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Abstract

We initiate the study of three-dimensional shear-deformable geometrically exact beam

dynamics through explicit isogeometric collocation methods. The formulation we propose is

based on a natural combination of the chosen finite rotations representation with an explicit,

geometrically consistent Lie group time integrator. We focus on extending the integration

scheme, originally proposed for rigid body dynamics, to our nonlinear initial-boundary value

problem, where special attention is required by Neumann boundary conditions. The overall

formulation is simple and only relies on a geometrically consistent procedure to compute the

internal forces once control angular and linear accelerations of the beam cross sections are

obtained from the previous time step. The capabilities of the method are shown through nu-

merical applications involving very large displacements and rotations and different boundary

conditions.

Keywords: Isogeometric collocation, Explicit dynamics, Geometrically nonlinear

Timoshenko beams, Finite rotations

1. Introduction1

The study of isogeometric collocation (IGA-C) methods has been recently initiated in2

[1, 2] motivated by the idea of taking advantage from the higher-order and higher-smoothness3

NURBS basis functions used in isogeometric analysis (IGA) and the low computational cost4
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of collocation. IGA was introduced in 2005 by Hughes et al. [3] with the primary goal5

of representing the exact geometry regardless of the mesh refinement level and simplifying6

the expensive operations of mesh generation and refinement required by traditional Finite7

Element Analysis (FEA). Additionally, thanks to the higher-order basis functions with tai-8

lorable smoothness, IGA has proven to achieve increased accuracy and robustness on a per9

degree-of-freedom basis compared with standard FEA [4–7]. However, in IGA the problem10

of finding optimal quadrature rules able to fully exploit the high inter-element continuity is11

still open, although recently substantial progress was achieved [8–10]. IGA-C naturally cir-12

cumvents this issue since it is based on the discretization of the strong form of the governing13

equations where the presence of higher-order derivatives is not an issue due to the smooth-14

ness of the basis functions. In addition to the complete elimination of numerical quadrature,15

IGA-C requires only one evaluation (collocation) point per degree of freedom, regardless of16

the approximation degree. These attributes make the method much faster than standard17

Galerkin-based IGA and FEA [11]. After the initial focus on elasticity [1, 2] and other linear18

problems [11], further applications of IGA-C were proposed for phase-field modeling [12],19

contact problems [13, 14] and hyperelasticity [14]. Also, new connections between Galerkin20

and collocation methods were found in [15]. IGA-C has already been successfully applied21

to one- and two-dimensional structural problems. Locking-free formulations for Timoshenko22

beams were proposed in [16–19]. An IGA-C approach for Bernoulli-Euler beams and Kirch-23

hoff plates was proposed in [20]. Reissner-Mindlin plate and shell problems were addressed24

in [21] and [22], respectively. Kirchhoff-Love plate and shell problems were studied in [23]. In25

[24, 25] IGA-C was extended to geometrically exact shear-deformable beams, including fric-26

tionless contact in [26]. Locking-free formulations for geometrically nonlinear spatial beams27

were proposed in [25, 27] and, very recently, an implicit dynamic IGA-C formulation was28

proposed in [28].29

A field where the IGA-C attributes have a significant impact is explicit dynamics. Here30

the idea is to keep the computational advantages of one-point quadrature methods and, at31

the same time, achieve high-order accuracy avoiding stabilization techniques. An explicit32

IGA-C method was introduced by Auricchio et al. [2], where a higher-order space-accurate33

predictor-multicorrector algorithm was proposed and applied to one and two-dimensional34

2



linear elastic cases. Very recently, Evans et al. [29] developed explicit higher-order space- and35

time-accurate IGA-C methods for linear elastodynamics. They introduced a semi-discrete36

reinterpretation of the predictor-multicorrector approach and showed that for pure Dirichlet37

problems it is possible to obtain second-, fourth-, and fifth-order accuracy in space with38

one, two, and three corrector passes, respectively. For pure Neumann and mixed Dirichlet-39

Neumann problems, it is possible to achieve second- and third-order accuracy in space with40

one and two corrector passes, respectively. Additionally, higher-order accuracy in time is41

achieved in [29] using the fully discrete predictor-multicorrector algorithms within explicit42

Runge-Kutta methods.43

Following the route opened in [24, 27], in this work we extend the development of the44

IGA-C method to the explicit dynamics of three-dimensional beams undergoing finite mo-45

tions. The kinematic beam model we consider is commonly referred to as geometrically46

exact, namely able to describe three-dimensional displacements and rotations without any47

restriction in magnitude and direction and the associated strain measures are derived with-48

out introducing any approximation. We start exploring this field having in mind that the49

ultimate goal is the development of robust, efficient and high-order space (and possibly time)50

accurate methods suitable for transient analysis involving finite motions with a potential for51

all the structural elements, such as plates and shells, which share similar kinematic features52

to the present beam model. As pointed out in [29], apparently this objective cannot be53

achieved without removing one of the most critical simplifications in explicit dynamics: the54

lumped mass matrix. The most promising countermeasure to avoid equation-solving costs55

arising from a consistent mass matrix seems to be the predictor-multicorrector algorithm56

[2, 29]. Unfortunately, unlike in linear and traditional nonlinear structural dynamics, in the57

case addressed in this work the configuration space involves the rotation (Lie) group SO(3)58

where standard time integration schemes, including predictor-multicorrector methods, can-59

not be straightforwardly used. Thus, in this work we employ consistent mass and inertia60

matrices and focus mainly on the development of a geometrically SO(3)-consistent explicit61

time integration scheme. This first step prepares the ground for a following development62

specifically aimed at finding methods to avoid equation-solving suitable for SO(3).63

