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Abstract
This paper aims to solve the problem of distributed joint detection, tracking and clas-
sification (D‐JDTC) of a target on a peer‐to‐peer sensor network. The target can be
present or not, can belong to different classes, and depending on its class can behave
according to different kinematic modes. Accordingly, it is modelled as a suitably extended
Bernoulli random finite set (RFS) uniquely characterized by existence, classification, class‐
conditioned mode and class & mode‐conditioned state probability distributions. Existing
algorithms have been devised to perform target JDTC based on a single sensor and can
only be easily extended to multiple sensors in a centralized configuration, wherein a
fusion centre gathers measurements from all sensors. In this paper, by designing a suitable
rule for fusing local posteriors that convey information on target existence, class, mode
and state from different sensor nodes, a novel scalable and fault‐tolerant D‐JDTC Ber-
noulli filter is proposed, and its performance is evaluated by means of simulation
experiments.
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1 | INTRODUCTION

Target detection and tracking are crucial tasks in surveillance
(e.g. radar [1, 2], sonar [3], autonomous driving [4] and mobile
robotics [5]) systems. Though a possible approach is to sepa-
rately deal with detection and tracking as two sequential phases
[6], that is, by first performing target initialization followed by
track maintenance, it has been recognized that joint processing
of both tasks can substantially enhance the overall performance
[7]. In certain circumstances, it is also desired to perform target
classification for high‐level applications, for example, situation
assessment [8–10] and air surveillance [11]. Moreover, knowl-
edge of the target class provides valuable information on the
possible kinematic behaviours of the target [12] (e.g. a fighter
aircraft can perform sharper manoeuvres than a cargo aircraft),
which in turn, can be profitably exploited to improve tracking
performance [13]. To this end, it is possible to perform

classification based on the results of target tracking and then
the class information is fed back to the tracking procedure,
where the classification can be carried out, for instance, by
means of the belief function theory [11]. The recent develop-
ment of random finite set (RFS) methods has produced several
interesting contributions to joint detection, tracking and clas-
sification (JDTC) of both single and multiple targets [14–20]
but all based on a single‐sensor system.

In many practical scenarios, however, multi‐sensor [21]
surveillance systems entail significant advantages in terms of
enhanced tracking accuracy, target observability [22], reliability
as well as expanded coverage [23], thus motivating the interest
of the present work for multi‐sensor JDTC. In the multi‐
sensor case, it is possible to adopt a centralized configura-
tion, wherein a fusion centre gathers measurements from all
sensors [24], or a distributed one, wherein each sensor updates
a local posterior with its own measurements and then fuses it
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with the posteriors of the neighbours. It is well recognized that
centralized fusion can provide better performance while, on
the other hand, distributed fusion is preferable in terms of
scalability and fault tolerance [25].

The goal of this paper is to address single‐target multi‐
sensor JDTC with special emphasis on the distributed
configuration. In order to account for target appearance/
disappearance and the presence of clutter, the target is
modelled as a Bernoulli RFS [26]. Then, for classification
purposes, different target classes are considered, each being
characterized by a different set of possible kinematic modes.
Overall, target's information, to be recursively propagated in
time, consists of existence probability (EP), class probability
mass function (CPMF), class‐conditioned (kinematic) mode
PMFs (MPMFs) and class&mode‐conditioned state probability
density functions (SPDFs). It is worth to point out that the
joint estimation of class and mode positively affects both
classification and tracking. In fact, kinematic mode information
can be exploited for target classification, and inversely, class
information can help to define the possible modes of a target,
thus improving tracking performance [14].

In the centralized case, the optimal posterior based on
measurements from all sensors can be obtained at each itera-
tion following the Bayesian approach. In the distributed case,
on the other hand, the local posterior of each sensor is first
obtained with the existing Bernoulli‐JDTC method [15], and
then generalized covariance intersection (GCI) [27–30] is
exploited to distributedly fuse local posteriors so as to achieve
EP, CPMF, MPMFs and SPDFs of the global posterior.
Furthermore, the Gaussian mixture (GM) implementation of
the proposed method is provided.

Summarizing, the main contributions of this paper are as
follows: (i) distributed JDTC (D‐JDTC) on a peer‐to‐peer (i.e.
without any fusion centre) sensor network is addressed; (ii) the
more communication & computationally efficient GM imple-
mentation of multi‐sensor JDTC is presented, as opposed to
the particle filter implementation adopted in Ref. [15] for the
single‐sensor JDTC Bernoulli filter. Notice that, to the best of
our knowledge, this is the first paper addressing distributed
JDTC.

The rest of this paper is organized as follows: Section 2
formulates the multi‐sensor JDTC problem considered in this
paper. Sections 3 and 4 present centralized and distributed
multi‐sensor JDTC Bernoulli filters, respectively. Section 5
deals with the Gaussian‐mixture implementation of the pro-
posed filters. Section 6 evaluates the performance of the
proposed filters by simulation experiments. Finally, Section 7
ends the paper with concluding remarks.

2 | PROBLEM FORMULATION

This section formulates the JDTC problem of interest, relative
to a single target in a cluttered environment surveiled by
multiple sensors. We will first model target dynamics and then
multi‐sensor measurement generation.

2.1 | Network model and processing
procedure

This paper considers multi‐sensor JDTC according to two
types of configurations, referred to as centralized and
distributed, schematized in Figure 1. Hereafter, N denotes the
set of sensors of cardinality jN j ¼ N .

In the centralized case, each sensor i ∈N transmits, at
each time k, its measurement set Zi

k to a fusion centre,
wherein a centralized fusion is carried out. However, the
centralized configuration is not scalable with respect to the
number of sensors and has also a single point of failure (the
fusion centre).

For this reason, this paper mainly focusses on the
distributed setting of Figure 1b, wherein the sensor network is
characterized by the following features: (1) there is no central
fusion node; (2) each node only exchanges information with its
neighbours. From the mathematical point of view, the network
topology is described in terms of a directed graph G ¼ N ; Eð Þ

where E ⊆N �N is the set of edges (links), such that
ði; jÞ ∈ E if node j receives information from node i. Moreover,
for each node i, N i is the set of its in‐neighbours (including
node i itself) from which it receives information. In particular,
as shown in Figure 1b, node i performs local filtering with the
measurement set Zi

k, combines its local information with the
one from the in‐neighbours via GCI fusion, and provides its
local information to the out‐neighbours.

