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Abstract

With the advent of the Internet of Things (IoI') and the Industrial IoT (IIoT),
the amount of information available has grown so much that the main focus
was to collect and store such data efficiently. Unfortunately, as often happens,
security was initially overlooked, and this lack of protection led to several cyber-
attacks against privates, companies, and even national agencies. Indeed, data
generated by Iol' devices are usually stored on the Internet (e.g., on a cloud
server) in such a way that they are virtually accessible to anybody at any time.
Data in such a state is called data at rest. Access to those cloud servers is pro-
tected with some access control mechanisms, for example, enforced via soft-
ware so that any user can access only data that he/she possesses. Data Leakage
is an outpour of sensible information by a hacker that gained control of a cloud
server and, therefore, can access every information stored on it. One solution is
to encrypt data at rest. On the one hand, encryption addresses the data leakage
problem, but, on the other hand, it makes data sharing complex.

Attribute-Based-Encryption (ABE) is an asymmetric encryption scheme that
allows one to mathematically enforce an Access Control Mechanism (ACM)
during the decryption procedure so that only permitted entities can access the
protected data. The main advantage of using ABE in (I)Iol systems is to achieve
multiple-receiver encryption with fine-grained access control. ABE provides
confidentiality for data at rest (e.g., stored on third-party cloud storage) while
allowing parties with different access privileges to decrypt it.

In this dissertation, we investigate the problem of engineering the Attribute-
Based Encryption schemes within IoT' (Internet of Things) and IloT (Industrial
IoT') systems. However, this displays tough challenges, particularly bandwidth
consumption, feasibility over constrained devices, access policies management,
and key management. Our investigation has been carried out in several direc-
tions. First, we compared the ABE approach with another similar technique in
the literature, namely the Sticky Policy technique, to point out ABE potentiali-
ties. Secondly, we discuss some scenarios in which ABE can be adopted, while
improving one of the original schemes. Then, we evaluate ABE performances
in terms of bandwidth, energy consumption, computation time, and CPU load
on a broad range of devices: from IoI' constrained devices like the ESP32, to
the RaspberryPi 3, to a more advanced automotive-compliant Xilinx ZCU 102
evaluation board. We also approach the related problems of: (i) reducing the
encryption overhead of the ABE ciphertext; (ii) designing a recovery mecha-
nism in case of key compromise; (iii) correctly selecting the most suitable ABE
scheme for any IoI applications.



Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Structure of the Dissertation . . . . . . . . . . . . . . ... .. .....

Background: What is Attribute-Based Encryption?
2.1 Pairing-Based Cryptography Basics . . . . . .. ... ... ... ....
22 Main ABEfeatures . .. ... ... . ... ... 0 oL

Attribute-Based Encryption vs. Sticky Policies: What Should We Use?
3.1 Preliminaries . . . . . . . . . . .
32 RelatedWork . . . ... ... . L
3.3 Integration of CP-ABE into NOS architecture and comparison with
sticky policies . . . . ... ... Lo
3.4 Validation and Experiments . . . ... ... ... ... .........
35 Answer . . ...

Can CP-ABE be Used in a Low-Bitrate WSAN?

41 Related Work . . . . . . . . . . . . e
42 Architecture . . . . . . . ...
43 Performance Evaluation . . .. ... .. ... ... .. .........
44 ANSWET . . . . . . . e e e e e

How can We Improve the Original CP-ABE?

51 RelatedWork . . . . .. ... ... ... .
5.2 System Model and Scheme Definition . . ... ... ... .......
53 SEA-BREW Procedures . . . . ... ... .. ... ... .........
54 Concrete Construction . . . .. ... ........ ... ......
55 SecurityProofs. . . .. ... ... ... . L

11
12
13

19
21
24

26
33
42

45
46
46
52
54



2 CONTENTS

5.6 Performance Evaluation . .. .. ... .. ... . ... ... .....
5.7 Answer . . . . . .. e

6 How Much Classical ABE Schemes Actually Impact Constrained IoT De-
vices?
6.1 RelatedWork . . . . . . ... ...
62 UseCase .. ....... ... . ...
6.3 ExperimentalSetup . ... .. ... .. ... ... ... . ... ...
6.4 ExperimentalResults . .. . ... ... ... ... .. ... .. ... ..
6.5 Average Decryption Performance Evaluation . . ... ... ... ...
6.6 ANSWer . . . . ... ...

7 What is the Most Suitable ABE Scheme for my System?
71 ABEinlIol . .. ... .. ... . ..
7.2 Producer CPU Efficiency . . . ... .. .. ... ... .. ......
7.3 Key Authority Bandwidth Efficiency . . .. ... ... ... ... ...
74 Producer Bandwidth Efficiency . . ... ... ... ... ... .....
7.5 Experimental Evaluation . . . . ... ... ... .............
7.6 Accessory Performance Indicators . . . ... ............. ..
77 Answer . .. ... Lo

8 Is it Feasible to Leverage CP-ABE in the Automotive Environment?
81 RelatedWork . . . . . . . . .. . .. ..
82 Methods . ... .. . . . . . .
8.3 Performance Evaluation . ... .. ... ... ..............
84 ANSWEr . . . . . . e e e e

9 Conclusions
A Publications

Bibliography

87
89
90
93
97
105
110

111
112
116
121
126
131
138
141

143
145
149
152
157

159

161

165



List of Figures

2.1

3.1
3.2
3.3
34
3.5

3.6

3.7
3.8

3.9

3.10
3.11

4.1
4.2

4.3
4.4
4.5

51
52

Examples of access policies created with different access structure lan-
guages. The universe of attributes is U = {A, B, C, D, E'}. In the multival-
ued access structure languages (Figs. 2.1(b) and 2.1(d)), each attribute
can assume one among three distinct values, e.g., the attribute A can as-
sume either the value A1, Ay, or Asz. . . . . . . . ... .. ... ...

NOS data flow with sticky policies. . . . . ... ... . ... ... ....
New proposed NOS architecture. . . . . ... .. ..............
Scheme of sticky policies based data flow within the NOS system. . . . .
Scheme of CP-ABE based data flow within the NOS system. . ... ...
Example of AVL update during a key revocation procedure. On the left,
the AVL before the procedure of key revocation. In the middle, the key
that has been compromised. On the right, the updated AVL. . . . . . ..
Example of CAL update during a key revocation procedure. On the left,
the table before the key revocation. On the right, the table after the key
revocation. . . . . ... Lo
Scheme of the performance evaluationsetup. . . . ... ... ... .. ..
Whiskers-box diagram of mean storage occupancy and CPU load com-
parison: sticky policies vs CP-ABE approach. . . . .. ... ... .....
Whiskers-box diagram of mean data retrieval delay comparison: sticky
policies vs CP-ABE approach. . . . .. ....................
Whiskers-box diagram of mean encryption time required by CP-ABE. . .
Whiskers-box diagram of mean decryption time required by CP-ABE. . .

An overview of fABElous architecture. . . . . .. ... ... .. . 0L
Sensor join procedure. Dashed lines represent human-device communi-

New policy installation procedure. . . . . ... ... ... .. ... ....
Data exchange procedure. . . . .. ... ... .. ... ... . ... ..
tABElous communication overhead. . . ... ... ... ... ... ... ..

SEA-BREW systemmodel. . . . ... ... .................
Data upload by WSAN producers procedure. . ... ... ... .....

3

32

39

41

42

43
43

50
53



4 LIST OF FIGURES
5.3 Download signcrypted data procedure. . . .. ... ... ... 70
5.4 Consumer leave procedure. . .. ... ... ... ... . ... ... ... 72
5.5 Average number of exponentiations over a year, varying policies, and at-

tributes sets dimension. 95%-confidence intervals are displayed in error

bars. . ... e 84
5.6 Average number of exponentiation over a year, varying the average daily

requests. . . ... 85
6.1 Publish/subscribe architecture and mechanism. . .. ... .. ... ... 91
6.2 Malicious broker with traditional ABAC mechanism (a) and with ABE (b). 92
6.3 Exampleof flatpolicy. . ... .. ... .. ... ... .. ... ... 96
6.4 Example of 3-level policy. . .. ... ...... . ... ... ... ... 96
6.5 Encryptiontime. ESP32. . ... ... ... ... . . .0 0 L 98
6.6 Encryption energy consumption. ESP32 . . ... ... ... ... ... .. 98
6.7 Decryption time. ESP32 . . . . ... ... ... ... ... 0 L 99
6.8 Decryption energy consumption. ESP32 . . . .. ... ... ... ... .. 99
6.9 Encryptiontime. RE-Mote . . . . .. ... ... .. ... ..., 100
6.10 Encryption energy consumption. RE-Mote . . . . .. ... ... ... ... 100
6.11 Decryption time. RE-Mote . . . ... ... ... ... ........... 101
6.12 Decryption energy consumption. RE-Mote . . .. ... ... ... .... 101
6.13 Battery lifetime. ESP32 . . . . . . ... ... ... .. oo oL 104
6.14 Battery lifetime. RE-Mote . . . . ... ... ... ... ........... 104
6.15 Example of random policy and random fulfilling attribute set, and a pos-

sible attribute interpretation considering a medical scenario. . . . . . .. 107
6.16 Average- and worst-case decryption time on

RE-Mote. . . . . . .. . 110
6.17 Average- and worst-case decryption energy consumption on RE-Mote. . 110
71 ABEarchitecture. . . . . ... ... ... 113
7.2 Performanceindicators.. . . . . ... ... Lo L Lo oL 114
7.3 Theanalyzed constant-size ciphertext schemes. The classic CP-ABE (BSW07)

and KP-ABE (GPSWO06-1) schemes are shown as a reference. Schemes in

bold have been proved secure under standard assumptions. . ... ... 129
7.4 Example of simulated access policy in DNF shape. . . . ... ... ... 132
7.5 Comparison of KP-ABE schemes performance concerning the three KPIs. 136
7.6 Comparison of CP-ABE schemes performance concerning the three KPIs. 137
8.1 Use-case scenario of firmware over-the-air update using CP-ABE. . . . . 150
8.2 CP-ABE decryption key distribution in case of key compromise. . . . . . 150
8.3 The policy and the two attribute sets used for the experiments. . . . . . . 153



LIST OF FIGURES 5

8.4 Elapsed time from the update request to the moment just before the in-
stallation. The considered revocation frequency in Scenario 3 is once ev-

erysixupdates. . .. .. ... Lo 154
8.5 Elapsed time from the update request to the moment just before the in-

stallation in scenario 3, varying the revocation frequency. . . . . .. . .. 155
8.6 A comparison of the installation times of various SW’s size. . . . . . . .. 156

8.7 A comparison of the total time taken from the update request to the end
of SW installation. The considered SW size is 5.9 MiB, and the considered
revocation frequency is once every 6 updates. . . . . . . ... ... 156
8.8 The size of each field inside the update message that the cloud sends to
thevehicle. . . . .. ... ... ... L 156



List of Tables

3.1 Experimental Configuration . . . . . ... ... ... .. ..........
4.1 TransmissionSize . . . . .. .. ... oo Lo o oL

51 TableofSymbols . ... ... ... ... ... ... .. ... .. ..
5.2 Traffic overhead of key revocation procedures in the WSAN. . . ... ..
5.3 Comparison between SEA-BREW, BSW-KU, and YWRL schemes in terms
of the computational cost of the primitives. For the YWRL scheme, the
UpdateCP and the UpdateDK primitives correspond respectively to the
AUpdateAtt4File and AUpdateSK of the original paper. . . . . .. .. ..

6.1 [ESP32 and RE-Mote specifics. . . . ... ... ... .. ...........
6.2 Processing time of basic crypto operations on RE-Mote, and number of
basic crypto operations needed in decryption by the different schemes. .

71 Cited ABESchemes . . . ... ... ....... . ... . ... . ... ...
7.2 KPIs of Simulated Schemes . . . . ... ... ..... ... . ... ....
7.3 Pairing-Based Cryptography Benchmarks on Zolertia RE-Mote. For Each
Operation, 100 Repetitions Are Averaged and 95 %-Confidence Intervals
AreComputed . . . . ... .. ... ..

A.1 Contributor Roles Taxonomy (CRediT) Table. . . . . ... ... ... ...

83

95



Chapter 1

Introduction

Security is one of the most critical issues of Internet communications. However, se-
curity is always a trade-off between performance and protection: we have to provide
the proper protection for the overall lower cost possible. Cyber-threats awareness is
widespread since the news is full of new cyber-attacks reports (CSIS, 2021). Accord-
ing to the latest OWASP Top 10 Project classifications (OWASP, 2021), broken au-
thentication and sensitive data exposure are respectively the second and third most
diffused cyber-attacks. Broken authentication means, in most cases, that a cryp-
tographic key has been compromised. Sensitive data exposure, instead, is usually
possible if data at rest is not encrypted. Data at rest is the information stored on the
Internet (e.g., on a cloud server), always available for download. Ideally, download
is possible only for the owner of such data and to whom it has granted access. To ad-
dress these two problems, we need a way to encrypt data at rest, possibly accessible
for many different entities, and that is resilient to key compromise.

Attribute-Based Encryption (ABE) is an asymmetric encryption scheme first pro-
posed in (Sahai and Waters, 2005) as a variant of Identity-Based Encryption (IBE).
The basic intuition of the first ABE scheme was to describe with a list of attributes
both the data to encrypt and the decrypting user in the system. If the two sets shared
a number of attributes greater than a threshold value “x” (chosen at encryption
time), then decryption would be possible. This means that ABE provides fine-grained
access control and multiple-receiver encryption since different entities (described by
different attributes) may decrypt the same ciphertext. Researchers have evolved and
enriched the original ABE scheme, and now we have many different ABE schemes.
In particular, in (Bethencourt et al., 2007) was proposed the first Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) scheme. In the CP-ABE paradigm, an access
policy is embedded in the ciphertext, while an attribute set is embedded inside the
decryption key. Decryption is possible if and only if the attribute set satisfies the ac-
cess policy. Since the access policy is determined at encryption time, the CP-ABE
paradigm guarantees the data producer strong control over the accessibility of the
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8 Introduction

encrypted data.

Attribute-Based Encryption is a promising technique that can be used to pro-
tect data at rest. Through this dissertation, the reader will quickly understand the
foundations of the ABE technique and its numerous variants. We will show several
scenarios in which the use of ABE increases the overall system’s security with a lim-
ited impact on the performances. By the end of this thesis, the reader will have a
clear picture of the potentiality of ABE, the state-of-the-art, and he/she will have the
tools to evaluate the feasibility of any ABE scheme in any IoI application.

1.1 Structure of the Dissertation

The contributions of this thesis are many-folds. Our research efforts were driven
by questions that arose each time we found the answer to a previous question. We
decided to structure this thesis after the questions that we asked ourselves so that,
in each chapter, we can guide the reader to the answers we found.

Chapter 2. Background: What is Attribute-Based Encryption?

In this chapter, we introduce in-depth the main aspects and features of ABE, giving
the reader a solid background to understand the contributions of this thesis.

Chapter 3. Attribute-Based Encryption vs. Sticky Policies: What Should We
Use?

In this chapter, we consider the specific context of a smart home, which represents
one of the main IoT application domains, and we focus on ABE and Sticky Policies,
two solutions proposed in the literature to cope with the aforementioned issues. We
compare the advantages and the drawbacks in terms of performance and robustness
of such two techniques through their integration within the prototype of an IoI' mid-
dleware named NetwOrked Smart object (NOS). The effectiveness of the presented
solutions is validated by means of a real test-bed in the smart home scenario in terms
of storage occupancy, CPU load, and data retrieval delay. The final goal is to reveal
the best approach to be used depending on the application’s requirements.

Chapter 4. Can CP-ABE be Used in a Low-Bitrate WSAN?

In this chapter, we show fABElous, an ABE scheme suitable for Industrial IoT appli-
cations, which aims at minimizing the overhead of encryption on communication.
Industry can take enormous advantage of Iol, leading to the so-called Industrial
IoT (IIoT). In these systems, integrity, confidentiality, and access control over data
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are critical requirements. fABElous ensures data integrity, confidentiality, and ac-
cess control while reducing the communication overhead by 35% compared to using
ABE techniques naively.

Chapter 5. How can We Improve the Original CP-ABE?

In this chapter, we propose a novel ABE scheme called SEA-BREW (Scalable and
Efficient Abe with Broadcast REvocation for Wireless networks), which is suited
for the Internet of Things (Iol') and Industrial IoI' (IloT') applications. In contrast
to state-of-the-art ABE schemes, ours can securely perform key revocations with
a single short broadcast message instead of a number of unicast messages linear
with the number of nodes. This is desirable for low-bitrate Wireless Sensor and
Actuator Networks (WSANs), which often are the heart of (I)IoT systems. In SEA-
BREW, sensors, actuators, and users can exchange encrypted data via a cloud server
or directly via wireless if they belong to the same WSAN. We formally prove that our
scheme is secure also in case of an untrusted cloud server that colludes with a set
of users under the generic bilinear group model. We show by simulations that our
scheme requires a constant computational overhead on the cloud server with respect
to the complexity of the access control policies. This is in contrast to state-of-the-art
solutions, which require a linear computational overhead instead.

Chapter 6. How Much Classical ABE Schemes Actually Impact Constrained IoT
Devices?

In this chapter, we consider IoI devices characterized by strong limitations in terms
of computing, storage, and power. Specifically, we assess the performance of ABE
in typical IoI' constrained devices. We evaluate the performance of two representa-
tives ABE schemes configured considering the worst-case scenario on two popular
IoT platforms, namely ESP32 and RE-Mote. Our results show that, if we assume to
employ up to 10 attributes in ciphertexts and leverage hardware cryptographic accel-
eration, ABE can indeed be adopted on devices with very limited memory and com-
puting power while obtaining a satisfactory battery lifetime. In our experiments, as
also performed in other works in the literature, we consider only the worst-case
configuration, which, however, might not be completely representative of the real
working conditions of sensors employing ABE. For this reason, we completed our
evaluation by proposing a novel benchmark method that we used to complement
the experiments by evaluating the average performance. We show that by always
considering the worst case, the current literature significantly overestimates the pro-
cessing time and the energy consumption.
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Chapter 7. What is the Most Suitable ABE Scheme for my System?

In this chapter, we survey the ABE literature proposing schemes and solutions that
are best suited for IoT applications. To do so, we first identify six performance in-
dicators in IoI: the data producer CPU efficiency, the data producer bandwidth ef-
ficiency, the key authority bandwidth efficiency, the data consumer CPU efficiency,
the data consumer bandwidth efficiency, and the data producer storage efficiency.
Then, we analyze only those schemes that are promising from the point of view of
one or more indicators and, therefore, more applicable in typical IoI applications.
The chapter presents a subset of representative schemes and assesses their efficiency
by thorough simulations as a further contribution. Such simulations show that no
scheme excels in all performance indicators at once, but some simultaneously per-
form well in two or more indicators.

Chapter 8. Is it Feasible to Leverage CP-ABE in the Automotive Environment?

In this chapter, we show that it is possible to improve security for over-the-air update
functionalities in an automotive scenario through the use of ABE, which grants con-
fidentiality to the software/firmware update done Over The Air (OTA). We demon-
strate that ABE is seamlessly integrable into the state of the art solutions regarding
the OTA update by showing that the overhead of the ABE integration in terms of
computation time and storage is negligible w.r.t. the other overheads introduced by
the OTA process, also proving that security can be enhanced with a minimum cost.
To support our claim, we report the experimental results of an implementation of
the proposed ABE OTA technique on a Xilinx ZCU102 evaluation board, which is an
automotive-oriented HW/SW platform equipped with a Zynq UltraScale+ MPSoC
chip that is representative of the computing capability of real automotive Electronic
Control Units (ECUs).



Chapter 2

Background: What is Attribute-Based
Encryption?

The basic building block of ABE is the concept of attribute, which is a property asso-
ciated with a piece of data or with a data consumer.

An access policy describes the access authorization associated either with a piece
of data or with a data consumer. It is typically represented through a Boolean for-
mula that has attributes as arguments. An access policy is typically visualized as
a tree (policy tree) in which leaf nodes are attributes, and intermediate nodes are
Boolean operators. Different schemes allow for different degrees of expressiveness in
the access policies, meaning that they impose constraints on the shape of the pol-
icy tree. For example, some ABE schemes allow only for k-of-n operators (threshold
gates) or only for AND operators, or they limit the height of the policy tree. Some
schemes use an LSSS (Linear Secret Sharing Scheme) representation, which means
an access policy is expressed with a matrix-vector pair in place of a Boolean formula.
However, there are algorithms in the literature (Lewko and Waters, 2011; Liu et al.,
2010) to transform an LSSS representation into a policy tree, hence in the following,
we will always represent policies employing policy trees without loss of general-
ity. ABE comes in two paradigms: Key-Policy Attribute-Based Encryption (KP-ABE)
and Ciphertext-Policy Attribute-Based Encryption (CP-ABE). In both paradigms, to en-
crypt data, it is necessary to own a copy of the public parameters, which are public and
unique for all encrypting parties. Moreover, to decrypt data, it is necessary to own
a decryption key, which is private and specific for each decrypting party. In KP-ABE,
ciphertexts are associated with a set of attributes that describe them, and decryption
keys are associated with an access policy. Access policies describe the “capability
to access what”, referring to the owner of the decryption key. KP-ABE schemes em-
power the key authority since it decides the access authorizations when creating
decryption keys. Conversely, in CP-ABE, ciphertexts are associated with an access
policy, and decryption keys are associated with a set of attributes. Access policies

11



12 Background: What is Attribute-Based Encryption?

describe the “capability to be accessed by whom”, referring to the encrypted data.
CP-ABE schemes empower the data producers since they decide the access autho-
rizations at the moment of encrypting data.

2.1 Pairing-Based Cryptography Basics

Pairing-based cryptography, inaugurated by Boneh and Franklin (Boneh and Franklin,
2001), refers to the usage of bilinear maps (also called pairings) to construct crypto-
graphic schemes. Most ABE schemes currently in the literature use pairing-based
cryptography. The following definitions are commonly used in pairing-based cryp-
tography. Let G1, G2, and Gr be three multiplicative cyclic groups of equal order
whose group operations are efficiently computable. Let p be their prime order, g;
be a generator of G1, and g, be a generator of G;. Let e : G; X G — Gr be a bilinear
map that has the following properties.

e Bilinearity: foralla,b € Z,, u € Gy, and v € Gy, we have e(u®,vP) = e(u, v)*.
e Non-degeneracy: e(g1, 82) # 1.
o Computability: There exists an efficient algorithm to compute e.

In practical realizations of pairings, G1 and G, are sets of points on an elliptic curve,
while Gr is a finite field. The group operation of G; and Gy is thus the point-scalar
multiplication, while that of Gr is the modular exponentiation.

Literature on pairing-based cryptography traditionally categorizes pairings into
three types (Galbraith et al., 2008):

e Type I. These pairings have G; = G,.

o Type II. These pairings have G # Gy, but there is an efficient homomorphism
to map an element in G, to an element in Gj.

o Typelll. These pairings have G # Gy, and there is no efficient homomorphism
between G1 and Gs.

Type I pairings are also called symmetric pairings. To describe schemes that use sym-
metric pairings, we will use a unique symbol G to represent both G; and G;. Type
IT and Type III are also called asymmetric pairings. However, it is worth noting that
Type II pairings are rarely used to construct cryptographic schemes because they
are inefficient compared to Type III ones, and they also miss some features, e.g., no
efficient method to hash onto G, (Menezes et al., 2016).
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2.2 Main ABE features

Basic ABE Algorithms

Any KP-ABE scheme implements at least the following four algorithms.

e (MK,EK) = Setup(x). This algorithm initializes the scheme with a strength
given by the security parameter x and randomly creates and returns a master
key MK and the public parameters EK. The master key is kept secret by the key
authority, whereas the public parameters are made public and used to encrypt
data.

o (C) = Encrypt(M, v, EK). This algorithm encrypts a message M (plaintext) de-
scribed by the attribute set y, by means of the public parameters EK. It returns
the encrypted message C (ciphertext), which embeds the given attribute set.

e (DK) = KeyGen(7, MK). This algorithm creates a new decryption key associ-
ated with the access policy 7, by means of the master key MK. It returns the
decryption key DK, which embeds the given access policy.

e (Mor 1) = Decrypt(C, DK). This algorithm decrypts a ciphertext C with the
decryption key DK. It returns the original message M if and only if the access
policy 7 evaluates to true on the attribute set y embedded in the ciphertext C,
otherwise it returns the null value L.

Any CP-ABE scheme implements at least the following four algorithms.

e (MK, EK) = Setup(k). This algorithm acts similarly to the one in the KP-ABE
schemes.

o (C) = Encrypt(M, T, EK). This algorithm encrypts a message M associated
with the access policy 7, by means of the public parameters EK. It returns the
encrypted message C, which embeds the given access policy.

o (DK) = KeyGen(y, MK). This algorithm creates a new decryption key asso-
ciated with the attribute set y, by means of the master key MK. It returns the
decryption key DK, which embeds the given attribute set.

o (M or L) = Decrypt(C, DK). This algorithm decrypts a ciphertext C with the
decryption key DK. It returns the original message M if and only if the access
policy 7~ evaluates to true on the attribute set y embedded in the decryption
key DK, otherwise it returns the null value L.
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Security Guarantees

Typically, ABE schemes are proved to be IND-CPA-secure under the standard model
or the random oracle model, with the assumption of hardness of the Bilinear Diffie-
Hellman (BDH) problem or some other related problem. An exception is the classic
CP-ABE scheme by Bethencourt et al. (Bethencourt et al., 2007), which provides a
weaker security guarantee under the generic bilinear group model. Note that the
IND-CPA security guarantee defends only against passive adversaries. However,
cheap transformations (e.g., (Fujisaki and Okamoto, 1999)) are usually applicable
to an IND-CPA scheme to obtain an IND-CCA one, which also defends against active
adversaries.

Universe Type

The attribute universe is the ensemble of all the attributes that can appear in access
policies or attribute sets in a particular application. In literature, ABE schemes are
traditionally divided into small-universe schemes and large-universe schemes. A scheme
is small-universe if the key authority must fix a finite attribute universe at setup time,
i.e., when it executes the Setup algorithm.

Small-universe schemes have public parameters that grow linearly with the size
of the attribute universe. Typically, the key authority can create new attributes after
the setup time, but then it must update the public parameters and deliver them to all
the data producers. An example of a small-universe scheme is the work in (Goyal
etal., 2006a). On the other hand, a scheme is large-universe if the key authority does
not need to fix a finite attribute universe at setup time.

Large-universe schemes have public parameters whose size does not depend on
the attribute universe. The attribute universe itself is virtually unlimited, in the
sense that data producers can create new attributes at any time without commu-
nicating with the key authority. An example of a large-universe scheme is the work
in (Bethencourt et al., 2007).

Access Structure Language Expressiveness

Access structure languages define how the attributes in the universe can be com-
bined to express access policies. The expressiveness of an access structure language
is a qualitative measure we give to evaluate its capability to express different kinds
of access policies. We briefly introduce a few access structure languages sorted by
increasing order of expressiveness.

e AND gate on Boolean attributes, which can assume either a positive (e.g., A,)
or a negative (e.g., A_) value, denoted by the symbol AND.. (Fig.2.1(a)). All
the attributes inside the universe must always be included in an access policy.
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Therefore, in each policy, the value of any attribute must always be specified
(either positive or negative). This language is used and explained, for exam-
ple, in (Zhang et al., 2014a).

e AND gate with multivalued attributes, denoted by the symbol AND,, (Fig.2.1(b)).
It is as expressive as the AND,, but it provides a better way to manage at-
tributes. Each attribute in the universe is a group of mutually exclusive values
(e.g., A1, Ay, A3, ...): one and only one of these values must be in any given
policy. This language is used and explained, for example, in (Li et al., 2012).

e AND gate on Boolean attributes with wildcards (e.g., A.), and AND gate with
multivalued attributes with wildcards, denoted by the symbols AND, and
AND;, (Figs.2.1(c) and 2.1(d)), respectively. The basic idea of a wildcard is a
“don’t care”, meaning that the value of the specific attribute is not relevant to
satisfy the access policy. This leads to more effective policies. The AND, and
the ANDY, languages are used and explained, for example, in (Phuong et al.,
2014) and (Zhou et al., 2013), respectively.

e Threshold monotonic language on the presence of attributes in the attribute
set, denoted by the symbol k-of-n (Fig. 2.1(e)). A policy is composed of n
attributes, where n can be any value from 1 to the total number of attributes
inside the universe. For the policy to be satisfied, at least a threshold of k at-
tributes outof n (with 1 < k < n) mustbe present in the attribute set. Note that,
from this language on, attributes are not considered Boolean or multivalued
variables but rather simple “tags” that can be either present within or absent
from the attribute set. This language allows us to implement also AND gates
(when k = n) and OR gates (when k = 1). Intuitively, this language is more
expressive than the previous ones since more attribute sets can satisfy a single
access policy. This language is used and explained, for example, in (Sahai and
Waters, 2005).

e Full monotonic language on the presence of attributes in the attribute set, de-
noted by the symbol “full monotonic” (Fig. 2.1(f)). This language considers
the access structure as a tree, in which the internal nodes are k-of-n gates, and
leaf nodes are attributes. Not every attribute inside the universe must appear
inside the access policy. This language is used and explained, for example,
in (Bethencourt et al., 2007; Goyal et al., 2006b).

e Full non-monotonic language on the presence of attributes in the attribute set,
denoted by the symbol “full non-monotonic” (Fig. 2.1(g)). This language in-
cludes all the benefits provided by the full monotonic language, plus the abil-
ity to express, inside the access structure, the required absence of an attribute
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from the attribute set (e.g., A is the absence of the attribute A). This language
is used and explained, for example, in (Ostrovsky et al., 2007).

TOOPD GELED CHODD CEOHE
(a) AND, (b) AND, (c) AND, (d) AND;,

HO®® 6@3@ @ND®

(e) k-of-n (f) full monotonic (g) full non-
monotonic

Figure 2.1. Examples of access policies created with different access structure languages.
The universe of attributes is U = {A, B,C, D, E}. In the multivalued access structure lan-
guages (Figs.2.1(b) and 2.1(d)), each attribute can assume one among three distinct values,
e.g., the attribute A can assume either the value A1, Ay, or As.

Note that the policies of the AND-based languages (AND., ANDy,, AND,, and
AND],) include all the attributes of the universe. With languages with higher ex-
pressiveness, one can create access structures that cannot be created using languages
with lower expressiveness.

Key Management

To be used in practice, ABE schemes must provide for some additional functionali-
ties of key management. In particular, they have to provide mechanisms to distribute
decryption keys and to revoke them. While distributing a key to a joining consumer
is usually an easy task, key revocation is more challenging, as shown by the rich liter-
ature dedicated to the problem (Boldyreva et al., 2008; Attrapadung and Imai, 2009;
Yu et al., 2010a; Al-Dahhan et al., 2019; Liu et al., 2016; La Manna et al., 2021; Rasori
et al., 2021). An ABE scheme providing for a native key revocation mechanism is
called a revocable scheme.

It must be noted that any non-revocable scheme can be extended to a revoca-
ble one as follows. When a key must be revoked, the key authority runs the Setup
algorithm, thus creating a new master key and public parameters. Next, for each
non-revoked consumer, the key authority generates a new decryption key with the
old access privileges. Then, the key authority has two options to confidentially dis-
tribute the new decryption keys. It can establish a secure channel with each con-
sumer, e.g., with DTLS. Otherwise, it can encrypt the new decryption keys with the
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consumers’ public keys, e.g., RSA keys, and store the resulting ciphertexts on the
data storage. The latter choice is usually preferable for the key authority since it
can rapidly conclude all its revocation operations and go back offline. Therefore,
the key distribution task is delegated to the data storage and performed lazily upon
data requests by consumers. Note that a consumer will be given more than one de-
cryption key if more than one key revocation happened since its last data request.
The key authority also stores the new public parameters on the data storage. Before
encrypting a new piece of data, producers must download the latest version of pub-
lic parameters from the data storage. We call this revocation mechanism, viable for
all non-revocable schemes, the naive revocation mechanism.






Chapter 3

Attribute-Based Encryption vs. Sticky
Policies: What Should We Use?

The spreading and continuous development of Internet of Things (IoI') technolo-
gies and services introduces a new way of conceiving and managing the informa-
tion transmitted over the network (Atzori et al., 2010). The vast amount of data
generated and shared every second is in constant increment, thus raising significant
scalability issues. One reason for the success of the IoI paradigm is the introduction
of miniaturized devices, which can interact and acquire information from the envi-
ronment they are placed in. Besides such a perk, those devices are often memory-
and energy-constrained and, as such, they have a low capability to handle complex
data processing and heavy security tasks by themselves.

A critical issue is how the information acquired by such devices, which act as
producers, could be shared with the interested consumers. Multiple parties may
be involved in the IoI context, thus requiring strict rules regulating access to the
IoT resources. In particular, sensitive data must be disclosed only to authorized
parties. Infrastructures, both public and private, that use IoT technologies could
grow faster by ensuring their customers the reliability and trustworthiness of their
data management practices.

In such a direction, two different approaches seem promising in providing an
effective solution to the issues above. The first approach is based on ABE since, al-
though more energy consumptive than traditional symmetric or asymmetric cryp-
tography, it allows to make data safely rest or travel over untrusted channels and
platforms and, at the same time, enforce fine-grained access control.

The second approach involves the use of sticky policies (Pearson and Mont, 2011),
which can be defined by the producer and can travel along with the associated in-
formation through the whole data life cycle. Recipients can only retrieve the desired
information according to the associated sticky policy, which is evaluated by a trusted
authority. Though sticky policies require the trusted authority to be always online to

19
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provide the required decryption keys, it can be very lightweight as it can exclusively
leverage symmetric cryptography.

This chapter compares ABE and sticky policies techniques to reveal their ad-
vantages or drawbacks in a smart home scenario concerning robustness in terms
of reliability and performance (e.g., storage occupancy, CPU load, data retrieval
delay). The main goal behind this chapter is to establish the differences in choos-
ing one of the two approaches considering specific application domain’s require-
ments. To this end, both the approaches have been integrated within the same ex-
isting flexible and cross-domain middleware, named NetwOrked Smart object (NOS).
NOS is an IoT platform, originally conceived to manage data generated by heteroge-
neous sources and share them with interested parties, adopting specific algorithms
and protocols (Sicari et al., 2016a). Note that an enforcement framework based on
sticky policies is already available for the NOS architecture, as presented in (Sicari
et al., 2017b). Instead, in this chapter, a specific type of ABE, named Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) (Bethencourt et al., 2007), has been
integrated within the NOS system for comparison purposes. CP-ABE is also con-
sidered due to its similarities with the approach based on sticky policies. To give
some preliminary details, note that, in the CP-ABE paradigm, as for sticky policies,
the access rule resides within the encrypted data itself, while the attributes used for
evaluating the policy are directly associated with decryptors.

To summarize, the main contributions proposed in this chapter are the following
ones:

e CP-ABE scheme has been integrated within NOS architecture. Note that the
NOS platform has been chosen due to its modular architecture, enabling it to
adapt its behavior dynamically; thus, it is particularly suitable for new func-
tionalities. Moreover, an implementation of sticky policies in the NOS plat-
form already exists (Sicari et al., 2017b).

e the behavior of CP-ABE and sticky policies approaches has been compared
to reveal their potentialities and weaknesses from a functional point of view,
following the data flow management in a not-fully-trusted environment, as it
happens in the typical IoI' contexts. The comparison is carried out in a smart
home scenario, where different IoT devices produce heterogeneous data, from
video streams to electrical data sets. Such a kind of scenario also enables the
presence of different kinds of users. In this way, a simple yet accurate case
study is provided, which could be further expanded for future analysis. The
aforementioned smart home data-set is considered, and the following metrics
are analyzed and measured: storage occupancy, CPU load, and data retrieval
delay.
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e the performance of the employed CP-ABE scheme with respect to the sticky
policy method has been evaluated using a real test-bed. The main outcomes
reveal that the sticky policy approach is more efficient in terms of CPU load,
but its storage occupancy and data retrieval delay are higher than those of the
CP-ABE approach.

The remainder of the chapter is structured as follows. Section 3.1 presents the
preliminaries of the proposed work, which include the sticky policy and the basic
NOS architecture. In Section 3.2 the related work is presented. Then, Section 3.3
presents the integration of CP-ABE functionalities into the NOS middleware, along
with the comparison between the CP-ABE approach and the one based on sticky
policies. Section 3.4 presents the threat model, the smart home application scenario,
and the performed experiments. Section 3.5 ends the chapter, answering the ques-
tion inquired.

3.1 Preliminaries

In this section, the necessary preliminaries for clearly understanding the mecha-
nisms related to adopting sticky policies for securing access to the information trans-
mitted within an IoI system are detailed. Moreover, a sketch of NOS architecture is
presented.

NetwOrked Smart objects architecture

Two main entities compose a typical Iol system: (i) the data producers, conceived
as heterogeneous data sources (e.g., WSN, RFID, NFC, actuators, etc.) which gen-
erate data to be sent to the IoI platform; (ii) the data consumers, who interact with
the Iol platform through services making use of such IoI-generated data, typically
accessing them by means of a mobile device (e.g., smartphone, tablet) connected to
the Internet, through WiFi, 3G, or Bluetooth technologies.

In such a scenario, NetwOrked Smart objects” (NOS) middleware (Sicari et al.,
2016a) has been conceived as a layered architecture, providing lightweight and flex-
ible functionalities; it represents a comprehensive approach for managing data gath-
ered from heterogeneous sources in a distributed way and for providing customized
services to users, assessing security as well as data quality requirements.

Proper interfaces for the communications of NOSs with the data producers and
consumers have been defined. The HTTP protocol is usually adopted for collecting
data from IoT devices. For each incoming data, we gather the following pieces of
information:

e the kind of data producer, which describes the type of IoI source;
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e the communication mode, that is, how the data is collected (e.g., discrete or
streaming communication);

e the data schema, which represents the type (e.g., number, text) and the format
of the received data;

e the data content;
e the reception timestamp.