Over the last thirty years, starting in 1988 with the fundamental works by Simo & Vu-64

3



Quoc [30] and Cardona & Geradin [31], a large number of formulations, mainly based on65

standard FEA, have been proposed for the dynamics of geometrically exact spatial beams66

and pro and cons of different time integration schemes have been discussed in a number of67

papers [28, 32–45]. Reviews of the topic can be found in [46, 47]. In the present work, finite68

rotations are represented by elements of SO(3) and incremental rotations are parameterized69

by means of spatial rotation vectors. As in [30, 48, 49] configuration updates are made70

directly by exponentiating and superimposing the incremental rotation to the current rota-71

tion. The update operation crucially relies on the exact expression of the exponential map,72

which maps infinitesimal rotations belonging to so(3) onto elements of SO(3). The choice of73

this kinematic model has a number of advantages, especially in an explicit dynamic context74

where incremental rotations are very small due to the time step size. Firstly, the method is75

geometrically consistent in that updated rotations naturally remain in SO(3) and no addi-76

tional equations need to be collocated as in the case of quaternion-based models to guarantee77

the orthogonality of the rotation operator. Secondly, there is no need to introduce the linear78

transformation commonly used to project incremental rotations belonging to different tan-79

gent spaces to SO(3). As a consequence, issues related to its exact differentiation [31, 50, 51]80

are removed and a very simple formulation is obtained which only (but crucially) relies on81

the consistent updating procedure. Thirdly, the kinematic model is naturally singularity-free82

due to the small time step size. Finally, and even more importantly, the kinematic model83

we employ can be easily combined with one of the best-performing explicit Newmark time84

integration method for SO(3). The algorithm, which was proposed by Krysl & Endres in85

[52] for the rotational dynamics of rigid bodies, was proven to attain, or even improve, the86

performances of the two most popular existing explicit methods for rigid body dynamics, see87

[53, 54]. The algorithm is obtained from the standard Newmark scheme by setting γ = 1/288

and β = 0, so that it becomes a second-order accurate explicit central difference method.89

One of the key attribute, which also motivated the choice of this algorithm, is that with this90

specific choice of γ, the update formula for the angular velocity takes the same simple form91

of the translational velocity, avoiding again the use of linear projections between tangent92

spaces. We note also that the choice of this explicit method bypasses the arguments about93

the geometric consistency of the SO(3) Newmark scheme raised in [35]. The extension of94
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the time integrator to the flexible shear-deformable beam is straightforward, with the re-95

markable advantage of not requiring the linearization of the governing equations. Update of96

the right-hand sides of the governing equations is performed through a simple geometrically97

consistent procedure once control values of angular and linear accelerations, which are our98

primary variables, are computed from the previous time step. As opposed to the equations99

collocated in the interior points, where the pointwise kinematic analogy with the rigid body100

dynamics is directly exploited, special attention is paid to Neumann boundary conditions101

which need to be linearized.102

The outline of the paper is as follows: in Section 2 we briefly review the three-dimensional103

shear-deformable beam theory highlighting the key geometric aspects which will play a cru-104

cial role in the development of the formulation. In Section 3 we present the time and space105

discretizations of the governing equations as well as the boundary and initial conditions;106

also, we discuss the consistent time update procedure. In Section 4 we present the solution107

method and in Section 5 we apply the proposed formulation to solve problems involving108

very large displacements and rotations and with different boundary conditions. Finally, in109

Section 6, we summarize and draw the main conclusions of our work.110

2. A brief review of the shear-deformable beam theory111

In this section we briefly review the shear-deformable beam theory. We start with the112

geometric structure of the beam kinematics, then we present the balance equations and113

finally we introduce the constitutive equations.114

2.1. Kinematics115

The motion ϕ : T × B → E of a shear-deformable beam B is expressed as follows116

ϕ(t,p) = c(t, q) + R(t, q)(p− q) for each t ∈ T ,p ∈ B , (1)

where E is the Euclidean space, T is the time domain and q is the centroid of the beam117

cross section containing point p (see Figure 1). The set of the centroids of all cross sections118

is a one-dimensional space S ⊂ B that we call centroid line. The fundamental kinematic119

assumption expressed by Eq. (1) permits describing the motion of any material point p of120
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Figure 1: Sketch of the motion of a three-dimensional shear deformable beam.

the beam through the motion c of the cross section centroid and the rigid rotation R of the121

beam cross section. Therefore, a configuration of the beam is determined by the pair (c,R),122

where we remark that c is a map onto E and R is a map onto the Special Orthogonal group123

SO(3). This directly leads to the definition of the configuration manifold as follows124

C = {(c,R) | c : T × S → E ,R : T × S → SO(3)} . (2)

The tangent space to the configuration manifold at point (c,R) ∈ C is given by T(c,R)C =125

TcE × TR SO(3), where the tangent space TcE is simply made of vectors η applied in c,126

whereas the (spatial) tangent space to SO(3) at R is given by TR SO(3) =127 {
ϑ̃R | ϑ̃ ∈ so(3) ,R ∈ SO(3)

}
[30, 38]. From the physical point of view, η represents an128

incremental displacement superimposed to the current configuration of the centroid line c;129

whereas ϑ̃, such that ϑ̃R ∈ TR SO(3), represents an incremental rotation superimposed130

to the current rotation field R1. Note that we have chosen the spatial formulation (left131

translation) for the construction of the tangent space. An equivalent approach, leading to132

the material tangent space, can be used by employing a right translation of the current133

rotation R [31, 35, 37, 38]. We will come back to this later in Section 3 since tangent spaces134

1The symbol ∼ is used to denote elements of so(3), which is the set of 3 × 3 skew-symmetric matrices.