(a)

(b)

F I GURE 1 Two configurations of multi‐sensor network.
(a) Centralized. (b) Distributed
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2.2 | Target dynamics

To represent the target, let us introduce the following three
items: kinematic state x ∈ X, X being an Euclidean state space;
class c ∈ C, C ¼ c1;…; cjCj

� �
being a discrete class set; (kine-

matic) mode m ∈Mc,Mc ¼ mc;1;…;mc;jMc j

� �
being a class‐

dependent discrete mode set, where |⋅| denotes cardinality.
To summarize target information, it is, therefore, convenient
to define the augmented state vector x¼ x⊤; c;m½ �⊤ ∈ X�

C �Mc.
Since the target can either exist or not, it is naturally

modelled as a Bernoulli RFS, which can be either empty or a
singleton, in the augmented state space, with some existence
probability (EP) r ∈ [0, 1]. Accordingly, the target set density is
defined as

f ðXÞ ¼

1 − r; if X ¼ ;

r sðxÞ; if X ¼ fxg

0; if jXj > 1

8
><

>:
ð1Þ

where s(x) = s(x, c, m) is the augmented state PDF; by the
chain rule, such a PDF can be factored as

sðxÞ ¼ sðx; c;mÞ ¼ sðxjc;mÞ βðmjcÞ γðcÞ ð2Þ

where γ(c) is the class PMF (CPMF); β(m|c) is the class‐
conditioned mode PMF (MPMF); s(x|c, m) is the class&mode‐
conditioned state PDF (SPDF). Hence, the target is completely
characterized by EP r, CPMF γ(⋅), MPMFs fβð⋅jcÞgc∈C and
SPDFs fsð⋅jc;mÞgc∈C;m∈Mc

. For the sake of simplicity, hereafter,
the Bernoulli set density (1)–(2) will be referred to the shorthand
notation f ¼ r; γ; β; sf g.

The target dynamics has to account for appearance (birth),
disappearance (death) and motion. In this respect, it can be
completely characterized by the transition density
Φkjk−1 XþjXð Þ, which expresses, in probabilistic terms, the
transition of the target set from X at time k−1 to Xþ at time k.
Specifically,

Φkjk−1 Xþj;ð Þ ¼
1 − pB; if Xþ ¼ ;

pB ⋅ b xþð Þ; if Xþ ¼ xþf g

(

ð3Þ

Φkjk−1 Xþjfxgð Þ ¼
1 − pS; if Xþ ¼ ;

pS ⋅ ϕkjk−1 xþjxð Þ; if Xþ ¼ xþf g

(

ð4Þ

where pB and pS are the probabilities of appearance of a
newborn target and survival of an existing target, respectively;
b(x+) = γB(c+) βB(m+|c+) sB(x+|c+, m+) is the a priori state
PDF of the potential new target; ϕk|k−1(x+|x) is the transi-
tion PDF, in the augmented state space, of the existing target.
For ease of presentation, the survival probability pS is

supposed to be independent of the (augmented) state, but all
the ensuing developments can be readily generalized to the
case of a state‐dependent survival probability. For the target
class, mode and state evolution, the following reasonable as-
sumptions are made:

� The target class remains constant over time, that is, ck =
ck−1;

� The mode transition is governed by a class‐dependent
homogeneous Markov chain with transition probabilities

Prob mk ¼mþjmk−1 ¼m; cð Þ ¼ πc mþjmð Þ; ð5Þ

� The target motion is modelled by the mode‐dependent state
transition density

Prob xk ¼ xþjxk−1 ¼ x;mk ¼mð Þ ¼ φ xþjx;mð Þ: ð6Þ

Taking into account the above assumptions, the transition
PDF turns out to be,

Φkjk−1 xþjxð Þ ¼Φkjk−1 xþ; cþ;mþjx; c;mð Þ

¼ δcþ;c πc mþjmð Þφ xþjx;mþð Þ
ð7Þ

where δcþ;c is the Kronecker delta equal to 1 if c+ = c and to
zero otherwise.

2.3 | Multi‐sensor measurement model

The area of interest is monitored by a set of sensors N . At
sampling time k, sensor node i ∈N provides the measurement
RFS

Zi
k ¼ T

i X kð Þ ∪ Ki
k; ð8Þ

which is the union of the target‐originated RFS T i X kð Þ

and the clutter set Ki
k. The target‐originated RFS takes the

form,

T i X kð Þ ¼

;; if X k ¼ ;

;; if X k ¼ xkf g with prob: 1 − piD xk; cð Þ

zik; if X k ¼ xkf g with prob: piD xk; cð Þ

8
>>><

>>>:

zik � ℓi zikjxk
� �

ð9Þ

where ℓi(z|x) is the likelihood function associated to the ith
sensor. The clutter set Ki

k is modelled as Poisson RFS [31] with
probability hypothesis density (PHD) κ(z) defined over the
measurement space. The measurements of different sensors
are supposed to be mutually conditionally independent. Notice
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that, in the considered multi‐sensor measurement model, the
target class c ∈ C only affects detection probabilities piDðx; cÞ
while the target mode m ∈Mc is irrelevant.

3 | CENTRALIZED JDTC‐BF
ALGORITHM

This section focusses on the centralized configuration,
wherein all sensor nodes i ∈N convey their measurement sets
Zi

k to a fusion centre that, in principle, should be able to
perform optimal multi‐sensor fusion, that is, to provide the
Bernoulli set density f Xkj⋃i∈NZ

i
1:k

� �
where Zi

1:k denotes the
sequence of measurements collected by sensor i from time 1
to time k. Hereafter, it will be shown how to extend the joint
detection and tracking Bernoulli filtering approach of Ref.
[7,25,31] to the JDTC setting of this paper. Specif-
ically, assuming that at time k−1, the augmented Bernoulli
density fk−1 = {rk−1, γk−1, βk−1, sk−1} is given and following a
Bayesian approach, the aim is to first perform prediction to
obtain fk|k−1 = {rk|k−1, γk|k−1, βk|k−1, sk|k−1} by exploiting
the target dynamics (3)‐(7) and then followed by multi‐sensor
update to get fk = {rk, γk, βk, sk} by exploiting the measure-
ment model (8).