Instead, Message Queue Telemetry Transport (MQTT) protocol (Hunkeler et al.,
2008) is used for disseminating the information to the interested data consumers. To
this end, a topic is assigned by NOSs to each processed data. NOSs also provide a
lightweight and secure information exchange process, based on an authenticated
publish and subscribe mechanism (Rizzardi et al., 2016), integrated with the MQTT
protocol.

A scheme of NOS architecture is sketched in Figure 3.1, along with its current
integration with sticky policy enforcement framework (Sicari et al., 2017b), which
is described in the following section.

Sticky Policies

The sticky policy paradigm was first proposed by Karjoth, Schunter, and Waid-
ner (Karjoth et al., 2002). Sticky policies are transmitted along with the data they
refer to throughout the entire data life cycle. Specifically, Sticky Policies allow us to
define the following aspects:

e the owner of the data;

e the data content, possibly encrypted;

o the scope of the data;

e where and when data will be available;

e specific obligations and restrictions.

In detail, the concept of sticky policy is to attach security and privacy policies
to owners’ data and drive access control decisions and policy enforcement. Sticky
policies allow specifying access rules in a fine-grained manner: in principle, every
data unit could have its unique policy. Furthermore, as policies ‘travel” with the
data across the entire system, they could protect the entire data life cycle. Such an
approach has been mainly introduced for security and privacy enforcement: when
submitting data to a consumer, a user consents to the applicable policies selecting
the proper preferences.
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Figure 3.1. NOS data flow with sticky policies.
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Such features are particularly interesting in some scenarios, like that of IoI, where
users’ or businesses’ confidential information may flow across organizational bound-
aries (Pearson and Mont, 2011). For example, social networks may share some infor-
mation with marketing companies; similarly, cloud applications may transfer data
among different realms depending on a need. Such situations represent well-known
open issues in the field of security and privacy enforcement.

The sticky policy concept has already been integrated into the NOS platform, as
presented in (Sicari et al., 2017b). Note that NOSs own no policies/credentials be-
cause an external Trusted Authority (TA) is responsible for their management. The
data producer sends them in an encrypted way along with the associated sticky
policy to NOS; clearly, data producers have in-depth control over their information
flow since they are responsible for the access rules. Then, each NOS can contact the
TA to obtain the access permissions on the received data when there is the need to
disclose them to interested consumers (i.e., the users who interact with the IoT plat-
form). In this way, no synchronization or policy sharing is required among multiple
NOSs, since the TA manages the access permissions. Figure 3.1 summarizes the just
described behavior, as anticipated in Section 3.1.

3.2 Related Work

Typically, current proposals addressing security and privacy issues in the IoI focus
on data communications by enforcing data exchanges according to strict protection
constraints, considering, at the same time, the heterogeneity of devices and com-
munication technologies. Devices can be characterized by different protocols. For
example, many smart devices can natively support IPv6 communications (Palattella
etal., 2013) (Bagci et al., 2013), while other existing deployments might not support
the IP protocol within the local area scope, and this requires the design of ad-hoc
gateways and middleware (Boswarthick et al., 2012). This is the reason for intro-
ducing NOS middleware in the envisioned solution.

Relevant contributions on security-oriented IoI middleware include: VIRTUS (Con-
zon et al., 2012), which relies on the open eXtensible Messaging and Presence Pro-
tocol (XMPP) to provide secure event-driven communications; Otsopack (Gomez-
Goiri et al., 2014) and Naming, Addressing and Profile Server (NAPS) (Liu et al.,
2013a), which are data-centric frameworks based on the usage of HTA and REpre-
sentational State Transfer (REST) interfaces. With respect to such frameworks, NOS
is more recent and adopts a lightweight technology based on Node.js in an event-
driven fashion, which perfectly fits the requirements of IoI applications. Also, var-
ious projects have the final purpose of delivering a framework able to dynamically
integrate user data (e.g., location, behavior) in privacy and security protocols, as
reported in (Sicari et al., 2015).
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The IoT middleware named NOS, firstly implemented and presented in (Sicari
et al., 2016a), tried to fill the gap by providing efficient processing and assessment
of the Iol' data. Such functionalities have been further coupled with a policy en-
forcement framework based on sticky policies (Sicari et al., 2017b), and relevant
security requirements have been addressed, as detailed in Section 3.1. The novelty
introduced in this chapter is the ABE paradigm’s integration into NOS and its com-
parison with the sticky policy based approach. It is worth remarking that the pre-
sented solutions based on sticky policies and CP-ABE mechanisms are conceived to
include multiple NOSs. They can easily and securely share data, acting as interme-
diaries with each other. A specific application domain could require a mechanism
for policies” synchronization. With this regard, a solution able to synchronize the
policies among different NOSs has already been provided in (Sicari et al., 2017a).

Regarding ABE, some IoI-focused cryptographic schemes (Yu et al., 2011; Yao
et al., 2015; Odelu et al., 2017) and architectures (Picazo-Sanchez et al., 2014; Singh
et al., 2015; Rasori et al., 2018; Hernandez-Ramos et al., 2018; Rasori et al., 2020) can
be found in the literature. In (Yu et al., 2011) the first KP-ABE scheme for Wireless
Sensor Networks (WSNs) is presented. The proposed scheme is composed of one
trusted network controller, several users, and several sensor nodes. Each user owns
a secret key generated by the network controller, according to a policy that describes
the type of data he/she can access. Each sensor node is pre-loaded with a set of
attributes and their relative public quantities generated by the network controller.
In (Yao et al., 2015) a lightweight KP-ABE scheme for the Iol is presented. The
math behind the proposed scheme is based on elliptic-curve cryptography rather
than pairing-based cryptography as the majority of the other ABE schemes. This
makes the scheme more efficient from the point of view of encryption and decryp-
tion times. In (Odelu et al., 2017) a CP-ABE scheme allowing for constant-size keys
and cipher-texts is presented. This makes the scheme more scalable, especially in
battery-limited devices and bit-rate-limited channels, as in the typical Iol applica-
tion. The scheme allows only AND operators to be used in the Boolean formulas
of the policies, so it provides for limited expressiveness. The above cryptographic
schemes are unsuitable to be used in the present chapter, which compares CP-ABE
and sticky policy approaches. This is either because they follow a KP-ABE approach
instead of a CP-ABE one ((Yu et al.,, 2011; Yao et al., 2015) ), or because they provide
no security at all (the work in (Odelu et al., 2017) has been shown to be insecure
(Herranz, 2020)).

In (Picazo-Sanchez et al., 2014) a secure publish-subscribe protocol for medical
Wireless Body Area Network (WBANSs) using ABE is proposed. The conceived ar-
chitecture follows a star-topology network, where a smartphone (or a similar de-
vice) manages the communication among various nodes placed over/inside the
user’s body, monitoring his/her health conditions. Each node can publish its data
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and subscribe to data generated from other nodes. In (Singh et al., 2015) a secure
MQTT for IoT is introduced, along with the possibility of using ABE. The proposed
architecture comprises one Public Key Generator (PKG), one broker, and several de-
vices, which can act both as subscribers and publishers. Each device owns the public
key and a secret key associated with some attributes that describe its features. Then,
each device subscribes to specific topics to receive the data of interest. In (Rasori
etal., 2018) a system for smart cities using ABE is presented. The application offers
a service of real-time road monitoring in a smart city scenario. Smart objects (e.g.,
cameras) are placed along the roads and store their sensed data on a cloud storage
service. Users can pay a subscription and obtain an ABE decryption key to retrieve
and decrypt the video streams of the city traffic in real-time. In (Herndndez-Ramos
et al., 2018) a system for protecting location data in smart buildings using CP-ABE
is presented. Their approach is based on the concept of “bubbles”, which are coali-
tions of smart objects defined according to relationships between their owners.

As emerged, ABE schemes are not widely adopted in IoT scenarios yet. For such
a reason, the analysis conducted in such a chapter contributes to assessing ABE ca-
pabilities, feasibility, and potentialities within an IoI' middleware in an IoTI typical
scenario.

3.3 Integration of CP-ABE into NOS architecture and
comparison with sticky policies

Generally, an enforcement framework is composed of the following main standard
elements: (i) a Policy Enforcement Point (PEP), which intercepts the access requests
and queries the PDP about its acceptance; (ii) a Policy Decision Point (PDP), which
evaluates the access requests against the authorization policies and takes the au-
thorization decisions; (iii) a Policy Administration Point (PAP), which contains the
complete set of authorization policies established by the system’s administrators.
In a previous NOS version, such components are all located into NOS (Sicari et al.,
2016b).

By introducing the sticky policies (Section 3.1), only the PEP is located into
NOSs, while the PDP is located within the TA, as the PAP. Consequently, the role
of NOSs in the enforcement process is softened, and NOSs can no longer be consid-
ered a single point of failure in the security of the information transmitted within the
whole IoT system. By delegating some operations and controls to the TA, the overall
efficiency of the NOSs middleware has been improved, as demonstrated in (Sicari
etal., 2017b).

However, the main drawback that emerged from the sticky policies approach is
the need for an always-online TA, responsible for trustworthy evaluating the poli-
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cies in relation to the subscribing data consumer. To overcome such an issue and,
at the same time, to provide a flexible and efficient data access control framework,
the CP-ABE scheme is introduced. It includes a mechanism for access control able
to embed PEP and PDP just inside the cipher-text (hence, the policy is not sepa-
rated from the encrypted data itself, as it is for sticky policies). The existing NOS
architecture, described in Section 3.1, must be revised in order to include the new
components/functionalities required by the CP-ABE scheme.

In Figure 3.2, the modified NOS architecture is shown, including the CP-ABE
primitives, which are integrated into the data flow. More in detail, concerning Fig-
ure 3.1, it is worth noting that the policy associated with the data now depends on
the CP-ABE encryption (the Encrypt primitive is executed by the new introduced
CP-ABE Data Encryption module). The CP-ABE Data Encryption module has three
main goals: (i) it performs the encryption in place of data producers, thus light-
ening the memory- and energy-constrained IoI' devices from such a complex and
expensive task; (ii) it defines and correctly associates the access policies to the pro-
cessed data; (iii) it stores normalized data in the Normalized Data storage unit in an
encrypted form, so such data at rest is also protected in the case of NOS compro-
mised by unauthorized parties. The CP-ABE Data Encryption module combines the
policies defined by NOS and the encryption keys defined by the TA, which executes
the Setup and KeyGen primitives. In this sense, data producers have less control
over the disclosure of their information, but the IoT platform has more control over
them. Another remark is that the TA now needs to communicate with both NOS,
in order to provide the required encryption key for performing the encryption task,
and users, to disclose the decryption key to authorize them to access the NOS’s re-
sources; hence, the Decrypt primitive is executed by the data consumer. After that,
the TA can go offline.

To show the differences between the NOS’ data flow with the sticky policies ap-
proach and with the CP-ABE scheme, a further overview of the two systems is pro-
vided in Figures 3.3 and 3.4, respectively.

Figure 3.3 highlights that in the sticky policies approach, for each subscription
to a specific topic by an interested consumer (step 10), the TA must be contacted
by NOS to make the access decision (steps 11-13); then, if the TA agrees to the sub-
scription, the data consumer will be notified of the data belonging to the requested
topic (step 14). The credentials used for exchanging such data between NOS and
the consumer are established a priori by an agreement between them (steps 1-2).
Hence, a sort of double agreement should be done: one for the encryption key and
another one for the topic’s subscription. The regular NOS’s processing activity is
independent of such tasks (steps 3-9).

Instead, in a scenario that adopts CP-ABE (Figure 3.4), the TA is no longer re-
quired to be online during subscription and data transmission (steps 8-9). NOS is
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Figure 3.2. New proposed NOS architecture.

not required to know the decryption keys needed by the consumers to decrypt the
information (step 10). This lightens the keys” management from the NOS’s view-
point. In fact, with CP-ABE, the access policy is embedded in the encrypted data
based on the assigned attributes (steps 1-7). Such an aspect represents the crucial
difference between the two approaches, which reveals the effectiveness of the CP-
ABE approach in facilitating, from a performance perspective, the whole manage-
ment of data encryption/decryption in relation to the established policies. In that
sense, sticky policies seem more challenging to manage because encryption/decryp-
tion are not so related to access policies with respect to the CP-ABE paradigm.

In case of policies” update, addition, or revocation, the sticky policy approach
requires an update of the scopes and constraints of the TA; hence, the related de-
cryption keys must be revoked and re-assigned to the consumers involved in that
policies. On the other hand, the CP-ABE mechanism simply requires that NOSs
change the policy used to encrypt data, which can be done without involving the
TA.
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Figure 3.3. Scheme of sticky policies based data flow within the NOS system.

To summarize, the CP-ABE Encrypt, Setup and KeyGen primitives are not so
complex to be integrated into the NOS platform due to its modular design. In fact,
the introduction of the new module CP-ABE Data Encryption does not affect the
behavior of the existing ones, as it emerges in Figure 3.4; moreover, communica-
tions with the TA were already available in the previous version with sticky poli-
cies (Sicari et al., 2017b). The main difficulty is represented by the management of
the decryption keys concerning the consumers subscribed to NOS. The following
section focuses on the key management mechanism to clarify how decryption keys
are distributed and assigned and how decryption is enabled.
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Key Management

In a system adopting CP-ABE, the decryption keys must be distributed to the data
consumers and revoked if they get compromised somehow. The mechanisms of dis-
tribution and revocation of decryption keys are often critical and complex. To im-
plement such mechanisms, some additions to the basic Bethencourt’s scheme have
been introduced in NOS.

A version number is associated with each attribute, and inside the TA an At-
tribute Version List (AVL) is implemented, which is a list of all the attributes used
in the system together with their latest version number. The AVL is created by the
TA just after the execution of the Setup procedure, and all the version numbers are
initialized to 1. From now on, an attribute is intended as including its version num-
ber. For example, the attribute “attr" will become “attr_vn" where n is the version
number, and “artr_v1" and “attr_v2" are considered two distinct attributes. Further-
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more, the TA also detains a table of the unique identifiers of all the data consumers
(ConsID) and their attribute sets, named Consumers Attribute List (CAL). This table
is updated every time a new data consumer joins the system through a subscription
to a certain topic since the IoI platform runs on a publish&subscribed sharing, as
described in Section 3.1.

It is supposed that each data consumer and the TA have their own pair of asym-
metric keys (e.g., RSA or ECC) used for digital signature and encryption. Further-
more, it is assumed that the TA’s public key is well known to all NOSs and data
consumers, possibly obtained offline. Hence, the following procedures for key man-
agement are defined:

e System initialization. In the system initialization procedure, the TA runs the CP-
ABE primitive Setup, thus generating the couple (MK, EK). The TA has the
responsibility to keep MK secret. Then, the TA creates the AVL by inserting
all the attributes used in the system along with their version. Finally, the TA
also creates the CAL, which is empty at the system initialization.

e NOS join. The NOS join procedure is executed whenever a new NOS joins the
system. The TA signs and communicates EK and the AVL to the NOS. The
NOS can encrypt data using only attributes contained in the AVL.

o Consumer join. The consumer join procedure is executed whenever a new data
consumer joins the system. The data consumer requests a decryption key to
the TA by declaring an attribute set y that describes him/her. The TA has the
responsibility to verify that the declared y describes the consumer. Every at-
tribute inside y must belong to the AVL maintained by the TA. Then, the TA
executes the CP-ABE primitive KeyGen, generating a decryption key based on
the previously mentioned y. The TA updates the CAL by adding a tuple in-
cluding the ConsID of the consumer and its associated attribute set. Then, the
TA signs the decryption key with its private key and encrypts the signed de-
cryption key with the consumer’s public key, which may have been acquired
offline. The TA sends such signed and encrypted decryption key to the new
consumer, which decrypts and authenticates it. If both operations are suc-
cessful, the consumer accepts the decryption key and starts using it to decrypt
data.

o Data producer deployment. The data producer deployment procedure is executed
whenever a new data producer is installed in the system. The data producer
agrees with the associated NOS on a symmetric key, with which all the subse-
quent messages will be encrypted. Such a key agreement could be done in sev-
eral ways, depending on the capabilities of the specific data producer. For ex-
ample, NOS can transmit the symmetric key in clear to the data producer with
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a low-power wireless signal. This is a lightweight technique recommended
by some of IETF’s RECs (Baccelli et al., 2016) for smart home applications. It
assumes that no eavesdropper is present at deployment time. If this assump-
tion does not hold, more advanced key agreement protocols can be used, for
example, anonymous or authenticated Diffie-Hellman.

e Key revocation. The key revocation procedure is executed whenever a decryption
key is compromised. This procedure drastically reduces the risk of data leak-
age by invalidating and making the compromised decryption key useless. In
order to ease the reading, the key revocation procedure is explained through
an example in the following.

Suppose that the decryption key DK of a consumer identified by Cons2 has been
compromised and must be revoked. The attribute set y, associated with the decryp-
tion key includes the attributes A_v1, D_v1. To revoke DK, the TA updates the AVL
by an increment in the version number of all these attributes, thus updating A_v1 to
A_v2,and D_v1 to D_v2 (Figure 3.5).

AVL AVL

A_v1 A_v2

o U

C vi compromised DK» C vi
- {A_v1, D_v1} -
D_wv1 D_v2

Figure 3.5. Example of AVL update during a key revocation procedure. On the left, the AVL
before the procedure of key revocation. In the middle, the key that has been compromised.
On the right, the updated AVL.

Then, the TA proceeds with re-generating the decryption keys of the affected con-
sumers by executing the CP-ABE primitive KeyGen. The affected consumers are
those consumers that have at least one attribute in common with the revoked de-
cryption key. Let us suppose that the decryption key of the consumer identified by
Cons1 has one attribute (A_v1) in common with DKj. Such a consumer is thus an
affected one, and the TA re-generates his/her decryption key. The TA also updates
the CAL table (see Figure. 3.6) by removing Cons2, whose decryption key has been
revoked, and by upgrading A_v1to A_v2 in the attribute set of the affected consumer
Consl.

Then, the TA proceeds to sign, encrypt (with the consumer’s public keys), and
send the re-generated decryption key to each affected data consumer. Such an op-
eration guarantees future decryption for affected data consumers; otherwise, their
old decryption keys will not decrypt new cipher-texts. Since the decryption key is
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v

compromised DKj»

{A_v1, D_v1}
Consumer Attribute List Consumer Attribute List
Cons ID | Attribute set Cons ID | Attribute set
Cons1 {A_v1,C_v1} Cons1 {A_v2, C_v1}
Cons2 | {A_v1,D_v1} Cons3 | {B_v1, C_v1}
Cons3 | {B_v1,C_v1} Cons4 | {B_v1}

Cons4 | {B_v1}

Figure 3.6. Example of CAL update during a key revocation procedure. On the left, the
table before the key revocation. On the right, the table after the key revocation.

encrypted, the TA can send it through an insecure channel (e.g., a simple email).
Finally, the TA signs the updated AVL and sends it to the joined NOSs. From this
moment, NOSs will encrypt with the new versions of the attributes. Such an oper-
ation makes the compromised decryption key useless because the old version A_v1
and D_v1 are no longer used to encrypt data. To send the updated AVL, NOSs can
do an MQTT subscription to the broker on a special-purpose topic dedicated to AVL
updates from the TA, as just done in (Sicari et al., 2017a). In this way, the TA can
send a single AVL update to the broker, and the broker will eventually distribute it
to all the NOSs.

For each key revocation, supposing n consumers and m NOSs in the system, the
TA must send a single AVL update and a - n emails, where a € [0,1] is the ratio
of affected consumers. Such a ratio highly depends on the policy complexity. The
authors in (Rasori et al., 2018) computed that, in a large IoI system, the affected con-
sumers of the average key revocation can be about a = 12% of the total consumers.
Sending such a quantity of emails should not be a problem with state-of-the-art bulk
email software, given that key revocations should be rare events.

Note that, while data encrypted after the key revocation procedure will not be
decryptable by the revoked key, data encrypted before may still be accessible.

3.4 Validation and Experiments

For evaluating the approaches, just compared in Section 3.3, a threat model, an ap-
plication scenario related to a smart home, and a test-bed for simulations are firstly
presented. Then, numerical results concerning the following metrics are provided:
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storage occupancy, CPU load, and data retrieval delay.

Threat Model and Security Analysis

We assume that each NOS has a copy of a trusted certification authority’s public
key. The TA owns a certificate released by such a CA. We then assume that each
NOS knows the public key of the TA, which is used for digital signature, through
the use of certificates. If the TA is able to issue certificates, it can also act as a CA.

The first threat considered is related to the violation attempts performed by ma-
licious external parties. An external party acts from the outside of the IoI system,
and he does not own any decryption key. He intends to access encrypted infor-
mation. In order to do so, he can try to eavesdrop on a decryption key during a
consumer join/subscription procedure or a key revocation procedure. Such an at-
tack is avoided because, in both procedures, the decryption keys are encrypted with
the consumer’s public key. Alternatively, he can try to carry out an active Man In the
Middle (MITM) attack. For CP-ABE, when the TA communicates the encryption key
to the new joined NOS, during the NOS join procedure, the attacker can try to imper-
sonate the TA and communicate to the NOS a malicious encryption key so that he
can decrypt all the ciphertexts produced by that NOS. Such an attack is avoided be-
cause the TA digitally signs the encryption key. Similar is the sticky policy paradigm
case, where, instead, the TA only communicates with NOSs, thus reducing the vul-
nerabilities. Hence, both approaches (i.e., CP-ABE and sticky policies) are robust
for such a kind of attack.

The second threat considers an external party that compromises a NOS. The ef-
fects of such an attack are many. First and foremost, the attacker has access to all
the data that the smart objects will produce (and consequently send to the NOS)
from that moment on. The attacker cannot access past data encrypted with CP-ABE
and stored in the NOS. However, the same cannot be said for past data encrypted
with sticky policies and stored in the NOS since it is symmetrically encrypted, and
thus the decryption key is known to the NOS. Secondly, the compromised NOS can
manipulate the data it receives from the smart objects. Now we analyze the system’s
response once the compromise has been solved and the security hole that allowed
it had been patched. In both approaches, the symmetric key used by each sensor
managed by the NOS must be renewed since they are also stored inside the NOS
and considered compromised. If the sticky policy approach is used, all the sub-
scribers associated with the attacked NOS have to renew their credentials. Since
the subscriber credentials are stored in the NOS, they must be considered compro-
mised by the attacker. Instead, if the CP-ABE approach is used, no additional cryp-
tographic value has to be considered compromised. As a matter of fact, the NOS
possesses only the encryption key, which is public, and therefore it is of no use for
the attacker.
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The third threat concerns possible colluding consumers wanting to acquire data
that they cannot obtain singularly. Concerning this attack, the original Bethencourt’s
CP-ABE scheme (Bethencourt et al., 2007) is natively collusion-resistant. This means
that two or more consumers cannot combine their decryption keys in such a way to
decrypt data that they cannot access singularly. Please refer to (Bethencourt et al.,
2007) for mathematical proof of this.

The CP-ABE scheme must be indistinguishable under the adaptive chosen ci-
phertext attack (IND-CCA) to cope with the threats described above and, there-
fore, to resist active adversaries. Moreover, the signature scheme must be unforge-
able under the chosen message attack (EUF-CMA). As the signature scheme, we
chose the ECDSA algorithm, which offers the needed security requirement. The
original CP-ABE scheme that we employed (taken from the work of Bethencourt
et al., (Bethencourt et al., 2007)) is only proved to be indistinguishable under the
chosen-plaintext attack (IND-CPA). The proof of that is given by Bethencourt et al.,
and it is supported by the complexity of the Bilinear Diffie-Hellman (BDH) prob-
lem. For being suitable against active adversaries, we converted the IND-CPA in an
IND-CCA scheme by applying the efficient and straightforward Fujisaki-Okamoto
transformation (Fujisaki and Okamoto, 1999), which only requires the random or-
acle model assumption.

The fourth threat, instead, regards only the sticky policies, and it concerns an
active adversary that performs a MITM attack between the NOS and the TA during
a decryption request. In this case, the adversary may change the sticky policy that
travels through the internet. To avoid this attack, the NOS shall communicate with
the TA (and vice-versa) only through a secure channel (e.g., TLS).

Smart Home Scenario

An application scenario related to a typical smart home is used for conducting the
performance evaluation, presented in Section 3.4. Data from real-world smart home
test-bed has been gathered1 ; such data regards some smart meters installed in two
houses, named A and B, which include, among the others, the electricity consump-
tion related to: kitchen lights, bedroom lights, duct heater HRV, and HRV furnace.
Note that the house has a total of eight rooms and includes three full-time occu-
pants. Measures are acquired through installed smart objects that collect electricity
data every minute. Detailed information about such a smart home data-set and on
how information is thereby collected are available in (Barker et al., 2012).

Each person, which interacts with the houses, can be described by one or more
of the following attributes:

"http://traces.cs.umass.edu/index.php/Smart/Smart
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Landlord of the house X (LanX), who is the house’s landlord, but it does not
imply that he/she lives there. The landlord might rent out the house. For
example, the landlord can be a young man that has rented out an inherited
apartment.

Tenant of house X (TenX), who manages and lives in the house. The tenant
has access to all the data generated in the house. The tenant and the landlord
role may coincide. For example, a young woman who has recently bought a
house and moved in is both tenant and landlord. Such an attribute is intended
as a numerical, representing the date when the person was nominated tenant.

Guest of the house X (GueX), who has access to the house, and he/she may
not live there. For example, an old couple’s daughter can live elsewhere, but
she has Guest rights to check on her parents. He/she has access to a limited
number of data. Such an attribute is intended as TenX, and it represents the
date when the person was nominated guest.

Expiring date for the tenant role of house X (ExTenX); it is also intended as
a numerical attribute, as for TenX and GueX, representing the date when the
role of tenant will expire.

Expiring date for the guest role of house X (ExGueX); it is also intended as a
numerical attribute, as for ExTenX, and it represents the date when the role of
guest will expire.

An example of an attribute set y for a person named Robert (R) is the following;:

v(R) ={LanB,
TenA =2/2/2000,
ExTenA =2/2/2020, (3.1)

TenB =2/2/2015,
ExTenB =2/2/2020}

The above statement must be intended as follows: (i) Robert is the landlord of

the house B; (ii) he is the tenant of house A since February 2"¢ 2000 and of the house
B since February 2"¢ 2015; (iii) both his tenant roles will expire on February 2"¢ 2020.
In such a scenario, the versioning of attributes is not considered for readability.

Three possible data requests for each house are made available, even obtained

from the data-set mentioned above:

e Access to the electrical data-set: this is a data-set related to the energy con-

sumption of all the electronic and electric devices inside the house. Only the
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landlord and the tenants can access this data. To access them, a viable policy
could be:

T (ElectricalDataset) = {LanXV

3.2
(today > TenX A today < ExTenX)}, (32)

where today is the date when data has been produced. Note that, due to the
way in which numerical attributes are implemented in (Bethencourt et al.,
2007), the > and < operators return “false” in the case the numerical attribute
does not exist in the decryption key.

e Video streaming: it provides live images from the inside of the house. Only
who has actual access to the house can see video streaming from it. To request
such a kind of data, the consumer must be an authorized as an tenant or a
guest. Therefore, a viable policy could be:

T (VideoStream) ={(today > TenXA
today < ExTenX)V
(today > GueXA
today < ExGueX)}.

(3.3)

e Remote monitoring of house’s current state: this implies the monitoring of rel-
evant parameters such as temperature, humidity, lights switched on/off. Only

the tenant can remotely monitor the status of the smart home. A viable policy
could be:

T (Monitoring) ={(today > TenXA

(3.4)
today < ExTenX)}.
The examples of policies just presented are derived from the attributes defined
above. They will be used for the performance evaluation in Section 3.4.

Performance Evaluation

In the experimental setup, the NOS platform is deployed on a Raspberry Pi, a de-
vice widely used in IoT applications. The behavior of a set of consumers subscribing
to obtain information about the smart homes (see Section 3.4) is emulated using a
laptop, with the following features: (i) Core i7-4710HQ 2,5 GHz; (ii) 16 gigabytes
of RAM; (iii) OS Ubuntu 16.04. The laptop uses WiFi IEEE 802.11 network to com-
municate with the Raspberry Pi. The same WiFi connection is also used for the
communications with the MQTT broker and with the TA module, implemented as
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separate components, which interact with NOS on-demand and run on separate lap-
tops. A toolkit available online? has been used to implement the required CP-ABE
primitives into the IoTl system, as presented in Section 3.3.

Sticky policy and CP-ABE approaches are compared w.r.t. the following metrics:
storage and CPU load overhead and data retrieval delay. The obtained results are
compared based on the application scenario, defined in Section 3.4. More in detail,
one packet per minute is fetched from the simulated data sources, and one data re-
quest per minute is simulated from the consumers. The number of data producers
and consumers is set to six and three, respectively; such values are derived from
the simulation setups of two previous works on policy enforcement within the NOS
architecture (Sicari et al., 2016b) (Sicari et al., 2017b), in order to ease the results’
comparison and evaluation. Table 3.1 summarizes the setup parameters, while Fig-
ure 3.7 sketches the interactions among the participants to the smart home scenario
and the NOS platform. Note that bold text and arrows denote the interactions valid
for CP-ABE, while the dashed arrow denotes the interactions valid for sticky poli-
cies; finally, thin arrows are common to both approaches.

Table 3.1

ExPERIMENTAL CONFIGURATION

Parameter Value

Number of data producers 6

Number of data consumers 3

Number of attributes per policy 5

Data-rate provision from producers 1 pck/minute
Requests” data-rate from consumers 1 request/minute
Duration of the experiments 1 hour

Time window of the data gathered from the data-set | 1 week

Storage, Network and CPU Load

NOS components have the following storage requirements, which are different in
the two approaches:

e In the sticky policy approach, the data sources and the consumers must store
the credentials for ciphering the data to be transmitted to NOS. When produc-
ers transmit data to NOS, they may also send the related sticky policy. Such
an aspect unavoidably causes an increase in traffic into the network since it is

’http://acsc.cs.utexas.edu/cpabe/
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Figure 3.7. Scheme of the performance evaluation setup.

transmitted not only the data but also the associated policy. An average in-
crease of 0.5 kilobytes is measured for each transmitted data unit, considering
the sticky policy format specified in (Sicari et al., 2017b), which approximately
consists of 500 bytes. Whereas adopting an approach based on CP-ABE, data
sources have not to send a sticky policy along with the data to NOS; therefore,
such an increment is negligible. Indeed, such an aspect represents a relevant
advantage of adopting CP-ABE because IoI' networks usually transmit a huge
amount of data. Note that, in CP-ABE, the packets’ dimension increases once
NOS has performed the encryption task.

e Starting for such premises, it is worth noting that the described behavior also
influences the network load. In fact, for both the approaches, the information
which is transmitted over the network are: (i) the data from producers; (ii)
the consumers’ requests; (iii) the consumers’ responses (i.e., the data release).
Figure 3.8 shows a reduced network load when adopting CP-ABE, and it is
mainly because data sources do not transmit to NOS the data along with the
policy (as happens for the sticky policy approach). The network load remains
lower for the CP-ABE approach with respect to the sticky policy one, even if
there is an increment in the packet dimension when NOS performs the CP-ABE
encryption.

e NOSs have to store different kinds of information. Nevertheless, it is worth
remarking that NOSs do not support persistent storage of IoI' data for Raw
Data and Normalized Data collections. In fact, incoming data is only temporar-
ily cached on the NOSs” memory while being processed before being submit-
ted to requesting consumers. Once data is further pushed to or pulled from
the MQTT client (which handles the topics notification to subscribers), the
data can be safely removed from NOSs. In both sticky policy and CP-ABE ap-
proaches, no further storage is required because the policies themselves are
directly associated or embedded into the data. Hence, NOSs do not have to
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store all the policies managed by the Iol system, as it happens in traditional
approaches, as the one presented in (Sicari et al., 2016b). However, it is fun-
damental to evaluate if it takes up more memory a sticky policy attached to
the data or encrypted with CP-ABE. The average memory occupancy on NOS
at runtime is 10.2 megabytes with sticky policies, whereas, with CP-ABE, it
slightly decreases to 8.4 megabytes. Note that such results have been obtained
by equally setting the following factors for the two approaches: (i) the fre-
quency of data fetching from sources (i.e., 1 packet/minute); (ii) the frequency
of execution of the routines for removing data from non-persistent collections
(in the actual environment, such a task is executed every 5 minutes); (iii) the
number of sources (in the actual setup, 6 data producers are introduced). Ob-
viously, for CP-ABE, the attributes” number highly influences the dimension
of the encrypted data; however, it is true also for sticky policies.

e Concerning the sticky policy-based approach, the TA must store the whole set
of the valid scopes and constraints used for sticky policies’ composition (Sicari
et al., 2017b). The dimension of this storage depends on the specific applica-
tion domain. In the sample implementation, this was negligible. On the other
hand, in the CP-ABE based approach, the TA has to maintain the AVL and
CAL tables, whose sizes are also negligible in our sample implementation.

The just presented analysis about memory occupancy reveals that adopting an
approach based on CP-ABE would reduce the memory occupancy and the network
load, thus improving the system’s scalability in the presence of a higher amount
of data. However, the CP-ABE approach affects the CPU load on NOS more than
the sticky policy approach, which, on the other side, increases the computational
load on data sources. In fact, following the sticky policy approach, the data sources
are in charge of computing the sticky policies and transmitting them along with the
information to NOS; whereas, following the CP-ABE approach, the computational
load is moved to NOS, which has to perform the encryption task on each incoming
data. Hence, NOS shows a mean CPU load of 15.4% by adopting sticky policies,
while, when running CP-ABE, the mean CPU load on NOS is 26.7%. Figure 3.8
sketches the comparison about storage occupancy, network load, and CPU load.

Considering such two perspectives, the most viable solution is based on CP-ABE
because it is more efficient for end-devices since more powerful and secure devices,
as NOSs, perform the heavier processing tasks. Such a point of view perfectly fits the
principles of the emerging fog computing paradigm (Yi et al., 2015), which aims to:
(i) reduce network’s latency; (ii) prevent unnecessary network resources’ consump-
tion; (iii) enhance service availability; (iv) increase the robustness of the whole IoT
system thanks to the removal of always-online points of failures into the security
network infrastructure. Note that the TA is a single point of failure in the CP-ABE
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Figure 3.8. Whiskers-box diagram of mean storage occupancy and CPU load comparison:
sticky policies vs CP-ABE approach.

approach as well, but it has to be online only when revoking a decryption key, so it
is hardly exposed to attacks.

Data Retrieval Delay

The main difference between the two mechanisms resides in how data are disclosed
and, therefore, how policies are evaluated. An important metric to be considered
is the delay introduced by the enforcement framework using sticky policies with
respect to CP-ABE. Note that “data retrieval delay” means the time elapsed since
a consumer requests a topic subscription up to when the same consumer receives
and decrypts the requested data. Moreover, as emerged in Section 3.4, the packets
transmitted by the data sources to NOS in the case of the sticky policy approach are
approximately 0.5 kilobytes larger than the same packets sent with CP-ABE.

In the sticky policy approach, to obtain access permission, the recipients can
subscribe to specific topics, and the subscription is only accepted if the request sat-
isfies the requirements established by the sticky policies associated with the data.
NOSs do not locally evaluate access permissions, but they are delegated to the TA; a
query to the TA is sent for each occurring change and, in general, for each incoming
request, thus clearly spending time for transmissions and processing. Different is
the approach based on CP-ABE: once the subscribers obtained the decryption keys
needed for disclosing the authorized information, they no longer have to make re-
quests to the TA, which, as just said, can be offline most of the time.

For such a reason, the data retrieval delays are different, as shown in Figure 3.9.
Hence, CP-ABE allows to spend less time from two perspectives: (i) the data trans-
mission from the source to NOS; (ii) the data disclosure. Figure 3.9 shows a com-
parison of the mean distribution of the delays generated by the two approaches,
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measured with the considered prototypical implementation over one hour. Data-
rate strictly depends on the fetching of data acquisition of the used data-set, which
is every minute. The considered time window concerns a week of measurements.

3.5

2.5

Delay (s)

15

0.5

sticky policy CP-ABE
approach approach

Figure 3.9. Whiskers-box diagram of mean data retrieval delay comparison: sticky policies
vs CP-ABE approach.

Going in-depth into the analysis of delays, Figure 3.10 presents the encryption
time required by CP-ABE for the three different kinds of data managed within the
smart home, which are: the electrical data-set, the streaming video, and the remote
monitoring, as explained in Section 3.4.

Finally, Figure 3.11 shows the time required for decryption in CP-ABE by varying
the kind of data requested.

3.5 Answer

Attribute-Based Encryption vs. Sticky Policies: What Should We Use?

As it turns out, Attribute-Based Encryption is the answer to that question since
it demonstrates several advantages compared to sticky policies in terms of memory
occupancy on the IoT platform, delay, and usability of the system.
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Chapter 4

Can CP-ABE be Used in a Low-Bitrate
WSAN?

Internet of Things (IoT') technologies (Mainetti etal., 2011; Ashton et al., 2009; Atzori
etal., 2010) allow us to connect constrained or embedded devices through the Inter-
net. This strongly impacts our everyday lives, as common objects can be empowered
with communication and cooperation capabilities. In particular, the industry can
take enormous advantage of Iol. For example, a smart factory can be monitored and
controlled through the Internet, thus optimizing the industrial processes (Gilchrist,
2016). Another example is a smart warehouse, in which sensors can tell automated
guided vehicles where to find particular goods in order to load them on a given
truck. Security is a crucial requirement in all these systems, especially for integrity,
confidentiality, and access control over data. Though ABE techniques offer a high
level of security and intrinsic fine-grained access control, they do not fit easily in
the IoT world. One of the most challenging aspects is the communication overhead
generated by the ABE encryption (over 1 KB overhead per message), which may
be quite burdensome for wireless networks with limited bitrate like those employed
in IoT (Farrell, 2018; Montenegro et al., 2007). Indeed, modern Iol' networks use
low-power communication protocols like Bluetooth LE, IEEE 802.15.4, and LoRa,
which provide for low bitrates (230 Kbps for BLE (Tosi et al., 2017), 163 Kbps for
802.15.4 (Latré et al., 2005), 50 Kbps for LoRa (Georgiou and Raza, 2017)).