Moreover, given any skew-symmetric matrix ã ∈ so(3), a = axial(ã) indicates the axial vector of ã such that

ãh = a× h, for any h ∈ IR3 . so(3) represents the Lie algebra of SO(3), namely the tangent space to SO(3)

at the identity [55].
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play a crucial role in setting geometrically consistent time-stepping schemes. For a complete135

exposition of the geometric structure underlying the beam kinematics we refer to [48].136

2.2. Balance equations in local form137

The strong form of the balance equations [56] is given as follows

µa = n,s +n̄ with s ∈ (0, L) and t ∈ (0, T ] , (3)

jα+ ω̃jω = m,s +c,s×n+ m̄ with s ∈ (0, L) and t ∈ (0, T ] . (4)

Boundary and initial conditions in the spatial form are given as follows

η = η̄c or n = n̄c with s = {0, L} , t ∈ [0, T ] , (5)

ϑ = ϑ̄c or m = m̄c with s = {0, L} , t ∈ [0, T ] , (6)

v = v0 with s ∈ (0, L) and t = 0 , (7)

ω = ω0 with s ∈ (0, L) and t = 0 . (8)

In Eqs. (3)-(8), n and m are the internal forces and moments, respectively; n̄ and m̄138

are the distributed external forces and moments per unit length; n̄c and m̄c are the external139

concentrated forces and couples applied to any of the beam ends in the current configuration;140

η̄c and ϑ̄c are the prescribed displacement and rotation vectors at any of the beam ends in141

the current configuration; µ is the mass per unit length of the beam; j is the spatial inertia142

tensor, which is related to the material (time-independent) inertia tensor J by j = RJRT;143

ω̃ = ṘRT is the spatial skew-symmetric angular velocity tensor and ω = axial(ω̃) its axial144

vector; α = ω̇ is the spatial angular acceleration vector; v = ċ and a = v̇ are the spatial145

velocity and acceleration vectors of the cross section centroid; s 7→ ct(s) defines the position146

of the centroid of the beam cross section in the three-dimensional Euclidean space E at time147

t ∈ T .148

With (),s we indicate the partial derivative with respect to the curvilinear coordinate149

s : S → [0, L] ⊂ IR, where L is the length of the beam centroid line in the initial configuration,150

while with (̇) we indicate the partial derivative with respect to time. In the following,151

especially in the case of basis functions, first and second-order derivatives with respect to s152

will also be indicated by ()′ and ()′′, respectively.153

7



The internal stress resultants and deformation measures in the material form are given154

by155

N = RTn and M = RTm , (9)
156

ΓN = RTc,s−RT
0n0 and KM = axial(K̃ − K̃0) = K −K0 , (10)

where N and M denote the internal forces and moments in the material form, respectively.157

ΓN and KM denote the material form of the axial and shear, and bending and torsional158

strain measures, respectively. K̃ = RTR,s and K̃0 = RT
0R0,s are the current and initial159

curvatures (skew-symmetric tensors) in the material form, respectively. n0 is the unit vector160

orthogonal to the beam cross section in the initial configuration. R0 ∈ SO(3) is the rotation161

operator that expresses the rotation of the beam cross section in the initial configuration162

[57, 58].163

2.3. Constitutive equations164

We adopt a Saint Venant-Kirchhoff constitutive model. The material internal forces and165

couples are linearly related to the material strain measures as follows [31, 37, 48]166

N = CNΓN and M = CMKM , (11)

with167

CN = diag(GA1, EA,GA3) and CM = diag(EJ1, GJ,EJ3) , (12)

where GA1 and GA3 are the shear stiffnesses along the cross section principal axes, EA is168

the axial stiffness; GJ is the torsional stiffness and EJ1 and EJ3 are the principal bending169

stiffnesses.170

3. Time and space discretization of the governing equations171

In this section we introduce the time and space discretized version of the governing172

equations and present the explicit Newmark time integration scheme with the associated173

geometrically consistent update procedure.174
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3.1. Time-discretized governing equations and configuration update175

The right-hand sides of Eqs. (3) and (4) can be expressed in terms of kinematic quantities

by exploiting the constitutive equations (11). Moreover, the local balance equations must be

satisfied for each time t = tn, leading to the following time-discretized version of the balance

equations

µan = RnK̃
n
CNΓn

N + RnCNΓn
N,s + n̄n , (13)

jnαn + ω̃njnωn = RnK̃
n
CMK

n
M + RnCMK

n
M,s + c,ns ×RnCNΓn

N + m̄n , (14)

where we denote with ()n any quantity evaluated at time t = tn. By revisiting in a time-

discretized context the construction of the tangent space to the manifold C introduced with

Eq. (2), see also [24], the configuration update from C(n−1) to Cn is consistently performed

as follows

cn = c(n−1) + η(n−1) , (15)

Rn = exp(ϑ̃
(n−1)

)R(n−1) , (16)

where η(n−1) ∈ Tc(n−1)E and ϑ̃
(n−1)

∈ so(3) is such that ϑ̃
(n−1)

R(n−1) ∈ TR(n−1) SO(3) .176

η(n−1) represents an incremental displacement field which acts (through a translation) on177

the configuration of the centroid line c(n−1) and ϑ̃
(n−1)

is an incremental spatial rotation178

field which acts (through the group composition) on the rotation R(n−1). A sketch of the179

consistent time-stepping procedure is shown in Figure 2. The consistency of Eqs. (15) and180

(16) with the underlying geometric structure of the configuration manifold C is naturally181

guaranteed since the former is a standard translation in E and the latter complies with the182

group operation Rn = exp(ϑ̃
(n−1)

)R(n−1), which represents a composition of two subsequent183

rotations whose result naturally remains on SO(3) [59]. This formulation crucially relies on184

the existence of an exact formula for the exponential map referred to as Rodrigues formula185

[59–62], given by186

exp(ψ̃) = idSO(3) +
sin(ψ)

ψ
ψ̃ +

1

2

(
sin(ψ/2)

ψ/2

)2

ψ̃
2
, (17)

where ψ̃ is the skew-symmetric matrix associated with a generic rotation vector ψ with187

modulus ψ.188
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Figure 2: Sketch of the consistent configuration update: centroid position update (left) and rotation operator

update (right).