3.1 | JDTC‐BF prediction

Prediction of a standard Bernoulli RFS density fk−1 = {rk−1,
sk−1} into fk|k−1 = {rk|k−1, sk|k−1} can be found in Ref. [25]
and Equations (10)–(12). The following result [15] provides
the extension of such prediction to a Bernoulli RFS density
defined over the augmented class‐mode‐state space.

Proposition 1. Ref. [15] Given the Bernoulli RFS
density fk−1 = {rk−1, γk−1, βk−1, sk−1}, the predicted
density fkjk−1 = {rkjk−1, γkjk−1, βkjk−1, skjk−1} is ob-
tained as follows:

rkjk−1 ¼ pB 1 − rk−1ð Þ þ pS rk−1; ð10Þ

γkjk−1ðcÞ ¼
pB 1 − rk−1ð Þ

rkjk−1
γBðcÞ þ

pS rk−1

rkjk−1
γk−1ðcÞ; ð11Þ

βkjk−1ðmjcÞ ¼
pB 1 − rk−1ð Þ

rkjk−1γkjk−1ðcÞ
γBðcÞβBðmjcÞ

þ
pS rk−1

rkjk−1γkjk−1ðcÞ
γk−1ðcÞ

�
X

m0∈Mc

πc mjm0ð Þβk−1 m0jcð Þ;

ð12Þ

skjk−1ðxjc;mÞ ¼
pB 1 − rk−1ð Þ γBðcÞ

rkjk−1γkjk−1ðcÞβkjk−1ðmjcÞ

� βBðmjcÞ sBðxjc;mÞ

þ
pS rk−1γk−1ðcÞ

rkjk−1γkjk−1ðcÞβkjk−1ðmjcÞ

�
X

m0∈Mc

πc mjm0ð Þβk−1 m0jcð Þ

� ∫ φ xjx0;mð Þ sk−1 x0jc;m0ð Þdx0:

ð13Þ

3.2 | JDTC‐BF centralized multi‐sensor
update

The following result extends in a straightforward way the
single‐sensor update in Ref. [15] to the centralized multi‐sensor
update of the augmented target Bernoulli density.

Proposition 2. Given the predicted Bernoulli RFS
density fkjk−1 = {rkjk−1, γkjk−1, βkjk−1, skjk−1} and the
measurement RFSs Zi

k

� �

i∈N , the updated density
fk = {rk, γk, βk, sk} is obtained as follows:

rk ¼
rkjk−1

P

c∈C
γkjk−1ðcÞℓðcÞ

1 − rkjk−1 þ rkjk−1
P

c∈C
γkjk−1ðcÞ ℓðcÞ

; ð14Þ

γkðcÞ ¼
γkjk−1ðcÞ ℓðcÞ
P

c∈C
γkjk−1ðcÞ ℓðcÞ

; ð15Þ

βkðmjcÞ ¼
βkjk−1ðmjcÞℓðmjcÞ
P

m∈Mc

βkjk−1ðmjcÞℓðmjcÞ
; ð16Þ

skðxjc;mÞ ¼
skjk−1ðxjc;mÞℓðxjc;mÞ

∫ skjk−1 x0jc;mð Þℓ x0jc;mð Þ dx0
; ð17Þ

where

ℓðcÞ ¼
X

m∈Mc

βkjk−1ðmjcÞ ℓðmjcÞ; ð18Þ

ℓðmjcÞ ¼ ∫ skjk−1ðxjc;mÞℓðxjc;mÞ dx; ð19Þ

ℓðxjc;mÞ ¼ ∏
i∈N

1 − piDðcÞ þ piDðcÞ
X

z∈Zi
k

ℓiðzjxÞ
κðzÞ

2

4

3

5: ð20Þ
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According to the above Propositions 1 and 2, the resulting
C‐JDTC‐BF algorithm is given in Algorithm 1, where the
maximum a posteriori probability (MAP) criterion is used for
class and mode estimation, whereas the kinematic state esti-
mate can be computed according to either the MAP or mini-
mum mean square error (MMSE) criterion.

Algorithm 1: C‐JDTC‐BF (Time k)

4 | DISTRIBUTED JDTC‐BF
ALGORITHM

This section deals with the distributed setting, wherein each
sensor node i ∈N computes a local posterior f i = {ri, γi, βi,
si} and fuses it with those of the in‐neighbours. The idea is to
approximate the global posterior f X kj⋃i∈NZ

i
1:k

� �
in each

node via repeated fusion (consensus) iterations with the
neighbouring nodes. In particular, the GCI fusion rule [32] is
adopted by which the fused density is nothing but the
geometrical average [33] of the fusing ones, that is,

f ðXÞ ¼
∏
i∈N

f iðXÞ
h iωi

∫ ∏
i∈N

f iðXÞ
h iωi

dX
; ð21Þ

with suitably chosen fusion weights ωi ∈ (0, 1) such thatP
i∈Nωi ¼ 1. The GCI fusion of Bernoulli RFS densities

f i = {ri, si} into f ¼ r; sgf can be found in Ref. [26] and
Equations (24) and (25). The next result provides an extension
to the JDTC case with augmented Bernoulli RFS densities
consisting of EP, CPMF, MPMFs and SPDFs

Theorem 1. Given local Bernoulli RFS densities
f i = {ri, γi, βi, si} and fusion weights ωi for any i ∈N ,
the GCI‐fused density in (21) turns out to be a Ber-
noulli RFS density f ¼ r; β; γ; s

� �
given by

r ¼
~r
P

c∈C
~γðcÞ

P

m∈Mc

~βðmjcÞ ∫ ~sðxjc;mÞdx

~ζ þ ~r
P

c∈C
~γðcÞ

P

m∈Mc

~βðmjcÞ ∫ ~sðxjc;mÞdx;
ð22Þ

γðcÞ ¼
~γðcÞ

P

m∈Mc

~βðmjcÞ ∫ ~sðxjc;mÞdx
P

c∈C
~γðcÞ

P

m∈Mc

~βðmjcÞ ∫ ~sðxjc;mÞdx;
ð23Þ

βðmjcÞ ¼
~βðmjcÞ ∫ ~sðxjc;mÞdx
P

m∈Mc

~βðmjcÞ ∫ ~sðxjc;mÞdx
; ð24Þ

sðxjc;mÞ ¼
~sðxjc;mÞ

∫~sðxjc;mÞ dx
; ð25Þ

with

~sðxjc;mÞ ¼ ∏
i∈N

siðxjc;mÞ
� �ωi

; ð26Þ

~βðmjcÞ ¼ ∏
i∈N

βiðmjcÞ
� �ωi

; ð27Þ

~γðcÞ ¼ ∏
i∈N

γiðcÞ
� �ωi

; ð28Þ

~ζ ¼ ∏
i∈N

1 − ri
� �ωi

; ð29Þ

~r ¼ ∏
i∈N

ri
� �ωi

: ð30Þ

Proof: see Appendix.
For the sake of scalability, the global fusion (21) over the