This chapter presents fABElous, an ABE solution suitable for Industrial IoI ap-
plications that minimize the communication overhead introduced by ABE encryp-
tion. The fABElous solution ensures data integrity, confidentiality, and access con-
trol while reducing the communication overhead of 35% with respect to using ABE
techniques naively.

The rest of the chapter is structured as follows. Section 4.1 introduces the re-
lated work. Section 4.2 describes fABElous in detail: its architecture, its reference
use case, its system procedures, its reference threat model. Section 4.3 analyzes the
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Figure 4.1. An overview of fABElous architecture.

performances of fABElous in terms of communication overhead. Section 4.4 ends
the chapter, answering the question inquired.

4.1 Related Work

Attribute-Based Encryption has been applied to protect confidentiality and ensure
tine-grained access control in many different application scenarios like cloud com-
puting (Mingetal.,2011; Yuetal., 2010a; Xu and Martin, 2012; Hur, 2013), e-health (Picazo-
Sanchez etal., 2014), wireless sensor networks (Yuetal., 2011), Internet of Things (Touati
and Challal, 2015; Singh et al., 2015), smart cities (Rasori et al., 2018), online social
networks (Jahid et al., 2011). In this chapter, we will discuss the usage of ABE in an
Industrial IoT Scenario.

4.2 Architecture

We assume a low-bitrate Wireless Sensor and Actuator Network (WSAN), composed
by a set of sensors and actuators, which exchange encrypted data with each other
(Fig. 4.1). As a use-case example, consider a smart factory with many sensors and
actuators which must communicate in a delay-bounded way to implement a real-
time application (Chen et al., 2009). Given the strict requirements, sensors and ac-
tuators must communicate directly through the WSAN. The WSAN inside the smart
factory uses IEEE 802.15.4 as a link-layer protocol, which is low-energy and low-
bitrate. As a consequence, communications and encrypt/decrypt operations must
be as lightweight as possible.

A sensor is a data producer that measures and encrypts some quantity, and then
it sends the encrypted data to a set of actuators over the WSAN. An actuator is a
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data consumer that receives encrypted data from a set of sensors over the WSAN
and then uses it to control some mechanism. The encrypted data received by an
actuator could be a command that the actuator executes, or it can be measured data
from a sensor that the actuator uses to make a decision. Sensors and actuators are
regulated by a WSAN controller node belonging to the WSAN. For the sake of sim-
plicity, we keep the “sensor” role and the “actuator” role separated; however, a sin-
gle device may act as both. We assume that the WSAN controller has its own pair of
asymmetric keys (e.g., RSA, ECC, etc.) used for digital signature and encryption. In
addition, each sensor and each actuator has a unique identifier called, respectively,
Sensor ID (SID) and Actuator ID (AID), which are assigned by the controller.

Key Distribution Mechanism

In order to satisfy the strict requirements of our model regarding security and mes-
sages size, we diminish the use of CP-ABE heavier ciphertext and primitives. In-
deed, in fABElous, each sensor executes the Encrypt primitive only once for secur-
ing multiple data described by the same policy. Similarly, each actuator executes the
Decrypt primitive only once for extracting data generated by the same sensor and
described by the same policy. The basic idea is to distribute symmetric keys using
the CP-ABE scheme as a reliable tool to achieve fine-grained multicast. Each sensor
encrypts a symmetric key with the CP-ABE Encrypt primitive under a specific pol-
icy and broadcasts it to all the actuators. All the actuators will receive the ciphertext,
but only a few will be able to successfully execute the Decrypt primitive and retrieve
the symmetric key. In this way, when the sensor wants to transmit data and apply
the aforementioned policy to it, the sensor encrypts such data with the symmetric
key instead. In the following, we explain the procedures that the WSAN controller,
the sensors, and actuators may execute inside our system.

System Procedures
System Initialization

The system initialization procedure is executed only once to start the system. The
controller runs the Setup primitive, thus obtaining the master key and the encryp-
tion key.

Sensor Join

The sensor join procedure (Fig. 4.2) is executed whenever a new sensor joins the
WSAN.

First, the human operator who is physically deploying the sensor generates a pair
of asymmetric keys, which the sensor will use for digital signatures. The operator
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Figure 4.2. Sensor join procedure. Dashed lines represent human-device communication.

loads the private key on the sensor and the public key on the controller (step 1).
We call signature key (SK) such a public key. After that, the controller assigns an
identifier SID to the sensor, and it sends the identifier and the encryption key to the
sensor with a signed message (step 2). The controller adds a tuple (SID, SK) to a
locally maintained Sensor Table (step 3). Each tuple in the Sensor Table represents
a sensor in the system. Finally, the controller signs and broadcasts the tuple to all
the WSAN actuators (step 4). The WSAN actuators add such a tuple to their locally
maintained copy of the WSAN Sensor Table.

Actuator Join

The actuator join procedure is executed whenever a new actuator joins the WSAN.

First, the human operator who is physically deploying the actuator generates a
pair of asymmetric keys, which the actuator will use for receiving encrypted keys.
The operator loads the private key on the actuator and the public key on the con-
troller (step 1). We call key-distribution key (KDK') such a public key. After that, the
controller assigns an identifier AID to the actuator, and it generates a decryption key
with the KeyGen primitive, according to the actuator’s attribute set. The controller
signs the identifier and the decryption key, it encrypts such signed message with the
actuator’s key-distribution key, then sends the obtained ciphertext to the actuator.
The controller adds a tuple (AID, KDK) to a locally maintained Actuator Table (step
3). Each tuple in the Actuator Table represents an actuator in the system. Finally,
the WSAN controller sends the WSAN Sensor Table to the actuator with a signed
message (step 4).
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New Policy installation

The new policy installation procedure (Fig. 4.3) is executed by a sensor to share a
symmetric key with some actuators belonging to the WSAN. When a sensor per-
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Figure 4.3. New policy installation procedure.

forms this procedure for the first time, it creates an Identifier Policy Key (IPK) list.
This list links a policy # to a symmetric key SymKey through a symmetric key identi-
fier (KID), and this allows a sensor to encrypt data with the advantages of symmetric
encryption (faster and with smaller ciphertexts than asymmetric encryption), plus
the capability of enforcing an access policy on said data. In other words, the IPK list
is composed of one or more tuples in the form (KID, #,SymKey). The IPK list is a
structure owned by each sensor that belongs to the WSAN, and thus, two different
sensors will have two different IPK lists. Actuators store a similar IPK list containing
the tuples that the sensors shared with them through this procedure.

The following steps allow a sensor to create a tuple for its IPK list and share said
tuple with some actuators over the WSAN. The sensor generates an IPK tuple by
choosing a policy £, a random symmetric key SymKey and a random KID (step s1).
The sensor adds to its IPK list the tuple generated in step sl (step s2). The sensor
encrypts the symmetric key under £ using the Encrypt primitive (step s3). Then
the sensor signs the concatenation of its SID, the ciphertext, and the KID (step s4).
Throughout the chapter, we will refer to a signed concatenation of a SID, an ABE
ciphertext, and a KID as a new policy message. The sensor transmits the new policy
message over the WSAN (step s5). Each actuator inside the WSAN verifies the sen-
sor signature on the new policy message, using the signature key associated with
the received SID inside the sensor table (step al). If the signature is not correct, the
message is discarded. Otherwise, the actuator checks if its attribute set y satisfies .
If the attribute set y does not satisfy the policy #, the message is discarded. Other-
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wise, if the attribute set y satisfies the policy #, the actuator decrypts the ciphertext
executing the primitive Decrypt, obtaining the symmetric key (step a2). Finally, the
actuator inserts the tuple in its IPK list with the quantities retrieved in step a2 (step
a3).

Data Exchange

The data exchange procedure (Fig. 4.4) is executed by a sensor to transmit data to
one or more actuators in a low-latency fashion inside the WSAN.
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Figure 4.4. Data exchange procedure.

The sensor chooses a policy # and retrieves the associated symmetric key and KID
from its IPK list (step s1). If there is no matching tuple in its IPK list, the sensor
performs a new policy installation procedure. The sensor encrypts the data using
the symmetric key (obtaining SymCP), and it signs the concatenation of its SID, the
ciphertext, and the KID (step s2). Throughout the chapter, we will refer to a signed
concatenation of a SID, asymmetric ciphertext, and a KID as a data message. Then, the
sensor broadcasts the data message over the WSAN (step s3). Each actuator inside
the WSAN, which is interested in the transmitted data, verifies the sensor signature
on the data message by retrieving from the sensor table the signature key associated
with the received SID (step al). If the signature is not correct, the data message is
discarded. Otherwise, the actuator retrieves from its IPK list the tuple associated
with the received KID (step a2). The actuator uses the latest symmetric key retrieved
to decrypt the data message and consumes its content (step a3). Finally, the sensor
securely deletes the sensed data (step s4).
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Threat Model

The fABElous scheme provides data integrity, confidentiality, and access control.
In the following, we analyze possible threats and explain how fABElous addresses
them.

Eavesdropper

Eavesdroppers are undoubtedly a threat to confidentiality. An eavesdropper can
gain information by examining the traffic between sensors, actuators, and the con-
troller. However, every exchange of information is protected. If an eavesdropper can
obtain a data message, he cannot access the data since he does not have the symmet-
ric key. Even if he has access to the ABE ciphertext containing that symmetric key,
he cannot decrypt it either because he lacks an ABE decryption key. Even more so,
if the eavesdropper intercepts the message exchange between an actuator and the
WSAN controller during the actuator join procedure, he cannot retrieve the decryp-
tion key since it is safely encrypted with the key-distribution key of said actuator.

Compromised Sensor

Suppose that an attacker gains complete access over a sensor. Said attacker obtains:
(i) the data generated by the sensor from the moment of the compromise on; (ii)
the private signature key of the said sensor; (iii) the IPK list used by the sensor, in-
cluding the symmetric keys used for data encryption. Note that this attacker cannot,
in any way, obtain data generated by other sensors. Each sensor deletes past data
securely, so the attacker cannot retrieve it from the sensor. However, if an attacker
intercepted and stored past transmissions, he would retrieve past data by using the
stolen symmetric keys. To mitigate this, sensors could periodically refresh the sym-
metric keys by deleting some tuples from their IPK list and executing the new policy
installation procedure on the same policies again. In this way, the attacker cannot
retrieve data produced before the last refresh of the symmetric key.

Note that the attacker could also disseminate malicious data authenticated with
the signature key of the compromised sensor. In this way, malicious data is accepted
by the actuators that receive it. This attack can be thwarted by revoking the signature
key of the compromised sensor. We plan to add this functionality to a future version
of fABElous.

Compromised Actuator

Suppose that an attacker gains complete access over an actuator. The said attacker
obtains: (i) the private ABE decryption key of the said actuator; (ii) the private
key-distribution key of the said actuator; (iii) the IPK list used by the actuator, in-
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cluding the symmetric keys used for data decryption. Each actuator may delete past
data securely after consumption, so the attacker cannot retrieve it from the actua-
tor. However, if an attacker intercepted and stored past transmissions, he would
retrieve past data by using the stolen symmetric keys. With this set of information,
the attacker can decrypt every past and future data message that the compromised
actuator has access to. Note that this does not imply that the attacker has access to
all the data generated by the sensors. Indeed, his decryption capabilities are limited
by the access privileges of the compromised actuator. If the compromised actua-
tor cannot decrypt some data because its attribute set does not satisfy the policy of
such data, then the attacker will not be able to decrypt it as well. This is achieved
thanks to ABE technology, which enforces a fine-grained access control even in case
of device compromise. The actuator compromise can be addressed by revoking its
decryption key. We plan to add this functionality to a future version of fABElous.

4.3 Performance Evaluation

In this section, we show more in detail the parameters we considered for evaluat-
ing fABElous. Data is composed by the combination of 120 bytes of raw data, plus
4 byte of KID, plus 4 bytes of timestamp (to avoid replay attacks). The used digi-
tal signature algorithm is ECDSA, which has the benefit of adding a constant size
signature of 40 byte (considering 80-bit security). For the symmetric key encryp-
tion, we used AES with 128-bit keys in CBC mode. The policy used to evaluate
CP-ABE communication overhead is a simple, yet effective £ = (A AND B AND C).
We used only AND operators without losing in generality since the specific Boolean
operator does not influence the communication overhead. To measure the commu-
nication overhead, we used the CP-ABE toolkit of Bethencourt et al. (Bethencourt
et al., 2007). Table 4.1 shows the communication overhead of fABElous compared
to other schemes.

Table 4.1
TrANSMISSION SizE
Scheme Size (bytes) Overhead (%)
No security 120 0%
Authentication only 160 25%
“Naive” CP-ABE 1.250 90%
fABElous 192(+1.122*)  100%—-37.5%

*Once per policy installation

No security scheme refers to sensors transmitting raw data without any protec-
tion. Authentication only scheme refers to sensors transmitting signed data using
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ECDSA. “Naive” CP-ABE scheme refers to sensors constantly transmitting data en-
crypted with CP-ABE. The reduction of the fABElous communication overhead over
number of transmissions is calculated as:

1122+ N - 72
1122 + N - 192

Overhead (%) = 100,

where N is the number of data messages sent, 72 is the amount of overhead bytes
in each data message, 1.122 byte is the size of the CP-ABE ciphertext containing an
AES key, and 192 byte is the total size of each data message. As seen from the table,
the overhead of fABElous encryption is as big as 100% in the worst case (no data
exchange procedure executed after a new policy installation procedure).

Compared to no security, fABElous has an incredible amount of communica-
tion overhead, even in its best-case scenario. However, f{ABElous grants data in-
tegrity, data confidentiality, and fine-grained access control, which are three fea-
tures required by our use case. Compared to authentication only, fABElous has
more than twice the communication overhead, even in its best-case scenario. How-
ever, in addition to data integrity, fABElous also grants data confidentiality and fine-
grained access control, which are two features required by our use case. Compared
to “Naive” CP-ABE, fABElous has less communication overhead since the second
data exchange execution (N > 2). Indeed, in its best-case scenario, f{ABElous com-
munication overhead is 49% less than “Naive” CP-ABE communication overhead
(N > 99). Furthermore, in addition to data confidentiality and fine-grained access
control, fABElous also grants data integrity, which is a feature required by our use
case.
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Figure 4.5. fABElous communication overhead.
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Fig. 4.5 shows how fABElous communication overhead drops with each execu-
tion of the data exchange procedure. The communication overhead is lower than
90% after two executions of the data exchange procedure. Furthermore, the com-
munication overhead drops below 41% after 99 executions of the data exchange pro-
cedure.

4.4 Answer

Can CP-ABE be Used in a Low-Bitrate WSAN?

Yes, it can! Despite the high overhead that CP-ABE introduces on the ciphertexts,
by using the proposed technique, fABElous reduces such an overhead below 41%.
This makes CP-ABE a viable solution to provide confidentiality in an IloI applica-
tion.



Chapter 5

How can We Improve the Original
CP-ABE?

One of the most problematic aspects of cryptosystems is the recovery procedure
in case of key compromise, which usually requires sending an update message to
all the devices (Yu et al., 2010a). Sending many update messages could be quite
burdensome for wireless networks with a limited bitrate, like those employed in IoT
and IloT as in (Farrell, 2018; Montenegro et al., 2007) or Chapter 4.

In this chapter, we propose SEA-BREW (Scalable and Efficient ABE with Broad-
cast REvocation for Wireless networks), an ABE revocable scheme suitable for low-
bitrate Wireless Sensor and Actuator Networks (WSANs) in IoT applications. SEA-
BREW is highly scalable in the number and size of messages necessary to manage
decryption keys. In a WSAN composed of n decrypting nodes, a traditional ap-
proach based on unicast would require O(n) messages. SEA-BREW, instead, can re-
voke or renew multiple decryption keys by sending a single broadcast message over
a WSAN. Intuitively, such a message allows all the nodes to update their keys locally.
For instance, if n = 50 and considering a symmetric pairing with 80-bit security, the
traditional approach requires 50 unicast messages of 2688 bytes each, resulting in
about 131KB of total traffic. SEA-BREW, instead, requires a single 252-byte broad-
cast message over a WSAN. Also, our scheme allows for per-data access policies, fol-
lowing the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) paradigm, which
is generally considered flexible and easy to use (Bethencourt et al., 2007; Liu et al.,
2013b; Ambrosin et al., 2015). In SEA-BREW, things and users can exchange en-
crypted data via the cloud and directly if they belong to the same WSAN. This makes
the scheme suitable for both remote cloud-based communications and local delay-
bounded ones. The scheme also provides a mechanism of proxy re-encryption (Yu
etal., 2010a,b; Zu et al., 2014) by which old data can be re-encrypted by the cloud to
make a revoked key unusable. This is important to protect old ciphertexts from re-
voked keys retroactively. We formally prove that our scheme is adaptively IND-CPA

55
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secure under the generic bilinear group model. Furthermore, it can also be made
adaptively IND-CCA secure through the Fujisaki-Okamoto transformation (Fujisaki
and Okamoto, 1999). We finally show by simulations that the computational over-
head is constant on the cloud server, with respect to the complexity of the access
control policies.

The rest of the chapter is structured as follows. In Section 5.1 we review the cur-
rent state of the art. In Section 5.2 we explain our system model; furthermore, we
provide a threat model, the scheme definition, and the security definition for SEA-
BREW. In Section 5.3 we show the SEA-BREW system procedures. In Section 5.4
we mathematically describe the SEA-BREW primitives, and we also show the cor-
rectness of our scheme. In Section 5.5 we formally prove the security of SEA-BREW.
In Section 5.6 we evaluate our scheme both analytically and through simulations.
Finally, Section 5.7 ends the chapter, answering the question inquired.

5.1 Related Work

In 2007 Bethencourt et al. (Bethencourt et al., 2007) proposed the first CP-ABE scheme,
upon which we built SEA-BREW. Since then, attribute-Based Encryption has been
applied to provide confidentiality and assure fine-grained access control in many
different application scenarios.

With the increasing interest in ABE, researchers have focused on also improving
a crucial aspect of any encryption scheme: key revocation. In the following, we show
many ABE schemes that feature different key revocation mechanisms to compare
SEA-BREW to them. First, we recall the notions of direct and indirect revocation,
introduced by (Attrapadung and Imai, 2009). Direct revocation implies that the list
of the revoked keys is somehow embedded inside each ciphertext. In this way, only
users in possession of a decryption key not in such a list can decrypt the ciphertext.
Instead, indirect revocation implies that the list of the revoked keys is known by
the key authority only, which will release some updates for the non-revoked keys
and/or ciphertexts. Such updates are not distributed or are of no use to the revoked
users. In this way, only users that apply the update can decrypt the ciphertexts.

The scheme of Bethencourt et al. (Bethencourt et al., 2007) lacks functionalities
for key revocation and ciphertext re-encryption, which we provide in our scheme.
However, anaive indirect key revocation mechanism can be realized on such a scheme,
but it requires sending a new decryption key for each user in the system, result-
ing in O(n) point-to-point messages where n is the number of users. In contrast,
SEA-BREW can revoke or renew a decryption key by sending a single O(1)-sized
broadcast message over a wireless network, and it also provides a re-encryption
mechanism delegated to the untrusted cloud server.
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Attrapadung et al. (Attrapadung and Imai, 2009) proposed a hybrid ABE scheme
that supports both direct and indirect revocation modes. According to that work’s
authors, this flexibility is a great advantage in a system because the devices can
leverage the quality of both approaches depending on the situation. The indirect re-
vocation mechanism is based on time slots. When a key revocation is performed in
the middle of a time slot, it is effective only from the beginning of the next time slot;
therefore, revocation is not immediate. Instead, their direct mechanism also implies
the immediate key revocation. Notably, with their indirect revocation mechanism, it
is possible to revoke or renew a decryption key by sending a single broadcast mes-
sage over a WSAN. However, such message is usually O(log(n))-sized where n is the
amount of the users in the system, including the ones revoked in the past. Moreover,
their scheme does not provide any mechanism of re-encryption; therefore, if a re-
voked user somehow can get an old ciphertext, he/she can still decrypt it. Instead,
SEA-BREW can revoke or renew a decryption key by sending a single O(1)-sized
broadcast message, and it also provides a re-encryption mechanism.

Liu et al. (Liu et al., 2018) proposed a Time-Based Direct Revocable CP-ABE
scheme with a Short Revocation List. Since the revocation is direct, the revocation
list is embedded in the ciphertext, therefore achieving immediate key revocation.
Furthermore, the authors condensed the entire revocation list into a few hundred
bytes, as long as the number of total revocations does not overcome a threshold
value. However, since the revocation list is destined to grow uncontrollably over
time, they also propose a secret key time validation technique. This technique al-
lows a data producer to remove a compromised decryption key from the revocation
list once such a decryption key has expired. Unlike SEA-BREW, this scheme does
not provide re-encryption of old ciphertexts. Furthermore, the direct revocation
mechanism implies that each data producer must know the revocation list. In fact,
in SEA-BREW, data producers encrypt their data without knowing any information
about revoked consumers.

Touati et al. (Touati and Challal, 2015) proposed an ABE system for IoT which im-
plements an indirect key revocation mechanism based on time slots. In their work,
time is divided into slots, and policies can be modified only at the beginning of a slot.
This approach is efficient only if key revocations and policy changes are known a
priori. An example is an access privilege that expires after one year. Unfortunately,
in many systems, there is no possibility of knowing beforehand when and which
access privilege should be revoked. For example, in case a decryption key gets com-
promised, the system must revoke it as soon as possible. Our scheme gives this
possibility.

Cui et al. (Cui et al., 2016), and Qin et al. (Qin et al., 2017) proposed two in-
direct revocable CP-ABE schemes which do not require communication with data
producers during a revocation process. However, their schemes require all data pro-
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Figure 5.1. SEA-BREW system model.

ducers to be time-synchronized in a secure manner. This could be difficult to achieve
and hard to implement in a WSAN where data producers are often very resource-
constrained sensors. Their schemes do not provide a re-encryption mechanism nor
an efficient key update distribution, unlike SEA-BREW. Furthermore, SEA-BREW
has not the constraint of tight time synchronization.

Yu et al. (Yu et al., 2010a) proposed an ABE scheme to share data on a cloud
server. The scheme revokes a compromised decryption key by distributing an up-
date to non revoked users. The update is done attribute-wise: this means that only
users with some attributes in common with the revoked key need to update their
keys. Such an update mechanism provides immediate key revocation, as well as
ciphertext re-encryption. Notably, their revocation mechanism is not efficient for
WSAN, as it requires O(n) different messages where n is the number of decrypting
parties that need to be updated. On the other hand, SEA-BREW can revoke or re-
new a decryption key by sending a single O(1)-sized broadcast message over the
wireless network.

Finally, we can see that the scheme proposed by Yu et al. (Yu et al., 2010a) is
the one with the most features similar to SEA-BREW. Indeed, we will compare the
performance of SEA-BREW and the scheme in (Yu et al., 2010a) in section 5.6

5.2 System Model and Scheme Definition

Figure 5.1 shows our reference system model. We assume a low-bitrate WSAN, com-



5.2 System Model and Scheme Definition 59

posed of a set of sensors and actuators, which upload and download encrypted data
to/from a cloud server. Sensors and actuators access the cloud server through an
Internet-connected WSAN gateway node belonging to the WSAN. Sensors and actu-
ators inside the WSAN can also communicate directly without passing through the
cloud server. We assume that some sensors and actuators are outside the WSAN,
and they can also upload and download encrypted data to/from the cloud server,
but they cannot communicate directly. In addition, human users outside the WSAN
can upload and download encrypted data to/from the cloud server. The encrypted
data received by an actuator could be a command that the actuator must execute,
as well as a measurement from a sensor that the actuator can use to make some de-
cisions. The cloud server is an always-online platform managed by an untrusted
third-party company that offers storage and computational power to privates or
other companies. Finally, a fully trusted key authority is in charge of generating, up-
dating, and distributing cryptographic keys.

In the following, we will call producers all those system entities that produce and
encrypt data. This includes sensors internal or external to the WSAN, which sense
data and users that produce data or commands for actuators. Similarly, we will call
consumers all those system entities that decrypt and consume data. This includes ac-
tuators internal or external to the WSAN, which request data and receive commands,
and users that request data. For the sake of simplicity, we keep the “producer” and
the “consumer” roles separated. However, SEA-BREW allows a single device or a
single user to act as both. Producers that are inside the WSAN will be called WSAN
producers, while those outside the WSAN will be called remote producers. Similarly,
consumers that are inside the WSAN will be called WSAN consumers, while those
outside the WSAN will be called remote consumers.

As a use-case example, consider a smart factory with many sensors and actuators
which must communicate in a delay-bounded way to implement a real-time appli-
cation (Chen et al., 2009). Given the strict requirements, sensors and actuators must
communicate directly through the WSAN without losing time in remote communi-
cations with the cloud. The WSAN inside the smart factory uses IEEE 802.15.4 as
a link-layer protocol, which is low-energy and low-bitrate. As a consequence, com-
munications and key management operations must be as lightweight as possible.
In addition, employees, external sensors, and external actuators involved in remote
applications will upload or download data to/from the cloud server.

Each producer encrypts data by means of an encryption key (EK). Each consumer
decrypts data by means of a decryption key (DK). The encryption key is public and
unique for all the producers, whereas the decryption key is private and specific to
a single consumer. A single piece of encrypted data is called ciphertext (CP). Each
consumer is described by a set of attributes (y), cryptographically embedded into its
decryption key. The access rights on each ciphertext are described by an access policy
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(). We assume that the key authority, the cloud server, and the WSAN gateway
have their own pair of asymmetric keys used for digital signature and encryption
(e.g., RSA or ECIES keys). In addition, each producer and each consumer has a
unique identifier called, respectively, producer identifier (PID) and consumer identifier
(CID), which are assigned by the key authority. If a device acts as both producer
and consumer, it will have a producer identifier and a consumer identifier.

When a decryption key needs to be revoked (e.g., because it is compromised or
because a consumer has to leave the system), the key authority must ensure that it
will not be able to decrypt data anymore. This is achieved by Proxy Re-Encryption
(PRE). Re-Encryption consists in modifying an existing ciphertext such that a spe-
cific decryption key can no longer decrypt it. This is important to protect old ci-
phertexts from revoked keys retroactively. In SEA-BREW, as in other schemes (Yu
et al.,, 2010a), the Re-Encryption is “proxied” because it is delegated to the cloud
server, which thus acts as a full-resource proxy for the producers. Therefore, data
producers do not have to do anything to protect data generated before a revoca-
tion. However, the cloud server re-encrypts blindly, that is, without accessing the
plaintext of the messages. This makes our scheme resilient to possible data leakage
on the cloud server. Our PRE mechanism is also “lazy”, which means that the ci-
phertext is modified not immediately after the key revocation, but only when some
consumer downloads it. This allows us to spread the computational costs sustained
by the cloud server for the PRE operations over time. We implement the lazy PRE
scheme by assigning a version to the encryption key, decryption key, and ciphertext.
When a key is revoked, the key authority modifies the encryption key, increments its
version, and uploads some update quantities to the cloud server. The set of these up-
date quantities is called update key. The cloud server uses the update key to blindly
re-encrypt the ABE ciphertexts and increments their version before sending them
to the requesting consumers. The cloud server also uses the update key to update
the encryption key used by producers and the decryption keys used by consumers.
Inside the low-bitrate WSAN, instead, the update of the WSAN consumers’ decryp-
tion keys is achieved with a constant-ciphertext broadcast encryption scheme, like the
one shown in Boneh et al.’s work (Boneh et al., 2005). The broadcast encryption
scheme allows the WSAN gateway to broadcast the update key encrypted in such a
way as to exclude one or more WSAN consumers from decrypting it. To do this, the
WSAN gateway uses a broadcast public key (BPK), and each WSAN consumer uses
its own broadcast private key (dcip). Table 5.1 lists the symbols used in the chapter.

Threat Model

In this section, we model a set of adversaries, and we analyze the security of our
system against them. In particular, we consider the following adversaries: (i) an ex-
ternal adversary, which does not own any cryptographic key except the public ones;
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EK Encryption key

MK Master key

DK Decryption key

KDK Key distribution key

PID Producer identifier

SK Signature verification key
CID Consumer identifier

KID Symmetric key identifier
SymKey Symmetric key

P Access policy
Yy Attribute set
BPK Broadcast public key
dcip Broadcast private key
CP Ciphertext
u Update key
M Message
Table 5.1

TABLE OF SyMBOLS

(ii) a device compromiser, which can compromise sensors and actuators to steal se-
crets from them; (iii) a set of colluding consumers, which own some decryption keys;
and (iv) a honest-but-curious cloud server as defined in (Yu et al., 2010a; Rasori et al.,
2018; Di Vimercati et al., 2007), which does not tamper with data and correctly ex-
ecutes the procedures, but it is interested in accessing data. We assume that the
honest-but-curious cloud server might also collude with a set of consumers who
own some decryption keys. Note that the honest-but-curious cloud server models
also an adversary capable of breaching the cloud server, meaning that he can steal
all the data stored in it. To do this, he can leverage some common weaknesses, for
example, buffer overflows or code injections, or hardware vulnerabilities like Melt-
down or Spectre (Reidy, 2018). We assume that who breaches the cloud server only
steals data and does not alter its behavior of correctly executing all the protocols,
basically because he tries to remain as stealthy as possible during the attack. Note
that this reflects real-life attacks against cloud servers!. In the following, we analyze
in detail each adversary model.

The external adversary aims at reading or forging data. To do so, he can adopt
several strategies. He can impersonate the key authority to communicate a false
encryption key to the producer so that the data encrypted by the said producer will
be accessible by the adversary. This attack is avoided because the key authority signs
the encryption keys. Alternatively, the external adversary can act as a man in the

Thttps://www.bbc.com/news/technology-41147513
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middle between the key authority and a new consumer during the decryption key
distribution. The attacker wants to steal the consumer’s decryption key, with which
he can later decrypt data. This attack is avoided because the key authority encrypts
the decryption key with asymmetric encryption. Using the encryption key, which
is public, the external adversary may also try to encrypt false data and upload it to
the cloud server. This attack is avoided because he cannot forge a valid signature for
the encrypted data; thus, he cannot make the false data be accepted as valid by the
legitimate consumers. To sum up, the external adversary cannot access legitimate
data nor inject malicious data.

The device compromiser can compromise a producer or a consumer. If he com-
promises a producer, he gains complete control of such a device and full access to
its sensed data and its private key used for signatures. He cannot retrieve any data
sensed before the compromise because the producer securely deletes data after up-
loading it to the cloud server. Nonetheless, he can inject malicious data into the
system by signing it and uploading it to the cloud server or transmitting it directly
to WSAN consumers if the compromised producer belongs to the WSAN. When the
key authority finds out the compromise, it revokes the compromised producer. Af-
ter that, the compromised producer cannot inject malicious data anymore because
the private key used for signatures is no longer considered valid by the consumers.
On the other hand, if the adversary compromises a consumer, he gains full access to
its decryption key. The attacker can decrypt some data downloaded from the cloud
server and, if he compromised a consumer belonging to the WSAN, transmitted di-
rectly by WSAN producers. Notably, the adversary can decrypt only data that the
compromised consumer was authorized to decrypt. When the key authority finds
out the compromise, it revokes the compromised consumer. After that, the com-
promised consumer cannot decrypt data anymore. The reason for this is that our
re-encryption mechanism updates the ciphertexts as if they were encrypted with a
different encryption key.

A set of colluding consumers can somehow combine their decryption keys to
decrypt some data that singularly they cannot decrypt. However, even if the union
of the attribute sets of said decryption keys satisfies the access policy of a ciphertext,
the colluding consumers cannot decrypt such a ciphertext. In Section 5.5 we will
capture this adversary model with Game 1, and we will provide formal proof that
SEA-BREW is resistant against it.

The honest-but-curious cloud server does not have access to data because it is
encrypted, but it can access all the update keys and part of all the consumers’ de-
cryption keys. The update keys alone are useless to decrypt data because the cloud
server lacks a (complete) decryption key. However, if the cloud server colludes with
a set of consumers, then it can access all the data that the consumers are authorized
to decrypt. Interestingly, if the honest-but-curious cloud server is modeling an ad-
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versary capable of breaching the cloud server, recovering the breach is easy. It is
sufficient that the key authority generates a new update key without revoking any
consumers. This has the effect of making all the stolen update keys useless. On the
other hand, in the case of an actual honest-but-curious cloud server, generating a
new update key does not solve the problem because the cloud server knows the just
generated update key, and thus it can update the revoked decryption keys. In any
case, the honest-but-curious cloud server and the colluding consumers cannot com-
bine somehow the update keys and decryption keys to decrypt some data that sin-
gularly the colluding consumers cannot decrypt. In Section 5.5 we will capture this
adversary model with Game 2, and we will provide formal proof that SEA-BREW
is resistant against it.

Scheme Definition

Our system makes use of a set of cryptographic primitives (from now on, simply prim-
itives), which are the following ones.

(MK, EK) = Setup(«): This primitive initializes the cryptographic scheme. It takes
a security parameter « as input, and outputs a master key MK and an associated en-
cryption key EK.

CP = Encrypt(M, P, EK): This primitive encrypts a plaintext M under the policy
P. It takes as input the message M, the encryption key EK, and the policy #. It
outputs the ciphertext CP.

DK = KeyGen(y, MK): This primitive generates a decryption key. It takes as in-
put a set of attributes y which describes the consumer, and the master key MK. It
outputs a decryption key DK, which is composed of two fields for each attribute in
¥, plus a field called D, useful to update such a key.

M = Decrypt(CP, DK): This primitive decrypts a ciphertext CP. It takes the cipher-
text CP and the consumer’s decryption key DK as input, and outputs the message
M if decryption is successful, L otherwise. The decryption is successful if and only
if y satisfies , which is embedded in CP.

The following primitives use symbols with a superscript number to indicate the ver-
sion of the associated quantity. For example, MK indicates the i-th version of the
master key, DK indicates the i-th version of a given decryption key, etc.

(MK gDy = UpdateMK(MK(i)): This primitive updates the master key from
a version i to the version i + 1 after a key revocation. It takes as input the old master
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key MK, and it outputs an updated master key MK*!), and the (i + 1)-th version
of the update key U'"*D. Such an update key is composed of the quantities Ug;;l),
Ui, Ut which will be used after a key revocation respectively to update the

encryption key, to update the decryption keys, and to re-encrypt the ciphertexts.

EK™ = UpdateEK(EK", Ug}g): This primitive updates an encryption key from a
version i to the latest version n, with n > i, after a key revocation. The primitive
takes as input the old encryption key EK® and U g;g, and it outputs the updated en-
cryption key EK™.

D" = UpdateDK(D(i), U (Di)l(, Ug}'(l), e, U(D"I)(): This primitive updates a decryption
key from a version i to the latest version n, with n > i, after a key revocation. What
is updated is not the whole decryption key but only a particular field D inside the
decryption key. This allows the cloud server to execute the primitive without know-
ing the whole decryption key, but only D, which alone is useless for decrypting
anything. The primitive takes as input the old field D and Ug)K, Ug}'(l), LUy
and it outputs the updated field D™,

CP™® = UpdateCP(CP(i), Ug}, U(Cilﬁl) e, Ué”g): This primitive updates a ciphertext
from a version i to the latest version n, with n > i, after a key revocation. The cloud
server executes this primitive to perform proxy re-encryption on ciphertexts. The
primitive takes as input the old ciphertext CP?, and U, USD, .. U Tt outputs

cpYcp
the updated ciphertext CP".

The concrete construction of these primitives will be described in detail in Section 5.4.

Security Definition

We state that SEA-BREW is secure against an adaptive chosen-plaintext attack (IND-
CPA) if no probabilistic polynomial-time (PPT) adversary A has a non-negligible
advantage against the challenger in the following game, denoted as Game 1. Note
that IND-CPA security is not enough in the presence of an active adversary; however,
a more robust adaptive IND-CCA security assurance can be obtained in the ran-
dom oracle model through the simple Fujisaki-Okamoto transformation (Fujisaki
and Okamoto, 1999), which only requires a few additional hash computations in
the Encrypt and the Decrypt primitives.

Setup The challenger runs the Setup primitive, generates EK'”), and sends it to the
adversary.
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Phase1 The adversary may issue queries for:

e cncryption key update: the challenger runs the primitive UpdateMK. The chal-
lenger sends the updated encryption key to the adversary.

o generate decryption key: the challenger runs the primitive KeyGen using as input
an attribute set provided by the adversary. Then, the challenger sends the
generated decryption key to the adversary.

e decryption key update: the challenger runs the primitive UpdateDK using as
input a decryption key provided by the adversary. Then, the challenger sends
the updated decryption key to the adversary.

o ciphertext update: the challenger runs the primitive UpdateCP using as input a
ciphertext provided by the adversary. Then, the challenger sends the cipher-
text updated to the last version to the adversary.

Challenge The adversary submits two equal-length messages m and m; and a
challenge policy #*, which is not satisfied by any attribute set queried as generate
decryption key during Phase 1. The challenger flips a fair coin and assigns the out-
come to b: b < {0,1}. Then, the challenger runs the Encrypt primitive encrypting
my, under the challenge policy £* using EK and sends the ciphertext CP* to the
adversary. The symbol 7 is the last version of the master key, i.e., the number of
times the adversary queried for an encryption key update.

Phase 2 Phase 1 is repeated. However, the adversary cannot issue queries for gen-
erate decryption key whose attribute set y satisfies the challenge policy #*.

Guess The adversary outputs a guess b’ of b. The advantage of an adversary A in
Game 1 is defined as Pr[b’ = b] — %

We prove SEA-BREW to be secure in Section 5.5.

5.3 SEA-BREW Procedures

In the following, we describe the procedures that our system performs.

System Initialization

The system initialization procedure is executed only once to start the system, and it
consists of the following steps.
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Step 1. The key authority runs the Setup primitive, thus obtaining the first ver-
sion of the master key (MK?) and the first version of the encryption key (EK?).

We indicate with vyx (master key version) the current version of the master key.
The key authority initializes the master key version to vyx = 0, and it sends the en-
cryption key and the master key version to the cloud server with a signed message.
Step 2. The cloud server, in turn, sends the encryption key and the master key ver-
sion to the WSAN gateway with a signed message.
Step 3. The WSAN gateway generates the broadcast public key (see Figure 5.1) for
the broadcast encryption scheme.