3.2. Space discretization189

With Iu = [u0, um] ⊂ IR as the normalized one-dimensional domain of the basis functions,

the approximation of the variables is introduced as follows

c(u) ≈
n∑

j=0

Rj,p(u)čj with u ∈ Iu , (18)

ϑ(u) ≈
n∑

j=0

Rj,p(u)ϑ̌j with u ∈ Iu , (19)

η(u) ≈
n∑

j=0

Rj,p(u)η̌j with u ∈ Iu , (20)

ω(u) ≈
n∑

j=0

Rj,p(u)ω̌j with u ∈ Iu , (21)

v(u) ≈
n∑

j=0

Rj,p(u)v̌j with u ∈ Iu , (22)

α(u) ≈
n∑

j=0

Rj,p(u)α̌j with u ∈ Iu , (23)

a(u) ≈
n∑

j=0

Rj,p(u)ǎj with u ∈ Iu , (24)

where (̌)j indicates the jth control value of the quantity; Rj,p indicates the jth NURBS190

basis function of degree p [63]. We note that for convenience all the kinematic quantities are191

discretized in space, however, only α̌j and ǎj are the primary variables of our problem.192
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3.3. Explicit Newmark scheme193

At time t = tn−1 = h(n− 1), h being the time step size and n the time step counter, the

control values of the incremental displacement and rotation vectors are expressed as follows

η̌
(n−1)
j = hv̌

(n−1)
j +

h2

2
ǎ
(n−1)
j , with j = 0, . . . , n , (25)

ϑ̌
(n−1)
j = hω̌

(n−1)
j +

h2

2
α̌

(n−1)
j , with j = 0, . . . , n . (26)

The explicit central difference scheme is completed with the updating formulas for the ve-

locities, which read as follows

v̌nj = v̌
(n−1)
j +

h

2

(
ǎ
(n−1)
j + ǎn

j

)
= v̌

(n−1)
pj +

h

2
ǎn
j , (27)

ω̌n
j = ω̌

(n−1)
j +

h

2

(
α̌

(n−1)
j + α̌n

j

)
= ω̌

(n−1)
pj +

h

2
α̌n

j , (28)

where we have defined v̌
(n−1)
pj = v̌

(n−1)
j + h

2
ǎ
(n−1)
j and ω̌

(n−1)
pj = ω̌

(n−1)
j + h

2
α̌

(n−1)
j . We remark194

that apparently Eq. (28) is geometrically inconsistent since α̌
(n−1)
j and α̌n

j belong to different195

tangent spaces, namely TR(n−1) SO(3) and TRn SO(3), respectively, and therefore could not196

be added. However, it has been demonstrated in [52] that for γ = 1/2, as in the present case,197

the projection TR(n−1) SO(3)→ TRn SO(3) normally required to allow additive operations on198

TRn SO(3) turns out to have no effects, so that Eq. (28) makes geometrically sense and takes199

the same form of Eq. (27).200

3.4. Consistent update of the right hand sides of the governing equations201

Eqs. (25) and (26) allow for a direct computation of the right hand sides of Eqs. (13) and202

(14), which contain quantities updated at time tn. The updating procedure must be geo-203

metrically consistent with the configuration manifold, i.e. it must be developed consistently204

with Eqs. (15) and (16).205

We start by updating the control points defining the beam axis206

čnj = č
(n−1)
j + η̌

(n−1)
j with j = 0, . . . , n , (29)

from which we straightforwardly update the spatial configuration of the centroid line and its

11



derivatives

cn(u) =
n∑

j=0

Rj,p(u)čnj , (30)

cn,s (u) =
n∑

j=0

R′j,p(u)čnj . (31)

For the rotation variables we cannot use directly the exponential map since we only have

updated control incremental rotations. We first compute the incremental rotation vector

and its derivatives as follows

ϑ(n−1)(u) =
n∑

j=0

Rj,p(u)ϑ̌
(n−1)
j , (32)

ϑ,(n−1)s (u) =
n∑

j=0

R′j,p(u)ϑ̌
(n−1)
j , (33)

ϑ,(n−1)ss (u) =
n∑

j=0

R′′j,p(u)ϑ̌
(n−1)
j , (34)

and then, by using Eq.(16), the rotation operator is consistently updated at time tn as follows207

Rn(u) = exp(ϑ̃
(n−1)

(u))R(n−1)(u) . (35)

Once the rotation operator is updated, the spatial inertia tensor is straightforwardly208

updated as follows209

jn(u) = Rn(u)J(u)RTn(u) . (36)

By exploiting the updating formulas proposed in [24], the strain measures and their210

derivatives are updated as shown in the following.211

Update of the curvature tensor and its derivative.