whole network N is actually replaced by a sequence of L ≥ 1
fusion (consensus) steps over the subnetwork N i containing
node i and its in‐neighbours, that is, all nodes j ≠ i from which
node i has received data. More precisely, for l = 1 , ⋯ , L,
Equation (21) is replaced by the following iterative consensus
procedure carried out in each node i:

f ilðXÞ ¼

∏
j∈N i

f jl−1ðXÞ
h iωi;j

∫ ∏
j∈N i

f jl−1ðXÞ
h iωi;j

dX
ð31Þ

initialized from f i0ðXÞ ¼ f iðXÞ and with consensus weights
ωi,j > 0, satisfying

P
j∈N iωi;j ¼ 1, possibly selected so as to

ensure that f ilðXÞ converges to f ðXÞ as l → ∞. The resulting
D‐JDTC‐BF algorithm is summarized in Algorithm 2.
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Algorithm 2: D‐JDTC‐BF (Node i, Time k)

Remark 1 It is worth pointing out that the D‐JDTC‐
BF approach of this section significantly extends the
previous work in Ref. [34] on distributed multiple‐
model Bayesian tracking of a manoeuvring target. In
fact, the D‐JDTC‐BF also allows to perform target
detection and classification, besides tracking, and
considers the presence of clutter as well as target
appearance/disappearance.

5 | GAUSSIAN‐MIXTURE
IMPLEMENTATION OF JDTC‐BF

In this section, the JDTC‐BF is implemented by utilizing the
GM approach [35]. For the subsequent developments, the
target motion is modelled by a mode‐dependent state equation
of the form,

xk ¼ f xk−1;mkð Þ þ wk

wk � G ⋅; 0;Q mkð Þð Þ
ð32Þ

where wk is a Gaussian process noise with zero mean and
mode‐dependent covariance Q(mk). Accordingly, the kine-
matic state transition density is

φ xþjx;mþð Þ ¼ G xþ; f x;mþð Þ;Q mþð Þð Þ: ð33Þ

Further, each sensor i is modelled by a measurement
equation of the form,

zik ¼ hi xkð Þ þ vik

vik � G ⋅; 0;Ri� � ð34Þ

where vik is a Gaussian measurement noise with zero mean and
covariance Ri. The measurement noises vik of different sensors
are assumed mutually independent and independent of the
process noise wk. Accordingly, the likelihood function associ-
ated with the ith sensor measurement model in Equation (9) is
given by

ℓiðzjxÞ ¼ G z; hiðxÞ;Ri
� �

: ð35Þ

Hereafter, in order to approximate the likelihood function
of non‐linear measurement (34), we follow the EKF approach
and linearize the function hi based on the Taylor expansion at x0

hiðxÞ ≅ hi x0ð Þ þHi x0ð Þ x − x0ð Þ; ð36Þ

where Hi is the Jacobian matrix. Similarly, the function f is
linearized as

f ðx;mÞ ≅ f x0;mð Þ þ F x0;mð Þ x − x0ð Þ ð37Þ

where F(x0, m) is the Jacobian matrix with respect to x for a
given m.

In the proposed implementation scheme, the GM is uti-
lized to approximately represent SPDFs of the Bernoulli
density. In particular, for a Bernoulli density f = {r, γ, β, s}, a
GM with J(c, m) Gaussian components (GCs) is employed for
the SPDF

sðxjc;mÞ ¼
XJðc;mÞ

j¼1
αjðc;mÞ ⋅ G x; μjðc;mÞ; Pjðc;mÞ

� �
; ð38Þ

where αj(c, m), μj(c, m) and Pj(c, m) are the weight, mean and
covariance of jth GC conditioned on the class c ∈ C and mode
m ∈Mc. Thus, the SPDF can be more compactly rewritten as

s¼ αj; μj; Pj

n oJðc;mÞ

j¼1
.

5.1 | Prediction

At time k−1, given the prior augmented Bernoulli density
fk−1 = {rk−1, γk−1, βk−1, sk−1} with class&mode‐condi-
tioned SPDFs represented in GM form,

sk−1ðxjc;mÞ ¼
PJk−1ðc;mÞ

j¼1
αk−1;jðc;mÞ

�G x; μk−1;jðc;mÞ; Pk−1;jðc;mÞ
� �

ð39Þ

and the augmented birth Bernoulli density fB = {pB, γB, βB, sB}
with SPDFs represented in GM form,
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sBðxjc;mÞ ¼
XJBðc;mÞ

j¼1
αB;jðc;mÞG x; μB;jðc;mÞ; PB;jðc;mÞ

� �
;

then the class&mode‐conditioned SPDF of the augmented
predicted density fk|k−1 = {rk|k−1, βk|k−1, γk|k−1, sk|k−1} via
Equations (10)–(13) is given by

skjk−1ðxjc;mÞ ¼
pB 1 − rk−1ð ÞγBðcÞβBðmjcÞ
rkjk−1γkjk−1ðcÞβkjk−1ðmjcÞ

�
XJBðc;mÞ

j¼1
αB;jðc;mÞ

� G x; μB;jðc;mÞ; PB;jðc;mÞ
� �

þ
pS rk−1γk−1ðcÞ

rkjk−1γkjk−1ðcÞ βkjk−1ðmjcÞ

�
X

m0∈Mc

πc mjm0ð Þβk−1 m0jcð Þ

�
XJk−1 c;m0ð Þ

j¼1

αk−1;j c;m0ð Þ

� G x; μSkjk−1;j c;m;m
0ð Þ; PS

kjk−1;j c;m;m
0ð Þ

� �
;

ð40Þ

where

μSkjk−1;j c;m;m
0ð Þ ¼ f μk−1;j c;m

0ð Þ;m
� �

ð41Þ

PS
kjk−1;j c;m;m

0ð Þ ¼ Fk;jPk−1;j c;m0ð ÞF⊤
k;j þQkðmÞ ð42Þ

Fk;j ¼
∂f
∂x

μk−1;j c;m
0ð Þ;m

� �
: ð43Þ

Notice that the predicted densities sk|k−1(x|c, m) in Equa-
tion (40) are still in GM form, but with an increased number of
GCs given by

Jkjk−1ðc;mÞ ¼ JBðc;mÞ þ
X

m0∈Mc

Jk−1 c;m0ð Þ; ð44Þ

and can, therefore, be rearranged as

skjk−1ðxjc;mÞ ¼
XJkjk−1ðc;mÞ

j¼1
αkjk−1;jðc;mÞ

� G x; μkjk−1;jðc;mÞ; Pkjk−1;jðc;mÞ
� �

ð45Þ

for appropriate weights, means and covariances of the GCs.