Producer Join

The consumer join procedure is executed whenever a new producer joins the system.
We assume that the producer has already pre-installed its own pair of asymmetric
keys that it will use for digital signatures. Alternatively, the producer can create
such a pair at the first boot. We call signature verification key (SK, see Figure 5.1) the
public key of such a pair. The procedure consists of the following steps.
Step 1. The producer sends the signature verification key to the key authority in
some authenticated fashion. For example, in case the producer is a sensor, the hu-
man operator who is physically deploying the sensor can leverage a pre-shared pass-
word with the key authority.
Step 2. The key authority assigns a new producer identifier to the producer, and it
sends such an identifier and the encryption key to the producer with a signed mes-
sage. The encryption key embeds an encryption key version (vgk), which represents
the current version of the encryption key locally maintained by the producer. Ini-
tially, the encryption key version is equal to the master key version (vex = vpmk).
Step 3. The key authority also sends the producer’s identifier, signature verification
key, and encryption key version to the cloud server with a signed message. The
cloud server adds a tuple (PID, SK, vgk) to a locally maintained Producer Table (PT,
see Figure 5.1). Each tuple in the PT represents a producer in the system.

If the producer is remote, then the procedure ends here. Otherwise, if the pro-
ducer is inside the WSAN, then the following additional steps are performed.
Step 4. The key authority sends the producer identifier and the signature verifica-
tion key to the WSAN gateway with a signed message. The WSAN gateway adds a
tuple (PID, SK) to a locally maintained WSAN Signature Table (see Figure 5.1). Each
tuple in the WSAN Signature Table represents a producer in the WSAN. Through
this table, both the gateway and the consumers can authenticate data and messages
generated by the producers in the WSAN.
Step 5. The WSAN gateway finally broadcasts the signed message received from
the key authority to all the WSAN consumers. The WSAN consumers add the same
tuple (PID, SK) to a locally maintained copy of the WSAN Signature Table.
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Consumer Join

The consumer join procedure is executed whenever a new consumer, described by a
given attribute set, joins the system. We assume that the consumer has already pre-
installed its own pair of asymmetric keys that it will use for asymmetric encryption.
Alternatively, the consumer can create such a pair at the first boot. We call key distri-
bution key (KDK, see Figure 5.1) the public key of such a pair. The procedure consists
of the following steps.

Step 1. The consumer sends the key distribution key to the key authority in some
authenticated fashion.

Step 2. The key authority assigns a new consumer identifier to the consumer, and it
generates a decryption key with the KeyGen primitive, according to the consumer’s
attribute set. Then, the key authority sends the consumer identifier and the decryp-
tion key to the consumer with a signed message, encrypted with the consumer’s key
distribution key.

Step 3. The key authority sends the consumer identifier and the field D of the de-
cryption key to the cloud server with a signed message. The cloud server initializes a
decryption key version (vpk ), which represents the current version of the consumer’s
decryption key, to the value of the master key version. The cloud server adds a tuple
(CID, D, vpk) to alocally maintained Consumer Table (CT, see Figure 5.1). Each tuple
in the CT represents a consumer in the system.

If the consumer is remote, then the procedure ends here. Otherwise, if the con-

sumer is a WSAN consumer, then the following additional steps are performed.
Step 4. The key authority sends the consumer identifier and the key distribution
key to the WSAN gateway with a signed message.
Step 5. The WSAN gateway sends the WSAN Signature Table to the consumer with
a signed message, along with the broadcast public key and the consumer’s broadcast
private key, which is appropriately encrypted with the consumer’s key distribution
key. Finally, the WSAN gateway adds a tuple (CID, KDK) to a locally maintained
WSAN Consumer Table.

Data Upload by Remote Producers

The data upload procedure is executed whenever a producer wants to upload data
to the cloud server. Remote producers and WSAN producers perform two different
procedures to upload a piece of information to the cloud server. We explain them
separately. The data upload procedure by remote producers consists of the follow-
ing steps.

Step 1. Let P be the access policy that has to be enforced over the data. The remote
producer encrypts the data under such a policy using the Encrypt primitive. The
resulting ciphertext has the same version number of the producer’s locally main-
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Figure 5.2. Data upload by WSAN producers procedure.

tained encryption key (vcp = vEk).

Step 2. The producer securely deletes the original data. Then it signs and uploads
the ciphertext to the cloud server, along with its producer identifier.

Step 3. The cloud server verifies the signature, and then it stores the ciphertext.
Finally, if the ciphertext version is older than the master key version, the cloud server
executes the remote producer update procedure (see Section 5.3).

Data Upload by WSAN Producers

SEA-BREW aims at saving bandwidth in the WSAN also during data upload. How-
ever, encrypting data directly with the Encrypt primitive introduces too much over-
head in terms of data size, as it happens in the typical ABE scheme. Therefore, we
want to obtain the access control mechanism provided by the Encrypt primitive, and
at the same time, we want a small ciphertext typical of symmetric-key encryption.
We achieve this by encrypting a symmetric key using the Encrypt primitive and then
using such a symmetric key to encrypt all the data that must be accessible with the
same access policy, as described in Chapter 4. To do this, each WSAN producer
maintains a SymKey Table (see Figure 5.1), which associates policies £ to symmet-
ric keys SymKey. More specifically, the SymKey Table is composed of tuples in the
form (KID, P, SymKey), where KID is the symmetric key identifier of SymKey. The
symmetric key identifier uniquely identifies a symmetric key in the whole system.
The data upload procedure by WSAN producers consists of the following steps (Fig-
ure 5.2).

Step 1. Let P be the access policy that has to be enforced over the data. The producer
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searches for a tuple inside its SymKey Table associated with the policy. If such a tu-
ple already exists, then the producer jumps directly to Step 4; otherwise, it creates
it by continuing to Step 2.

Step 2. The producer randomly generates a symmetric key and a symmetric key
identifier. The symmetric key identifier must be represented on a sufficient number
of bits to make the probability that two producers choose the same identifier for two
different symmetric keys negligible. The producer then encrypts the symmetric key
under the policy using the Encrypt primitive, and it signs the resulting ciphertext
together with the key identifier. The result is the signcrypted key. The producer up-
loads the signcrypted key and its producer identifier to the cloud server.

Step 3. The cloud server verifies the signature, and then it stores the signcrypted key
in the same way it stores ordinary encrypted data produced by remote producers.
Step 4. The producer inserts (or retrieves, if steps 2 and 3 have not been executed)
the tuple (KID, P, SymKey) into (from) its SymKey Table, and it encrypts the data
using the symmetric key associated to the policy. Then, the producer signs the re-
sulting ciphertext together with the symmetric key identifier. The result is the sign-
crypted data. The producer uploads the signcrypted data and its producer identifier
to the cloud server, and it securely deletes the original data.

Step 5. The cloud server verifies the signature, and then it stores the signcrypted
data.

Data Download

The data download procedure is executed whenever a consumer wants to down-
load data from the cloud server. Consumers perform two different procedures to
download information from the cloud server, depending on whether such informa-
tion has been produced by a remote producer or by a WSAN producer. We explain
them separately. The download procedure of data produced by remote producers
consists of the following steps.

Step 1. The consumer sends a data request along with its consumer identifier to the
cloud server.

Step 2. The cloud server checks in the CT whether the decryption key version of the
consumer is older than the master key version and, if so, it updates the decryption
key by executing the remote consumer update procedure (see after). The cloud
server identifies the requested ciphertext and checks whether its version is older
than the master key version. If so, the cloud server updates the ciphertext by exe-
cuting the UpdateCP primitive (see Section 5.4).

Step 3. The cloud server signs and sends the requested data to the consumer.

Step 4. The consumer verifies the server signature over the received message. Then,
it executes the Decrypt primitive using its decryption key.
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Figure 5.3. Download signcrypted data procedure.

Now consider the case in which a consumer requests data produced by a WSAN
producer. Each consumer maintains a SymKey Table (see Figure 5.1), which as-
sociates policies £ to symmetric keys SymKey. The download procedure of data
produced by WSAN producers consists of the following steps (Figure 5.3).

Step 1. The consumer sends a data request along with its consumer identifier to the
cloud server.

Step 2. The cloud server signs and sends the requested signcrypted data to the con-
sumer.

Step 3. The consumer searches for a tuple with the same key identifier as the one
contained in the received signcrypted data inside its SymKey Table. If such a tuple
already exists, then the consumer jumps directly to Step 6; otherwise, the consumer
creates it by continuing to Step 4.

Step 4. The consumer performs a data download procedure, requesting and obtain-
ing the signcrypted key associated to the received symmetric key identifier.

Step 5. The consumer decrypts the signcrypted key thus obtaining the symmetric
key. It adds the tuple (KID, P, SymKey) to its SymKey Table.

Step 6. The consumer decrypts the signcrypted data with the symmetric key.

Direct Data Exchange

The direct data exchange procedure is executed whenever a producer wants to trans-
mit data to consumers in a low-latency fashion inside the WSAN. The producer
broadcasts the data directly to the authorized consumers in an encrypted form to
obtain low latency instead of uploading such data to the cloud server. Further-
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more, to save WSAN bandwidth, we want the data exchanged to be encrypted with
symmetric-key encryption, under the form of signcrypted data as it happens for
data uploaded by WSAN producers. We assume that the producer already has a
tuple associated with the policy it wants to apply to ease the reading. Otherwise,
the producer should previously perform a data upload procedure to the cloud in
which it uploads the signcrypted key it will use.

The procedure consists of the following steps.
Step 1. Let P be the access policy that has to be enforced over the data. The producer
retrieves the symmetric key associated with such policy inside its SymKey Table.
The producer encrypts the data with the symmetric key and signs it together with
the symmetric key identifier. It thus obtains the signcrypted data.
Step 2. The producer broadcasts the signcrypted data in the WSAN and securely
deletes the original data.
Step 3. The interested consumers perform Steps 3-6 of the download procedure of
data produced by WSAN producers.

Producer Leave

The producer leave procedure is executed whenever one or more producers leave
the system. This happens if producers are dismissed from the system or the private
keys they use for signatures are compromised. In all these cases, the private keys of
the leaving producers must be revoked, so the cloud server no longer accepts that
data signed with such keys. The procedure consists of the following steps.
Step 1. The key authority communicates to the cloud server the identifiers of the
leaving producers with a signed message.
Step 2. The cloud server removes the tuples associated with such identifiers from
the PT.

If at least one leaving producer was a WSAN producer, the following additional
steps are performed.
Step 3. The key authority communicates the identifiers of the leaving WSAN pro-
ducers to the WSAN gateway with a signed message.
Step 4. The WSAN gateway removes the tuples associated with such identifiers
from the WSAN Signature Table, and it broadcasts the signed message received by
the key authority to all the WSAN consumers.
Step 5. The WSAN consumers remove the tuples associated with such identifiers
from their locally maintained copy of the WSAN Signature Table.

Consumer Leave

The consumer leave procedure is executed whenever one or more consumers leave
the system, as depicted in figure 5.4. This happens in the case that consumers are
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Figure 5.4. Consumer leave procedure.

dismissed from the system or their keys are compromised. In all these cases, the
decryption keys of the leaving consumers must be revoked so that they cannot de-
crypt data anymore. The procedure consists of the following steps.

Step 1. The key authority increases the master key version, and it executes the
UpdateMK primitive on the old master key, thus obtaining the new master key and
the quantities U™V, U"M9) and UMK, Then, the key authority sends the identi-
fiers of the leaving consumers and the quantities UJ(EUI’(VIK), US%K), and U (CZ;QAK) to the
cloud server with a signed message, encrypted with the cloud server’s public key.
Step 2. The cloud server verifies the signature, decrypts the message, retrieves the
consumer identifier from the message, and removes the tuples associated with those
identifiers from the CT. Note that the cloud server could now re-encrypt all the ci-
phertexts by using the quantity U, gjﬁ,‘“) just received. However, the re-encryption of
each ciphertext is deferred to the time at which a consumer requests it (Lazy PRE).
Then, the cloud server signs and encrypts U‘(EUI?K) and Ug’}(’”() with asymmetric en-
cryption, and it sends them to the gateway.

Step 3. The gateway broadcasts the quantity Ug]g”() and U(DUI?K) over the local low-
bitrate WSAN, so that all the producers and consumers that belong to it can imme-
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diately update their encryption key and decryption key, respectively. To do this,
the gateway sends a single broadcast message, composed as follows. The gateway
encrypts the Ug’,’}“) quantity with the broadcast public key, in such a way that all
the WSAN consumers except the leaving ones can decrypt it. This allows the gate-
way to share said quantity only with the WSAN consumers, excluding the compro-
mised ones if there are any. The gateway then signs the concatenation of the quantity
UJ(EZJI?K), and the quantity Ug’]]‘(m (encrypted), and broadcasts said message over the
WSAN.
Step 4. Each producer updates its encryption key upon receiving the broadcast mes-
sage; each consumer then decrypts the received message using its broadcast private
key dcip, and executes the UpdateDK primitive using its old decryption key and the
just received U(DUI?K). The WSAN producers and the consumers delete their SymKey
Tables.
Step 5. The cloud server updates inside the PT the versions of the encryption keys
of all the WSAN producers, and inside the CT the versions of the decryption keys
of all the WSAN consumers.

Note that SEA-BREW updates all the devices inside the low-bitrate WSAN with
a single O(1)-sized broadcast message (Step 3). This makes SEA-BREW highly scal-
able in the number and size of messages necessary to manage decryption keys. Note
also that, regarding remote consumers and remote producers, the computational
load of the consumer leave procedure is entirely delegated to the cloud server, leav-
ing the producers and consumers free of heavy computation. This enables SEA-
BREW to run on a broader class of sensors and actuators.

Remote Producer Update

The producer update procedure is executed during the data upload procedure by
remote producers (see Section 5.3), and it consists of the following steps. Step 1.
The cloud server signs and sends the last quantity Ugg received from the key au-
thority to the remote producer that must be updated.

Step 2. The producer verifies the signature and retrieves Ugg. Then, it executes the
UpdateEK primitive using its encryption key and the received quantity Ugg as pa-
rameters.

Step 3. The cloud server updates the producer’s encryption key version to vpx in-
side PT.

Remote Consumer Update

The consumer update procedure is executed as specified in the data download pro-
cedure (see Section 5.3), and it consists in the following steps.
Step 1. The cloud server executes the UpdateDK primitive using the consumer’s
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decryption key and the last (vpmk — vpk) quantities Upgs received from the key au-
thority. The cloud server signs the output of that primitive, D(®¥), and sends it to
the consumer.

Step 2. The consumer verifies the signature and replaces the old field D of its de-
cryption key with the received quantity.

Step 3. The cloud server updates the consumer’s decryption key version to vk
inside CT.

5.4 Concrete Construction

We now explain in detail how the CP-ABE primitives previously introduced at the
beginning of Section 5.2 are realized.

(MK©, EK©)) = Setup(«)
The Setup primitive is executed by the key authority. This primitive computes:

EK© = {Go,g.h = gP,1 = e(g, )", vEx = 0}; (5.1)

MK = {8, g% vpk = 0}, (5.2)

where Gy is a multiplicative cyclic group of prime order p with size «, g is the genera-
tor of Go, e : GoxGo — G is an efficiently-computable bilinear map with bi-linearity
and non-degeneracy properties, and a, § € Z, are chosen at random.

CP = Encrypt(M, P, EK(©Ex))y

The Encrypt primitive is executed by a producer. From now on, # is represented as a
policy tree, which is a labeled tree where the non-leaf nodes implement threshold-gate
operators whereas the leaf nodes are the attributes of the policy. A threshold-gate
operator is a Boolean operator of the type k-of-n, which evaluates to true iff at least
k (threshold value) of the n inputs are true. Note that a 1-of-n threshold gate im-
plements an OR operator, whereas an n-of-n threshold gate implements an AND
operator. For each node x belonging to the policy tree the primitive selects a poly-
nomial ¢, of degree equal to its threshold value minus one (d, = kx — 1). The leaf
nodes have threshold value k, = 1, so their polynomials have degree equal to d, = 0.
The polynomials are chosen in the following way, starting from the root node R. The
primitive assigns an index arbitrarily to each node inside the policy tree. The index
range varies from 1 to num, where num is the total number of the nodes. The function
index(x) returns the index assigned to the node x. Starting with the root node R the
primitive chooses a random s € Z, and sets gz(0) = s. Then, it randomly chooses dg
other points of the polynomial gz to define it completely. Iteratively, the primitive
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sets ¢x(0) = gparent(x) (index(x)) for any other node x and randomly chooses d, other
points to completely define g, where parent(x) refers to the parent of the node x.
At the end, the ciphertext is computed as follows:

CP={P,C =Me(g,2)",C =h",vcp = Vg

5.3
VyeY: C,=gb0, Cy = H(att(y))*?}, (59

where Y is the set of leaf nodes of the policy tree. The function att(x) is defined only
if x is a leaf node, and it denotes the attribute associated with the leaf. H is a hash
function H : {0,1}* — Go that is modeled as a random oracle. The encryption key
version vgk is assigned to the ciphertext version vcp.

DK = KeyGen (MK MK) )

The KeyGen primitive is executed by the key authority. This primitive randomly
selects r € Z,, and r; € Z, for each attribute in y. It computes the decryption key
DK as:

(a+r)

DK ={D =g # ,upk = UmK

Viey: D;j=g -H(j)”,D;=g"}.

M = Decrypt(CP, DK)

The Decrypt primitive is executed by a consumer. This primitive executes the sub-
function DecryptNode on the root node. DecryptNode(DK, CP, x) takes as input the
consumer’s decryption key, the ciphertext and the node x. If the node x is a leaf
node, let i = att(x) and define the function as follows. If i € y, then:

e(l)i,C})

DecryptNode(DK,CP,x) = m.
i “x

(5.5)
Otherwise, if i ¢ y, then DecryptNode(DK,CP,x) =L. When x is not a leaf node,
the primitive proceeds as follows. First of all, let A; s be the Lagrange coefficient for
i € Z, and let S be an arbitrary set of element in Z, : A; 5(x) = []es, j»i % Now, for
all nodes z that are children of x, it calls recursively itself and stores the result as F.
Let S, be an arbitrary k,-sized set of children z such that F, #1 Vz € S,. Then, the
function computes:

Fo= TR = ey, (56)

z€S;

where i = index(z), and S, = index(z) : z € S,. The Decrypt(CP, DK) primitive first
calls DecryptNode(DK, CP, R) where R is the root of the policy tree extracted by #
embedded in CP. Basically, the sub-function navigates the policy tree embedded in-
side the ciphertext in a top-down manner, and if y satisfies the policy tree, it returns
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A = e(g,g)". Finally, the primitive computes:
M =C/(e(C,D)/A). (5.7)

(MK @mx+D) | y@mc+l)) = UpdateMK (MK M)
The UpdateMK primitive is executed by the key authority. This primitive increments
vmk by one, chooses at random a new ,B(UMK) € 7Z,, and computes:

IB(UMK)

(vmk) _ .
Ucp = Bovk=1) !

(omk) _ BOMK).
Ugg " =g’

7

B (58)
@Mk .
DX Blomx) 7
U@mx) — {Ug,"‘K), UI(ZUII%/IK)’ U(DUII\(/IK)}.
Then it updates the master key as:
MK (@mK) — {ﬁ(UMK),gCV, oMK ). (5.9)

In order to avoid ambiguities, we specify that the first ever update key is U") and
not U?) as the value vy is incremented before the creation of U. The careful reader
surely have noticed that Ucp and Upg are reciprocal. In practice, we can use only
one of these quantities and compute the other by inverting it. In this chapter, we
chose to keep those quantity separated for the sake of clarity.

EK @) = UpdateEK (EK =0, U"))

The UpdateEK primitive is executed by the producers. Regardless the input encryp-
tion key’s version, this primitive takes as input only the last update key generated,
namely U‘(EUI?K). The primitive substitutes the field 4 inside the encryption key with
the last update quantity, and updates the encryption key version to the latest master

key version, thus obtaining;:

EK"%) = {Go, g, h = UGE™, 1 = e(g, )", vk = vk} (5.10)

D®¥) = UpdateDK(UPY | g0 pepo))

The UpdateDK primitive is executed by the cloud server and by the WSAN con-
sumers. The decryption key on input has been lastly updated with U(DUI’:(’K), and the
overall latest update is U(DU,’}AK), with, vk > vpk. This primitive computes:

Upg = UGt . ),

D@mK) — (D(UDK))U,DK. (5.11)
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CP®ux) = UpdateCP(CPe?), &SPV | Ucp©@ux))
The UpdateCP primitive is executed by the cloud server. The ciphertext on input
has been lastly re-encrypted with U, g}fp ), and the overall latest update is U évrf”’() , with,
oMk > vcp- This primitive computes the re-encryption quantity Uy, as the multipli-
cation of all the version updates successive to the one in which the ciphertext has
been lastly updated.
r_ p7locp+l) (omK)

Upp=Ups™ o Ug™. (5.12)

Then, re-encryption is achieved with the following computation:
Ccom0) = (cwer))Uep, (5.13)

Finally, the primitive outputs the re-encrypted ciphertext CP’ as:

Cpemx) — (P, é, C(UMK), VCP = UMK, )
wev: € =g"".Cl=Ha@t()" "} |

Correctness.

In the following, we show the correctness of SEA-BREW.
Decrypt equation (5.6):

— A: o (0
Fo=| | F. 054 (0

Z€S;
—|] (e(g’g)r~qz(0))Ai,s;(0)
Z€S;
_ (e(g, g)" Iparent(2) (indeX(Z)))Ai,s;c(O) (5.15)
Z€S;
”0x(0'Ags;(0)

=] [¢(s:8)

Z€S;
=e(g,8)" .
Decrypt equation (5.7):

C/(e(C.D)/A) = Cl(e(h,gT) /e(g,8)")
= Me(g,)/(e(g, 8/ F e(2.2)") (5.16)
_ Me(g,8)"

e(g.8)"
UpdateDK equation (5.11):

rea  BDK) r+

D (OvK) — (D(UDK))UI')K = gBUDK) MK — g/;(vNTK). (5.17)
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UpdateCP equation (5.13):

gecp). BOMK)

ComK) — (C(UCP))U’CP =g B plocP) — gsﬁ(vMK). (5.18)

5.5 Security Proofs

In this section, we provide formal proofs of two security properties of our scheme
related to two adversary models described in Section 5.2. Namely, we prove our
scheme to be adaptively IND-CPA secure against a set of colluding consumers (The-
orem 1), and against an honest-but-curious cloud server colluding with a set of con-
sumers (Theorem 2).

Theorem 1. SEA-BREW is secure against an IND-CPA by a set of colluding consumers
(Game 1) under the generic bilinear group model.

Proof. Our objective is to show that SEA-BREW is not less secure than the CP-ABE
scheme by Bethencourt et al. (Bethencourt et al., 2007), which is proved to be IND-
CPA secure under the generic bilinear group model. To do this, we prove that if there
is a PPT adversary A that can win Game 1 with non-negligible advantage € against
SEA-BREW, then we can build a PPT simulator 8 that can win the CP-ABE game
described in (Bethencourt et al., 2007) (henceforth, Game 0) against the scheme of
Bethencourt et al. with the same advantage. We will denote the challenger of Game
0 as C. We describe the simulator 8 in the following.

Setup In this phase C gives to 8 the public parameters EK of Game 0, that will be
exactly EK9) in Game 1. In turn, 8 sends to A the encryption key EK(? of Game 1.

Phase1 Letus denote with the symbol n the latest version of the master key at any
moment. In addition, let us denote with the symbol k a specific version of a key or a
ciphertext lower than n, so that k < n at any moment. The queries that an adversary
can issue to the simulator are the following.

o cncryption key update: B chooses Ul()";gl) at random from Z,. Then, 8 computes

1
B+ (gﬁ(”))UL()",}'D , (5.19)
and sends EK™*1) to A. Finally, 8 increments n. Please note that 8 does not
know 8%, Vi € [0, n], but it does not need to. B needs to know only the rela-

tionship between any two consecutive versions, which are exactly:

() _ B

Vi € [1,n] (5.20)
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e generate decryption key: when A issues a query for DK].(”) (i.e., a decryption
key with a given attribute set y;, and latest version n) to 8, 8 in turn issues
a query for DK; to C, and receives DK].(O). Then 8 upgrades such a key to the
latest version n executing the primitive UpdateDK, using as input said key and

Ug}o Vi € [1, n]. Finally 8 sends to A the desired decryption key DK].(”).

e decryption key update: when A issues a query for upgrading an existing de-
cryption key Dk, 8 upgrades such a key to the last version n executing the
primitive UpdateDK, using as input said key and Ug)K, Vi € [k,n]. Finally 8
sends to A the updated decryption key DK{".

o ciphertext update: when A issues a query for upgrading an existing ciphertext
CP®, B8 upgrades such a ciphertext to the latest version n executing the primi-

|
tive UpdateCP, using as input said ciphertext and (Ug)K) , Vi € [k,n]. Finally
B sends to A the updated ciphertext CP™.

Challenge A submits two equal length messages my and m; and a challenge policy
P to 8, which in turn forwards them to C. C responds with CP* to 8, that will be
exactly CP*¥) of Game 1. Then, 8 upgrades such a ciphertext to the latest version n

y -1
executing the primitive UpdateCP, using as input said ciphertext and (Ug)K) Vi e
[1,n]. Finally 8 sends to A the updated challenge ciphertext CP*(.

Phase 2 Phase 1 is repeated.

Guess A outputs b’ to B, which forwards it to C. Since a correct guess in Game 1 is
also a correct guess in Game 0 and vice versa, then the advantage of the adversary A
in Game 1 is equal to that of the adversary 8 in Game 0. Namely, such an advantage
is € = O(¢?/p), where g is a bound on the total number of group elements received
by the A’s queries performed in Phase 1 and Phase 2, which is negligible with the
security parameter «. Please note that, in the encryption key update query, the ad-
versary A cannot distinguish an Ug;( provided by 8B from one provided by the real
scheme. Indeed, even if the generation of such a quantity is different, its probability
distribution is uniform in Z, as in the real scheme. This allows the simulator 8 to
answer all the other queries in Phase 1 and Phase 2 in a way that is indistinguishable
from the real scheme.This concludes our proof.

n

We now consider an honest-but-curious cloud server colluding with a set of con-
sumers. We state that a scheme is secure against an IND-CPA by an honest-but-
curious cloud server colluding with a set of consumers if no PPT adversary A has
a non-negligible advantage against the challenger in the following game, denoted
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as Game 2. Game 2 is the same as Game 1 except that: (i) for every encryption key
update query in Phase 1 and Phase 2, the adversary is also given the update quanti-
ties Ug)K, Vi € [1,n]; and (ii) during Phase 1 and Phase 2 the adversary can issue the
following new type of query.

o generate decryption key’s D field: the challenger runs the primitive KeyGen using
as input an attribute set provided by the adversary. Then, the challenger sends
the field D of the generated decryption key to the adversary.

Note that differently from the generate decryption key query, when issuing a gen-
erate decryption key’s D field query the adversary is allowed to submit an attribute set
that satisfies the challenge policy #*.

Theorem 2. SEA-BREW is secure against an IND-CPA by an honest-but-curious cloud
server colluding with a set of consumers (Game 2) under the generic bilinear group model.

Proof. We prove that if there is a PPT adversary A that can win Game 2 with non-
negligible advantage ¢ against SEA-BREW, then we can build a PPT simulator 8
that can win Game 1 against SEA-BREW with the same advantage. We can modify
the simulator 8 used in the proof of Theorem 1 to prove this theorem. In the Phase
1 and Phase 2, 8 additionally gives to A the update quantities Ug)K,Vi € [1,n],
which B creates at each encryption key update query. During Phase 1 and Phase 2,
when A issues a generate decryption key’s D field query, B treats it in the same way
of a generate decryption key query with an empty attribute set y = {0}. Note indeed
that a decryption key component D, is indistinguishable from a complete decryption
key with no attributes. Hence, we can say that the advantage of A in Game 2 is the
same as that of 8 in Game 0. Namely, such an advantage is € = O(¢?/p), which is

negligible with the security parameter «. n

5.6 Performance Evaluation

In this section, we analytically estimate the performances of SEA-BREW compared
to: (i) the Bethencourt et al’s scheme (Bethencourt et al., 2007) provided with
a simple key revocation mechanism, denoted as “BSW-KU” (Bethencourt-Sahai-
Waters with Key Update); and (ii) Yu et al. scheme (Yu et al., 2010a), denoted
as “YWRL” (Yu-Wang-Ren-Lou). We considered these two schemes for different
reasons. BSW-KU represents the simplest revocation method built upon the “clas-
sic” CP-ABE scheme of Bethencourt et al. Thus the performance of this revocation
method constitutes the baseline reference for a generic revocable CP-ABE scheme.
On the other hand, YWRL represents a KP-ABE counterpart of SEA-BREW since it
natively supports an immediate key revocation and a Lazy PRE mechanism.
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The revocation mechanism of BSW-KU works as follows. The producer leave
procedure works the same way as SEA-BREW: the WSAN gateway simply broad-
casts a signed message containing the producer identifier to all the WSAN con-
sumers, which removes the tuples associated with such an identifier from their lo-
cally maintained copy of the WSAN Signature Table. The consumer leave procedure
requires the WSAN gateway to send a signed broadcast message containing the new
encryption key to all the WSAN producers and, in addition, an encrypted and signed
message containing a new decryption key to each WSAN consumer. This procedure
results in O (n) point-to-point messages where n is the number of WSAN consumers.
In contrast, SEA-BREW can perform both a consumer leave procedure by sending a
single O(1)-sized signed broadcast message over the WSAN.

WSAN Traffic Overhead

In this section, we analytically estimate the traffic overhead that the key revocation
mechanism of SEA-BREW generates in the WSAN, compared to the simple key revo-
cation mechanism of BSW-KU. In both SEA-BREW and BSW-KU schemes, for imple-
menting G, G1, and the bilinear pairing, we consider a supersingular elliptic curve
with embedding degree k = 2 defined over a finite field of 512 bits. For the signa-
tures of the unicast and broadcast messages, we consider a 160-bit ECDSA scheme.
Moreover, for the selective broadcast encryption used in the SEA-BREW scheme, we
consider the Boneh et al. scheme (Boneh et al., 2005) with the same supersingular
elliptic curve as above. This gives both schemes an overall security level of 80 bits.
We assume that, in both SEA-BREW and BSW-KU schemes, all elliptic-curve points
are represented in compressed format (Cohen et al., 2005) when they are sent over
wireless links. This allows us to halve their size from 1024 bits to 512 bits. We fur-
ther assume a low-bitrate WSAN composed of one gateway, 50 consumers, and 50
producers. An attribute set of 20 attributes describes each consumer. We assume
that the consumer identifiers and the producer identifiers are both 64-bit long.
Table 5.2 shows the traffic overhead of consumer leave and producer leave proce-
dures of SEA-BREW and BSW-KU schemes. In SEA-BREW, the broadcast message
sent by the WSAN gateway during the consumer leave procedure is composed by the
ECDSA signature (40 bytes), Ugk (64 bytes), and Upk encrypted with the broadcast
public key (148 bytes). Here we assumed that Upk is encrypted through one-time
pad with a key encrypted by the Boneh et al.’s broadcast encryption scheme (Boneh
et al., 2005), so it is composed of 20 bytes (the one-time-padded Upg) plus the
broadcast encryption overhead (128 bytes). As can be seen from the table, inside
a low-bitrate WSAN, SEA-BREW produces the same traffic overhead as the BSW-
KU scheme when performing the producer leave procedure. However, the over-
head is merely 0.2% of that produced by the BSW-KU scheme when performing a
consumer leave procedure. Indeed, SEA-BREW can revoke or renew multiple de-
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Size of  Number/size of  Total
broadcast unicast
message messages
(bytes) (bytes) (bytes)
SEA-BREW
consumer leave 252 - 252
producer leave 48 - 48
BSW-KU
consumer leave 256 50x2,688 134,656
producer leave 48 - 48
Table 5.2

TRAFFIC OVERHEAD OF KEY REVOCATION PROCEDURES IN THE WSAN.

cryption keys by sending a single 252-byte (considering 80-bit security) broadcast
message over the WSAN, opposed to the one 256-byte broadcast message plus 50
unicast messages of 2688-byte each (total: ~131KB of traffic) necessary to update a
network with 50 consumers (each of them described by 20 attributes) in a traditional
CP-ABE scheme. With bigger WSAN's (more than 50 consumers) or bigger attribute
sets (more than 20 attributes), the advantage of SEA-BREW compared to the BSW-
KU scheme grows even more. Moreover, SEA-BREW also provides a re-encryption
mechanism delegated to the untrusted cloud server, absent in the BSW-KU scheme.

Computational Overhead

In Table 5.3 we compare the computational cost of the primitives of SEA-BREW with
those of BSW-KU and YWRL, in terms of number and type of needed operations.
In the table, the symbol A,., indicates the set of attributes that have been revoked,
therefore the attributes that need to be updated in ciphertexts and decryption keys.
The symbol |P| is the number of attributes inside the policy £, and the same ap-
plies for |y|. The expression |y N A,.,| is the number of attributes belonging to both
y and A,.,, and the same applies to |P N A,.,|. The operations taken into account
are pairings, exponentiations in Go, and exponentiations in G;. In all three schemes,
we consider the worst-case scenario for the Decrypt primitive, which corresponds
to a policy with an AND root having all the attributes in y as children. This repre-
sents the worst-case since it forces the consumer to execute the DecryptNode sub-
primitive on every node of the policy, thus maximizing the computational cost.
From the table, we can see that SEA-BREW and BSW-KU pay the flexibility of
the CP-ABE paradigm in terms of computational cost, especially concerning the
Encrypt and Decrypt operations. However, this computational cost is the same as
that in Bethencourt et al.’s scheme (Bethencourt et al., 2007), which has proven to
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Primitive Pairings Go exp.s G1exp’s
SEA-BREW
Encrypt - 2|P] 1
KeyGen - 2yl +1 -
Decrypt 2P|+ 1 - |P|+2
UpdateCP - 1 -
UpdateDK - 1 -
BSW-KU
Encrypt - 2|1P| 1
KeyGen - 2]yl +1 -
Decrypt 2P| +1 - |P| +2
UpdateCP (not available)
UpdateDK - 2yl +1 -
YWRL (Yu et al., 2010a)
Encrypt - lv] 1
KeyGen - |P| -
Decrypt |P| - 1P|
UpdateCP - ly N Apey | -
UpdateDK - P N Aoy -
Table 5.3

CompraRisoN BETWEEN SEA-BREW, BSW-KU, aND YWRL SCHEMES IN TERMS OF THE COMPUTA-

TIONAL COST OF THE PRIMITIVES. FOrR THE YWRL scuemE, THE UpdateCP anp tHE UpdateDK

PRIMITIVES CORRESPOND RESPECTIVELY TO THE AUpdateAtt4File anp AUpdateSK oF THE ORIGI-
NAL PAPER.

be supportable by mobile devices (Ambrosin et al., 2015) and constrained IoT de-
vices (Girgenti et al., 2019), as presented in Chapter 6. Note that our UpdateCP and
UpdateDK primitives have a cost that is independent of the number of attributes in
the revoked decryption key. Such primitives require a single G exponentiation and
many 7, multiplications equal to the number of revocations executed from the last
update of the ciphertext or the decryption key. However, the latter operations have
a negligible computational cost compared to the former; therefore, we can consider
both primitives constant-time.

Since modern cloud services typically follow a “pay-as-you-go” business model,
in order to keep the operational costs low, it is essential to minimize the computation
burden on the cloud server itself. We investigated by simulations the cloud server
computation burden of our Lazy PRE scheme compared to the YWRL one, which
represents the current state of the art. We can see from Table 5.3 that in both SEA-
BREW and YWRL, the cloud performs only exponentiations in Go.

The reference parameters for our simulations are the following ones. We sim-
ulated a system of 100k ciphertexts stored on the cloud server over an operation
period of 1 year. We fixed an attribute universe of 200 attributes. We fixed a number
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of 15 attributes embedded in policies and attribute sets. We modeled the requests
with a Poisson process with an average of 50k daily requests. Finally, we modeled
that several consumer leave procedures are executed at different instants, following
a Poisson process with an average period of 15 days. To obtain more meaningful
statistical results, we performed 100 independent repetitions of every simulation.

5106
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| | YWRL

average computational cost
(exponentiations)
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Figure 5.5. Average number of exponentiations over a year, varying policies, and attributes
sets dimension. 95%-confidence intervals are displayed in error bars.

Fig. 5.5 shows the average number of exponentiations in Go performed by the
cloud server, with respect to the number of attributes in ciphertexts and decryption
keys, which is a measure of the complexity of the access control mechanism.

As we can see from the figure, SEA-BREW scales better than the YWRL as the ac-
cess control complexity grows. This is because in the YWRL scheme every attribute
has a singular and independent version number, and the revocation of a decryp-
tion key requires updating all the single attributes in the key. The cloud server re-
encrypts a ciphertext with many operations equal to the attributes shared between
the ciphertext and the revoked key. Such a number of operations grows linearly with
the average number of attributes in ciphertexts and decryption keys. On the other
hand, in SEA-BREW, the version number is the same for all the attributes, and the re-
vocation of a decryption key requires updating only it. The cloud server re-encrypts
a ciphertext with an operation whose complexity is independent of the number of
attributes in the ciphertext and the revoked key.

Fig. 5.6 shows the average number of exponentiations in G¢ performed by the
cloud server with respect to the average daily requests, which is a measure of the
system load. The number of attributes in ciphertexts and decryption keys is fixed to
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15.

Fig. 5.6 shows the average number of exponentiations in Go performed by the
cloud server with respect to the average daily requests, which is a measure of the
system load. The number of attributes in ciphertexts and decryption keys is fixed
to 15. As we can see from the figure, the computational load on the cloud server
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Figure 5.6. Average number of exponentiation over a year, varying the average daily re-
quests.

grows sub-linearly with respect to the increase of requests. This behavior allows
SEA-BREW to scale well also with a high number of requests.

5.7 Answer

How can We Improve the Original CP-ABE?

We efficiently provide new features! SEA-BREW can revoke or renew multiple
decryption keys by sending a single broadcast message over a WSAN. Non-revoked
users can upgrade their keys with a single message that does not need confiden-
tiality. Moreover, old ciphertexts are re-encrypted to prevent revoked keys from
accessing them.