K̃
n

= K̃
(n−1)

+ RT(n−1)(d expϑ̃ ϑ̃,
(n−1)
s )R(n−1) . (37)

K̃,ns = K̃,(n−1)s −K̃
(n−1)

RT(n−1)(d expϑ̃ ϑ̃,
(n−1)
s )R(n−1)

+RT(n−1)(d expϑ̃ ϑ̃,
(n−1)
s )R(n−1)K̃

(n−1)
+ RT(n−1)(d expϑ̃ ϑ̃,

(n−1)
s ),s R(n−1) , (38)

from which Kn
M,s = Kn

,s −K0,s can be computed.212
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Eqs. (37) and (38) require the evaluation of the first and second derivatives of the expo-213

nential map, namely d expϑ̃ ϑ̃,
(n−1)
s and its derivative with respect to s. As done in [24], this214

is accomplished by means of a series [64], in which, due to the very small time steps, only215

terms up to the third-order are considered.216

Update of the shear and axial strain measure vector and its derivatives.

Γn
N = RTnc,ns −RT

0n0 . (39)

By making use of the updated curvature vector, we have217

Γn
N,s = −K̃

n
RTnc,ns +RTnc,nss +K̃0R

T
0c0,s −RT

0c0,ss . (40)

where c0 is the centroid line in the initial configuration.218

For additional details on the above update formulas we refer to [24, 27].219

4. Solution method220

In this section we collocate the balance equations and present the details of the solution221

procedure which involves the linearization of the rotational balance equation.222

4.1. Collocated balance equations223

In recent studies [9, 15, 65, 66] alternative choices for collocation have been proposed to224

achieve optimal convergence rates, however, in this work the equations are collocated at the225

standard Greville abscissae [1] leaving to future developments the study of different choices226

of collocation points. Note that sometimes in the following a quantity evaluated at the ith227

collocation point uci is indicated simply with a subscript i.228

With Eqs. (30), (31), (35), (36), (37), (38), (39) and (40) the right hand sides of Eqs. (13)

and (14) become known quantities. At the ith collocation point the balance equations can

be rewritten in a more compact form as follows

µan
i = ψn

i with i = 1, . . . , n− 1 , (41)

jni α
n
i + ω̃n

i j
n
i ω

n
i = χn

i with i = 1, . . . , n− 1 , (42)
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where we have set

ψn
i =

[
RnK̃

n
CNΓn

N + RnCNΓn
N,s + n̄n

]
u=uc

i

, (43)

χn
i =

[
RnK̃

n
CMK

n
M + RnCMK

n
M,s + c,ns ×RnCNΓn

N + m̄n
]
u=uc

i

. (44)

4.2. Solution procedure229

The primary unknowns of our problem are the control values of angular and linear ac-230

celerations α̌n
j and ǎn

j with j = 0, . . . , n. In contrast to the collocated translational balance231

equations (Eq. (41)) that can be discretized in space straightforwardly as follows232

µ
n∑

j=0

Rj(u
c
i)ǎ

n
j = ψn

i with i = 1, . . . , n− 1 , (45)

the collocated rotational balance equations (Eq. (42)) turn out to be nonlinear with respect233

to αn
i . This is seen by substituting Eq. (28) into Eq. (42) leading to234

jni α
n
i +

[
ω

(n−1)
p,i +

h

2
αn

i

]
× jn

[
ω

(n−1)
p,i +

h

2
αn

i

]
= χn

i with i = 1, . . . , n− 1 . (46)

The presence of the nonlinear term in the time-discretized rotational balance equation235

raises the need for a Newton-Raphson scheme where the linearized version of the rotational236

balance equation is used. By revisiting in the IGA-C context the procedure used in [52] for237

rigid bodies, we rewrite the ith nonlinear equation in a residual form as follows238

rni (αn
i ) = jni α

n
i +

[
ω

(n−1)
p,i +

h

2
αn

i

]
× jn

[
ω

(n−1)
p,i +

h

2
αn

i

]
− χn

i = 0 with i = 1, . . . , n− 1 ,

(47)

whose linearized version is given by239

L[rni (αn
i )] = r̂ni +

∂rni (α̂n
i )

∂αn
i

∆αn
i = 0 , (48)

where (̂) indicates a quantity evaluated at the current iteration, while ∆αn
i is the increment240

of the angular acceleration at the ith collocation point. The tangent operator appearing in241

Eq. (48) is given by242

∂rni (α̂n
i )

∂αn
i

= jni +
h

2

(
ω̃

(n−1)
p,i jni −

˜
jni ω

(n−1)
p,i

)
+
h2

4

(
ˆ̃α
n

i j
n
i − j̃ni α̂

n
i

)
. (49)
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Finally, the linearized and spatially discretized version of Eq. (46) becomes243

∂rni (α̂n
i )

∂αn
i

n∑
j=0

Rj(u
c
i)∆α̌

n
j = −r̂ni with i = 1, . . . , n− 1 . (50)

Eqs. (41) and (42) need to be completed with four boundary conditions which are dis-244

cussed in the following.245

4.3. Dirichlet boundary conditions246

The discretized and collocated form of Dirichlet boundary conditions, see Eqs. (5) and

(6), is

ηn
i =

n∑
j=0

Rj(u
c
i)η̌

n
j = η̄n

c , (51)

ϑn
i =

n∑
j=0

Rj(u
c
i)ϑ̌

n

j = ϑ̄
n
c , (52)

where i = 0 and/or n. Without loss of generality, we consider the case of a clamped end for

which η̄n
c = ϑ̄

n
c = 0, for each time instant tn. In this case, Eqs. (51) and (52), by making use

of Eqs. (25)-(28) and recalling that NURBS basis functions interpolate the boundary values,

become

ǎn
j = −1

h
v̌
(n−1)
pj , (53)

