D. Viability assay of Pa02C cells treated with the indicated 
concentrations of APX3330 and CA9 inhibitors, SLC-0111 or FC13-555A and exposed to 
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hypoxia (0.2%) for six days (Avg + SE, n=6). Fold change refers to the comparison of each data 
point to the fluorescence of untreated tumor cells. *p<0.05 & **p<0.01 (Dunnett’s Multiple 
Comparisons Test); #p<0.05 & ##p<0.01 (Sidak’s Multiple Comparisons Test). Additionally, 
differences in nonlinear regression curves between treatment groups were confirmed using extra-
sum-of-squares F tests followed by Bonferroni Corrections in each experiment (p<0.05 for all 
dual-treatment curves vs. single-agent curves).  
Figure 5: Dual-targeting of CA9 and APE1/Ref-1 inhibits PDAC tumor growth in a 3D co-
culture model 
Pa03C (A, C, & E) and Panc10.05 (B, D, & F) tumor cells were grown in 3D cultures in the 
presence and absence of CAFs. Spheroids were treated with SLC-0111 alone (A & B) and in 
combination with APX3330 (C & D), and the area of tumor (red) and CAF (green) were 
quantified following 12 days in culture, n=3-4. Representative images from dual-treatment 
experiments are shown in E and F. Differences in nonlinear regression curves between treatment 
groups were confirmed using extra-sum-of-squares F tests followed by Bonferroni Corrections in 
dual-treatment experiments (p<0.01 for each curve vs. the curve for APX3330 alone in tumor 
cells alone; p<0.01 for curves with 50 μM SLC-0111 vs. the curve for APX3330 alone in tumor 
+ CAF co-cultures).  
Figure 6: Schematic demonstrating the effects of APE1/Ref-1 - CA9 dual targeting on 
cellular acidification and downstream signaling. 
Inhibition of APE1/Ref-1 redox signaling with APX3330 results in decreased DNA binding of 
transcription factors including HIF-1 (as well as STAT3 and NFκB). HIF-1 transactivation is 
stimulated under low oxygen conditions, resulting in transcription of tumor-promoting factors, 
including CA9. CA9 catalyzes the conversion of carbon dioxide and water to bicarbonate and 
hydrogen ions, resulting in stabilization of intracellular pH, which promotes cell survival under 
hypoxic conditions. Inhibition of CA9 activity with SLC-0111 promotes cell killing via 
acidification, and this inhibition is enhanced by APX3330 due to a decrease in CA9 expression 
as well as inhibition of other key signaling pathways via STAT3, NFκB, and AP-1. 
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