Chapter 6

How Much Classical ABE Schemes
Actually Impact Constrained IoT
Devices?

Recent advancements in wireless communication standards and embedded comput-
ing are fostering the creation of novel smart computing systems, which are rapidly
getting real in heterogeneous contexts, from personal to industrial.

The majority of IoT devices are resource-constrained, i.e., characterized by scarce
capabilities and features. IoI devices are typically implemented through low-cost
embedded systems that have reduced computing and storage capabilities and are of-
ten battery-powered. The scarcity of resources on those devices is currently driving
the definition of specific network protocols that can accommodate the reduced fea-
tures offered by them. An example is the Constrained Application Protocol (CoAP) (Shelby
et al., 2014), which is an application protocol tailored to allow applications to com-
municate with constrained devices.

To compensate for the limited capabilities of IoI' devices, more complex archi-
tectures are usually put in place to allow the implementation of advanced services
on top of the functionalities they offer. Iol systems are usually implemented in a
multi-layered fashion, in which IoI' devices are integrated into cloud-computing
platforms. Intermediate devices such as gateways or brokers are usually installed to
implement functionalities like protocol translation, data dispatching, or to support
the execution of simple applications that require proximity with the IoT devices due
to time constraints.

In this complex architecture, data generated by IoI devices can be processed by
multiple heterogeneous entities, which can be either different applications inter-
ested in analyzing the data or the above-mentioned intermediate entities. In this
context, novel encryption mechanisms are required to enforce security and guar-
antee fine-grained access control over data. The latter, in particular, is a critical re-
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quirement to tune the amount of information that can be accessed by each entity
handling the data. For instance, while applications should have complete access to
the data generated by IoI devices, an intermediate entity, like a broker, should have
access only to the minimum set of information required to implement its functional-
ities (Zickau et al., 2016). Current security methods adopted in IoT are based solely
on encrypted channels between the broker and the Iol' devices, plus optionally an
access control mechanism enforced by the broker. However, secure channels do not
prevent the broker from accessing all data in the clear, and thus, an attacker that
compromises the broker can jeopardize the confidentiality of the whole communi-
cation system.

Instead, ABE allows the broker to manage only encrypted data so that an at-
tacker compromising the broker cannot break data confidentiality. ABE adoption is
foreseen as a crucial technique to handle many security issues in different scenarios,
ranging from healthcare systems to online social networks.

The academic literature has partially assessed the feasibility of adopting ABE in
different contexts, from fully-fledged embedded IoI systems (Ambrosin et al., 2016)
to smartphones (Ambrosin et al., 2015). Its adoption in constrained IoT devices, in-
stead, has not been investigated so far. Understanding the feasibility limits of adopt-
ing ABE in constrained Iol devices allows us to understand its current applicability
to a vast range of IoI' applications. In this chapter, we carry out an extensive eval-
uation of ABE performance in constrained IoI devices. Specifically, we assess the
performance of different ABE schemes on different devices with different memory
and computational capabilities. We implemented two representative ABE schemes
and tested their performance on two popular IoT platforms, the ESP32, and the RE-
Mote. We selected these two Iol platforms for the evaluation as they are represen-
tative of the devices currently available in the market. The ABE schemes have been
configured considering a worst-case scenario, often adopted in literature, in order to
check the feasibility of adopting ABE on constrained devices in the most challeng-
ing conditions. Our performance evaluation shows that ABE significantly impacts
the lifetime of battery-powered devices, especially when a high number of attributes
(i.e.,20-50) is used in ciphertexts. However, if we assume to employ fewer attributes
(up to 10) and leverage hardware elliptic-curve cryptographic acceleration, which
is present on some platforms (e.g., RE-Mote), ABE can indeed be used by devices
with very limited memory and computing power. We also obtain a significant yet
tolerable battery lifetime reduction.

The worst-case configuration considered in our experiments is often adopted in
literature; however, it might not entirely represent the real working conditions of
sensors employing ABE, as ABE configuration adopted in real use cases can often
give better performance than the worst-case configuration. For this reason, we pro-
pose a novel benchmark method that allows us to estimate the average performance
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with better accuracy than the worst-case analysis. Our benchmark method applies
to any ABE scheme, and it provides a more realistic performance evaluation because
it captures the average case. We exploited such a method to complete our evaluation.
We show that the worst-case analysis significantly overestimates the processing time
and energy. For example, with RE-Mote under some configurations, the energy con-
sumption estimated from the average case is 67% less than that estimated from the
worst case.

The rest of the chapter is organized as follows. Section 6.1 overviews related
work. Section 6.2 introduces a set of reference use cases and threat models. Sec-
tion 6.3 introduces the hardware platforms and the methodology adopted in our
experiments. Section 6.4 presents the experimental results for the ESP32 and the
RE-Mote platforms. Section 6.5 presents the novel benchmark method for estimat-
ing the average-case time and energy consumption and the results obtained with it.
Finally, Section 6.6 ends the chapter, answering the question inquired.

6.1 Related Work

The application of ABE schemes to implement fine-grained access control and confi-
dentiality has been already proposed in different contexts, but none of those studies
focused on assessing the cost of introducing ABE in practice. Instead, an evaluation
of the adoption of ABE has been carried out in the following works.

In (Wang etal., 2014), the authors made the first benchmark of a KP-ABE scheme
and a CP-ABE scheme in terms of execution time, energy consumption, memory
usage, data overhead. Their benchmark is carried out on a PC-class device (Intel
Quad-Core i7 @ 1.60GHz) and a mobile device (Intel Atom 22460 @ 1.60GHz smart-
phone). In (Ambrosin et al., 2015), the authors evaluated the feasibility of adopting
ABE on smartphone devices. Specifically, the authors developed an ABE library
for the Android operating system and then they evaluated its performance through
real experiments. In (Kuehner and Hartenstein, 2016), the authors carried out a
comprehensive analysis of different ABE schemes with respect to their application
for decentralized and secure data sharing. In particular, they performed a realistic
estimation of the resource consumption and workload exploiting real-world system
traces. Their evaluation considered heterogeneous devices, namely a laptop and a
smartphone.

The results of (Ambrosin et al., 2015; Wang et al., 2014; Kuehner and Harten-
stein, 2016) confirmed the possibility of using ABE on laptops and smartphones,
showing that such devices have an acceptable amount of resources to implement
ABE schemes and the resulting energy cost is acceptable. The following works fo-
cused instead on more constrained devices. In (Zickau et al., 2016), the authors
surveyed the various existing implementations of ABE schemes and, as a side con-



How Much Classical ABE Schemes Actually Impact Constrained loT
90 Devices?

tribution, they performed a benchmark on a single-board computer (Raspberry Pi
2 @ 900MHz) of various ABE schemes with the Charm library, used for fast proto-
typing of cryptographic schemes. Similarly, in (Ambrosin et al., 2016) the authors
assess the feasibility of using ABE in single-board computers, namely Raspberry Pi
and Intel Edison. Experimental results demonstrate that exploiting ABE in such sys-
tems is feasible, although they also highlight that future works should improve its
efficiency. Notably, the authors of (Zickau et al., 2016) and (Ambrosin et al., 2016)
do not focus on actually constrained Iol' devices, but on more powerful platforms
that have resources comparable with smartphone devices. Specifically, single-board
computers like Raspberry Pi and Intel Edison have enough resources to run a fully-
fledged operating system. However, it is not clear from their results whether ABE
schemes are feasible on far more constrained devices, which is the focus of our work.

This chapter considers constrained devices with significantly less memory/com-
puting capabilities, i.e., boards equipped with a microcontroller with less than 1MB
of RAM. Those devices, very popular in Iol solutions, cannot support the execu-
tion of a fully-fledged OS and usually run an ad-hoc OS with limited features. Our
analysis shows that, if we assume to employ simple access policies and leverage
hardware elliptic-curve cryptographic acceleration, ABE can indeed be adopted on
devices with very limited memory and computing power.

As a final note, all the previous papers (Wang et al., 2014; Zickau et al., 2016;
Ambrosin et al., 2015, 2016; Kuehner and Hartenstein, 2016) evaluate the decryp-
tion performance considering the worst-case scenario of policies using only “AND”
operators. This chapter shows that when relying on worst-case decryption, the pro-
cessing time and energy consumption are significantly overestimated. We thus pro-
pose a novel benchmark method that allows us to evaluate the average decryption
performance instead of the worst-case one, complementing our experimental anal-
ysis.

6.2 Use Case

A popular application scenario for ABE that involves constrained devices is the med-
ical field. Future medical systems will broadly adopt Wireless Body Area Networks
(WBAN:Ss) (Picazo-Sanchez et al., 2014) to collect data. Patients that require contin-
uous monitoring, for instance, will be equipped with wearable and/or implantable
sensors, which collect biometric parameters for real-time monitoring, e.g., to en-
sure a rapid response in case of an emergency or automate the administration of
treatments. These WBANSs produce highly sensible data consumed by other con-
strained devices, e.g., an insulin pump that analyzes data from other biomedical
sensors to select the proper dose, or by humans, e.g., a doctor that remotely checks
the status of a patient. In this context, data should be protected from unauthorized
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Figure 6.1. Publish/subscribe architecture and mechanism.

access through encryption. However, since multiple recipients are involved, fine-
grained access control is mandatory to regulate which piece of information can be
accessed by which user or device of the system. For instance, a glucose sensor can
be programmed to encrypt its measurements to allow only the insulin pump and
the patient’s physician to access them.

In such applications, the information is often shared using a publish/subscribe
system. Publish/subscribe is a common information-flow pattern adopted by dif-
ferent Iol application protocols, such as the Message Queue Telemetry Transport
(MQTT) protocol (Hunkeler et al., 2008) and the Constrained Application Proto-
col (CoAP) (Koster et al., 2019), to decouple the producer of information to the
consumer. The overall architecture of a publish/subscribe system is depicted in
Fig. 6.1(a). On one side, we have a set of constrained IoI' devices, e.g., sensors or
actuators, and users that behave as publish/subscribe clients and produce and con-
sume messages, e.g., periodic updates on a physical measurement. On the other
side, we have a broker, a full-resource device responsible for receiving, storing,
and dispatching messages. An Iol device or a user that is interested in receiving
messages on a given topic contacts the broker to issue a subscription to that topic
(Fig. 6.1(b)). Whenever an Iol device generates new data for a given topic, it sends
amessage to the broker. The broker is responsible for dispatching messages to all the
subscribers (Fig. 6.1(c)). This approach allows us to overcome the main limitations
that characterize constrained IoT devices. Firstly, their limited memory and compu-
tational power capabilities allow them to interact only with one application at a time.
The adoption of a broker, instead, allows such devices to be used by multiple appli-
cations simultaneously, thanks to the dispatching capabilities of the broker. Sec-
ondly, the publish/subscribe architecture facilitates communication with battery-
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Figure 6.2. Malicious broker with traditional ABAC mechanism (a) and with ABE (b).

powered IoI devices. To minimize energy consumption, such devices should often
operate in power-saving mode in which they turn off their radio. In a publish/sub-
scribe architecture, the broker can store the generated messages, thus allowing the
IoT devices to go in sleep mode without compromising information availability.

The core of this architecture is the broker, which can access all the messages. Such
entity is often outsourced, i.e., it is deployed on external infrastructure, e.g., a cloud
computing platform, or is completely operated by external entities, e.g., cloud com-
puting providers, which offer MQTT brokers as a service to customers. For those
reasons, a broker is not only subject to external attackers, but even an untrusted
third party could directly manage it.

In this context, we consider an adversary capable of compromising the broker.
However, it is worth highlighting that the same considerations apply if the broker’s
owner tries to access data dispatched by the broker itself. Thus, hereafter we refer to
abroker that is either compromised or owned by an untrusted third party server as a
malicious broker. A traditional Attribute-Based Access Control (Huetal.,2015) (ABAC)
mechanism enforced by the broker would have exposed data to a confidentiality risk
in case of a malicious broker. This is because those “classic” ABAC security systems
are based entirely on secure channels (e.g., TLS), in which the broker establishes a
secure channel with each entity involved in the architecture. In such systems, the
broker can access all the messages; thus, it is a single point of trust, as shown in
Fig. 6.2(a).

ABE is a possible implementation of the ABAC methodology. In fact, with ABE,
a malicious broker cannot do much since it stores and dispatches messages in an
encrypted fashion so that the broker is not able to decrypt them (see Fig. 6.2(b)).
ABE itself gives such resistance to this adversary: ABE ensures that the broker has
access only to metadata, e.g., the data type or the topic, but not to the data itself,
which is stored and dispatched by the broker in an encrypted form.
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Note that ABE does not preclude the possibility to use also secure channels, for
example, as a means of authenticating the messages. In addition to this, ABE en-
forces fine-grained access control on encrypted data, thus preventing malicious or
compromised applications from accessing unauthorized data.

6.3 Experimental Setup

In this section, we present the experimental setup adopted for our performance eval-
uation. Specifically, in the following, we first introduce our reference ABE schemes,
the adopted hardware and software platforms, and then present the methodology.

Reference ABE Schemes

In this chapter, we focus on two representative ABE schemes, namely: (i) the Goyal-
Pandey-Sahai-Waters scheme (Goyal et al., 2006b)! (throughout referred to as “GPSW”,
for brevity), which has been the first proposed KP-ABE scheme in the literature;
and (ii) the Bethencourt-Sahai-Waters scheme (Bethencourt et al., 2007) (“BSW”),
which has been the first proposed CP-ABE scheme in the literature.

In both considered schemes, the most expensive operation performed by the en-
cryption algorithm is the point-scalar multiplication, which is an elliptic-curve opera-
tion (see (Hankerson et al., 2006) for details). In particular, the GPSW scheme per-
forms one point-scalar multiplication for each attribute in the attribute set. The BSW
scheme performs two point-scalar multiplications for each leaf in the policy tree, and
for each internal node of the policy tree, the BSW scheme creates a random polyno-
mial of zero degree if the node is an OR operator, or degree equal to the number of
children minus one if the node is an AND operator. Furthermore, the BSW scheme
also performs a hashing of each attribute name on an elliptic-curve group as a first
stage of the encryption operation. Since this hashing operation has a non-negligible
impact on encryption performance, and since it can be easily precomputed given the
set of attribute names that the encrypting device uses, we chose not to include the
hash operations in our performance evaluation. In both GPSW and BSW schemes,
the most expensive operation performed by the decryption algorithm is the bilinear
pairing, which is an expensive cryptographic operation (see again (Hankerson et al.,
2006) for details). We recall that the decryption algorithm does not have to visit all
the tree nodes, but only a subset of them that is necessary to reach the root. The
GPSW scheme performs one bilinear pairing for each visited leaf in the policy tree.

!In the cited paper, the authors present two schemes, offering a small and a large attribute uni-
verse, respectively. We refer to the first one, the most lightweight of the two, thus suitable for very
constrained devices.
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The BSW scheme performs two bilinear pairings for each visited leaf in the policy
tree.

Hardware and Software Platforms

As an example of constrained IoI devices, we exploited the ESP32 and the RE-Mote
boards in our experiments. We have chosen those two IoI platforms as they are
representative of two different categories of IoI' devices currently available in the
market, i.e., very constrained devices (like the RE-Mote board) designed to operate
on batteries characterized by scarce memory/computing capabilities and equipped
with an ultra-low-power wireless transceiver (e.g., IEEE 802.15.4) and constrained
devices with slightly more memory and computing capabilities equipped with a
WiFi transceiver (like the ESP board).

The ESP32 (Espressif, 2020) is an IoI platform produced by Espressif Systems
that is growing in popularity due to its low cost, high availability, and rich set of
features. A dual-core Xtensa LX6 microprocessor at 240 MHz designed to have
ultra-low-power consumption is the system’s core. The board is equipped with 520
KB of SRAM and 448 KB of programmable ROM. It includes both WiFi and Blue-
tooth connectivity to accommodate a wide range of IoT use cases. The chip includes
cryptographic hardware acceleration support for AES, SHA2, and RSA algorithms.
Unfortunately, it does not provide hardware acceleration for elliptic-curve cryptog-
raphy (ECC) algorithms, the most burdensome ones in ABE. The board is natively
supported by FreeRTOS?. FreeRTOS is a popular Operating System (OS) for em-
bedded devices that supports a wide range of microcontrollers. It is written in the C
language and provides support for multi-threaded programming. Compared with
tully-fledged OSs, FreeRTOS lacks support for many advanced features and only
provides basic support for memory management and networking operations. Ba-
sic support for cryptographic operations is included, such as the popular wolfSSL
library.

The RE-Mote (Zolertia, 2020a) is a platform jointly designed by universities and
industrial partners and produced by Zolertia, which targets industrial-grade design
and ultra-low power consumption. The board is equipped with the Texas Instru-
ments CC2538 ARM Cortex-M3 System on Chip (SoC) working at 32 MHz, and
it can provide ECC hardware acceleration, i.e., it can accelerate point-scalar multi-
plication and point addition. Note that many other SoCs provide ECC hardware
acceleration for standard elliptic curves only, which cannot be used for ABE, and
thus they are useless for our aims. In contrast, the CC2538 SoC can accelerate the
generic elliptic curve, including those suitable for ABE (paring-friendly curves), and
thus it can be exploited to boost ABE operations. The RE-Mote board has native

2FreeRTOS, https://www.freertos.org, accessed: 2019-12-06
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Table 6.1

ESP32 anD RE-MOTE SPECIFICS.

ESP32 RE-Mote

CPU Tensilica Xtensa dual-core LX6 microprocessor, operating at 240 MHz | ARM Cortex-M3, operating at 32 MHz

Radio | Wi-Fi: 802.11 b/g/n - Bluetooth: v4.2 BR/EDR and BLE IEEE 802.15.4 (ISM 2.4-GHz and 863-950-MHz) & Zigbee
RAM | 448 KB flash and 520 KB RAM 512 KB flash and 32 KB RAM

support for different OSs for IoT devices, including the Contiki-NG OS®. Compared
to ESP32, RE-Mote offers a comparable programmable ROM size (512 KB), but it
has a smaller SRAM size (32 KB), making storing cryptographic information on the
device challenging.

Table 6.1 lists the specifications of the two adopted boards.

To carry out our performance evaluation, two existing libraries for Linux OS im-
plementing the two considered ABE schemes have been ported to FreeRTOS and
Contiki-NG, namely, the libcelia library* which implements the GPSW scheme, and
the libbswabe library® which implements the BSW scheme. We configured both li-
braries to use pairing-friendly elliptic curves with embedding degree 2 and effec-
tive security strength of 80 bits, equivalent to a 1024-bit RSA encryption. The li-
braries have been modified to suit the features offered by FreeRTOS and Contiki-
NG. Specifically, the major modifications consisted into: (i) removing any usage of
GLib, which is unavailable in both OS, and (ii) adapting the code to use the wolf-
SSL library on FreeRTOS and mbedTLS library on Contiki-NG® instead of the more
popular OpenSSL, which is not supported on FreeRTOS and Contiki-NG.

Methodology

To assess the performance of the two considered ABE schemes on ESP32 and RE-
Mote, two simple main programs, one for each library, have been developed to per-
form a sequence of operations. After the initial Setup algorithm, which generates
a master key and an encryption key, the program generates a decryption key with
the KeyGen algorithm. Then, it creates a random 4-byte string that emulates the
message to be transmitted. After that, the program encrypts the message and sub-
sequently decrypts it. For each operation, the program prints a message over the
serial connection. This allows us to measure the time required to perform every
operation. We adopted a high-precision USB power meter to measure the energy
consumption. Specifically, we used the AVHzY USB Power Meter Tester’, which
supports automatic data collection from an attached PC and allows measurements

3Contiki-NG, https://contiki-ng.org/, accessed: 2019-12-06

4Libcelia library: https://bit.ly /331ESZN, accessed: 2019-12-06

5Libbswabe library: https://bit.ly /2QRtEJV, accessed: 2019-12-06

®Two different TLS/SSL libraries for the two ESP32 and RE-Mote implementations have been
considered considering their availability on the FreeRTOS and Contiki-NG OSs, respectively.

"Power Meter Tester product page: https://goo.gl/vQDyac
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Figure 6.3. Example of flat policy.

Figure 6.4. Example of 3-level policy.

with a resolution of 107> mWh. The comparison between the log from the board
and the readings from the power meter allowed us to measure the energy consumed
for each specific operation.

To evaluate the two ABE schemes, we considered the following metrics:

e Encrypton/decryption time (s), defined as the time required to execute an En-
crypt/Decrypt algorithm.

e Encrypton/decryption energy consumption (mWh), defined as the overall energy
consumed by the board to execute an Encrypt/Decrypt algorithm.

An increasing number of attributes, from 5 to 50, has been considered for encryp-
tion. Such a number represents the number of leaves in the policy tree for the CP-
ABE scheme (BSW) or the size of the attribute set for the KP-ABE scheme (GPSW).
These two quantities do not have the same meaning because the leaves of a policy
tree represent the formal arguments of the policy, whereas the attribute set rep-
resents the actual arguments used to evaluate a policy. However, they both give a
measure of the complexity of the access control rules involved in an application. For
each experimental scenario, ten independent replicas of the experiment have been
executed. Our results report the average value of the measurements and the 95%
confidence interval. Note that the number of replicas and the number of configura-
tions in terms of attribute number considered in our experiments are limited. This is
because some steps for the execution of the experiments cannot be automated, thus
greatly increasing the time required for their execution. Regarding the number of
replicas, ten replicas should, however, be enough to get statistically sound averages
due to the small variability of the results. This is also suggested by the very small
confidence intervals, which are almost unnoticeable in the plots.

The number of operations performed by the Decrypt algorithm grows up lin-
early with the number of visited leaves and the number of visited internal nodes
(including the root). This means that policies with the same number of leaves but
a different “shape” can perform differently. We shaped the access policies as flat
policies, with a single internal node (the root) associated with an AND operator and
many child nodes, one for each attribute. Fig. 6.3 shows an example of flat policy.
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Flat policies represent the worst case for decryption algorithms. Indeed, with a flat
policy, the Decrypt algorithm is forced to visit all the leaves of the policy tree, and
the leaf visit is generally the most expensive operation in decryption. In some ex-
periments, we also used access policies shaped as 3-level policies. A 3-level policy is
semantically equivalent to a flat policy, but it has an additional intermediate level
between the leaves and the root. The nodes in this intermediate level are AND op-
erators and they have no more than two leaves as children. Hence, the root has only
[n/2] child nodes, where n is the number of leaves, opposed to n child nodes of a
flat policy. Fig. 6.4 shows an example of 3-level policy, which is equivalent to the
flat policy shown in Fig. 6.3. The 3-level policies are useful to test algorithms whose
efficiency depends on the average number of children of internal nodes. Indeed, the
internal nodes in a 3-level policy have in general fewer children than those in the
equivalent flat policy.

Drawbacks of Flat and 3-Level Policies

Intuitively, results measured by using flat and 3-level policies give an overestimation
of ABE resource consumption since both types of policy are, by definition, the de-
cryption’s worst-case scenario. However, policies should be much more diverse in
the real world, as they reflect the complexity of a human’s access rights (KP-ABE), or
they describe the vast range of entities that can access a single piece of information
(CP-ABE). In practice, this variety and flexibility are rendered by building access
policies also using OR gates. Such gates drastically diminish the number of nodes
and leaves that need to be evaluated to satisfy a policy, therefore decreasing time,
resources, and energy depleted by the sensors. Now, we anticipate the basic idea be-
hind the average-case scenario (analyzed in Section 6.5), which allows us to estimate
decryption performance more realistically. The average-case performance is mea-
sured by randomly generating many access policy/attribute set couples —ensuring
for each couple that the generated attribute set satisfies the generated policy—, and
then performing a decryption operation upon each couple. As in the worst case,
we analyze the decryption time and the energy consumption needed to perform
the decryption operation so that we can compare the results with the ones obtained
considering the worst-case scenario. To do this, we perform decryption over several
thousands of different access policy/attribute set couples. The average-case scenario
and the results achieved accordingly to it are thoroughly described in Section 6.5.

6.4 Experimental Results

In this section, we present the results of our experiments. We first discuss the results
obtained with the ESP32 boards and then analyze the results obtained with the RE-
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Figure 6.6. Encryption energy consumption.

Figure 6.5. Encryption time. ESP32 ESP32

Mote boards.

Results with ESP32 Boards
Encryption Time and Energy Consumption

Figs. 6.5 and 6.6 show the encryption time and the encryption energy consumption
of the two considered schemes, as a function of the number of involved attributes.
As we said before, such “involved attributes” assume a different meaning in CP-ABE
schemes (i.e., BSW) and in KP-ABE schemes (i.e., GPSW). In this figure and the
following ones, we put them in the same X-axis for the mere reason of saving space,
but this should not be interpreted as a comparison between CP-ABE and KP-ABE
schemes. The BSW scheme is quite expensive in encryption in terms of both time and
energy consumption. This is because it performs two point-scalar multiplications for
each leaf in the policy tree, and it generates a random polynomial for each internal
node.

Despite many previous papers on ABE (Wang et al., 2014; Ambrosin et al., 2015,
2016) report an encryption time linear on the number of leaves for the BSW scheme,
we experienced an over-linear time. This is mainly due to the random polynomial
generation that the BSW scheme performs for each internal node of the policy tree.
The complexity of generating such a random polynomial grows in an over-linear
fashion with respect to the number of children of the internal node. To confirm this,
we re-shaped the flat policy into an equivalent 3-level policy, in which each internal
node has fewer children, and run an additional set of experiments with all the con-
sidered ABE schemes. In Figs. 6.5 and 6.6 we report the results of the BSW scheme
with a 3-level policy. The results obtained with GPSW are omitted because both
execution time and energy consumption for encryption do not deviate from the re-
sults obtained with the flat policy since, in KP-ABE, the policy is not involved in the
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Figure 6.8. Decryption energy consumption.

Figure 6.7. Decryption time. ESP32 ESP32

encryption process. This is coherent with the fact that they do not generate random
polynomials. As can be seen, the encryption time and the encryption energy con-
sumption of the BSW scheme with a 3-level policy decrease sensibly compared to
the flat policy. This result seems counter-intuitive since, with a 3-level policy, there
are more polynomials to generate. However, it confirms that the over-linear cost of
BSW encryption is due to the random polynomial generations, which grow in an
over-linear fashion with respect to the number of children of each internal node.
This also suggests that shaping the policies on many levels is a good practice to im-
prove the performance of BSW encryption. The reason why the over-linear behavior
does not appear in other previous performance evaluations of ABE available in the
literature (Wang et al., 2014; Ambrosin et al., 2015, 2016) is that these papers also
include the hashing of the attribute names within the encryption operation. Our
performance evaluation does not include the hash operations because the hashes of
the attributes’ names can be precomputed, leading to a noticeable time saving.

Decryption Time and Energy Consumption

Regarding the decryption, Figs. 6.7 and 6.8 show the decryption time and energy
consumption of the two considered schemes, as a function of the number of involved
attributes, with flat policies. As expected, the BSW is quite an expensive scheme for
decryption, too, because it performs two bilinear pairings for each visited node in
the policy tree. No over-linear trend has been observed in BSW decryption, coher-
ently with the fact that no random polynomials are generated. The GPSW scheme
performs only one bilinear pairing per visited node, therefore it is not surprising
that its consumption(both in terms of time and energy) is roughly half of the BSW
scheme.

Figs. 6.7 and 6.8 show also the decryption time and the decryption energy con-
sumption of the BSW scheme both with flat and 3-level policies. As it can be seen,
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the decryption time and energy consumption seem independent of the shape of the
policy tree. This confirms that shaping the policies on many levels is a good practice
in the BSW scheme because it improves encryption performance without decreasing
the decryption performance.

Results with RE-Mote
Encryption Time and Energy Consumption

Figs. 6.9 and 6.10 show, respectively, the encryption time and energy consumption of
the two considered ABE schemes, vs. the number of involved attributes, when using
flat policies. Different from ESP32, RE-Mote provides ECC hardware acceleration,
which can improve ABE performance. Therefore, we carried out experiments with
and without ECC hardware acceleration. In the former case, the hardware support
has been exploited to implement the ECC operations. In the latter one, such op-
erations have been implemented via software, as for the experiments carried out
with ESP32. The results obtained with hardware acceleration are represented with
dashed lines. As can be seen, in some of the experiments, the encryption operation
fails as a certain number of attributes is reached. Specifically, the BSW scheme failed
when more than 20 attributes were adopted, while the GPSW scheme failed with
more than 35 attributes. This is due to the limited SRAM available on the RE-Mote
platform, which was insufficient to accommodate all the data structures required
for the encryption operations.

As expected, the performance of the two ABE schemes exhibits the same trend as
that obtained with ESP32 boards, both in terms of energy consumption and encryp-
tion time. By enabling hardware acceleration, both the encryption time and the cor-
responding energy consumption reduce significantly. For instance, if we consider
the points of maximum reduction, the execution time is reduced by approximately
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70% for BSW obtained with 20 attributes, and by approximately 50% for GPSW ob-
tained with 35 attributes. If we compare the results obtained with RE-Mote without
ECC hardware acceleration and with ESP32, we can notice that the encryption time
and the encryption energy consumption are higher with RE-Mote. This is expected
as the microcontroller installed in RE-Mote has a lower frequency than the one in-
stalled in ESP32, thus resulting in higher times (and consequently higher energy
consumption) for encryption.

Decryption Time and Energy Consumption

Figs. 6.11 and 6.12 show the decryption time and the decryption energy consump-
tion, respectively, for RE-Mote when using flat policies. The GPSW scheme does
not benefit from hardware acceleration. As it can be seen, it does not obtain any
performance gain via ECC hardware acceleration compared to the software imple-
mentation of such operations. The BSW scheme does not benefit from hardware
acceleration either. This is because the BSW and the GPSW schemes use burden-
some bilinear pairing operations in decryption, which are not accelerated in RE-
Mote. Though some prototypes of bilinear pairing hardware accelerators have been
developed in literature (see (Salman et al., 2017) for an example), none of them is
commercially available to the best of authors” knowledge. Therefore, we can expect
that decryption operations in pairing-based schemes® do not benefit from hardware
acceleration in any platform currently available in the market.

In decryption also, the maximum number of attributes is limited by the con-
strained memory of RE-Mote. In particular, the number of attributes for which the
decryption can be performed does not exceed 9 and 10, depending on the scheme.
When compared to encryption, the maximum number of attributes is significantly

8We recall that no EC-based or RSA-based Pairing-Free ABE scheme is secure (Herranz, 2020).
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reduced in decryption. This can be explained by considering the larger data struc-
tures required by decryption operations with all the considered ABE schemes.

When devices with low memory are considered, the maximum number of at-
tributes that can be employed is bounded to the amount of memory available. This
is further exacerbated when data decryption has to be implemented on an IoI de-
vice, e.g., in an actuator, as the maximum number of attributes is significantly lower
in this case for both schemes. Furthermore, the CP-ABE scheme can also be used by
IoT-constrained devices.

Regarding the hardware acceleration in decryption, it is not beneficial since the
dominant cost of decryption is, by far, the bilinear pairing.

Battery Lifetime Analysis

To analyze better the energy consumption that comes from the adoption of ABE
schemes and to obtain a key performance indicator that directly evaluates the fea-
sibility of adopting ABE in a real IoI scenario, we also estimated the lifetime of a
battery-powered sensor node, i.e., the time of operation for the sensor node to ex-
haust its battery. The battery lifetime resulting from Figs. 6.13 and 6.14 is a simplified
measure that does not consider the energy consumption for all the operations per-
formed by a sensor node. Nevertheless, it can be helpful as a high-level comparison
between different platforms. The evaluation is performed analytically by exploiting
both the measurements from real experiments and the energy consumption data
from the datasheet of ESP32 (Espressif, 2020) and RE-Mote (Zolertia, 2020b).

We consider a scenario in which a battery-powered sensor periodically collects
a sample of a physical measure (e.g., the temperature in a room), encrypts it using
ABE, and then transmits the encrypted message over a wireless connection. For the
sake of brevity, we assume that the device only produces and encrypts data (i.e., it
is a sensor).

In our analysis, both the ESP32 and the RE-Mote boards are assumed to be pow-
ered by two AA 1.5V batteries, which can provide 2.85 Ah each. The evaluation of
the energy consumption of the sensors included: (i) the overall energy consumed
by the sensors for data encryption; (ii) the energy consumed for the transmission of
the encrypted message over WiFi (for ESP32) or IEEE 802.15.4 (for RE-Mote); (iii)
the energy consumed in between two subsequent transmissions, assuming that the
sensors remain idle. We used the measurements obtained from the real experiments
for the first component, while for the latter two, we exploited the power consump-
tion values from the datasheet. To this aim, for ESP32, we assumed that the radio
transceiver transmits data at 1 Mbps using DSS (Discrete Spread Spectrum) modu-
lation, which results in a power consumption of 240 mW. Instead, RE-Mote transmits
data at 250 Kbps, using DSS modulation again, resulting in a power consumption of
72 mW. Moreover, when idle, we assumed that both the boards enter a light-sleep
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mode, which results in a power consumption of 2.64 mW for ESP32 and of 1.8 mW
for RE-Mote (according to the corresponding datasheets). Finally, a value of 60 sec-
onds is considered for the sampling period.

Figs. 6.13 and 6.14 show the estimated battery lifetime for the ESP32 and the RE-
Mote boards, respectively, expressed in days with respect to the number of involved
attributes. As we said in the previous section, such “involved attributes” assume
a different meaning in CP-ABE schemes (BSW) and in KP-ABE schemes (GPSW).
In this figure and the following ones, we put them in the same X-axis for the mere
reason of saving space, but this should not be interpreted as a comparison between
CP-ABE and KP-ABE schemes.

Analysis with the ESP32 board

In Fig. 6.13, the horizontal red line corresponding to 134 days represents the battery
lifetime of an ESP32 sending data in the clear, i.e., without the cost of any encryp-
tion. With reasonably small attribute sets, i.e., ten attributes, a battery lifetime up to
62 days (54% decrease compared to no-encryption scenario) can be obtained with
the GPSW scheme. On the other hand, with 10-attribute access policies, the BSW
scheme experiences a lifetime of around 50 days. As expected, as the number of
involved attributes increases, the battery lifetime reduces proportionally to the two
ABE scheme’s energy consumption. With an attribute set of 50 attributes, the re-
sulting battery lifetime of GPSW is 25 days. On the other hand, with 50-attribute
policies, BSW depletes the battery after a few days of use, but we can see that us-
ing 3-level policies can improve the performance, although slightly. The difference
between the flat policy and the 3-level policy in BSW is that the over-linear cost of
BSW encryption is due to the random polynomial generations, which grow in an
over-linear fashion with respect to the number of children of each internal node.
It also suggests that shaping policies on many levels while maintaining the same
logical meaning is a good practice to improve performance.

Analysis with the RE-Mote board

Fig. 6.14 shows the battery duration of RE-Mote with flat policies. Again, the hori-
zontal red line (about 198 days) represents the battery lifetime of a RE-Mote sensor
sending data in the clear. It can be seen that, with ten involved attributes, the battery
lifetime is up to 78 days (61% decrease) with hardware-accelerated GPSW and up to
35 days (82% decrease) with hardware-accelerated BSW. As for ESP32, the battery
lifetime reduces proportionally with the number of attributes. If we compare the
results with and without hardware acceleration, we can notice that hardware accel-
eration helps in improving the battery lifetime in both schemes. This is because the
hardware support reduces the energy consumption for encryption.
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Final Remarks

In our performance evaluation, we used two different IoI boards, namely ESP32 and
RE-Mote. The results show that the CP-ABE scheme (BSW) is the most expensive
for both platforms in terms of execution time and energy consumption, and this ap-
plies to both encryption and decryption operations. If we compare the results of the
ESP32 and the RE-Mote (Figs. 6.5-6.12) without the use of hardware acceleration
(only available on RE-Mote), we can conclude that the power consumption of BSW
is much higher with the RE-Mote board. This is because their energy consumption
is twice the one of the ESP32 board, and they also have a less powerful microcon-
troller; thus, encryption operations take more time to complete. On the other hand,
the RE-Mote board can take advantage of the hardware acceleration for encryption
operations, but in the case of the CP-ABE scheme, even though the gain obtained is
significant (i.e., 70%), the power consumption is still in the same order of the ESP32
that cannot exploit hardware acceleration.

The hardware acceleration allows the RE-Mote to have encryption execution time
and energy consumption in the same order as the ESP32, and, when possible, it
should be exploited to fill the performance gap given by low-frequency microcon-
trollers. For decryption operations with the RE-Mote board instead, the hardware
acceleration is not beneficial since the bilinear pairing is not accelerated. It is worth
highlighting that due to the memory limit in the RE-Mote board, the decryption can-
not be performed if the number of attributes is greater than 10. Thus, the RE-Mote
board should not be used if the ABE policy’s attributes are greater than 10.

To sum up, although the adoption of ABE has a noticeable cost in terms of en-
ergy consumption, the lifetime reduction can still be considered acceptable if we use
small attribute sets in KP-ABE schemes, i.e., up to 20 attributes, and small policies in
CP-ABE schemes, i.e., up to 5-attribute policies. When a higher number of attributes
is considered, instead, the resulting battery lifetime is shortened significantly down
to a value that could be unacceptable in scenarios in which a frequent battery re-



6.5 Average Decryption Performance Evaluation 105

placement is not feasible or desirable. In any case, the use of hardware ECC acceler-
ation, which is available on some platforms like RE-Mote, helps prolong the battery
lifetime. We finally remark that some optimization techniques not considered in
our analysis could be adopted to improve the sensor battery lifetime further. For
example, it is often the case that all the pieces of data periodically transmitted by
the sensor must be encrypted with the same attributes, as presented in (La Manna
etal., 2019).

6.5 Average Decryption Performance Evaluation

In this section, we explain the needs and motivations that led us to develop this
evaluation framework, the main idea behind it, how it works, and what we want to
achieve. This section is organized in the following way: in Section 6.5 we present the
limitations of the main ABE benchmarks proposed in the literature; in Section 6.5 we
show in detail the construction and use of our framework; in Section 6.5 we argue the
plausibility of the synthetic policies; and finally in Section 6.5 we show the results
obtained evaluating the average case with the proposed method.