α̌n
j = −1

h
ω̌

(n−1)
pj , (54)

where j = 0 or n, depending on which end of the beam is considered.247

4.4. Neumann boundary conditions248

The Neumann boundary conditions, see Eqs. (5) and (6), need firstly to be linearized in

order to be expressed in terms of our primary variables. Following the procedure discussed

in [24, 27], the linearized form is given by[
R̂CNR̂Tˆ̃c,s−

˜(
R̂CN Γ̂N

)]
ϑ+

[
R̂CNR̂T

]
η,s = −

(
R̂CN Γ̂N − n̄c

)
, (55)[

−
˜(

R̂CMK̂M

)]
ϑ+

[
R̂CMR̂T

]
ϑ,s = −

(
R̂CMK̂M − m̄c

)
. (56)
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The collocated and discretized (both in space and time) versions of the above equations

become

1ψn
i

n∑
j=0

Rj,p(u
c
i)ϑ̌

n

j + 2ψn
i

n∑
j=0

R′j,p(u
c
i)η̌

n
j = ψ̄

n
i , (57)

1χn
i

n∑
j=0

Rj,p(u
c
i)ϑ̌

n

j + 2χn
i

n∑
j=0

R′j,p(u
c
i)ϑ̌

n

j = χ̄n
i , (58)

where we have set

1ψn
i =

[
R̂nCNR̂Tnˆ̃c,ns −

˜(
R̂nCN Γ̂

n

N

)]
u=uc

i

, (59)

2ψn
i =

[
R̂nCNR̂Tn

]
u=uc

i

, (60)

1χn
i =

[
−

˜(
R̂nCMK̂

n

M

)]
u=uc

i

, (61)

2χn
i =

[
R̂nCMR̂Tn

]
u=uc

i

, (62)

ψ̄
n
i = −

(
R̂nCN Γ̂

n

N − n̄n
c

)
u=uc

i

, (63)

χ̄n
i = −

(
R̂nCMK̂

n

M − m̄n
c

)
u=uc

i

, (64)

where i = 0 or n, depending on which end of the beam is considered.249

The combination of Eqs. (25) and (26) with (27) and (28) evaluated at time tn instead

of t(n−1), permits expressing the incremental displacements and rotations as follows

η̌n
j = hv̌

(n−1)
pj + h2ǎn

j , with j = 0, . . . , n , (65)

ϑ̌
n

j = hω̌
(n−1)
pj + h2α̌n

j , with j = 0, . . . , n . (66)

Eqs. (65) and (66) are finally replaced into Eqs. (57) and (58) to obtain the boundary

conditions in terms of the primary unknowns α̌n
j and ǎn

j as follows

1ψn
i h

2

n∑
j=0

Rj,pα̌
n
j + 2ψn

i h
2

n∑
j=0

R′j,pǎ
n
j =ψ̄

n
i − h

(
1ψn

i

n∑
j=0

Rj,pω̌
(n−1)
pj + 2ψn

i

n∑
j=0

R′j,pv̌
(n−1)
pj

)
,

(67)

h2

(
1χn

i

n∑
j=0

Rj,p + 2χn
i

n∑
j=0

R′j,p

)
α̌n

j = χ̄n
i − h

(
1χn

i

n∑
j=0

Rj,p + 2χn
i

n∑
j=0

R′j,p

)
ω̌

(n−1)
pj . (68)

We note that the translational equation (Eq. (67)) gives rise to a coupling between the250

linear and angular accelerations.251
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4.5. Initial conditions252

Linear and angular accelerations at the initial time are unknown since only linear and253

angular velocities are normally assigned. Here we present the procedure we employed to254

calculate initial accelerations.255

4.5.1. Internal collocation points256

The governing equations at the initial time read

µa0
i = ψ0

i with i = 1, . . . , n− 1 , (69)

j0iα
0
i + ω̃0

i j
0ω0

i = χ0
i with i = 1, . . . , n− 1 , (70)

from which we obtain

µ
n∑

j=0

Rj(u
c
i)ǎ

0
j = ψ0

i with i = 1, . . . , n− 1 , (71)

n∑
j=0

Rj(u
c
i)α̌

0
j =

(
j0i
)−1 (

χ0
i − ω̃

0
i j

0
iω

0
i

)
with i = 1, . . . , n− 1 , (72)

where ψ0
i and χ0

i are given by Eqs. (43) and (44) evaluated at t = t0.257

4.5.2. Dirichlet boundary conditions258

Consider for example the case of a clamped end. The initial boundary conditions are

η0
i =

n∑
j=0

Rj(u
c
i)η̌

0
j = 0 , (73)

ϑ0
i =

n∑
j=0

Rj(u
c
i)ϑ̌

0

j = 0 , (74)

where i = 0 or n depending on which end of the beam is considered. Eqs. (73) and (74), by

making use of Eqs. (25) and (26) evaluated at t = t0, become

n∑
j=0

Rj(u
c
i)ǎ

0
j = −2

h

n∑
j=0

Rj(u
c
i)v̌

0
j , (75)

n∑
j=0

Rj(u
c
i)α̌

0
j = −2

h

n∑
j=0

Rj(u
c
i)ω̌

0
j . (76)
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4.5.3. Neumann boundary conditions259