5.2 | Single‐sensor update of local JDTC‐BF

Let us now consider a single‐sensor update with the
local measurement set Zk ¼ Z

i
k, omitting for the sake

of simplicity superscript i. Starting from the predicted density
fk|k−1 = {rk|k−1, γk|k−1, βk|k−1, sk|k−1}, we can, therefore,
apply Equations (14)–(17) to get fk = {rk, γk, βk, sk}.
Exploiting the GM form Equation (45) of sk|k−1(x|c, m) and
Equation (35), the likelihoods Equation (19) take the form,

ℓðmjcÞ ¼ 1 − pDðx; cÞ½ �

þ pDðx; cÞ
X

z∈Zk

XJkjk−1ðc;mÞ

j¼1
αk;jðc;m; zÞ:

ð46Þ

Accordingly, the updated SPDFs in Equation (17) become
as follows:

skðxjc;mÞ ¼
1
Λ
� 1 − pDðx; cÞ½ �

XJkjk−1ðc;mÞ

j¼1

αkjk−1;jðc;mÞ

2

4

�G x; μkjk−1;jðc;mÞ; Pkjk−1;jðc;mÞ
� �

þ pDðcÞ
X

z∈Zk

XJkjk−1ðc;mÞ

j¼1

αk;jðc;m; zÞ

� G x; μk;jðc;m; zÞ; Pk;jðc;mÞ
� �

3

7
5

ð47Þ

Λ¼ 1 − pDðcÞ½ �

þ pDðcÞ
X

z∈Zk

XJkjk−1ðc;mÞ

j¼1
αk;jðc;m; zÞ

ð48Þ

αk;jðc;m; zÞ ¼
qðzÞ
κðzÞ

αkjk−1;jðc;mÞ ð49Þ

qðzÞ ¼ G z; h μkjk−1;jðc;mÞ
� �

; Sk;j
� �

ð50Þ

μk;jðc;m; zÞ ¼ μkjk−1;jðc;mÞ

þ Kk;j z − h μkjk−1;jðc;mÞ
� �� � ð51Þ

Hk;j ¼
∂h
∂x

μkjk−1;jðc;mÞ
� �

ð52Þ

Pk;jðc;mÞ ¼ I − Kk;jHk;j
� �

Pkjk−1;jðc;mÞ ð53Þ

Kk;j ¼ Pkjk−1;jðc;mÞH⊤
k;jS

−1
k;j ð54Þ
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Sk;j ¼ RþHk;jPkjk−1;jðc;mÞH⊤
k;j: ð55Þ

Notice that Equation (47) is in GM form, as required for
the subsequent steps, with a number of GCs,

Jkðc;mÞ ¼ jZkj þ 1ð ÞJkjk−1ðc;mÞ ð56Þ

increased by a factor equal to the number of measurement plus
one.

Remark 2 JDTC aims to jointly estimate target state,
class and mode. In Ref. [15], the proposed method
solves the problem by exploiting a sequential Monte
Carlo (SMC) implementation of the Bernoulli filter.
Since typically GM representation of a PDF is more
parsimonious than SMC representation and also
because JDTC involves multiple SPDFs for all class‐
mode pairs (c, m), the GM approach seems by far
preferable, especially in the distributed case, wherein
posteriors are transmitted and received by each sensor
node. Unfortunately, however, the number of GCs
increases at each Bayesian step (prediction, update or
fusion) so that suitable pruning and/or merging pro-
cedures (see Ref. [36], Table II]) are needed to limit
such a number.

5.3 | Multi‐sensor update of C‐JDTC‐BF

Proposition 2 provides the update equations based on the
Bayes‐optimal C‐JDTC‐BF. In the multi‐sensor case, for the
class&mode‐conditioned SPDF, it is possible to implement
centralized fusion by iterating single‐sensor Bernoulli filter
updates as follows [15]:

� Starting from the prior sð0Þk ¼ skjk−1, first compute sð1Þk

¼ αð1Þk;j ; μ
ð1Þ
j;k ; P

ð1Þ
k;j

n oJð1Þk ðc;mÞ

j¼1
using measurements and param-

eters of sensor 1 according to the single‐sensor Bernoulli
filter update procedure of the previous subsection

� Next, apply the same procedure to the prior sð1Þk , with
measurements and parameters of sensor 2, to get sð2Þk

¼ αð2Þk;j ; μ
ð2Þ
k;j ; P

ð2Þ
k;j

n oJð2Þk ðc;mÞ

j¼1

� Repeat the same step until all sensors have been considered
and sk ¼ sðjN jÞk is obtained