Motivation: Worst Case vs. Average Case

A recurring problem while benchmarking ABE schemes is how to evaluate the de-
cryption performance correctly. Indeed, while the encryption performance, i.e., time
and energy consumption, is quite predictable given the number of attributes in the
ciphertext, the decryption performance highly depends on unpredictable factors,
namely the structure of the access policy and the attribute set. To evaluate the de-
cryption performance, it is a common practice in the literature (Wang et al., 2014;
Ambrosin et al., 2015, 2016) to consider the worst case, which corresponds to the
flat policy we used in this chapter. However, this worst case is infrequent in prac-
tice: while it can be helpful to validate the feasibility of adopting ABE in constrained
devices by assessing its performance in the worst-case scenario, this configuration
might be infrequent in a real scenario. Indeed, in a real scenario, access policies
are supposed to have OR operators, and they are supposed to be structured in trees
of many levels. However, it is extremely difficult to find large datasets related to
real access policies and attribute sets used in companies and organizations, upon
which evaluate the average case. This is more than understandable since those are
security-critical information belonging to the company. For these reasons, we pro-
pose a method that allows us to create synthetic access policies in order to measure
the decryption performance of an ABE scheme in the average case. We believe this
approach to be more realistic than testing them in the worst-case scenario, as done
in many previous works (Wang et al., 2014; Ambrosin et al., 2015, 2016) and can be
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used to complement the experiments and provide a more comprehensive evalua-
tion.

Framework Construction

Broadly speaking, the basic idea is to generate many random but realistic access
policies and, for each generated policy, generate a random attribute set that fulfills
such a policy. Then, for a KP-ABE scheme, we generate a decryption key associated
with each access policy and a ciphertext associated with each attribute set. For a
CP-ABE scheme, we do vice versa. Finally, we benchmark the decryption of the ABE
scheme with the generated decryption keys and ciphertexts, and we average the
results, thus obtaining the decryption performance in the average case.

More in detail, we generate a random policy having n attributes according to the
following steps.

1. We assign a conventional name to each of the n attributes, say A, B, etc., we
build a leaf for each attribute, and we fill a parent-less node set N with all these
leaves. Through the algorithm, the parent-less node-set will contain the nodes
of the policy we are creating that do not have a parent node yet. Since the
random policy is still a collection of unstructured leaf nodes at this stage, the
parent-less node-set contains all of them. The random policy will be a tree at
the end of the algorithm, and the parent-less node-set will contain only the
root.

2. We randomly select each node in the parent-less node set with a given proba-
bility p., and we define the set of selected nodes as N.. If N, contains less than
two nodes, we repeat the node selection procedure until at least two nodes
have been selected.

3. We build a new node having the nodes in N, as children, and we assign a con-
ventional name to it, say Ni;. The nodes created in the successive iterations
of the algorithm will be N>, N3, etc. We choose the Boolean operation associ-
ated with the new node to be AND with a given psnp probability, or OR with
1 — panp probability.

4. We modify the parent-less node-set by removing the nodes in N, and adding
the new node.

5. If the parent-less node-set now contains only one node (|N| = 1), we terminate
the algorithm. The random policy is fully built. Otherwise, we repeat from
Step 2.
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Figure 6.15. Example of random policy and random fulfilling attribute set, and a possible
attribute interpretation considering a medical scenario.

The parameter p. € (0, 1] influences how many children each node has on average,
and thus the average height of the generated policy tree. The higher p. is, the more
nodes will be selected at each algorithm iteration so that the final policy will be more
“flat”. By choosing p. = panp = 1, the method always generates flat policies, which
represent the worst case for decryption.

After the random policy is generated, we need to generate a random attribute set
that fulfills the policy to perform a decryption operation. We do it in the following
way.

1. We randomly select some attributes in the n attributes used in the previous
algorithm. Each attribute has a probability to be selected p,.

2. If the selected attributes fulfill the synthetic policy, we terminate the algorithm.
The attribute set is fully built. Otherwise, we repeat from Step 1.

The parameter p, € (0,1] influences how many attributes are included in the at-
tribute set. The higher p, is, the larger the attribute set will be on average. Fig. 6.15
shows an example of random policy with 10 attributes and p. = panyp = 0.5, and a
random attribute set that fulfills it, both created with the aforementioned method.
Note that the created policy has many levels and different Boolean operators, which
recalls real-world access policies written by system administrators. Note also that
the created attribute set is suboptimal to decrypt since, for example, the attribute set
{A, E} can fulfill the same policy by visiting fewer leaves and fewer internal nodes.
Suboptimal attribute sets are extremely likely to appear in a real-world scenario.
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Realism of the Synthetic Policies

The best way to corroborate the plausibility of synthetic access policies would be to
analyze a dataset of real access policies. In this case, we can extract and compare
various parameters like the depth of the policy tree, the frequency of the AND/OR
gate, the distributions of specific attributes, and many others. Unfortunately, as we
said, companies and organizations are reluctant to disclose such precious informa-
tion. However, we provide an example to support the idea that any synthetic policy
can be mapped to a real world-policy. We do so by showing that it is possible to
give realistic meaning to the randomly generated policy of Fig. 6.15, considering the
medical use case introduced in Section 6.2. Suppose that Pisa’s city hospital pro-
vides a patient with a smart sensor that continuously monitors the blood glucose
level. The same patient has a smart insulin pump that can be activated by the data
received from such a smart sensor. Data produced by the smart sensor can also be
read by the patient and any physician working at Pisa’s city hospital inside the cardi-
ology department. Moreover, the patient also gives his consent to process personal
data to Pisa University researchers who participate in the “EuropeanSmartHealth"
project in the “Diabetes" work package. Finally, keys are renewed every year for
security reasons, so each key has an attribute associated with the current year. Con-
sidering the CP-ABE paradigm, the policy that the smart sensor must enforce on its
produced data has the shape of the random policy in Fig. 6.15 (refer to the table on
the right of the figure for the attribute meanings). Furthermore, the randomly gen-
erated attribute set describes a physician working at the Pisa city hospital inside the
cardiology department, also affiliated with the University of Pisa. This simple ex-
ample demonstrates that the generated policies and attribute sets, though random,
can have a realistic interpretation.

Simplified Method for Memory-Constrained Devices

The method mentioned above allows us to evaluate the decryption performance
of generic ABE schemes in the average case. However, it requires loading the de-
vice under test with a high number of policies and associated attribute sets. This
is hardly feasible with memory-constrained devices like ESP32 and RE-Mote. For-
tunately, from our experience, we noticed that the decryption efficiency is analyt-
ically predictable given the number of basic cryptographic operations performed
(e.g., pairings, modular exponentiations, etc.) and their processing time. We thus
used a simplified method that first involves a benchmark of the basic cryptographic
operations, second, the random generation of many couples of access policies and
attribute sets with the previously explained method, and finally, the analytical com-
putation of the decryption performance with every such random couple.

To better understand how the decryption performance can be analytically com-
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[ | Pairing Mod. exp. Mod. mul. Point-scalar mul. Point add. ||

Time (SW) 3093 ms 44 ms 1ms 167 ms 5ms
Time (HW) 3093 ms 44 ms 1 ms 74 ms 2ms
Energy (SW) 140 yWh 2 uyWh 0.05 uWh 10 uWh 0.2 uWh
Energy (HW) 140 yWh 2 uyWh 0.05 uWh 3 uWh 0.1 uWh
GPSW decryption ng np+ny—1 np—1 - -
BSW decryption 2np+1  np+ny-1 np+1

Table 6.2
PROCESSING TIME OF BASIC CRYPTO OPERATIONS ON RE-MOTE, AND NUMBER OF BASIC CRYPTO OPER-
ATIONS NEEDED IN DECRYPTION BY THE DIFFERENT SCHEMES.

puted, remind that the decryption algorithm visits the policy tree in a bottom-up
order, from the leaves to the root. The algorithm visits only those nodes that are
strictly necessary to visit the root. For each visited node, the algorithm executes
some basic elliptic-curve operations. In both examined schemes, the number of the
various basic operations are expressible in terms of the number of visited leaves (n,)
and the number of visited internal nodes (ny). Table 6.2 shows the processing times
and the energy consumption of the basic cryptographic operations involved in de-
cryption by the two schemes, measured on a RE-Mote with or without hardware
acceleration. Each value has been obtained by averaging on 100 independent repli-
cas of the experiment. The table also shows the number of different basic operations
needed in decryption by the different schemes. Since we are interested in the dif-
tference between a performance evaluation based on the worst-case and one based
on the average case, we restrict our analysis to only one examined board: the RE-
Mote board. Performing a similar analysis on the ESP32 board is straightforward.
We omit it for the sake of brevity. Based on the numbers of Table 6.2, we applied
the simplified method to benchmark the average decryption of the two schemes on
RE-Mote.

Figs. 6.16 and 6.17 show respectively the resulting average decryption time and
average energy consumption, compared to the worst-case ones, as they have been
measured with the experiments of the previous sections (see Fig. 6.11). Each plot
point relative to the average decryption time has been computed by averaging 100,000
generated couples of random policies and attribute sets. Note that only considering
flat policies, like practically all the literature about ABE scheme performance evalua-
tion does (Zickau et al., 2016; Ambrosin et al., 2016, 2015; Wang et al., 2014; Kuehner
and Hartenstein, 2016), greatly overestimates the processing time of the average de-
cryption operation. The average decryption time also shows a slight sublinear trend
with respect to the number of attributes in the policy.

This is due to the presence of OR operators within the generated policies, which
are instead absent in a flat policy. Indeed, to visit an OR node, the decryption algo-
rithm just needs to visit only one of its children. The decryption algorithm will much
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cryption time on
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Figure 6.17. Average- and worst-case de-
cryption energy consumption on RE-Mote.

probably visit the most convenient child, which is the one having fewer descendant
leaves, to save time. As the attributes of the policy grow, the number of OR operators
also grows, thus allowing the decryption algorithm to further save time by visiting
the most convenient child each time.

We can conclude that the current literature significantly overestimates the pro-
cessing time and energy by always considering the worst-case decryption.

However, such estimations are too harsh when considering the applicability of
ABE in an IoT context. Indeed, realistic policies can be shaped around the needs
and the capability of the devices at disposal, as we showed before. We think that
our framework is better in correctly estimating the feasibility of ABE in an IoT con-
text since it also considers the flexibility and the expressiveness of such a technique.
Indeed, flexibility and expressiveness are two major features that are hard to quan-
tify, but they significantly impact the overall system. For example, with the GPSW
scheme and 9-attribute policies, the energy consumption on RE-Mote of the average-
case decryption is 67% less than that of the worst-case decryption. This shows that
if policies are well-thought and well-managed, ABE is far more performing than it
is believed to be so far.

6.6 Answer

How Much Classical ABE Schemes Actually Impact Constrained IoI Devices?

A lot, but not as much as we thought it does. In fact, we showed that ABE
schemes are feasible on Iol devices both in terms of computational capabilities and
battery usage. Indeed, with careful engineering of policies and attribute sets, the
battery duration of constrained devices that use ABE can last up to a month.



Chapter 7

What is the Most Suitable ABE
Scheme for my System?

In this chapter, we survey ABE schemes particularly suitable for IoT applications, fo-
cusing on specific features that are desirable in an IoT context. Instead of proposing
a simple list of schemes, we try to systematize the literature by identifying perfor-
mance indicators (PIs) that are of particular interest in IoI' and can be used to es-
timate how a given ABE scheme fits for a given IoI application. In particular, we
identify six PIs, namely, the data producer CPU efficiency, the data producer bandwidth
efficiency, the key authority bandwidth efficiency, the data producer storage efficiency, the
data consumer CPU efficiency, and the data consumer bandwidth efficiency. These six in-
dicators have different importance depending on different scenarios. However, we
think that in the vast majority of IoI applications the first three indicators are more
important (hence KPIs Key Performance Indicators), and the latter three are slightly
less impactful (hence APIs Accessory Performance Indicators). Nonetheless, in this
chapter, we analyze strategies that improve the performance of every PI. Therefore,
the readers that need to choose an ABE scheme that fits their needs, have the tool to
prioritize any of the six PIs as they please. Please note that this chapter is intended
to be selective, in the sense that we focus only on those schemes that are promising
from the point of view of one or more KPIs or APIs, and thus, are more likely to be
employed in typical IoT applications. Moreover, we select only schemes provided
with formal security proof. By doing this, we intentionally leave out many schemes
whose potential in IoT is not sufficient or whose security is not proved. This chapter
enables researchers and practitioners to get up to speed quickly on the character-
istics of the different ABE schemes present in the literature and understand their
suitability for the particular IoT applications, obviating the need to read many cryp-
tographic papers. As a further contribution, we employ thorough simulations to
assess the efficiency of a subset of representative schemes. Based on such simula-
tions, we observe that no scheme excels in all three performance indicators at once,

111



112 What is the Most Suitable ABE Scheme for my System?

but some simultaneously perform well in two indicators.

In the past, other surveys on ABE (Oberko et al., 2021; Al-Dahhan et al., 2019;
Edemacu et al., 2019; Lee et al., 2013; Liu et al., 2016; Moffat et al., 2017; Pang et al.,
2014; Qiao et al., 2014; Zhang et al., 2020) have been published, but they differ from
ours for various reasons. Some of the existing surveys (Lee et al., 2013; Pang et al.,
2014; Qiao et al., 2014) are outdated; As ABE is a trending topic, a lot of new and
more sophisticated schemes are proposed every year. Some surveys do not carry out
exhaustive research on ABE, limiting their contribution to analyzing schemes with
specific characteristics. For example, Liu et al. (Liu et al., 2016) and Al-Dahhan
et al. (Al-Dahhan et al., 2019) survey only revocable ABE schemes, while Moffat
et al. (Moffat et al., 2017) do not consider revocable schemes. Recent surveys (Mof-
fatetal., 2017; Zhang et al., 2014a; Edemacu et al., 2019) do not explore novel strate-
gies, e.g., ABE schemes with asymmetric pairings, and they do not quantitatively
estimate the key performance indicators of the suitable schemes through experi-
ments. In the present chapter, we do not survey lattice-based ABE schemes, for ex-
ample, (Li et al., 2019; Dai et al., 2018). Indeed, although they are interesting from
a post-quantum perspective, they seem too burdensome for the class of constrained
IoT devices that we consider in this chapter.

The rest of the chapter is organized as follows. Section 7.1 introduces the typical
IoT architecture on which it is possible and fruitful to apply ABE techniques, in-
troduces the key performance indicators, and advocates why they deserve priority.
Sections 7.2, 7.3, and 7.4 survey the different strategies employed in the literature to
improve the KPIs. In particular, Section 7.2 focuses on data producer CPU efficiency,
Section 7.3 on key authority bandwidth efficiency, and Section 7.4 on data producer
bandwidth efficiency. In Section 7.5, we simulate some promising ABE schemes that
excel in at least one KPI, and we discuss the results. Section 7.6 surveys the different
strategies employed in the literature to improve the APIs. Finally, Section 7.7 ends
the chapter, answering the question inquired.

7.1 ABE in loT

The typical IoT architecture (Fig. 7.1) includes many data producers (or simply pro-
ducers), which produce information, many data consumers (or simply consumers),
which consume such information, and some data storage, on which information is
either temporarily or permanently stored.

Data producers are typically sensing devices that measure physical quantities or de-
tect events from the environment. They are often constrained and battery-powered
and have limited computing and connectivity capacities. In some cases, data pro-
ducers are more resourceful devices, for example, single-board computers (e.g.,
Raspberry Pi) or mobile devices. Data consumers are typically devices that dis-
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Figure 7.1. ABE architecture.

play information to users or actuators who automatically undertake actions based
on such information. They can be smartphones, smartwatches, tablets, or even full-
fledged computers with higher computing and connectivity capabilities than the
average data producer. In some cases, data consumers are more constrained de-
vices, for example, single-board computers or even battery-powered actuators. Data
storage can be implemented in various ways, including at one extreme high-end
mainframes providing cloud services to subscribers, and at the other extreme the
data producers themselves in case they temporarily store sensed data locally instead
of transmitting it immediately (onboard storage). Between these two extremes, data
storage can be edge nodes, MQTT broker devices, etc. In addition, many recent IoT
systems store data in blockchain data structures, like Ethereum (Arena et al., 2019).
The typical ABE scheme in the literature considers all data storage as untrusted for
several reasons. Indeed, cloud servers are often managed by third-party compa-
nies based in foreign countries. Furthermore, edge servers and cloud servers are
Internet-connected and constantly exposed to cyberattacks, both software and hard-
ware (Lipp etal., 2018; Kocher et al., 2020). Onboard storage is considered untrusted
because producers are often easy to hack or physically accessible and unattended,
e.g., in wireless sensor networks. Finally, data is inherently public in the case of
on-blockchain storage, so it must be encrypted to preserve its secrecy (Arena et al.,
2019).

For all the reasons set out above, it is essential to encrypt the data when at rest in
the data storage. ABE technology is very effective for all those systems required to
preserve data confidentiality and enforce an access control mechanism. Some ABE
schemes in the literature consider data storage as semi-trusted, which may assume
different meanings but generally implies that data storage can perform some mali-
cious actions (e.g., attempting to decrypt data), but not others (e.g., actively sending
malicious messages). The honest-but-curious trust model used in some papers (Yu
et al., 2010a; Rasori et al., 2020) falls into this category. Note that we do not consider
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data storage those nodes that are transparent from the point of view of data connec-
tions, for example, network gateways or Internet routers. Of course, these devices
are untrusted, but they can be prevented from accessing data by simply establish-
ing end-to-end secure channels, for example, with the DTLS protocol (Rescorla and
Modadugu, 2012).

If ABE is employed, a fourth entity is necessary in the architecture: the key au-
thority, which is trusted by all the other entities. The key authority has the respon-
sibility of creating, distributing, updating, and revoking ABE keys. We refer to all
these activities with the general term key management. The key authority is typically
a PC-class device that is not constantly connected to the Internet but rather goes
online only when key management procedures must be fulfilled.

Performance Indicators

We identify three KPIs that an ABE scheme must offer to be best suited for most
common IoT applications (see Fig. 7.2). These three primary properties are (i) pro-
ducer CPU efficiency, (ii) producer bandwidth efficiency, and (iii) key authority
bandwidth efficiency. We further identify three accessory performance indicators,
which are desirable only if they do not jeopardize one or more KPIs. In the typical
case, accessory performance indicators are (i) producer storage efficiency, (ii) con-
sumer CPU efficiency, and (iii) consumer bandwidth efficiency. Of course, every

consumer &
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efficiency producer
CPU
efficiency
consumer & & producer
CPU I()T bandwidth
efficiency efficiency
& key authority
bandwidth
efficiency
producer &
storage
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Figure 7.2. Performance indicators.

choice about a set of key and accessory performance indicators is debatable, and
one should analyze the specific Iol' application to identify key indicators case by
case. Nevertheless, we feel that our choices fit the typical IoT application, and they
are also reasonable for many specific, less typical ones. In the following, we will
explain our rationale behind such a claim.
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The producer CPU efficiency is a key indicator for the typical IoT application be-
cause constrained devices with limited processing capabilities usually produce data.
Moreover, such devices are often battery-powered, so they must employ low-power
communication protocols, which have low bit rates. This also makes the producer
bandwidth efficiency a key indicator. On the other hand, the CPU and bandwidth
efficiency of the consumers are not as important as those of the producers because
data is usually consumed by users equipped with resourceful devices. Of course,
in those specific applications in which consumers are small battery-powered actua-
tors, their efficiency may rise in importance. However, considering the typical case,
we decided to categorize the consumer CPU and bandwidth efficiency as accessory
performance indicators. Notably, we consider the producer storage efficiency only
as an accessory indicator because many ABE schemes take up very little storage on
the producer, i.e., a few hundreds of bytes. For those schemes in which the producer
storage load is more pronounced, there are techniques to sensibly alleviate it (see
Section 7.6). Note that the producer storage capacity may become the real bottle-
neck of the overall system efficiency if onboard storage is the only storage media
used since possibly a large amount of encrypted data is stored locally. In this spe-
cific case, the producer storage efficiency may become a key performance indicator.
Regarding the key authority, we believe that its CPU efficiency is not a key indicator
since the key authority is typically a PC-class device with high computational capa-
bilities. The only scenario in which the key authority CPU load might be relevant
is that of a scheme using the naive revocation technique, described in Section 2.2.
Rather, we consider the key authority bandwidth efficiency a key indicator mainly
for scalability issues. Indeed, in many ABE schemes, the key authority traffic grows
with the number of consumers in the system, which tends to be quite large in IoT
applications, i.e., hundreds to thousands of devices. Finally, in the specific case of
blockchain data storage, it is worth noting that the storage efficiency may rise in im-
portance as a performance indicator. Indeed, the typical blockchain, e.g., Ethereum,
makes users pay each kilobyte of storage space in cryptocurrency. However, the
blockchain storage efficiency can be enhanced by improving both the key author-
ity bandwidth (i.e., smaller key update material) and the producer bandwidth (i.e.,
smaller ciphertexts). Therefore, we decided to neglect such a performance indicator
because the strategies to improve it coincide with the strategies adopted to improve
two other key indicators, explained respectively in Sections 7.3 and 7 4.

Cited Schemes and Naming Convention

From now on, we will refer to the concrete ABE schemes proposed by the literature
with the initials of the authors” surnames, the publication year, and an optional fi-
nal number discriminating different schemes within the same paper. For example,
“SW05-2" refers to the second scheme presented by Sahai and Waters in their 2005
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paper (Sahai and Waters, 2005), “BSW07” refers to the (unique) scheme presented
by Bethencourt, Sahai, and Waters in their 2007 paper (Bethencourt et al., 2007),
and so on. Table 7.1 contains the names of every ABE scheme cited in the present
chapter, with its precise reference and its basic characteristics.

7.2 Producer CPU Efficiency

In this section, we focus on the CPU efficiency of ABE schemes from the point of
view of the data producers. It is worth noting that the encryption operations dom-
inate the CPU load required by a scheme on the producers. Indeed, the produc-
ers are also involved in key management processes, but these typically do not re-
quire producers to perform any computation. Instead, in this case, producers are
required to download new public parameters or lists of revoked consumers. In the
typical ABE scheme, encryption requires point-scalar multiplications and, for large-
universe schemes, hash functions whose output is in an elliptic-curve group. Hence,
a preliminary observation regarding encryption efficiency is that large-universe schemes
are typically less performant than small-universe ones. This is because hash func-
tions over elliptic-curve groups are quite burdensome for resource-constrained de-
vices (see Table 7.3 of Section 7.5). The first straightforward method to save pro-
ducer CPU is thus to use small-universe schemes. Of course, the additional cost
of large-universe schemes can be alleviated by precomputing the hashes of the at-
tributes used in encryption and avoiding encrypting with attributes other than the
precomputed ones. However, this partially nullifies the advantage of being large-
universe since the producer can encrypt only with a predefined set of attributes, just
like it happens for small-universe schemes. In many IoT applications, it is not pos-
sible to fix a static set of attributes for each producer to encrypt with, so other more
flexible strategies to improve CPU efficiency are needed.

Another simple technique, featured in LPD21, is to lower the producer CPU load
is to use the digital envelope, that is, to let producers encrypt a symmetric key with
ABE with a specific attribute set (KP-ABE) or a specific policy (CP-ABE). Then, all
the plaintexts that must be protected by such an attribute set/policy are efficiently
encrypted with such a symmetric key. This technique can be applied to every ABE
scheme, and it is particularly advantageous in case producers must encrypt many
times using the same attribute set/policy. Nonetheless, it makes the key manage-
ment more complex because symmetric keys must be stored by producers and con-
sumers, and possibly revoked by the key authority.

Besides these basic techniques, we identified three main strategies to improve
the producer CPU efficiency: (i) encryption outsourcing (Touati et al., 2014; Touati
and Challal, 2016; Hohenberger and Waters, 2014); (ii) adopting alternative mathe-
matics (Yao et al., 2015; Odelu and Das, 2016; Odelu et al., 2017); and (iii) adopting
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Table 7.1
Citep ABE ScHEMES
Scheme Reference Paradigm  Universe Access S'tructure

Name Expressiveness
SWO05-1 Sahai and Waters (2005), Sec. 4.1 KP-ABE small k-of-n
SW05-2 Sahai and Waters (2005), Sec. 6.1 KP-ABE large k-of-n
GPSWO06-1 Goyal et al. (2006b), Sec. 4.2 KP-ABE small full monotonic
GPSWO06-2 Goyal et al. (2006b), Sec. 5.1 KP-ABE large full monotonic
GPSW06-3 Goyal et al. (2006b), App. A.1 KP-ABE small full monotonic
BSW07 Bethencourt et al. (2007), Sec. 4.2 CP-ABE large full monotonic
OSWO07 Ostrovsky et al. (2007), Sec. 3.1 KP-ABE large full non-monotonic
BGKO08-4 Boldyreva et al. (2008), Sec. 6 KP-ABE small full monotonic
AI09 Attrapadung and Imai (2009), Sec. 4 KP-ABE large full monotonic
EMNOS09 Emura et al. (2009), Sec. 4 CP-ABE small ANDy,
HLR10 Herranz et al. (2010), Sec. 3 CP-ABE small k-of-n
LOSTW10-1  Lewko et al. (2010), Sec. 2.3 CP-ABE small full monotonic
YWRL10 Yu et al. (2010a), Sec. IV KP-ABE small full monotonic
ZH10 Zhou and Huang (2010), Sec. 3 CP-ABE small AND;,
ALP11 Attrapadung et al. (2011), Sec. 5 KP-ABE large AND.
HN11 Hur and Noh (2011), Sec. 4 CP-ABE large full monotonic
Wi11-1 Waters (2011), Sec. 3 CP-ABE small full monotonic
W11-2 Waters (2011), Sec. 5 CP-ABE small full monotonic
W11-3 Waters (2011), Sec. 6 CP-ABE small full monotonic
W11-4 Waters (2011), App. A CP-ABE large full monotonic
W11-5 Waters (2011), App. B CP-ABE large full monotonic
GZCMZ12-1  Geetal. (2012), Sec. 3.1 CP-ABE small k-of-n
GZCMZ12-2  Geetal. (2012), Sec. 3.2 CP-ABE small k-of-n
LGRDY12 Lietal. (2012), Sec 3.2 CP-ABE small ANDp,
SSW12-1 Sahai et al. (2012), Sec. 8 KP-ABE small full monotonic
SSW12-2 Sahai et al. (2012), Sec. 10 CP-ABE small full monotonic
RW13-1 Rouselakis and Waters (2013), Sec. 4 CP-ABE large full monotonic
RW13-2 Rouselakis and Waters (2013), App. C KP-ABE large full monotonic
ZHW13 Zhou et al. (2013), Sec. 4 CP-ABE small AND;,
DJ14 Doshi and Jinwala (2014), Sec. 4 CP-ABE small ANDp,
HW14-1 Hohenberger and Waters (2014),Sec. 3 ~ KP-ABE large full monotonic
HW14-2 Hohenberger and Waters (2014), Sec. 4  CP-ABE large full monotonic
PYS14 Phuong et al. (2014), Sec. 3 CP-ABE small AND;,
TCB14 Touati et al. (2014), Sec. IV CP-ABE large full monotonic
ZCLLL14 Zhang et al. (2014a), Sec. 5.3 CP-ABE small AND.
ZZCLL14 Zhang et al. (2014b), Sec. 4 CP-ABE small AND;,
CGW15-1 Chen et al. (2015), App. B.1 KP-ABE small full monotonic
CGW15-2 Chen et al. (2015), App. B.2 CP-ABE small full monotonic
PYSC15-1 Phuong et al. (2015), Sec. 3 KP-ABE small AND;,
PYSC15-2 Phuong et al. (2015), Sec. 4 CP-ABE small AND},
YCT15 Yao et al. (2015), Sec. 4.2 KP-ABE small full monotonic
CDLQ16 Cui et al. (2016), Sec. 4 CP-ABE large full monotonic
AHMTY16 Attrapadung et al. (2016), Sec 3 KP-ABE large full monotonic
OD16 Odelu and Das (2016), Sec 3 CP-ABE small AND.
TC16 Touati and Challal (2016), Sec. IV KP-ABE small full monotonic
AC17-1 Agrawal and Chase (2017), Sec. 3 CP-ABE large full monotonic
AC17-2 Agrawal and Chase (2017), App. B KP-ABE large full monotonic
AC17-3 Agrawal and Chase (2017), App. D CP-ABE large full monotonic
AC17-4 Agrawal and Chase (2017), App. E CP-ABE small full monotonic
AC17-5 Agrawal and Chase (2017), App. F KP-ABE small full monotonic
LYHZS17 Lietal. (2017), Sec. 7 CP-ABE large full monotonic
ODKC(J17 Odelu et al. (2017), Sec. IV CP-ABE small AND.
QZ7C17 Qin et al. (2017), Sec. 3 CP-ABE large full monotonic
HWY18 Huang et al. (2018), Sec. 5 CP-ABE large full monotonic
JSMG18-1 Jiang et al. (2018), Sec. 4 CP-ABE small AND.
JSMG18-2 Jiang et al. (2018), Sec. 5 CP-ABE small AND.
LYZ1.18 Liu et al. (2018), Sec. 4 CP-ABE small full monotonic
XYM19 Xu et al. (2019), Sec. 5 CP-ABE large full monotonic
LPD21 La Manna et al. (2021), Sec. 5 CP-ABE large full monotonic

RPDY21 Rasori et al. (2021), Sec. 4 KP-ABE small full monotonic
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Type 111 pairings (Chen et al., 2015; Agrawal and Chase, 2017).

Encryption Outsourcing

The schemes adopting this strategy reduce the producer CPU load sensibly, but
they need specific architectural or usage features, for example, the presence of full-
resource neighbors or the presence of users that periodically load producers with
pre-computed quantities. Touati etal. (Touati et al., 2014) propose a CP-ABE scheme!
(TCB14) that collaboratively accomplishes the encryption of a message. To do that,
the data producer needs to establish secure channels with at least two trusted full-
resource neighbors to which delegate burdensome operations. The neighbors com-
pute partial results and send them to the producer, which combines them, creating
the final ciphertext. The authors of (Touati and Challal, 2016) propose a similar
KP-ABE scheme (TC16). The offloading technique of TCB14 and TC16 greatly un-
burdens producers, but it needs multiple resourceful devices in the neighborhood,
which could be missing. Moreover, the outsourcing system heavily impacts band-
width so that producers may spend more time and energy communicating than
what they save in processing.

Another efficient solution is proposed by Hohenberger and Waters in (Hohen-
berger and Waters, 2014). The authors propose a KP-ABE scheme (HW14-1) and
a CP-ABE one (HW14-2), based on the RW13-2 and RW13-1 schemes, respectively.
Both the schemes split the encryption algorithm into two phases. In the first phase
(offline phase), all the burdensome operations are pre-processed, whereas, in the
second phase (online phase), light operations are performed to generate the actual
ciphertext. This solution is helpful if data producers are mobile devices that ex-
perience battery charging cycles, e.g., smartphones. The offline phase is executed
while the device is charging, and when the data is ready —and the device is pos-
sibly not charging— the online phase is executed. Note that HW14-1 and HW14-2
do not improve CPU efficiency strictly speaking, because they do not outsource en-
cryption, but rather rationalize the CPU usage cycles. However, it is worth noting
that such schemes can be seamlessly adapted to outsource encryption. Indeed, the
offline phase can be outsourced to some trusted resourceful device, and the result-
ing pre-processed quantities can be loaded on the producers through some secure
channel. We will explore this possibility in the experimental section (Section 7.5).
Note that HW14-1 and HW14-2 allow the producer to decide the message and the
attributes used in encryption in the online phase when the full-resource device is
offline. TCB14 and TC16 do not provide this feature.

'Despite (Touati et al., 2014) and (Touati and Challal, 2016) do not provide formal security
proofs, we include them anyway in the present chapter because similar security proofs of the base
schemes BSWO07 (Bethencourt et al., 2007) and GPSW06-1 (Goyal et al., 2006b) should apply under
the assumption of secure channels between the producer and the full-resource neighbors.
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To sum up, encryption outsourcing does not have general applicability in IoT.
Outsourcing is possible only if there are trusted full-resource devices close to the
producer. This happens, for example, in the case of a network of producers ad-
ministered by a unique entity, in which one or more full-resource gateways are
present. However, these full-resource nodes would become a single point of trust
of the whole system, and their compromise might have a devastating effect on data
confidentiality.

Alternative Mathematics

Some studies propose ABE schemes that do not employ pairing operations (pairing-
free schemes). These schemes employ different cryptographic mathematics, usually
ECC (Yao et al.,, 2015; Odelu and Das, 2016) or RSA (Odelu et al., 2017). Pairing-
free schemes allow for the fastest encryption in the literature. Indeed, RSA-based
schemes employ extremely simple modular mathematics, which can also be hard-
ware accelerated in modern IoT devices (Zolertia S.L., 2017). ECC-based schemes
can employ small and standard elliptic curves, for example, the P-192 one for 96-
bit security or the P-256 one for 128-bit security (Kerry, 2013). These curves do not
support an efficiently-computable pairing operation, but they are generally more ef-
ficient than pairing-friendly curves with the same level of security. This is because
they can be represented on the shortest possible number of bits, for example, 160 bits
for obtaining 80-bit security. Also, operations on the standard curves are hardware-
accelerated in modern IoT devices (Zolertia S.L.,2017). Prominent pairing-free ABE
schemes in the literature are YCT15 and OD16, which employ ECC mathematics,
and ODKCJ17, which employs RSA mathematics.

Unfortunately, the security of such ABE schemes is debated in the cryptography
community. Some of them, i.e., YCT15, OD16, and ODKC]J17, have been success-
fully cryptanalized by successive papers: respectively (Tan et al., 2019) and (Her-
ranz, 2020) for YCT15, and (Herranz, 2017) for OD16 and ODKC]J17. A recent pa-
per (Herranz, 2020) cryptanalized several other pairing-free ABE schemes. Her-
ranz (Herranz, 2017) provided a simple argument motivating the reason why a se-
cure RSA/ECC ABE scheme should not exist. Indeed, since attribute-based encryp-
tion is a generalization of identity-based encryption, if one could design a secure
RSA/ECC ABE scheme, this could be easily converted into a secure RSA/ECC IBE
scheme. However, designing such an IBE scheme has shown to be an extremely hard
problem. In practice, such a problem has been unsolved since 1984, when the IBE
problem was firstly stated by Shamir (Shamir, 1985). This argument raises doubts
about the security of all the RSA/ECC ABE schemes published until now, although
they are usually accompanied by formal security proofs. We chose not to neglect
RSA/ECC schemes in this chapter so that the reader is aware of the problems that
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come with this strategy. However, we do not endorse such schemes and therefore
we will not simulate them in Section 7.5.

Type III Pairings

The majority of ABE schemes have been designed, proved for security, and bench-
marked with Type I pairings. This is probably for historical reasons since the first
pairing-based cryptographic schemes were designed with this type of pairings (Joux,
2000; Boneh and Franklin, 2001). However, using Type IlI pairings allows us to speed
up some cryptographic operations. This is because Type III pairings permit smaller
representations of G; elements with the same security level (Agrawal and Chase,
2017), thus leading to faster operations on them. Fortunately, many existing ABE
schemes, including the classic SW05-1, GPSW06-1, and BSW07, are easily “portable”
to Type III pairings. By doing so, their security proofs are invalidated, but there are
formal methods to convert a security proof with Type I pairings to an equivalent one
with Type IIl pairings (Akinyele et al., 2015). Notably, there is no unique way to con-
vert a scheme from Type I to Type IlI pairings. Broadly speaking, this is because each
Type I pairing e(A, B) (with A, B € G) employed in the scheme can be converted in
two different ways: (i) assuming A € Gq and B € G, and thus leaving the pairing as
is, or vice versa (ii) assuming A € Gy and B € G and thus inverting the pairing to
be e(B, A). These choices lead to different performance in different operations. Typ-
ically, the most convenient choice for the producer efficiency is the one that converts
the highest number of G elements to G; elements in the ciphertext. In this way, the
encryption performs point-scalar multiplications in G, which are the efficient ones.
Type IIl pairings also enjoy much more efficient G hash operations than Type I ones,
thus they are convenient also to reduce the cost of large-universe schemes. On the
negative side, using Type III pairings decreases the efficiency of pairing operations
and point-scalar multiplications in Gy, which are typically used in decryption and
key generation, respectively. Thus, in those IoT applications in which the consumer
CPU efficiency and/or the key authority CPU efficiency is more important than the
producer’s one, adopting Type III pairings could not be a convenient solution.
Some recent studies (Chen et al., 2015; Agrawal and Chase, 2017) propose ABE
schemes that have been designed explicitly for Type III pairings to improve encryp-
tion efficiency. Chen et al. (Chen et al., 2015) proposed a framework for build-
ing ABE schemes, and they applied such a framework to propose two concrete
schemes: CGW15-1 (KP-ABE) and CGW15-2 (CP-ABE). The authors used Type
III pairings for their schemes to improve the encryption performance. Agrawal
and Chase (Agrawal and Chase, 2017) proposed AC17-1 (CP-ABE, named “FAME”
by the authors) and AC17-2 (KP-ABE), both employing Type III pairings. Such
schemes are inspired by Chen et al.’s ones, but they provide for large universes. In
the same paper, the authors also provide other schemes, i.e., AC17-3, AC17-4, and
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AC17-5, Type III conversions of BSW07, W11-1, and GPSWO06-3, respectively. Not all
the schemes presented by Agrawal and Chase are optimized for encryption. Among

these schemes, the fastest ones in encryption are AC17-5 (for the KP-ABE paradigm)
and AC17-1 (for the CP-ABE one).