Again by replacing Eqs. (25) and (26) evaluated at t = t0 into Eqs. (57) and (58) we

obtain the boundary conditions in terms of the primary unknowns α̌0
j and ǎ0

j

1ψ0
i

n∑
j=0

Rj,p
h2

2
α̌0

j + 2ψ0
i

n∑
j=0

R′j,p
h2

2
ǎ0
j = ψ̄

0
i − h

(
1ψ0

i

n∑
j=0

Rj,pω̌
0
j + 2ψ0

i

n∑
j=0

R′j,pv̌
0
j

)
, (77)(

1χ0
i

n∑
j=0

Rj,p + 2χ0
i

n∑
j=0

R′j,p

)
h2

2
α̌0

j = χ̄0
i − h

(
1χ0

i

n∑
j=0

Rj,p + 2χ0
i

n∑
j=0

R′j,p

)
ω̌0

j , (78)

where i = 0 or n depending on which end of the beam is considered and 1ψ0
i ,

2ψ0
i ,

1χ0
i ,

2χ0
i , ψ̄

0
i , χ̄

0
i260

are the same as in Eqs. (59)-(64) but evaluated at t = t0.261

5. Numerical results and discussion262

In this section we present the results of some numerical applications selected to test the263

capabilities of the formulation when fast and very large motions occur and different boundary264

conditions are imposed.265

5.1. Cantilever beam266

In the first numerical application we consider a simple cantilever beam, similar to the267

one analyzed in [67], with length L = 1 m and square cross section with side 0.01 m. The268

Young’s modulus is E = 210× 109 N/m2, the Poisson’s ratio is ν = 0.2 and material density269

is ρ = 7800 kg/m3. Initially the beam axis is placed along x2 and the deformation occurs in270

the (x2, x3) plane. A concentrated downward (negative) transversal tip force F3, constant in271

time, is applied impulsively. In Figure 3 the time histories of the beam tip displacements are272

shown. We consider two load intensities: F3 = −10 N (the same as in [67]) and F3 = −100 N.273

For both cases p = 4, n = 20 and a time step h = 1× 10−6 s is used. An excellent agreement274

is found with the results obtained by Gravouil & Comberscure in [67]. In Figure 4 four275

snapshots of the deformed beam are shown. For both loads, identical time histories are276

obtained with a halved time step h = 5× 10−7 s. To assess the higher-order space-accuracy277

of the method when fast and large motions occur, in Figure 5 we show the convergence278

curves of the L2 norm of the error for the load case F3 = −100 N. The error is calculated as279

errL2 = ||ur − uh||L2/||ur||L2 , where uh and ur are the approximate and reference vertical280

18



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Figure 3: Tip displacement of a cantilever beam subjected to a tip transversal load F3 with two different

intensities: −10 N (dash-dot line), compared with the solution obtained in [67] (∗), and −100 N (solid line).

For both cases p = 4, n = 20, h = 1× 10−6.
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Figure 4: Snapshots of a cantilever beam subjected to a tip force F3 = −100 N. p = 4, n = 20, h = 1× 10−6 s.

19



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 5: L2 norm of error vs. number of collocation points for a cantilever beam under an in-plane

transversal tip force with NURBS basis functions of degrees p = 2, . . . , 6. Dashed lines indicate reference

orders of convergence.

displacements, respectively, evaluated at t = 1 ms. The reference solution ur is obtained with281

p = 6, n = 80 and a time step h = 1× 10−7 s. In this convergence study, the critical time282

step size for all combinations of n and p is estimated using the ratio between the average283

element size, approximated by L/(np), and the bar-wave velocity
√
E/ρ [68]. Time step284

sizes, preliminary assessed in this way, are further reduced in order to make sure that the285

spatial error dominates the temporal one so to capture the effects of spatial refinement. In286

the end, the following time steps are used: 1× 10−6 , 0.5× 10−6 , 0.25× 10−6 , 0.125× 10−6 s287

for n = 10, 20, 40, 60, respectively, regardless of the approximation degree p. Figure 5 shows288

convergence rates of order p, apart from the low-order cases (especially for p = 3), which289

perform poorly also in the static displacement-based formulations due to locking effects as290

documented in [24, 27].291

Finally, we observe that the presence of the nonlinear term in the rotational balance292

equation has a negligible impact on the overall efficiency of the method since the Newton-293
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Raphson iterative scheme converges always in one iteration (with a tolerance of 10−10 on294

the maximum value of the residual) regardless of the amplitude and velocity of the motion.295

This is due to the fact that the stability condition for the explicit method requires such a296

small time step that the nonlinearity associated with the angular velocity is very weak.297

5.2. Swinging flexible pendulum298

The second numerical test is the swinging flexible pendulum. It consists of an initially299

horizontal beam of length L with its axis laying along x2 hinged at the end located at (0, 0, 0)300

and free at the other end initially located at (0, L, 0). Once released, the beam falls down301

under the effect of gravity. Similar examples are proposed in [28, 39, 69, 70], where implicit302

solvers are used. We repeat here with our explicit method the same test proposed in [28, 39].303

We consider a beam of length L = 1 m with circular cross section with diameter 0.01 m. The304

Young’s modulus is E = 5× 106 N/m2, the Poisson’s ratio is ν = 0.5 and the material density305

is ρ = 1100 kg/m3. The spatial approximation is made with basis functions of degree p = 4306

and n = 30. The simulation time is 1 s and we use a time step size h = 1× 10−5 s. Unlike307

in the previous numerical application, where a very stiff beam is considered, in this case the308

beam has a much higher flexibility. Moreover, due to the hinged end, this test is used to309

verify the reliability of our formulation when mixed Dirichlet–Neumann boundary conditions310

are assigned. Figure 6 shows some snapshots taken from time 0 to 1 s with increments of311

0.1 s. The time history of the tip displacement is shown in Figure 7. An excellent agreement312

with the results obtained in [28, 39] is found.313

5.3. Three-dimensional flying beam314

This example was proposed for the first time by Simo & Vu-Quoc in [30] and later studied315

also in [41, 71, 72]. The test consists of an initially straight free flexible beam placed in the316

plane (x2, x3). At the lower end three different time-varying concentrated loads are applied317

simultaneously, namely: a positive force F2 applied along x2, and a torque with a negative318

component M1 along x1 and a positive component M3 along x3, see Figure 8(a). At time319

2.5 the three loads reach their maxim values, which are 20, 200 and 100, respectively. The320

time histories of these loads are shown in Figure 8(b).321
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Figure 6: Snapshots of a swinging flexible pendulum from time 0 to 1 s with increments of 0.1 s. p = 4, n =

30, h = 1× 10−5 s.
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Figure 7: Vertical tip displacement of a swinging flexible pendulum: comparison of the present case for

p = 4, n = 30, h = 1× 10−5 s (solid line) with Lang et al. [39] (∗) and Weeger et al. [28] (◦).
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(a) Flying flexible beam subjected to force

and moments.