The multi‐sensor updated Bernoulli density fk = {rk, γk, βk,
sk} can be obtained by using Equations (14)–(17). Further-
more, the updated SPDFs in Equation (17) are computed by
using the above‐mentioned iterations

skðxjc;mÞ ¼ΨðjN jÞk ◦ ⋯ ◦ Ψð2Þk ◦ Ψð1Þk skjk−1ðxjc;mÞ
� �

ð57Þ

where ○ denotes composition, and

ΨðiÞk sði−1Þ
k ðxjc;mÞ
h i

¼
1

ΛðiÞ
� 1 − pðiÞD ðcÞ
h ih

�
XJði−1Þ

k ðc;mÞ

j¼1

~αði−1Þ
k;j ðc;mÞ

� G x; ~μði−1Þ
k;j ðc;mÞ; ~P

ði−1Þ
k;j ðc;mÞ

� �

þ pðiÞD ðcÞ
X

z∈Zi
k

XJ ði−1Þ
k ðc;mÞ

j¼1
αðiÞk;jðc;m; zÞ

� G x; μðiÞk;jðc;m; zÞ; P
ðiÞ
k;jðc;mÞ

� �i

¼
1

ΛðiÞ
XJ
ðiÞ
k ðc;mÞ

j¼1

~αðiÞk;jðc;mÞ

2

4

�G x; ~μðiÞk;jðc;mÞ; ~P
ðiÞ
k;jðc;mÞ

� �
3

5

ð58Þ

where ~αð0Þk;j ðc;mÞ ¼ αkjk−1;j ðc;mÞ ~μð0Þk;j ðc;mÞ ¼ μkjk−1;jðc;mÞ

~P
ð0Þ
k;j ðc;mÞ ¼ Pkjk−1;jðc;mÞ, and

ΛðiÞ ¼ 1 − pðiÞD ðcÞ
h i

þ piDðcÞ
X

z∈ZðiÞk

XJði−1Þ
k ðc;mÞ

j¼1
αðiÞk;jðc;m; zÞ

ð59Þ

JðiÞk ðc;mÞ ¼ Jði−1Þ
k ðc;mÞ þ jZi

kjJ
ði−1Þ
k ðc;mÞ ð60Þ

αðiÞk;jðc;m; zÞ ¼
qðiÞðzÞ
κðzÞ

~αði−1Þ
k;j ðc;mÞ ð61Þ

qðiÞðzÞ ¼ G z; h ~μði−1Þ
k;j ðc;mÞ

� �
; SðiÞk;j

� �
ð62Þ

μðiÞk;jðc;m; zÞ ¼ ~μði−1Þ
k;j ðc;mÞ

þ KðiÞk;j z − h ~μði−1Þ
k;j ðc;mÞ

� �� � ð63Þ

H ðiÞk;j ¼
∂h
∂x

~μði−1Þ
k;j ðc;mÞ

� �
ð64Þ

PðiÞk;jðc;mÞ ¼ I − KðiÞk;jH
ðiÞ
k;j

� �
~P
ði−1Þ
k;j ðc;mÞ ð65Þ

KðiÞk;j ¼ ~P
ði−1Þ
k;j ðc;mÞ H ðiÞk;j

� �
⊤ SðiÞk;j
� �−1

ð66Þ

SðiÞk;j ¼ RðiÞ þH ðiÞk;j~P
ði−1Þ
k;j ðc;mÞ H ðiÞk;j

� �
⊤: ð67Þ
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Moreover, the likelihood function of class‐based mode in
(19) equals the normalization value of the class&mode‐
conditioned SPDF; thus, ℓðmjcÞ ¼ ΛðjN jÞ can be obtained by
performing iterations until all sensors have been considered.

At the end of the above multi‐sensor update procedure, the
resulting posterior SPDFs sk(x|c, m) preserve the GM form
with a number of GCs given by

Jkðc;mÞ ¼ ∏
i∈N
jZi

kj þ 1
� �

" #

Jkjk−1ðc;mÞ: ð68Þ

5.4 | Fusion of D‐JDTC‐BF

This subsection concerns the GM implementation of the
fusion stage of D‐JDTC‐BF. For the sake of simplicity, we only
consider pairwise fusion of two augmented Bernoulli densities
f i = {ri, γi, βi, si}, for i = 1, 2, with SPDFs in GM form,

siðxjc;mÞ ¼
XJ
iðc;mÞ

j¼1
αi
jðc;mÞG x; μijðc;mÞ; P

i
jðc;mÞ

� �
: ð69Þ

Unfortunately, the weighted geometric average of GMs

~sðxjc;mÞ ¼ s1ðxjc;mÞ
� �ω s2ðxjc;mÞ

� �1−ω
; ð70Þ

due to exponentiation by the fractional exponents ω and
1 − ω, is no longer a GM [33]. However, there exist reasonable
approximations of Equation (70) in GM form such as, for
example, Ref. [33]

~sðxjc;mÞ ≅
XJ
1ðc;mÞ

j1¼1

XJ
2ðc;mÞ

j2¼1

αj1;j2ðc;mÞ

� G x; μj1;j2ðc;mÞ; Pj1;j2ðc;mÞ
� �

αj1:j2ðc;mÞ ¼ α1
j1

� �ω
α2
j2

� �1−ω
ε ω; P1

j1

� �
ε 1 − ω; P2

j2

� �

� G μ1
j1 − μ2

j2 ; 0;
P1
j1

ω
þ

P2
j2

1 − ω

 !

Pj1;j2ðc;mÞ ¼ ω P1
j1

� �−1
þ ð1 − ωÞ P2

j2

� �−1
� �−1

μj1;j2ðc;mÞ ¼ Pj1;j2ðc;mÞ ω P1
j1

� �−1
þ ð1 − ωÞ P2

j2

� �−1
� �

εðω; PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 2πPω−1ð Þ detð2πPÞ−ω
q

where, for the sake of brevity, the arguments c and m of
αi
j ; μ

i
j ; P

i
j have been omitted. An alternative approximation,

more appropriate than Equation (71) whenever there are
closely‐spaced GCs, can be found in Ref. [37]. It is worth to
point out that both approximations in Ref. [33, 37] produce a
GM with a number of GCs given by

Jðc;mÞ ¼ J1ðc;mÞ J2ðc;mÞ: ð71Þ

Then, according to Proposition 1, fused EP, MPMFs,
CPMFs and SPDFs are obtained from Equations (22)–(25) by
setting

∫~sðxjc;mÞdx¼
XJ
1ðc;mÞ

j1¼1

XJ
2ðc;mÞ

j2¼1
αj1;j2ðc;mÞ ð72Þ

~r ¼ r1
� �ω r2

� �1−ω
ð73Þ

~γðcÞ ¼ γ1ðcÞ
� �ω γ2ðcÞ

� �1−ω
ð74Þ

~βðmjcÞ ¼ β1ðmjcÞ
� �ω β2ðmjcÞ

� �1−ω
ð75Þ

~ζ ¼ 1 − r1
� �ω 1 − r2

� �1−ω
: ð76Þ

Whenever fusion involves more than two sensor nodes, it
is anyway possible to split it, in several ways, into a sequence of
pairwise fusion steps to be performed as indicated above.
Whatever is the adopted sequence, fusion over N of Propo-
sition 1 generates GM SPDFs sðxjc;mÞ with

Jðc;mÞ ¼ ∏
i∈N

J iðc;mÞ ð77Þ

GCs, where Ji(c, m) is the number of GCs of si(x|c, m).