7.3 Key Authority Bandwidth Efficiency

Key authority bandwidth efficiency depends entirely on key management opera-
tions. A system deployed to run over the long haul must foresee that consumers’
roles and privileges can change over time, consumers can join or leave the system,
and consumers’ keys can get compromised, either because stolen by an attacker or
lost. In response to these events, the key authority should distribute new keys or
revoke old ones. While key distribution for joining consumers is typically a trivial
task, key revocation is more complex. In the literature, key revocation is classified
into three categories: direct, indirect, and attribute-wise. In direct revocation, con-
sumers’ decryption keys are associated with identifiers, and revoking a key means
disabling the consumer identifier from decryption of new ciphertexts. The list of
revoked identifiers, usually referred to as revocation list, must be available to all the
producers, which use it during encryption in such a way to exclude revoked keys
from being capable of decrypting the new ciphertexts. Differently, in indirect re-
vocation, the revocation process involves the non-revoked consumers. In particu-
lar, their decryption keys are updated in order to decrypt new ciphertexts, while
revoked ones are not. Usually, producers do not participate in the revocation pro-
cess, but some schemes, e.g., LPD21, require producers to update a small part of the
public parameters and use them for new encryptions. The naive revocation tech-
nique presented in Section 2.2 falls in this category, but its performances are poor
since the key authority generates and distributes new decryption keys to all the non-
revoked consumers. Also, all the producers must obtain the new public parameters.
Attribute-wise revocation can be seen as a type of indirect revocation at attribute
level. To revoke a compromised key, the key authority issues a new version of the
attributes present in that key. Every decryption key, except for the revoked one, is
updated to the new version. Producers need to obtain the new version of the public
parameters to generate new ciphertexts that the revoked key cannot decrypt. In the
following, we describe existing revocation strategies and analyze some approaches
proposed in the literature that attempt to limit the key authority effort to handle key
revocations.

We identified three main strategies to reduce the key authority traffic: (i) adopt-
ing direct revocation (Liu et al., 2018; Phuong et al., 2015), which completely unbur-
dens the key authority of the key revocation tasks; (ii) adopting binary tree struc-
tures within indirect revocation (Boldyreva et al., 2008; Sahai et al., 2012; Xu et al.,
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2019; Cui et al., 2016; Qin et al., 2017; Attrapadung and Imai, 2009), which reduce
the key authority traffic from linear to logarithmic in the number of consumers; (iii)
adopting attribute-wise revocation (Yu et al., 2010a; Hur and Noh, 2011; Li et al.,
2017), which makes the traffic generated by revocation tasks dependent on the num-
ber of revoked attributes instead of the number of consumers.

Direct Revocation

Direct revocation is the most effective strategy to reduce key authority traffic. When
a decryption key is compromised, the key authority simply adds the identifier as-
sociated with that key to a revocation list. During encryption, producers use the
revocation list as additional input to generate new ciphertexts that decryption keys
associated with identifiers in the revocation list cannot decrypt. However, as already
highlighted in Section 7.1, an IoT ABE scheme should weigh as few as possible on
the resource-constrained producers. Direct revocation often fails in this because
producers’ bandwidth and encryption efficiency are inevitably reduced. Indeed,
producers need to obtain an updated copy of the revocation list prior to encryp-
tion (bandwidth overhead), use the revocation list during encryption (encryption
overhead), and then upload a larger ciphertext on the data storage (bandwidth over-
head). As a consequence of these clear disadvantages, some studies proposed ABE
schemes with direct revocation that enlighten the burden on the producers. For ex-
ample, the authors of (Liu et al., 2018) proposed a direct revocable CP-ABE scheme
with a short revocation list (LYZL18). To achieve this, the revocation list is con-
densed into a single G element in the ciphertext. In this scheme, decryption keys
have a planned expiration date, and revoked keys —-whose expiration date is over—
are excluded from the revocation list to relieve encryption efficiency.

Phuong et al. (Phuong et al., 2015) proposed a direct revocable ABE scheme
for both KP-ABE (PYSC15-1) and CP-ABE (PYSC15-2) paradigms. They combine
ABE with broadcast encryption to impede decryption to revoked identifiers. The
encryption algorithm takes as input the list of non-revoked identifiers. This is a
drawback because producers must update their list when a consumer is revoked
and every time a new consumer joins the system. As in the LYZL18 scheme, the list
used during encryption is condensed into a single G element. Overall, the schemes
reach good efficiency in terms of bandwidth and storage because the KP-ABE variant
has short ciphertexts and constant-size decryption keys, and the CP-ABE variant has
constant-size ciphertexts and short decryption keys.

In short, direct revocation is the strategy that weighs less on the key authority but
inevitably hampers the other key performance indicators as it adds computational
and communication overhead on the producers.
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Binary Trees

Indirect revocation typically leverages an additional input to revoke consumers:
time. Indirect revocation schemes are organized in time periods, and at the begin-
ning of a new period, the key authority updates only non-revoked consumers’ de-
cryption keys. In a naive approach (Boneh and Franklin, 2001), the key authority
generates a new key for each consumer at each new period and individually sends
them to consumers through secure channels. Obviously, this solution does not scale
well with regard to the key authority since its computational and communication
costs increase linearly with the number of consumers.

Boldyreva et al. (Boldyreva et al., 2008) improved the efficiency of the keys up-
date mechanism. In their scheme (BGKO08-4), the costs for the key authority are
reduced from linear to logarithmic in the number of consumers. To achieve this per-
formance, they first proposed to use a binary tree for creating key-update material.
Notably, this information, which they call key update, is not a secret. The key update
can be published on the data storage to eliminate the need for interaction between
consumers and the key authority. In this scheme, decryption keys are associated
with identifiers. A consumer owns a long-term secret key linked to its identifier and
a short-term decryption key valid for the current time period only. The consumer
creates a new short-term decryption key at each time period by combining the key
update with its long-term secret key. Only non-revoked consumers are capable of
performing this operation. Indeed, the key authority generates key updates that do
not allow revoked consumers to create a new valid short-term decryption key. The
size of a key update is O(R log(N/R)) elements in G, where N is the total number of
consumers, and R < N is the number of revoked consumers.

Inspired by Boldyreva et al.’s work (Boldyreva et al., 2008), many indirect revo-
cable ABE schemes using binary tree construction have been proposed (Sahai et al.,
2012; Xu et al., 2019; Cui et al., 2016; Qin et al., 2017). Sahai et al. (Sahai et al., 2012)
extended the concept of revocation to a broader sense and proposed an indirect revo-
cable ABE scheme for both KP-ABE (SSW12-1) and CP-ABE (SSW12-2) paradigms.
They dealt with the problem of revoking access also to previously encrypted data.
In their construction, based on LOSTW10-1, the untrusted storage is enabled to re-
encrypt old ciphertexts to a more restrictive policy using only public information.
More precisely, a ciphertext encrypted at time ¢ is transformed to an independent
encryption of the same message under the same attribute set at time 7 + 1. Note
that re-encryption is performed without accessing the message. Xu et al. (Xu et al.,
2019) proposed a revocable ABE scheme (XYM19) that adds a feature to the one in-
troduced by Sahai et al. (Sahai et al., 2012). In their construction, based on RW13-1,
the authors deal with the decryption key exposure attack?, which was first introduced

2A scheme has decryption key exposure resistance if the compromise of the short-term decryp-
tion key does not imply the compromise of the long-term secret key.
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by Seo and Emura (Seo and Emura, 2013). The authors show that the performance
of their scheme is very similar to that of SSW12-1.

Cui et al. (Cuietal., 2016) (CDLQ16) and Qin et al. (Qin et al., 2017) (QZZC17)
also extended the techniques of Boldyreva et al. (Boldyreva et al., 2008) in the CP-
ABE realm. In their construction, based on RW13-1, the untrusted storage (which
does not hold any secret information) carries out the majority of decryption and
revocation workload. As in (Boldyreva et al., 2008), at the beginning of a new time
slot ¢, the key authority loads the key update on the data storage. For a consumer
with identifier id, the data storage computes a transformation key for the consumer
id and the time slot r. On a data request by a consumer, the data storage uses the
transformation key to manipulate the requested ciphertext. The consumer finalizes
the decryption at a low and constant cost. The difference between these schemes is
that the latter has decryption key exposure resistance, which adds a moderate cost
for the consumer.

In short, the binary tree is an efficient construction to achieve indirect revoca-
tion as it limits the key authority bandwidth to be logarithmic in the number of
consumers.

A Hybrid Scheme

Attrapadung and Imai (Attrapadung and Imai, 2009) proposed a hybrid revocable
KP-ABE scheme (AI09) that allows for both direct and indirect revocation modes.
The indirect revocation technique is pretty much the one proposed in Boldyreva
et al.’s work (Boldyreva et al., 2008) that we previously described. That is, the key
authority publishes a key update of size O(R log(N/R)) at each time period through
which non-revoked consumers can update their keys. In the direct revocation, pro-
ducers use the elements in the key update as additional input during encryption.
If direct revocation is used to create a ciphertext at time slot ¢, a non-revoked con-
sumer is not required to update its key for that time period. If indirect revocation
is used to create a ciphertext at time slot ¢, a non-revoked consumer is required to
update its key for that time period. Depending on its resources, a producer can use
and switch between the direct and indirect revocation modes. However, if produc-
ers mix direct and indirect modes within the same time period, the scheme takes
the worst of both worlds because it requires additional effort to handle revocation
for both consumers and producers. Moreover, the key authority bandwidth always
results as that of BGK08-4.

Attribute-Wise Revocation

Attribute-wise revocation is more fine-grained than the previous strategies because
it can revoke the privileges of a consumer at attribute level. This means that the key
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authority can invalidate just one attribute in a consumer’s decryption key. With this
strategy, the key authority bandwidth depends on the number of revoked attributes.

Yuetal. (Yuetal, 2010a) proposed an attribute-wise revocable KP-ABE scheme
(YWRL10) based on GPSW06-1. We recall that GPSWO06-1 has a small universe,
and the public parameters contain one component (a G element) for each attribute in
the universe. In the YWRL10 construction, all the attributes of the universe (except
for one, called dummy attribute) are subject to versioning. When the key authority
wants to revoke a set of attributes 1 embedded in a decryption key, it generates a
new version of the public parameters components for the attributes in A. Then, it
computes a secret quantity, i.e., an element in Z, called re-encryption key, for each
attribute in A. Finally, it loads the updated public parameters” components and the
re-encryption keys on the semi-trusted storage, thus transferring |1| - (|G| + |Z,]|)
bits, where the symbol | - | denotes the size of an element expressed in bits. Note
that if the key authority wants to revoke a whole compromised key, it can revoke
only the minimal set of attributes without which the embedded access policy can
never be satisfied. For example, if the compromised key’s access policy is A AND
(BOR C), the minimal set is {A}. Depending on the shape of the access policy, this
enhancement can save a lot of bandwidth overhead. The data storage is in charge
of updating decryption keys of non-revoked consumers which shared at least one
attribute with the revoked attribute set A. The YWRL10 assumes the data storage as
honest-but-curious. Rasori et al. (Rasori et al., 2021) proposed a scheme (RPDY21)
based on the YWRL10 one, which is secure even with untrusted data storage.

Hur and Noh (Hur and Noh, 2011) proposed an attribute-wise revocable CP-
ABE scheme (HN11) based on BSW07. As in YWRLI10, the key authority can re-
voke a set of attributes of a decryption key associated with a consumer identifier.
Producers are not affected by revocation, and they generate CP-ABE ciphertexts by
always using the same public parameters. The key authority only communicates to
the semi-trusted storage the consumer identifier and the change of access privileges
it wants to actuate. For example, if the key authority wants to revoke the whole
key of consumer id, it communicates all the attributes in that key and the associated
consumer identifier. The data storage manipulates each ciphertext and re-encrypts
it at attribute level so that only non-revoked consumers (for that attribute) can use
that attribute during decryption. On the contrary, if the consumer id is revoked
for the attribute i, it cannot use that attribute anymore for decrypting. This scheme
applies two layers of encryption. The first layer is CP-ABE encryption, performed
by producers, and the second layer is symmetric encryption. The second layer is
applied by the data storage and enforces revocation at attribute level. To decrypt
a ciphertext, a consumer first proves that it has access privileges for an attribute
by performing symmetric decryption. Then, it uses CP-ABE decryption to retrieve
the message. This scheme, too, makes use of the binary tree to manage revocation
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through symmetric cryptography. The HN11 scheme suffers from a vulnerability
for which a non-revoked consumer can collude with a revoked consumer and re-
store its access privileges. Li et al. (Li et al., 2017) proposed a scheme (LYHZS17)
based on the HN11 one that fixes this vulnerability.

In short, in attribute-wise revocation, differently from indirect revocation, the
key authority can stay offline and perform no task as far as no revocation occurs.
Moreover, being attribute-wise revocation not time-dependent, a key revocation can
come into force with immediate effect.

7.4 Producer Bandwidth Efficiency

In this section, we focus on the bandwidth efficiency of ABE schemes from the point
of view of the data producers. The bandwidth overhead introduced by a scheme on
the producers includes the encryption bandwidth overhead, i.e., the difference between
the ciphertext size and the plaintext size, and the key management bandwidth overhead,
i.e., the traffic related to key distribution and key revocation mechanisms. Indeed,
the producers are also involved in key management processes to download new
public parameters or even lists of revoked consumers.

A general and straightforward way to lower the encryption bandwidth overhead
is to use the digital envelope technique described in Section 7.2. This is because
symmetric-key encryption introduces much less encryption bandwidth overhead
compared to ABE. Of course, as already highlighted, it makes the key management
overhead more complex because symmetric keys must be stored by producers and
consumers, and possibly revoked by the key authority.

Besides this basic technique, we identified three main strategies to lower the
bandwidth overhead on the producer: (i) the use of a constant-size ciphertext (Zhou
et al., 2013; Zhou and Huang, 2010; Doshi and Jinwala, 2014; Li et al., 2012; Zhang
et al., 2014a,b; Ge et al., 2012; Herranz et al., 2010; Attrapadung et al., 2011; Emura
et al., 2009; Phuong et al., 2014), (ii) the implementation of an efficient key man-
agement mechanism (Hur and Noh, 2011; Liu et al., 2018; Li et al., 2017), and (iii)
the use of small group elements for the public parameters and ciphertexts (Agrawal
and Chase, 2017).

Constant-Size Ciphertext

An effective strategy to reduce the encryption bandwidth overhead is to have ci-
phertexts of small or constant size. Typically, in many ABE schemes, the cipher-
text size depends on the number of attributes either in the access policy (CP-ABE),
e.g., BSW07, HW14-2, and LYZL18, or in the attributes set (KP-ABE), e.g., YWRL10,
GPSWO06-1, and AI09. Clearly, this dependency is detrimental to the producer’s traf-
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fic. On the other hand, schemes with constant-size ciphertexts reduce the traffic by
disposing of such a dependency. However, we notice that a trade-off emerges be-
tween policy expressiveness and encryption bandwidth overhead. Usually, schemes
with constant-size ciphertexts use poorly expressive access structures languages,
while schemes with non-constant-size ciphertexts tend to use more expressive ac-
cess structure languages, allowing the creation of access policies that cannot be built
in the constant-size ciphertexts schemes. This is because, in poorly expressive access
structures languages (essentially all the AND-based languages), the attributes in the
ciphertext are condensed into a single G element.

Fig. 7.3 shows some prominent constant-size ciphertext schemes on a Cartesian
plane. The x-axis denotes efficiency in terms of ciphertext size (the rightmost, the
better); the y-axis denotes the expressiveness of the language (the higher, the bet-
ter); schemes that are proved secure under standard assumptions are shown in bold.
Moreover, the classic schemes BSW07 and GPSW06-1 are shown as a reference. We
note that among the schemes with poor expressiveness, the one that features the
largest ciphertext size is PYS14, which uses the AND, language and provides a ci-
phertext of |Gr| + 4| G| bits.

A slightly smaller ciphertext is achieved by the scheme GZCMZ12-2, which fea-
tures a ciphertext size of |Gr| + 3|G| + |Z,| and uses the threshold monotonic (k-
ofn) language. Three schemes, namely, EMNOS09, ALP11, and ZCLLL14, which
use ANDy,, AND,, and AND. languages, respectively, provide a ciphertext of size
|Gr| + 3|G|. Among all the schemes considered for this strategy, ALP11 is the only
one that follows the KP-ABE paradigm. It is interesting to point out that ZCLLL14
also provides a very efficient key revocation system concerning the producers. They
must download only one |G| element to update the public parameters after a key
revocation, instead of the whole set of public parameters needed in all the other
schemes, typically O(n), being n the number of attributes in the universe.

Then, a considerable number of schemes feature a ciphertext size of |Gz| + 2|G]|.
Among them, the schemes DJ14 and LGRDY12 provide the worst expressiveness
(ANDyy, ), whereas ZZCLL14 provides slightly better expressiveness, using AND;,,.
However, the schemes with the best expressiveness are HLR10, and GZCMZ12-1,
because they use the threshold monotonic language.

Finally, the schemes that feature the smallest ciphertext size are ZH10 and ZHW13,
with an overhead of only 2|G|. They are the only two schemes that do not need to
embed a Gr element in the ciphertext. Indeed, in decryption, the data consumer
combines the elements of its decryption key and the ciphertext to produce a Gr el-
ement, which is the symmetric key used to encrypt the actual message. However,
ZH10 and ZHW13 have poor expressiveness, as they use the AND,, and the AND,
languages, respectively.

A general technique for improving the expressiveness of the AND., AND,, AND,,,
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and AND,, access structure languages is to provide redundancy of decryption keys in
KP-ABE or redundancy of ciphertexts in CP-ABE. For example, in a KP-ABE scheme,
a single consumer could hold three different decryption keys. From the access struc-
ture point of view, this is like binding the consumer to an AND/OR gate access
structure: the root node is an OR, and the three branches are the single decryption
keys. This technique can benefit KP-ABE schemes such as ALP11: consumers simply
hold two or more different keys, which can better describe their access rights. In an
equivalent example for the CP-ABE paradigm, a producer could create and transmit
three ciphertexts for every piece of information to be encrypted. Even though this
technique aims to improve expressiveness, in CP-ABE this is detrimental to the pro-
ducer bandwidth (and computation) performance, since for a single piece of data
the producer must transmit (and compute) two or more different ciphertexts. We
investigate this technique in our simulations in Section 7.5. Moreover, the scheme
AHMTY16 proposes a full monotonic KP-ABE scheme with a trade-off between de-
cryption key size and ciphertext size. In the extreme case of ciphertext size opti-
mization, such scheme features a ciphertext size of |Gr| + 6|G|. It may seem more
than the other schemes, however, since this scheme uses KP-ABE, the ciphertext
does not need redundancy. Moreover, since it has full monotonic access structures,
the decryption key does not need redundancy, either. This makes such scheme the
third-best performing solution (concerning the analyzed KPI) discussed in this sec-
tion: this may be a good solution if one prioritizes expressiveness over ciphertext
size, while still needing them both.

Be aware that some schemes, e.g., JSMG18-1 and JSMG18-2, achieve a small ci-
phertext size, but they are not very bandwidth efficient. The ciphertext itself is in-
deed small, but the producer must create and transmit additional cryptographic ma-
terial along with each ciphertext to make the scheme work. Indeed, such schemes
provide an unusual technique for updating the policy of an existing ciphertext, and
this feature comes with a cost in terms of producer bandwidth. They can either add
(JSMG18-1) or remove (JSMG18-2) the required positive value of an attribute from
the policy embedded in the ciphertext, from a minimum of 1 to a maximum of m
attributes inside a single policy. However, to do so, they must upload to the data
storage (m — |P|)|G| more bits along with the ciphertext, increasing further the en-
cryption bandwidth overhead (being |#| the number of attributes used inside the

policy).

As a side note, the schemes EMNOS09, LGRDY12, and PYS14 are the only schemes
with constant-size ciphertext that have been formally proved to be secure under
standard assumptions.
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Figure 7.3. The analyzed constant-size ciphertext schemes. The classic CP-ABE (BSW07)
and KP-ABE (GPSW06-1) schemes are shown as a reference. Schemes in bold have been
proved secure under standard assumptions.

Efficient Key Management

As outlined in Section 7.3, there are three different key revocation mechanisms: di-
rect, indirect, and attribute-wise. We aim to identify the mechanism that reliably
impacts the least the producer bandwidth.

An example of an attribute-wise revocation that is not reliably convenient for
the producer is YWRL10. Indeed, we recall that when the key authority wants to
revoke a set of attributes A embedded in a decryption key, it generates a new ver-
sion of the public parameters for the attributes in A. This means that a producer has
to download a number of elements in G equal to A after each revocation. Notably,
the required bandwidth can be optimized if the producer maintains up-to-date only
a subset of the public parameters (e.g., a sensor that encrypts sensed data always
under the same attribute set). In this case, the producer has to download several el-
ements in G from 0 to A after each revocation, depending on how many attributes it
uses are inside A. This is undoubtedly the most unpredictable mechanism in terms of
required bandwidth since its traffic depends on the number of attributes involved in
the revocation. On the other hand, the schemes HN11 and LYHZS17 also feature an
attribute-wise revocation mechanism, but the producers are not required to down-
load anything after a revocation happens. In fact, a producer will always encrypt
data using the same public parameters, and then it uploads the ciphertext on the
data storage, which enforces the revocation.

In the direct revocation mechanism, usually, the producer must hold a list of
identifiers of the revoked users. Typically, this is the only cost sustained by pro-
ducers in terms of bandwidth for key management operations. The basic idea is
to create a “trapdoor" in the ciphertext by using the identifiers of all the revoked
consumers. Such a trapdoor “activates" when a revoked consumer tries to decrypt
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the ciphertext with its decryption key and, therefore, its identifier. The trapdoor
hides a needed quantity to decrypt the ciphertext, so this step cannot be avoided
or cheated in any way. The only cost in terms of producer bandwidth is, therefore,
the revocation list. The more the system runs, the more consumers will be revoked:
downloading an entire revocation list each time can be detrimental for the producer
bandwidth and may also impact its limited storage capabilities. The direct revocable
scheme LYZL 18 (see Section 7.3) keeps the revocation list short by removing expired
decryption keys to lessen key management bandwidth overhead on the producer.

Finally, in the indirect revocation mechanism, the producer potentially does not
have to download anything. For example, in BGK08-4 and QZZC17, the producer
contributes to revocation only by encrypting the ciphertext with an additional at-
tribute referring to the encryption time. This is a task that requires no interaction
with the other parties and saves bandwidth. Therefore, this approach is very con-
venient for the producers since they neither have to download updated public pa-
rameters after each revocation nor have to hold an updated copy of the revocation
list.

Small Group Elements

Using small group elements in the ciphertext can reduce the bandwidth overhead
due to the ciphertext size. A viable strategy is to adapt ABE schemes to use Type
III pairing by converting the highest number of G elements to G; elements in the
ciphertext, as discussed in Section 7.2. Smaller G elements are convenient to com-
pute some operations in encryption more efficiently, and they also save the producer
a conspicuous amount of bandwidth. Using fewer bits for a single G group element
dramatically reduces the bandwidth needed to upload a ciphertext to the data stor-
age.

For example, we can compare a ciphertext of the GPSW06-3 KP-ABE scheme with
a ciphertext of the AC17-5 scheme, which represents a possible Type III conversion
of GPSW06-3. To do so, we use the standard Type I (curve a.param) and Type III
(curve d201 .param) curves of the PBC library® with 80-bit security and 20 attributes
in the ciphertext. The resulting encryption bandwidth overhead of GPSW06-3 is
1408 bytes, while that of AC17-5 is 654 bytes, leading to a 53.6 % overhead reduction
for every ciphertext uploaded to the data storage.

In other schemes, the bandwidth saving is less pronounced. For example, we
compare the BSW07 CP-ABE scheme with the AC17-3 scheme, which is a possible
Type III conversion of BSW07, with the same curves as before and 20 attributes in the
ciphertext. The resulting encryption bandwidth overhead of BSW07 is 2752 bytes,
while that of AC17-3 is 2237 bytes, leading to an 18.7 % overhead reduction.

Shttps://crypto.stanford.edu/pbc
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Note that, in contrast with the strategy of adopting schemes with constant-size
ciphertexts (Section 7.4), this strategy can improve bandwidth efficiency without
jeopardizing the expressiveness of the policies. Note also that the two strategies can
be applied together to gain even more efficiency.

7.5 Experimental Evaluation

In this section, we evaluate the performance of a variety of ABE schemes that we
described in the previous sections through an event-based Matlab simulator. We
selected a scheme to represent each strategy discussed, except for “alternative math-
ematics” given its dubious security guarantees. All the simulated schemes excel in
one or two KPIs, but none of them in all the three KPIs at once. The simulated
KP-ABE schemes are BGK08-4, AI09, YWRL10, HW14-1, and AC17-5. The sim-
ulated CP-ABE schemes are ZH10, HW14-2, AC17-1, QZZC17, and LYZL18. Ta-
ble 7.2 shows in which KPI(s) each selected scheme excels. The schemes BKGO8-
4 and QZZC17 implement indirect key revocation and efficient key management:
producers are not affected by revocations. ZH10 is the scheme with the smallest
constant-size ciphertext. AC17-1 and AC17-5 use Type III pairings and have cipher-
texts with small group elements. YWRL10 implements attribute-wise revocation.
AI09 implements a hybrid revocation. HW14 exploits encryption offloading to re-
duce producers’ computational load. LYZL18 implements direct key revocation and
efficient key management.

Table 7.2

KPIs oF SIMULATED SCHEMES

Producer  Key Authority Producer

S;}::le CPU Bandwidth  Bandwidth
Efficiency Efficiency Efficiency
BGKO08-4 v v
AI09 v
YWRL10 v
ZH10 v
HW14 v
AC17-1 v v
AC17-5 v v
QZZC17 v v
LYZL18 v v

Each simulated scheme comprises a key authority, a data storage, many pro-
ducers, and many consumers. The simulator runs for a simulated period of time
within which it randomly generates four types of events: data production, data con-
sumption, consumer join, and key revocation. The corresponding algorithm of each
scheme, e.g., Encrypt, Decrypt, etc., is simulated within these events. The simu-
lator neither performs actual math operations nor implements some protocol for



132 What is the Most Suitable ABE Scheme for my System?

exchanging messages between the entities. Rather, it records the number and type
of math operations and eventually estimates the total computational load for each
entity. Moreover, the simulator records the number and the size of the messages
exchanged between the entities and estimates their experienced traffic overhead.

Simulator Description and Configuration

The simulator simulates a generic architecture as the one of Fig. 7.1, in which (i) pro-
ducers produce ciphertexts and upload them on the data storage, (ii) consumers ob-
tain ciphertexts from the data storage and decrypt them, and (iii) the key authority
generates decryption keys for joining consumers and also (iv) revokes decryption
keys.

The simulator defines a universe of 100 attributes for each scheme. Scheme-
specific attributes, such as the dummy attribute (used in YWRL10) or time attributes
(used in BGKO08-4, AI09, and QZZ(C17), are not considered in this number but are
individually added to the schemes that need them. In the simulation of KP-ABE
schemes, each ciphertext is labeled with a set of 30 distinct attributes chosen ran-
domly among those in the universe, and each decryption key embeds an access pol-
icy consisting of 10 distinct attributes chosen randomly among those in the universe.
In a dual way, in the CP-ABE schemes, a ciphertext embeds an access policy of 10
distinct random attributes, and a decryption key is labeled with 30 distinct random
attributes. Within the same simulation, the access policy shape is fixed for all the
ciphertexts (in CP-ABE) or decryption keys (in KP-ABE). We set the access policy
shape to be in Disjunctive Normal Form (DNF), with an OR at the root and three
AND children with three, three, and four attributes, respectively. Fig. 7.4 shows an
example.

OR

T

SOBHEOREHOE

Figure 7.4. Example of simulated access policy in DNF shape.

The simulator can be configured to start with an initial number of producers
and consumers. In our simulations, we start with 10000 producers and 10 000 con-
sumers. The number of producers remains the same throughout the simulation,
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while the number of consumers varies every time a consumer join event or a key
revocation event occurs. During a preliminary phase, the simulator creates an ini-
tial database of 10 000 ciphertexts and decryption keys for the consumers according
to the methodology described above. As far as decryption key generation is con-
cerned, we ensure that each decryption key can decrypt at least one of the initial
ciphertexts.

After these preliminary operations, the simulator starts generating the events
and recording the metrics. The events of data production, data consumption, con-
sumer join, and key revocation are modeled as Poisson processes. More in detail,
each producer generates a data production event every hour on average, each con-
sumer generates a data consumption event every hour on average, the key author-
ity generates a key revocation event every day on average, and a consumer join
event is generated every day on average. At each data production event, we sim-
ulate, for each scheme, that the producer encrypts a new piece of data and uploads
the ciphertext on the data storage. The new ciphertext is created according to the
methodology described above. At each data consumption event, we simulate, for
each scheme, that a random consumer downloads a random ciphertext from the
data storage (among those its key is allowed to decrypt) and decrypts it. At each
key revocation event, we simulate, for each scheme, that the key authority revokes
a random consumer from the system. At each consumer join event, we simulate, for
each scheme, that the key authority generates a new decryption key according to
the methodology described above, encrypts it with the consumer’s public key, and
uploads it to the data storage; then, the consumer downloads and decrypts it. These
events are executed until the simulated period of time, which we set to one month,
is reached.

In the final phase of the simulation, the simulator averages the recorded metrics
to obtain the results per single producer and consumer. The metrics, i.e., computa-
tional load and traffic overhead, are expressed in units of time and units of storage,
respectively. We assume all producers to be IoI devices, i.e., Zolertia RE-Motes (Zol-
ertia S.L., 2017). Therefore, to determine the running time of the various basic math
operations, we perform benchmarks that use the PBC library on such a device. We
suppose that all the simulated schemes that employ symmetric pairing use a Type I
pairing with 512-bit G group elements and 1024-bit G group elements, while those
that employ asymmetric pairing use a Type III pairing with 201-bit G; group ele-
ments, 603-bit G, group elements, and 1206-bit Gy group elements*. These curves
give an equivalent security level of 80 bits. Table 7.3 shows the results of our bench-
marks.

The simulator performs 30 repetitions with the same configuration but with differ-

“These curves come with the PBC library, and their parameters can be found in the files a. param
and d201.param
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Table 7.3
PairiNG-Basep CrRYPTOGRAPHY BENCHMARKS ON ZOLERTIA RE-MoTE. For Eaca OperaTION, 100
RePETITIONS ARE AVERAGED AND 95 %-CONFIDENCE INTERVALS ARE COMPUTED

. time (ms)
Type [ pairing Mean 95% CI
G point-scalar multiplication 265 4.05x 1073
Gr modular exponentiation 74 1.48 x 1073
bilinear pairing 5673 0.80 x 1073
hash (H: {0,1}* - G)* 6088 2.17 x 1073
. time (ms)
Type III pairing Mean 959% CI
G point-scalar multiplication 73 1.22x1073
G, point-scalar multiplication 763 9.56 x 1072
Gt modular exponentiation 288 4.84x 1073
bilinear pairing 9195 0.71x1073
hash (H: {0,1}* — Gq) 225 1.00 x 1073

* From our experiments, this value is largely independent of
the input size.

ent random seeds to achieve statistically sound results. The final results are aver-
aged, and confidence intervals are computed.

Simulated Schemes

In the following, we give details on scheme-specific configurations.

The AI09 scheme allows producers to arbitrarily choose whether to encrypt the
ciphertext in “direct revocation mode” or “indirect revocation mode”. We modeled
this opportunity with a random choice during the data production event, and we
simulated two variants of the AI09 scheme. In the first variant, called AI09(H),
where (H) stands for hybrid, we set the probability of producing a ciphertext in
direct revocation mode to 0.5. In the second variant, called AI09(D), where (D)
stands for direct, we force the scheme to act as a pure direct revocation scheme by
setting this probability to 1. We neglect the pure indirect variant because it is very
similar to the BGKO08-4 scheme.

For the schemes that use the binary tree, i.e., BGK08-4, QZZC17, and AI09, we
create a complete binary tree of the minimum size that can accommodate the initial
consumers and the joining consumers. Moreover, we set the duration of the time pe-
riod to one day. At the end of each time period, which we model through a periodic
event, the key authority creates a key update and stores it on the data storage.

The ZH10 scheme allows only access policies composed of an AND gate on
Boolean attributes with wildcards (AND, ). For a fair comparison, we improve the
ZH10 expressiveness using redundancy. We realize DNF-shaped policies by en-
crypting the same piece of data for a number of times equal to the number of AND
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gates in the original DNF. Therefore, the producer creates three ciphertexts: each
ciphertext specifies three or four positive attributes, and the remaining attributes of
the universe are wildcards. On the other hand, a decryption key contains 30 positive
attributes and 70 negative attributes. We simulate that the producer uploads three
ciphertexts on the data storage, and the consumer downloads only the one it can
decrypt.

For the HW14-1 and HW14-2 schemes, we simulate that the offline phase is out-
sourced to a trusted resourceful device, and the resulting pre-processed quantities
are transmitted to the producers through some secure channel. When the online
phase —which comes at no cost for the producer— is completed, the producer up-
loads the ciphertext on the data storage.

As regards the schemes that do not come with a revocation mechanism, i.e.,
ZH10, HW14-1, HW14-2, AC17-1, and AC17-5, we implemented for them the naive
revocation mechanism described in Section 2.2. For these schemes, during the con-
sumer join event, the key authority generates as many decryption keys for the joining
consumer as the number of key revocations occurred so far. All these keys have the
same access policy (or attribute set), but each one has been generated with a differ-
ent master key. In this way, the consumer can access ciphertexts generated before
its joining time.

Discussion

In the following, we show the performance of the selected ABE schemes against the
key performance indicators. We treat KP-ABE and CP-ABE schemes separately since
such two paradigms are not meaningfully comparable. We first analyze the results
obtained by simulating the KP-ABE schemes, and later we focus on CP-ABE.

Fig. 7.5 shows average values and 95 %-confidence intervals of the KPIs for the
simulated KP-ABE schemes. We note that the best scheme concerning the pro-
ducer’s performance is AC17-5 which can keep both the CPU load and bandwidth
overhead low by taking advantage of the asymmetric pairing. Indeed, as we notice
from Table 7.3, a point-scalar multiplication in Gy is roughly four times faster than a
point-scalar multiplication in G. Moreover, being a G; group element smaller than a
G element, the producer bandwidth for AC17-5 is the lowest among all the schemes
tested, albeit the producer must download at each revocation event the public pa-
rameters because of the naive revocation. The schemes BGK08-4 and YWRL10 turn
out to be slightly less efficient about the producer. However, if we look at the key au-
thority bandwidth efficiency, we notice that these schemes handle the key revocation
very efficiently, while in the AC17-5 scheme, at each revocation, the key authority
is burdened with the creation of new public parameters and new decryption keys
for non-revoked consumers. The AI09 scheme, which is revocable, performs well
only concerning the key authority bandwidth efficiency. Indeed, the direct revo-
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Figure 7.5. Comparison of KP-ABE schemes performance concerning the three KPIs.

cation mode used in both AI09(D) and AI09(H) reduces the producer’s efficiency
since it must perform more computations and generate larger ciphertexts than when
indirect revocation mode is used.

In the HW14-1 scheme, the producer does not perform burdensome operations
thanks to encryption outsourcing. It only executes a few modular multiplications
in Z,, which are enough time-efficient to be negligible, therefore we do not sim-
ulate them. On the other hand, the producer must download the pre-processed
quantities, which heavily impacts its bandwidth efficiency. Also, the key authority
bandwidth overhead is high because of the naive revocation. Note how the key au-
thority is efficient in terms of bandwidth in revocable schemes, namely two orders
of magnitude more efficient than non-revocable schemes.

Fig. 7.6 shows average values and 95 %-confidence intervals of the KPIs for the
simulated CP-ABE schemes. We note that the producer CPU load of HW14-2 is
negligible as it happens for its KP-ABE counterpart HW14-1. Unlike the previ-
ous simulation, the simulated asymmetric-pairing scheme (AC17-1) is not the one
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Figure 7.6. Comparison of CP-ABE schemes performance concerning the three KPIs.

with the lowest computational load concerning the producer. In this scheme, the
computation of the hashes heavily impacts the performance, and they are not pre-
computable. With a policy of 10 attributes as in our simulation, at each encryption,
the producer computes 60 hashes and spends about 13.5s just for computing hash
values; the advantages of asymmetric pairing are therefore nullified. Note that this
contrasts with the results in (Agrawal and Chase, 2017), which reports hashes to
be very fast, and thus AC17-1 to be very efficient in encryption. Such results were
obtained on a PC-class device and not on constrained devices. On the contrary, we
experimentally noticed that hashes are quite slow on the Zolertia RE-Mote platform.
This suggests that AC17-1, though very efficient on PCs, loses much of its efficiency
when adopted in IoI applications.

In our simulations, the scheme that performs best concerning the producer ef-
ficiency is ZH10. Even though the producer generates three ciphertexts instead of
one at each data production (for expressiveness fairness), ZH10 features the best
producer CPU efficiency and a good producer bandwidth efficiency. In Fig. 7.6(b),
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its pronounced download overhead is due to the naive revocation. Compared to the
other schemes with naive revocation, i.e., HW14-2 and AC17-1, the ZH10 scheme
performs worse. This is because, unlike HW14-2 and AC17-1, ZH10 is a small-
universe scheme, and thus public parameters are large. If we look at Fig. 7.6(c), we
notice that ZH10 has the worst key authority bandwidth efficiency. We recall that
in the naive revocation, the key authority generates public parameters but also new
decryption keys for non-revoked consumers. Compared to HW14-2 and AC17-1, in
ZH10 the key authority must generate larger keys.

The revocable schemes LYZL18 and QZZC17 are light in terms of key authority
bandwidth overhead. About the producer, the LYZL18 scheme is more efficient, al-
beit it implements a direct revocation mechanism, and the producers must perform
additional computations to enforce revocation. However, we recall that the revo-
cation list in the ciphertext is condensed into a single G element, which also helps
to keep the bandwidth overhead on the producer very low (Fig. 7.6(b)). In the
QZZC17 scheme, the producer experiences a slightly higher CPU load and band-
width overhead. Nonetheless, this scheme is particularly suitable for applications
in which a high efficiency on the consumer is needed (see Sections 7.6 and 7.6).

7.6 Accessory Performance Indicators

Producer Storage Efficiency

We identified in the literature three main strategies to improve the storage efficiency
of the producer: (i) adopting large-universe schemes (Bethencourt et al., 2007; Os-
trovsky et al., 2007; Attrapadung and Imai, 2009), (ii) storing partially the public
parameters (e.g., the majority of small-universe schemes can adopt this strategy),
and (iii) using storage-efficient key revocation mechanisms (Liu et al., 2018).