0 2.5 5
-200

0
20

100

(b) Load time histories for the flying flexible beam.

Figure 8: Flying flexible beam: initial configuration and loads.

Such a system of force and couples produces a complex deformation characterized by a322

forward translational motion due to F2, a forward tumbling due to M1 and an out-of-plane323

deformation due to M3. In Figure 9, six snapshots of the flying flexible beam are shown324

projected on the (x2, x3) plane. Figure 10 shows five different snapshots projected on the325

(x1, x3) plane, and Figure 11 shows a three-dimensional view of ten snapshots. For each326

figure, the snapshots have been selected at the same time instants of [30] to facilitate the327

comparison. In order to assess the different role of time and space refinements, we present328

four cases: p = 4, h = 1× 10−5 s; p = 6, h = 1× 10−5 s, p = 4, h = 5× 10−6 s and329

p = 6, h = 5× 10−6 s, all with n = 60. All cases are in good qualitative agreement with330

results from the literature [30, 71]. Moreover, we note that the temporal error dominates331

the spatial one since no effects are seen after degree elevation. Indeed, given the same time332

step size, the solutions with p = 4 and p = 6 coincide. A similar effect is obtained by333

mesh refinement through knots insertion. Conversely, as visible in all figures, a slightly more334

accurate solution is obtained with h = 5× 10−6 in comparison with h = 1× 10−5 , although335

both time step sizes lead to stable computations.336
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Figure 9: Snapshots of the free flexible flying beam in the early tumbling stage projected on the (x2, x3)

plane.

6. Conclusions337

Motivated by the goal of achieving higher-order accuracy in explicit dynamics through338

isogeometric collocation (IGA-C) methods, as recently demonstrated for linear elastodynam-339

ics, in this paper we explored the case of three-dimensional shear-deformable geometrically340

exact beams. Unlike in linear and traditional nonlinear structural dynamics, the configura-341

tion space of geometrically exact beams involves the rotation group SO(3) where standard342

time integration schemes cannot be directly used. Thus, the focus of the present work was343

on the development of a simple and SO(3)-consistent explicit time integration scheme. The344

work is intended as a first step towards the development of robust, efficient and higher-order345

accurate methods with potential applicability to all nonlinear structural elements (e.g. plates346

and shells) which share the same kinematic assumptions underpinning the present nonlin-347

ear beam model. We chose a kinematic model which completely avoids the use of linear348

transformation commonly employed to project incremental rotations belonging to different349

tangent spaces to SO(3), leads to a naturally singularity-free formulation due to the small350
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Figure 10: Snapshots of the free flexible flying beam in the early tumbling stage projected on the (x1, x3)

plane.
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Figure 11: Snapshots of the free flexible flying beam in the early tumbling stage in a three-dimensional view.
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sizes of the time steps, and does not require the collocation of additional equations, as for351

e.g. quaternion-based models, to guarantee the geometric consistency. We combined this352

kinematic model with one of the best-performing second-order accurate explicit Newmark353

time integrators for SO(3) originally proposed for rigid body dynamics. Update of the right-354

hand sides of the governing equations is performed straightforwardly within a geometrically355

consistent procedure once the primary control variables (angular and linear accelerations356

of the beam cross section) are computed from the previous time step. As opposed to the357

equations collocated in the interior points, where no linearization of the governing equations358

is needed, linearization is necessary for the Neumann boundary conditions.359

The proposed formulation was applied to problems involving very large and fast rotations,360

considering different boundary conditions and stiffness properties of the beam. In all cases361

a very good agreement with literature results was obtained. Moreover, two observations,362

useful to provide guidance for future studies, were made: (i) the nonlinear term associated363

with the angular acceleration appearing in the time-discretized rotational balance equation364

has a negligible effect on the overall efficiency of the method since the Newton-Raphson365

algorithm converges always in one iteration regardless of size and velocity of the rotations;366

(ii) the overall accuracy is dominated by the temporal error. The first observation indicates367

that a linearized version of the rotational balance equation might be used instead of the368

original nonlinear one. We have already tested this possibility along with another critical369

simplification consisting in lumping mass and inertia matrices. Preliminary promising results370

not reported here were obtained, however, further work is still needed to guarantee the desired371

higher-order accuracy in space. The second observation indicates that developing SO(3)-372

consistent higher-order time-accurate schemes is of crucial importance in the development373

of explicit geometrically exact formulations.374
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[35] J. Mäkinen, Critical study of Newmark-scheme on manifold of finite rotations, Computer482

Methods in Applied Mechanics and Engineering 191 (2001) 817–828.483

[36] I. Romero, F. Armero, An objective finite element approximation of the kinematics of484

geometrically exact rods and its use in the formulation of an energy-momentum conserv-485

32



ing scheme in dynamics, International Journal for Numerical Methods in Engineering486

54 (12) (2002) 1683–1716.487
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