6 | SIMULATION RESULTS

Assume that the target can belong to three different classes with
corresponding mode sets M1 ¼ m1f g, M2 ¼ m1;m2;m3f g

andM3 ¼ m1;m4;m5f g. The target kinematic state at time k is
defined as xk ¼ ξk; _ξk; ηk; _ηk

� �⊤, with Cartesian coordinates of
position ξk, ηk and velocity _ξk; _ηk, respectively. For each kine-
matic mode, the target motion is modelled by (32) with

f ðx;mÞ ¼ FðmÞx:

There are five possible modes and their corresponding
state transition F(m) and process noise covariance Q(m)
matrices are as follows:

Mode m1:

F m1ð Þ ¼

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2

6
6
4

3

7
7
5; ð78Þ
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Q m1ð Þ ¼ σ m1ð Þ

2T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0
2T 3

3
T 2

2

0 0
T 2

2
T 2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð79Þ

where T = 1[s] denotes the sampling interval and σ(m1) = 1
[m/s2].

Mode m2:

F m2ð Þ ¼

1 sinðωTÞ=ω 0 ðcosðωTÞ − 1Þ=ω
0 cosðωTÞ 0 −sinðωTÞ
0 ð1 − cosðωTÞÞ=ω 1 sinðωTÞ=ω
0 sinðωTÞ 0 cosðωTÞ

2

6
6
6
4

3

7
7
7
5
;

ð80Þ

Q m2ð Þ ¼ σ m2ð Þ

3T 4

4
T 3

2
0 0

T 3

2
T 2 0 0

0 0
3T 4

4
T 3

2

0 0
T 3

2
T 2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð81Þ

where ω = − 0.1[rad/s] and σ(m2) = 1.4[m/s2].
Mode m3: same as mode m2 with ω = 0.15[rad/s] and σ

(m3) = 1.4[m/s2].
Mode m4: same as mode m2 with ω = 1[rad/s] and σ

(m4) = 1.4[m/s2].
Mode m5: same as mode m2 with ω = − 1[rad/s] and σ

(m5) = 1.4[m/s2].
The transition probability matrices for classes 2 and 3 are

Π¼
0:9 0:05 0:05
0:05 0:9 0:05
0:05 0:05 0:9

2

4

3

5 ð82Þ

while class 1 has only one mode, that is, Π = 1.
The simulation duration is 100[s] for each experiment. The

manoeuvring target, belonging to class 2, appears at time ta = 6
[s] and disappears at td = 90[s] in the surveillance region of angle
extension [0, π/2] [rad] and range extension ½0; 5000

ffiffiffi
2
p
� ½m�.

The initial target state is,

x¼ ½4786½m�;−6:3½m=s�; 3584½m�;−60:9½m=s��⊤: ð83Þ

Its trajectory (see Figure 2) is a straight line with constant
velocity between 6[s] and 25[s], followed by a clockwise turn

(ω = − 0.10[rad/s]) between 26[s] and 50[s], another straight
line with constant velocity between 51[s] and 60[s], and a final
counterclockwise turn (ω = 0.15[rad/s]) between 61[s] and 90
[s]. Target modes over time are reported in Table 1.

A total of jN j ¼ 8 sensors are deployed over the surveil-
lance area as shown in Figure 2. Each sensor i ∈N , of known
position (ξi, ηi), provides a range measurement according to
Equation (9) with the measurement function

hiðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ − ξi
� �2

þ η − ηið Þ
2

q

; ð84Þ

and uniform detection probability piD ¼ 0:90 and measurement
noise variance Ri = 400[m2]. Clutter is generated as a Poisson
RFS with PHD κ(z) = λu(z), with an expected number of
clutter points λ = 5 and uniform spatial PDF u(⋅) over the
surveillance region.

The JDTC‐BF has been tuned with survival probability
pS = 0.99 and birth probability pB = 0.25. Further, for target
birth, we assumed uniform distribution for class and mode as
well as class‐and‐mode independent Gaussian distribution for
the state. Specifically, the target birth PDF has been taken as b
(x, c, m) = γB(c)βB(m|c)sB(x) with

γBðcÞ ¼
1
jCj

βBðmjcÞ ¼
1
jMcj

sBðxÞ ¼ G x;mB; PBð Þ

ð85Þ

where

mB ¼ ½4780½m�;−6½m=s�; 3590½m�;−60½m=s��⊤;

PB ¼ diag 100 m2� �
; 100 m2�s2

� �
; 100 m2� �

; 100 m2�s2
� �� �� �

:

For D‐JDTC‐BF, the number of consensus steps has been
set to L = 1. In particular, the pruning and merging thresholds
for GMs are set to Tp = 1 � 10−15 and Tm = 15, respectively.
Moreover, the maximum number of GCs is fixed to 3. For the

0 1000 2000 3000 4000 5000
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sake of comparison, in the simulation experiments, also the
centralized joint tracking and classification via single‐target
Bayesian filtering (C‐STBF‐JTC) is considered, in which the
approach of Ref. [14] is applied in a centralized configuration
by exploiting sequential single‐sensor updates. Notice that no
target detection is performed in this approach since exact
knowledge of target existence/non‐existence is assumed.

In the simulation experiments, performance will be eval-
uated in terms of four performance indicators averaged
over 100 independent Monte Carlo trials: optimal sub‐pattern

assignment (OSPA) error [38] (with order p = 1 and cutoff
c = 150[m]), existence probability, mode PMF, and classifica-
tion probability.

The OSPA error is plotted in Figure 3, where it can be seen
how the C‐JDTC‐BF clearly provides lower OSPA than the D‐
JDTC‐BF and C‐STBF‐JTC as well as a smoother behaviour
during class and/or mode switches. Specifically, all the three
algorithms exhibit OSPA peaks after each class and/or mode
switch: a first peak in the time interval 26–36 s is due to a
simultaneous class and mode switch, while the subsequent two
peaks (at time 53 and 63 s) are caused by mode switches.

As well known, the OSPA error simultaneously captures
detection and tracking performance. A more clear‐cut assess-
ment of detection performance is provided by Figure 4, plot-
ting the estimated existence probability. It can be seen that the
detection capability of the D‐JDTC‐BF is close to that of the
C‐JDTC‐BF (no results are reported for the C‐STBF‐JTC since
this approach knows when the target appears/disappears).

Estimated mode PMFs for classes 2 and 3 versus time are
plotted in Figures 5 and 6 (recall that class 1 has just a single
mode). As expected, the C‐JDTC‐BF, D‐JDTC‐BF and C‐
STBF‐JTC switch mode whenever the target turning rate
changes. Since all three classes include mode 1, during the time
interval 6–25 s mode 1 is estimated; then a switching to mode 2
occurs at time t = 26 s (see Figure 5).

Classification results are shown in Figure 7. First, as ex-
pected, the estimated class quickly converges to c1 when the
target appears in the monitored area. This is due to the tran-
sition probability of mode 1 in class 1 being greater than that

TABLE 1 Target modes and classes over time

Time 1–5 (s) 6–25 (s) 26–50 (s) 51–60 (s) 61–90 (s) 91–100 (s)

True mode Disappearance Mode 1 Mode 2 Mode 1 Mode 3 Disappearance

Possible class Disappearance Class 1, Class 2, and Class 3 Class 2 Class 1, Class 2, and Class 3 Class 2 Disappearance

True class Disappearance Class 2 Class 2 Class 2 Class 2 Disappearance

0 20 40 60 80 100
Time[s]

0

10

20

30

40

O
S

P
A

(p
=

1,
c=

15
0[

m
])

D-JDTC-BF
C-JDTC-BF
C-STBF-JTC

F I GURE 3 Optimal sub‐pattern assignment error. BF, Bernoulli filter;
C‐JDTC, centralized JDTC; C‐STBF‐JTC, centralized joint tracking and
classification via single‐target Bayesian filtering; D‐JDTC, distributed
JDTC; JDTC, joint detection, tracking and classification
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of mode 1 in class 2. At time t = 26 s, a switching from class 1
to class 2 occurs as soon as the target starts to behave ac-
cording to mode 2. While the C‐JDTC‐BF and C‐STBF‐JTC
exhibit faster class convergence than the D‐JDTC‐BF, af-
ter class switching a similar performance is observed.
Furthermore, to compare the computational burden, the mean
processing time is reported in Table 2 for all considered
methods. Notice that the D‐JDTC‐BF involves a smaller per‐
node computational load compared to the one of the fusion
centre for the C‐JTDC‐BF and C‐STBF‐JTC. Most impor-
tantly, the load of the distributed algorithm is scalable with
respect to the network size while the one of the centralized
algorithms would clearly increase with the number of sensors.
The MATLAB code used in the simulations has been uploaded
to GitHub (https://github.com/LGYbula/Matlab-code-for-
multi-sensor-JDTC.).

7 | CONCLUSION

JDTC of a single‐target immersed in clutter has been addressed
by multi‐sensor fusion. The problem has been formulated in a
Bayesian framework by introduction of a suitably augmented
Bernoulli density describing the joint distribution of target class,
mode and state. Then, the posed augmented Bernoulli filtering
(BF) problem has been solved, in both centralized (C‐JDTC‐BF)
and distributed (D‐JDTC‐BF) settings, and a Gaussian‐mixture
implementation of both filters has been presented. Simulation
experiments have demonstrated the effectiveness of the pro-
posedmulti‐sensor JDTC‐BF approach. Futureworkwill extend
multi‐sensor JDTC to multiple manoeuvring targets by
exploiting labelled multi‐Bernoulli (LMB) filtering. Moreover,
we will further extend the multitarget JDTC problem to radar
and ESM sensors [39–42] in airborne surveillance systems.
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APPENDIX

Proof of Theorem 1
By substituting the augmented SPDF

sðx; c;mÞ ¼ γðcÞβðmjcÞsðxjc;mÞ

into Equation (21), we can obtain Equation (A.1).

Clearly, the fused augmented SPDF sðx; c;mÞ can be
factored as the product of γðcÞ, βðmjcÞ and sðxjc;mÞ, wherein
γðcÞ, βðmjcÞ and sðxjm; cÞ are fused CPMF,MPMFs and SPDFs,
respectively. Moreover, the fused EP is given by Equation (A.2),

where

~ζ ¼ ∏
i∈N

1 − ri
� �ωi

; ðA:3Þ

~r ¼ ∏
i∈N

ri
� �ωi

; ðA:4Þ

~βðmjcÞ ¼ ∏
i∈N

βiðmjcÞ
� �ωi

; ðA:5Þ

~γðcÞ ¼ ∏
i∈N

γiðcÞ
� �ωi

ðA:6Þ

~sðxjc;mÞ ¼ ∏
i∈N

siðxjc;mÞ
� �ωi

dx: ðA:7Þ
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sðx; c;mÞ ¼
∏
i∈N

γiðcÞβiðmjcÞsiðxjc;mÞ
� �ωi

P

c∈C

P

m∈Mc

∫ ∏
i∈N

γiðcÞβiðmjcÞsiðxjc;mÞ
� �ωi

dx

¼

∏
i∈N

γiðcÞ
� �ωi

βiðmjcÞ
� �ωi

siðxjc;mÞ
� �ωi

P

c∈C

P

m∈Mc

∫ ∏
i∈N

γiðcÞ½ �
ωi

βiðmjcÞ
� �ωi

siðxjc;mÞ½ �
ωi
dx

¼

∏
i∈N

γiðcÞ
� �ωi

∏
i∈N

βiðmjcÞ
� �ωi

∏
i∈N

siðxjc;mÞ
� �ωi

P

c∈C

P

m∈Mc

∏
i∈N

γiðcÞ½ �
ωi

∏
i∈N

βiðmjcÞ
� �ωi

∫ ∏
i∈N

siðxjc;mÞ½ �
ωi
dx
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siðxjc;mÞ
� �ωi

∫ ∏
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ωi
dx
�
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βiðmjcÞ
� �ωi

∫ ∏
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� �ωi

dx

P
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∏
i∈N

βiðmjcÞ
� �ωi

( )

∫ ∏
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dx
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i∈N

γiðcÞ
� �ωi P
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� �ωi
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∫ ∏
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ðA:1Þ
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ri
� �ωiP
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