In an ABE scheme, the minimum amount of information a producer must store
is the public parameters, whose size depends on the universe type. Usually, large-
universe schemes have small public parameters, while small-universe schemes have
large public parameters. In particular, in small-universe schemes, the size of the
public parameters grows linearly with the number of attributes in the universe. On
the contrary, in large-universe schemes, the size of the public parameters is typically
constant and composed of a few group elements. For example, in the GPSW06-1
(small-universe) scheme initialized with a universe of 100 attributes, the size of the
public parameters is 6528 bytes, while in the BSW07 (large-universe) scheme, the
size of the public parameters is only 320 bytes®. Therefore, a viable strategy to keep
the storage overhead low on the producer is to choose a large-universe scheme that
features small and constant-size public parameters.

Sconsidering a security level of 80 bits.
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Regarding the small-universe schemes, we identify a general strategy that can be
applied to plenty of such schemes to reduce the required storage on the producer:
storing only a portion of the public parameters. In small-universe schemes, the pub-
lic parameters typically include one G element (component) for each attribute in the
universe. If the producer uses only a portion of them, e.g., it always encrypts with
the same set of attributes, it can store only the components it uses for encryption.
Referring to the previous example, if a producer uses only 30 attributes out of 100,
the storage overhead can be reduced from 6528 to 2048 bytes. Unfortunately, this
strategy is not viable for the vast majority of the schemes with constant-size cipher-
text that we surveyed in Section 7.4. By their very nature, to create a ciphertext of
constant size, these schemes require computations involving each part of the public
parameters.

The revocation mechanism also can impact the producer storage. Specifically,
in direct revocation, each producer must store the revocation list, which contains
the revoked identifiers. An identifier can be expressed as a group element or as a
mere progressive number. In both cases, the producer storage might be severely
affected when the system reaches a large number of revoked consumers. Therefore,
using an indirect revocation mechanism typically leads to a better producer storage
efficiency. In direct revocation, to relieve the storage overhead on the producers,
some schemes, e.g., LYZL18, embed an expiration date in the decryption keys. In
this way, the expired decryption keys can be excluded from the revocation list.

Consumer CPU Efficiency

The computation efficiency of an ABE scheme on the data consumers includes the
operations the consumers perform to decrypt data and those they perform for key
management procedures. As already outlined, the key management operations are
typically much less frequent, so, in this section, we focus on decryption efficiency to
represent the overall consumer CPU efficiency. We identified in the literature three
main strategies to improve the efficiency of decryption on the consumer: (i) out-
sourcing burdensome decryption operations (Huang et al., 2018; Cui et al., 2016; Qin
etal., 2017), (ii) using constant-complexity decryption (Doshi and Jinwala, 2014; Li
et al., 2012), and (iii) adopting mathematics alternative to pairings, for example,
ECC (Yao et al., 2015) or RSA (Odelu et al., 2017) mathematics.

The first strategy leverages data storage with abundant computational capabili-
ties, for example, a cloud server. This is necessary because, at each data request from
the consumers, the data storage must perform some operations on the requested ci-
phertext before transmitting it. In the CDLQ16 and QZZC17 schemes, the data stor-
age uses public information related to the requesting consumer id to transform the
ciphertext so that only the consumer id can decrypt it. The transformed ciphertext
is sent to the consumer, which finalizes the decryption at a low and constant cost,
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i.e., one operation in Gy in CDLQ16 and two pairings in QZZC17. Note that the data
storage can be untrusted since it does not hold any secret information to transform
the ciphertext. Additionally, anyone can verify the correctness of the transforma-
tion by performing the same algorithm executed by the data storage. In HWY18,
too, the decryption is outsourced to the data storage that transforms the ciphertext
and leaves just one modular exponentiation in Gr to the consumer for retrieving the
plaintext. In all these schemes, the decryption performed by the consumer is inde-
pendent of the attributes in its decryption key and is performed in constant time.

The second strategy tries to reduce the cost of the decryption algorithm. Very of-
ten, its complexity grows linearly with the number of attributes used to satisfy the
access policy. However, for many schemes with limited expressiveness (see schemes
surveyed in Section 7.4), the cost of decryption is low and constant, and it is usu-
ally dominated by a few pairings. For example, the decryption cost is fixed to two
pairings in the schemes DJ14, LGRDY12, EMNOS09, and ZZCLL14. In many cases,
limited expressiveness results in a good CPU efficiency for consumers.

The third strategy is to adopt mathematics different from pairings, e.g., ECC
(YCT15 and OD16) and RSA (ODKC]J17), which lighten the consumer CPU because
they eliminate the burdensome pairing operation usually employed in decryption.
However, at the time of writing, we do not suggest their employment for the security
concerns explained in Section 7.2.

Consumer Bandwidth Efficiency

We state in Section 7.4 that the main tasks involving the producer bandwidth over-
head are the encryption bandwidth overhead and the key management bandwidth
overhead. This applies to the bandwidth overhead of the consumer as well. Two of
the three strategies described in Section 7.4 that improve the producer bandwidth
efficiency are also good for improving the consumer bandwidth efficiency: using
schemes with constant-size ciphertexts, and using small group elements. Further-
more, we identified in the literature two additional strategies to improve the effi-
ciency of the consumer bandwidth: (i) partially outsourcing the decryption to the
data storage (Cui et al., 2016; Qin et al., 2017), and (ii) using a direct key revocation
mechanism (Liu et al., 2018; Phuong et al., 2015).

In the first additional strategy, since the consumer must download the ciphertext
from the data storage, we can use this intermediary to lighten the burden on the con-
sumer. Oftentimes, the data storage (typically in the form of a cloud server) manip-
ulates the stored ciphertexts in some way before sending them to the consumers.
Indeed, in schemes like CDLQ16 and QZZ(C17, the cloud storage does shrink the
ciphertext size before sending it to a consumer: from an arbitrary size (that grows
linearly with the size of the access policy) to a constant size of |Gr|+2|G|. This strat-
egy can be effective for the consumer’s bandwidth. However, we must point out
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that not always such a manipulation reduces the number of bytes that the consumer
has to download. In fact, HN11 requires the data storage to do some operations
over a ciphertext before sending it to the requesting consumer. Among other opera-
tions, the data storage has to prepend some additional information to the ciphertext,
therefore increasing the number of bytes that the consumer must download.

The second additional strategy is to use a direct revocation mechanism. Indeed,
the direct revocation mechanism (e.g., LYZL18) is the most effective since the con-
sumer does not have to download any cryptographic quantity to update its decryp-
tion key. In contrast, indirect revocation and attribute-wise revocation impact the
consumer, which must download key update material, either periodically or at each
revocation event.

7.7 Answer

What is the Most Suitable ABE Scheme for my System?

It turns out, it depends! (Who would have guessed it?). Indeed, we argued
that some features are more valuable than others in a precise context, and we also
simulated the best schemes that emerged from the theoretical dissertation to com-
pare their performance. In brief, we provided the reader with tools to choose the
most suitable ABE scheme for any Iol scenario. In particular, we addressed the best
strategies to improve any of the six PIs, and we provided a MATLAB program to
simulate the performance of virtually any ABE scheme regarding each PI.






Chapter 8

Is it Feasible to Leverage CP-ABE in
the Automotive Environment?

Over the last few decades, we have seen a complete transformation of the automotive
world. Vehicles rely more and more on electronic components to provide new fea-
tures to the customers. With well over 80 ECU’s per vehicle (NXP, 2018), software
maintenance is a severe issue. In industry, it has been estimated that the number
of bugs per 1000 lines of code oscillates from 0,5 to 25 (McConnell, 2009). It would
be foolish to think that a vehicle on the market has no bugs, and it would be even
more foolish to assume that none of them can lead to a vulnerability issue. New at-
tacks and exploits (Kocher et al., 2019; Lipp et al., 2018) emerge every day, and it is
impossible to prevent them all. However, it is possible to find a solution to a newly
discovered vulnerability and fix it with a software or firmware update in most cases.
A safe way to update the software or the firmware of a vehicle is to bring it to the
nearest licensed workshop: clearly, this scenario must be avoided since it can cause a
disservice to the customer and extra costs for the automotive OEM (Original Equip-
ment Manufacturer). This is a serious problem that also caught the attention of the
European Processor Initiative (EPI) project committee (Union, 2019; Kovac et al.,
2020) and its partners such as BMW and Elektrobit. One solution is to update the
software/firmware over the air (OTA), with the user that can manage the update in
the same way as he/she does with a smartphone or a home PC. The basic idea is
that inside each vehicle there is a particular ECU, called gateway, that connects the
outer world to all the vehicle’s ECUs. For example, the gateway provides for info-
tainment to the vehicle’s passengers or — in our case — an Internet connection with
the manufacturer to download the updates. There are many state-of-the-art solu-
tions (Asokan et al., 2018; Karthik et al., 2016; NXP, 2018) that already implement
OTA software updates, and all of them focus on providing the authenticity and the
integrity of the update. Confidentiality, instead, is treated as an optional security
feature. Unfortunately, the Intellectual Property (IP) of the update is not protected
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since in case the update is sent to the vehicle without any encryption, then the com-
petitors can easily capture and analyze its content. This is not desirable, particularly
if the update contains innovative countermeasures to new attacks or introduces new
features for the vehicle. Another problem is that, even if the update is confidentially
transmitted through the establishment of a secure channel (e.g., TLS), confidential-
ity is not guaranteed when the update is at rest. We recall that a piece of data is “at
rest" whenever it is not traveling through the Internet; for example, data stored on a
cloud server is at rest. This means that a manufacturer that uses secure channels to
provide confidentiality to its updates cannot use a third-party untrusted server for
storage and distribution since when an update is uploaded to such servers, it will
not be encrypted. Furthermore, even if the manufacturer uses its own trusted cloud
server to transmit the update to each vehicle, once the update arrives at the vehicle’s
gateway;, it can still be easily captured by someone who tampered with the gateway
itself. This can happen since the gateway is the only ECU directly connected to the
Internet, and therefore prone to cyber-attacks and more vulnerable to tampering
than all the other ECUs. Indeed, even in the Autosar Specification of Update and Con-
figuration Management document (AutosarAdaptive, 2019), it is specified that it is
convenient to have a dedicated ECU, different from the gateway, in charge of man-
aging the SW update of the vehicle. A solution to the “data at rest" problem is to
encrypt the update itself asymmetrically (e.g., using RSA) so that only such a ded-
icated ECU (not even the gateway) can decrypt it. However, this approach can be
costly because the manufacturer should encrypt the update as many times as the ve-
hicles to be updated. Attribute-Based Encryption (ABE) dramatically reduces the cost
of multiple-receiver end-to-end encryption and solves the problem of update at rest,
making it worth and efficient to provide confidentiality. Using ABE, even if an ad-
versary successfully tampers the vehicle’s gateway, the update is still encrypted and
signed with long-term keys in possession of the dedicated ECU, thus making the
tampering useless. The only way that an adversary has to analyze a copy of the up-
date is to tamper with either the dedicated ECU or the ECU that needs the update.
The automotive industry is aware of such risks, and to contrast such issues, they
developed some security strategies such as the multi-layer security architecture (NXP,
2018). The internal architecture of a vehicle is classified over different security levels
based on the security requirements of the involved application, ranging from low-
level security (e.g., infotainment) to high-level security (e.g., the brake system in an
autonomous vehicle). Among other things, this strategy ensures that the ECUs not
directly connected to the Internet are hard to tamper with.

Despite many high-quality works that have been published during the years (Gir-
genti et al., 2019; Ambrosin et al., 2015, 2016) presenting the feasibility of ABE on a
wide range of devices, to the authors” knowledge, the literature has not tested the
impact of the ABE on a real hardware automotive embedded platform. In this chap-
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ter, our task is to demonstrate that ABE schemes, in general, are well supported by
a platform that is very close to a real ECU mounted on a vehicle. To do this, we
selected the CP-ABE by Bethencourt et al. (Bethencourt et al., 2007) since it is the
one considered in the previously cited feasibility works. Showing that this scheme
has little-to-no impact on the OTA process, we show that ABE can perform well over
such a category of devices.

The contribution of this chapter consists in: (i) showing an ABE technique for
OTA secure update of software/firmware that can be seamlessly integrated into
state-of-the-art solutions; (ii) proving that ABE is compliant with the in-vehicle
network organization in modern cars as well as with the computing capabilities of
real automotive ECUs; (iii) provide an experimental evaluation of the ABE perfor-
mances on a real automotive compliant platform, namely the Xilinx ZCU102 board.
The rest of the chapter is structured as follows: in Section 8.1 we give some back-
grounds and show the related works; in Section 8.2 we explain the setup of our
performance evaluation; in Section 8.3 we show and discuss our results; and finally
Section 8.4 ends the chapter, answering the question inquired.

8.1 Related Work

Over the Air Frameworks

The “Over the Air" update solution is the future of software and firmware update
concerning the ECUs inside a vehicle. To the user, not having to bring the car to the
nearest licensed workshop is a great relief, and it also can improve the chance that
the update is actually installed. Moreover, reported statistics show that automotive
OTA can reduce warranty costs by a factor of 2 (Aptiv, 2020).

There are some state-of-the-art solutions that implement end-to-end encryption
for OTA FW/SW update as vConnect (Vector, 2020). Their solution is to establish a
secure channel through an encrypted session between their servers and the vehicle’s
gateway. This is dangerous because after the image download is completed, it can
be considered “at rest" inside the gateway. The gateway is the most probable ECU
to be compromised since it is the only one directly connected to the Internet. In
contrast, if a company were to adopt the ABE OTA SW update technique shown
in this chapter, the gateway should forward the downloaded encrypted and signed
image to the Update and Configuration Manager (UCM). The UCM, according to the
Autosar Adaptive specification document (AutosarAdaptive, 2019), can also run on
a dedicated ECU different from the gateway and, therefore, more protected from
external attacks.

In 2016 Karthik et al. (Karthik et al., 2016) released Uptane, a Framework for
software and firmware update over the air, created for securing ground vehicles.
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Uptane, optionally, allows one to encrypt software images (i.e., software updates)
using symmetric, asymmetric, or digital envelope techniques. In this chapter, we
design a simple framework integrated with ABE to measure its impact on the OTA
software update. Since ABE is, by all means, an asymmetric encryption scheme, we
show that it is possible to integrate ABE in a real and complex framework, therefore
showing that ABE is a viable solution to provide confidentiality for the IP.

In 2018 Asokan et al. (Asokan et al., 2018) proposed ASSURED, a framework for
OTA firmware, based on Uptane (Karthik et al., 2016). In their work, they claim that
ASSURED reaches five objectives:

1. End-to-End authentication and integrity: the update must be signed by the
manufacturer and verified by the device.

2. Update Authorization from Controller: only authorized devices can install the
update.

3. Attestation of update installation: the device must provide proof of the update
installation.

4. Protection of Code and secret key on device: the update must be stored and
then installed in secure storage and isolated execution of critical code.

5. Minimal burden for the device.

However, ASSURED does not consider as an adversary an external entity that eaves-
drops on the communication to retrieve the update’s code or that retrieves it from
a tampered gateway. Instead, in our work, in addition to the objectives achieved
by ASSURED, we consider such an adversary and protect it using Attribute-Based
Encryption.

In 2020 Ghosal et al. (Ghosal et al., 2020) proposed STRIDE, an OTA software
update scheme for autonomous vehicles. In their work, the authors provide confi-
dentiality to the software update by using the CP-ABE scheme proposed by Bethen-
courtetal. (Bethencourtetal.,2007). Furthermore, they provide an extensive perfor-
mance evaluation by simulation through OMNeT++ (Varga, 2010). However, they
do not test the performance of the introduction of ABE on a real automotive plat-
form, as we do in this chapter with the Xilinx ZCU102 evaluation board. This gives
us a realistic estimation of the performances. Moreover, the authors do not evaluate
the performance of key revocation mechanisms, which cannot be neglected as they
are necessary for practical use in a real-world scenario.

Halder et al. recently published a survey (Halder et al., 2020) on secure over
the air software updates in connected vehicles. The update’s confidentiality is a
mandatory requirement in their work, and they investigated and discussed many
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schemes. Covered techniques are, for example, OTA based singularly on: symmet-
ric key; hash functions; blockchain; RSA and steganography; HSM; secure update
frameworks; and so on. However, in their work, an approach explicitly based on
Attribute-Based Encryption has not been considered.

Testing Platforms and Automotive Hardware Background

To the authors” knowledge, the literature has yet to test the impact of ABE schemes
on a real hardware automotive embedded platform. The main difference between
traditional IoI devices (e.g., smartphones, sensors, Raspberry Pi,...) and automo-
tive embedded platforms is that the latter feature different hardware. As the reader
will see at the end of this section, automotive embedded platforms feature, among
other things, multi-core processors and real-time processors, hardware that is not
available in common IoT devices. Therefore, in this section, we explain the on-board
network organization and the computation capability of real automotive platforms
so that the proposed ABE technique is integrated into a representative automotive
scenario. We reference to emerging vehicle architectures, describing how it is designed,
to show that previous works cannot be taken into consideration when arguing about
the performances of ABE in the automotive domain.

In-vehicle networks are in a transition from legacy domain-based electronic ar-
chitectures to zonal architectures. Domain-based architectures with many simple
and separate ECUs and networks will be used for commodity automotive subsys-
tems (e.g., break or steer control). Instead, a small number of supercomputers are
needed for high-performance tasks (e.g., sensor fusion for obstacle detection, nav-
igation, and trajectory planning). Besides classic local interconnect and controller
area networks, in emerging automotive platforms, the wireless V2X (vehicle to ev-
erything) connectivity is ensured by vehicular versions of WLAN (e.g., 802.11p
technology) and of cellular networks (e.g., C-V2X). This wide range of connectivity
will highly increase the opportunity of SW OTA distributed dissemination (Halder
et al., 2020). However, such a wide range of connectivity solutions to the external
world can be a liability since it opens the vehicle to external cyber threats. This is
perceived as a severe threat by the automotive companies that tried to aggregate
all the connectivity capabilities over a single ECU, called the gateway. However,
for critical applications like the OTA SW/FW update, it is recommended to pro-
vide a dedicated ECU, different from the gateway, called Update and Configuration
Manager (AutosarAdaptive, 2019). This ECU contains the cryptographic quantities
needed for the OTA SW/FW update, such as public keys and private keys for signa-
ture verification and decryption, respectively. Indeed, the recommended OTA up-
date process inside the vehicle looks like this: i) the gateway downloads the signed
and encrypted update and forwards it to the UCM,; ii) the UCM verifies the sig-
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nature; iii) the UCM decrypts the update; and finally iv) the UCM forwards the
decrypted update to the ECU that needs it.

A key component of this new automotive networking architecture is the avail-
ability of more powerful ECUs than before. Differently from commodity ECUs,
characterized by low-cost microcontrollers, powerful automotive ECU processors
typically are equipped with i) interfaces towards Ethernet physical layer and switches,
ii) application processors like those of the Cortex-A family with AArch64 64-bit in-
struction set, iii) Hardware Security Engine (HSE) for secure boot and accelerated
security services. Referring to point (iii) in particular, the UCM should be a “security
level IV" ECU, as specified by the de-facto standard on vehicular security hardware,
the EVITA project (Evita, 2008). In terms of intra-vehicle connectivity, the S32G
chip sustains several network protocols, like Ethernet and CAN. Those character-
istics allow the UCM to efficiently perform many cryptographic operations and be
connected with every commodity ECUs that need support for the OTA SW/FW up-
date.

The reader should be aware that such resourceful ECUs are not future devel-
opments, but they are already being used. The same concept of integrating multi-
core Cortex-A processors in automotive platforms is also followed by supercom-
puter platforms like the Renesas H3 heterogeneous System-on-Chip. It integrates 4
Cortex-A72 and 4 Cortex-A53 cores, supervised by a dual lock-step Cortex-R7 real-
time microcontroller and a rich set of networking interfaces. To this aim, the Eu-
ropean Processor Initiative (Kovac et al., 2020) is developing a High-Performance
heterogeneous processor which integrates multiple ARM cores with AArch 64-bit
architecture with SVE (Scalable Vector Extension) plus co-processor tiles for embed-
ded FPGA, massively parallel processor array (MPPA), and RISC-V based stencil
and neurostream accelerators (STX). This chapter provides performance evaluation
on a real automotive compliant board to assess the easy integration of ABE as an addi-
tional feature. To this aim, the ZCU102 from Xilinx has been selected as a versatile
prototyping platform, representative of both automotive powerful ECUs processors
and scaled versions of heterogeneous supercomputers. The ZCU102 hosts a Zynq
UltraScale+ MPSoC chip with quad Arm Cortex®-A53 cores with Arm Neon™
technology plus dual-core Cortex-R5F real-time processors, and a Mali™-400 MP2
graphics processing unit. The FPGA resources of the ZCU102 allow for further ac-
celerators integration. ZCU102 also provides a rich set of connectivity interfaces.
From a software development point of view, the ZCU102 sustains a Linux-like OS
(PetaLinux) and an integrated design environment (VITIS) to develop both HW
and SW parts. Moreover, the Xilinx Zynq UltraScale+ MPSoC platform is not only
a rapid prototyping tool; but it can also be used as a product, being recently adopted
by Continental for its 4D automotive radar (Xilinx, 2020).
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8.2 Methods

To evaluate the impact that the introduction of ABE has on a vehicle’s performance,
we designed the following experiments. As ABE scheme for the experiments, we
choose the CP-ABE by Bethencourt et al. (Bethencourt et al., 2007). Our scenario
is composed of many vehicles, a manufacturer, and an honest-but-curious cloud
server. The manufacturer possesses the CP-ABE master key, the CP-ABE encryption
key, a pair of RSA keys, and it knows each vehicle’s RSA public key. The manufac-
turer is in charge of generating all the cryptographic keys needed in the system. We
assume that each vehicle has an ECU dedicated to the OTA update called Update
and Configuration Manager (UCM), as specified in the Autosar specification docu-
ment (AutosarAdaptive, 2019). This ECU is not connected directly to the Internet,
though it is connected to the gateway and each ECU that supports the OTA update
functionality. Each vehicle possesses: i) a CP-ABE decryption key, which describes
the vehicle’s components and characteristics; ii) a pair of RSA keys; and iii) the man-
ufacturer’s RSA public key. These vehicle-related cryptographic keys are installed
in the ECU that implements the UCM (AutosarAdaptive, 2019) by the OEM at the
time of its construction. The manufacturer produces the software update, encrypts
it with CP-ABE, signs it —along with a version number- using RSA, and stores the
signed and encrypted update on the cloud server. The cloud server sends the signed
and encrypted update to any vehicle that requests it. Upon receiving the software
update, the gateway forwards the message to the UCM. The UCM first verifies the
manufacturer signature, then decrypts the CP-ABE ciphertext. Finally, the UCM for-
wards the software update to the intended ECU, which installs it as soon as the user
gives his/her consent. The use case and the interactions are depicted in figure 8.1.

Furthermore, if one or many decryption keys are compromised, the manufac-
turer also provides new keys to the non-compromised vehicles. To do so, the man-
ufacturer generates a new CP-ABE decryption key for each non-compromised ve-
hicle, encrypt said key using the vehicle’s RSA public key, and signs the ciphertext
using its RSA private key. Then, the manufacturer stores the encrypted and signed
decryption key (from now on, the key update) in the cloud server. If a new decryp-
tion key has been released for a vehicle, when such a vehicle requests a software
update, the cloud server also sends to it the key update. In this case, the UCM first
verifies the signature on the key update, then retrieves the new CP-ABE decryption
key using RSA decryption. Finally, the UCM verifies the signature on the software
update and decrypts it using the new CP-ABE decryption key. Such interactions
are depicted in figure 8.2. The reader may argue that this revocation mechanism
is inefficient. However, our example is a worst-case scenario: if the impact of such
a naive mechanism is limited on our test platform, this means that more advanced
and efficient revocation mechanisms will be well supported too.
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Figure 8.2. CP-ABE decryption key distribution in case of key compromise.
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Attacker Model

With reference to figure 8.2, which represents the most complex scenario treated in
this chapter, we now define the attacker model: its capabilities, its motivation, its
objectives, and how it would like to achieve them.

We assume that the OEM, the UCM, and all the vehicle’s ECUs (except the gate-
way) are trusted, whereas the Cloud Server and the gateway are untrusted. We
think this is a reasonable assumption since the gateway inside a vehicle is the only
ECU directly connected to the Internet, and therefore it is more exposed to external
attacks than the other ECUs.

We now analyze the considered threats: a passive attacker and an active attacker.
A passive attacker can intercept every message sent over the Internet, both between
the OEM and the Cloud Server and between the Cloud Server and the vehicle. The
objectives of a passive attacker are two: p_i) to capture and decrypt an ABE cipher-
text, obtaining an update; and p_ii) to capture and decrypt an RSA ciphertext to
retrieve an ABE decryption key. Objective (p_i) and (p_ii), however, cannot be
achieved since it would mean that the attacker can break the schemes in (Bethen-
court et al., 2007) and (Rivest et al., 1978) respectively.

Instead, the active attacker can gain access to and/or control of the Cloud Server
and/or the gateway. This can be done by leveraging one of the many vulnerabilities
that have been discovered over the years (Kocher et al., 2020, 2019; Lipp et al., 2018).
For example, an active adversary can install a spyware on the gateway (or on the
cloud server) so that each and every piece of information managed and manipulated
by it is forwarded to the attacker.

The objectives of an active attacker are: a_i) to force a vehicle to install a malicious
SW update; a_ii) to decrypt an ABE ciphertext; and a_iii) to acquire a decryption
key and a private RSA key from a vehicle.

Objective (a_i) cannot be achieved without forging a valid signature applied to
the SW update by the OEM, therefore breaking the RSA signature scheme. The
attacker can pursue objective (a_ii) by gaining control of the cloud server or the
gateway. However, the attacker cannot achieve such an objective in both cases since
neither the Cloud Server nor the gateway possesses any decryption key. If in some
way, the attacker retrieves a vehicle’s CP-ABE decryption key and the RSA private
key — achieving (a_iii) — it will be capable of decrypting any ciphertext that such
ABE key complies with, and it will be capable of retrieving and decrypting the key
update made for said vehicle. This attack is effective until the OEM performs a
revocation for the key. When the OEM does this, it removes the associated RSA
public key from its database of public keys, and it stops generating key updates for
the compromised vehicle.
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8.3 Performance Evaluation

In this section, we briefly explain how we recreated the scenario, showing the soft-
ware and hardware we used.

Experimental Setup

We designed a client-server application that reflects the interaction between the
cloud server and the vehicles. We used C as the programming language and OpenSSL,
libswabe, the CP-ABE toolkit (Bethencourt et al., 2011), GMP, and the Pairing Based
Cryptography (PBC) as libraries. The objective is to measure the time passed from
the moment an update is requested to the moment it is installed. Ultimately, we
show that CP-ABE has little-to-no impact on the performance while providing a
fundamental feature. We investigated three different scenarios: i) NO CP-ABE; ii)
only CP-ABE encryption; iii) CP-ABE encryption + key update. In the first scenario,
when the vehicle requests an update, the cloud sends the update in the clear along
with the associated version, all signed by the OEM. This scenario will be our refer-
ence for the CP-ABE performance evaluation. In the second scenario, the interaction
between the cloud server and the vehicle is depicted in figure 8.1. The cloud server
stores the SW update encrypted with CP-ABE, along with the update’s version, all
signed by the OEM. In the third scenario, the interaction between the cloud server
and the vehicle is similar to that in the second scenario. However, every once in a
while, in addition to the SW update encrypted with CP-ABE, the cloud server will
send to the vehicle also a new CP-ABE decryption key, as depicted in figure 8.2. For
scenarios 2 and 3, we used a single policy to encrypt the software update, and we
used two different attribute sets to represent two different vehicles (Vehiclel and
Vehicle2) that can satisfy the policy. The policy and attribute sets are depicted in
figure 8.3. The policy reads as: “A vehicle can access the data if and only if it has
the ECU_MODEL_2247 OR it is both a CAR_MODEL_21 AND it has the ECU_-
MODEL_2248". The attribute set of Vehiclel is composed of four different attributes
and it reads as follow: “Vehiclel is a CAR_MODEL_23 and it has ECU_MODEL_-
2247, ECU_MODEL_2256, and ECU_MODEL_2268"; the attribute set of Vehicle2 is
composed of three different attributes and it reads as follow: “Vehicle2 is a CAR_-
MODEL_21 and it has ECU_MODEL_2246, and ECU_MODEL_2248". Vehiclel is
able to decrypt the ciphertext because it has the ECU_MODEL_2247 attribute, while
Vehicle? is able to decrypt the ciphertext because it has both the attributes CAR_-
MODEL_21 and ECU_MODEL_2248.

We run the client (which simulates the vehicle) on a Xilinx ZCU102 evaluation
board equipped with a Zynq UltraScale+ MPSoC chip which features, as already
discussed before, a quad Arm Cortex®-A53 cores with Arm Neon™ technology plus
dual-core Cortex-R5F real-time processors, a Mali™-400 MP2 graphics processing
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Figure 8.3. The policy and the two attribute sets used for the experiments.

unit, and four SLFP+ interfaces for Ethernet, six 16.3Gb/s GTH transceivers and 64
user-defined differential I/O signals, 600 system logic cells, 32Mb of memory, 2500
DSP slices.

For each scenario, we evaluated the performances of the ZCU102 board over
5,000 iterations, with a confidence interval of 95%. For the Elliptic Curve Cryptog-
raphy operations, we used Type A internals of the PBC library with a group order
of 160 bits, element size of 512 bits, and an embedding degree k = 2, which gives an
80-bit security level. To choose the revocation rate, we based our analysis on the fre-
quency of updates in Tesla vehicles (Tesla, 2020b). From their websites, we can see
that, from January 2020 to November 2020, 122 updates have been released, mean-
ing that — on average — more than 11 updates are released each month. Therefore,
we evaluated four different revocation rates, roughly from weekly to monthly: once
every two updates, once every three updates, once every six updates, and once every
twelve updates.

Results

We show in figure 8.4 the results of our experiment. The results of scenario 1’s eval-
uation show us that the download time and the verification of the RSA signature
take about 256 milliseconds. The introduction of only CP-ABE decryption in sce-
nario two increases by 200 - 230 ms the time elapsed from the request of the update
to the starting of the installation. This increase in time is due to CP-ABE decryption
and the CP-ABE ciphertext overhead download. From the graph, we can see that
Vehicle2 spends on average about 24 ms more than Vehiclel. Indeed, in order to
decrypt the CP-ABE ciphertext, in Vehicle2 the attribute used to decrypt the policies
are 2 (i.e., CAR_MODEL_21 and ECU_MODEL_2248), whereas Vehiclel only has 1
(i.e., ECU_MODEL_2247). Finally, in scenario 3, we see that the additional seldom
retrieval of a new decryption key costs on average 90-105 ms, in case of a revocation
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frequency of once every six updates, which translates to a revocation every 15 days.
Moreover, figure 8.5 shows that for a wide range of revocation frequencies, the im-
pact of CP-ABE decryption and key update is limited. Even at the higher measured
frequency -once every two updates, or once every five days- the download, key up-
date, and the decryption processes are all performed in just under 675 — 710 ms. If
the revocation frequency drops to once every 12 updates (roughly once a month),
the entire process takes between 518 — 535 ms.

Reg2Dec time (Reg2Dow time for Scenario 1)
Confidence interval at 95%

700
Il No ABE
600 | HEM Vehicle 1 I 590.85
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500 1 484.71
461.07§ I 8
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Figure 8.4. Elapsed time from the update request to the moment just before the installation.
The considered revocation frequency in Scenario 3 is once every six updates.

Analyzing the time spent in scenarios 2 and 3 compared to the time spent in sce-
nario 1, it seems that CP-ABE has a non-negligible impact on the OTA SW update
process. However, when we compare these results to the time spent on installing the
SW, we can see that the time increase due to CP-ABE is negligible. Indeed, we also
investigated the size of a software update in the automotive scenario. We found
out that, typically, an update’s size for a Tesla “Model 3" is about 100MB (Tesla,
2020a). To replicate the installation process, we chose to install installation pack-
ages of different sizes on the ZCU102. Namely, we measured the installation time
for programs with sizes of ~6.9 KiB, ~2.7 MiB, ~ 5.9 MiB, as shown in figure 8.6.
We did not perform tests of greater SW size for two reasons: i) we had difficulties
finding programs with the size around 100MB; and ii) even with such small sizes,
the installation times are already orders of magnitude greater than decryption and
download time. Figure 8.6 shows that the software of size ~6.9 KiB, ~2.7 MiB, ~ 5.9
MiB took, on average, 2100 ms, 12388 ms, and 22148 ms, respectively.
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Figure 8.5. Elapsed time from the update request to the moment just before the installation
in scenario 3, varying the revocation frequency.

In figure 8.7 we can see how much time it takes for each scenario from the update
request to the end of the update installation. We had to use the logarithmic scale to
see the CP-ABE impact since the three scenarios are practically equivalent when
considering the installation time. Indeed, the average time spent on the 5.9 MiB SW
update is 22148 ms with a 95% confidence interval of +247 ms. This means that
the SW installation time is two orders of magnitude greater than all the previous
times computed in the three presented scenarios. Therefore, also considering that
we measured the installation times on SW images that are way smaller than the ones
deployed in reality, we can conclude that the time impact of CP-ABE is negligible.

Furthermore, we also considered the impact of CP-ABE in terms of message size.
Figure 8.8 shows the size of the single components of the update message that the
cloud sends to the vehicle. The main three fields of such a message are: i) the sym-
metrically encrypted SW update (5.9 MiB); ii) the CP-ABE ciphertext containing the
symmetric key; iii) the RSA signature of the OEM. Compared to the RSA signature,
the CP-ABE ciphertext amounts to over three times the size. However, compared to
the actual software update size, the impact of the CP-ABE ciphertext is so negligible
that, in order to show them both in the same graph, we have to use a logarithmic
scale.

Considering that the OTA SW update operation is not a time-critical task, and
considering that, in any case, the dominant time cost is the SW installation, we think
that the adoption of CP-ABE also in real-life applications will be an excellent addi-
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tion to the security of our vehicles.

8.4 Answer

Is it Feasible to Leverage CP-ABE in the Automotive Environment?

Yes, and it is also convenient! With a negligible increment of the computational
cost, time required, and bandwidth overhead, we showed how to provide confiden-
tiality to the update destined to the vehicles.






Chapter 9

Conclusions

In this Ph.D. dissertation, we studied and applied the technique known as Attribute-
Based Encryption in different scenarios.

At first, we presented a comparison between CP-ABE and sticky policy approaches
in a smart home environment. The analysis, conducted through a prototypical im-
plementation of the two solutions, revealed the potentialities of CP-ABE in guaran-
teeing a better secure-aware and efficient data flow management than approaches
based on sticky policies. Concerning robustness towards different possible attacks,
CP-ABE appears to be more resilient. The CP-ABE approach suits both small-scale
scenarios and wide-area low-density scenarios.

Secondly, we showed fABElous, an ABE solution suitable for Industrial IoT appli-
cations that minimizes the communication overhead introduced by ABE encryption.
We described its architecture, system procedures and provided a use case exam-
ple. We reduced the communication overhead by 49% than using ABE techniques
naively.

We also described SEA-BREW (Scalable and Efficient ABE with Broadcast RE-
vocation for Wireless networks), an ABE revocable scheme suitable for low-bitrate
Wireless Sensor and Actuator Networks (WSANSs) in IoI applications. SEA-BREW
is highly scalable in the number and size of messages necessary to manage decryp-
tion keys. SEA-BREW can revoke or renew multiple decryption keys by sending
a single broadcast message over a WSAN. Intuitively, such a message allows all the
nodes to update their keys locally. In SEA-BREW, things and users can exchange en-
crypted data via the cloud and directly if they belong to the same WSAN. This makes
the scheme suitable for both remote cloud-based communications and local delay-
bounded ones. The scheme also provides a mechanism of proxy re-encryption (Yu
et al., 2010a,b; Zu et al., 2014) by which old data can be re-encrypted by the cloud
to make a revoked key unusable. We formally proved that our scheme is adaptively
IND-CPA secure also in case of an untrusted cloud server that colludes with a set
of users, under the generic bilinear group model. We finally showed by simulations
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that the computational overhead is constant on the cloud server, with respect to the
complexity of the access control policies.

Then, we carried out a performance evaluation of ABE in constrained IoT devices.
Specifically, we implemented two representative ABE schemes and tested their per-
formance on ESP32 and RE-Mote, two popular IoT rapid prototyping platforms. Our
performance evaluation showed that classical ABE schemes significantly impact the
lifetime of battery-powered devices, especially when a high number of attributes
(i.e.,20-50) is used in ciphertexts. However, if we assume to employ fewer attributes
(up to 10) and leverage hardware elliptic-curve cryptographic acceleration, which is
present on some platforms (e.g., RE-Mote), ABE can indeed be adopted on devices
with very limited memory and computing power. We also obtained a significant yet
tolerable battery lifetime reduction. In addition, we presented a novel benchmark
method that allows us to evaluate the average decryption performance, i.e., time
and energy consumption, instead of the worst-case performance, typically used by
the literature. We exploited this method to complete our evaluation by estimating
the average decryption time and energy on RE-Mote. We showed that the current
literature significantly overestimates the processing time and energy by always con-
sidering the worst-case decryption.

Approaching the end, we surveyed ABE schemes and solutions suitable for IoT
applications. We analyzed various schemes under six performance indicators, and
we identified and described the strategies that the state-of-the-art schemes adopt to
improve such performance indicators. Moreover, we assessed the efficiency of some
prominent ABE schemes by thorough simulations.

Finally, we changed the use-case and showed that the Attribute-Based Encryp-
tion technique improves security for over-the-air update functionalities in an auto-
motive scenario. Particularly, ABE provides confidentiality to the software/firmware
update done Over The Air and also for data at rest. Furthermore, we tested a naive
key revocation mechanism, another missing feature in state-of-the-art systems. We
showed that ABE can seamlessly be integrated into the existing solutions regarding
the OTA update, and more broadly, it complies with automotive standards in terms
of architecture and documentations. Furthermore, the overhead of the ABE inte-
gration in terms of computation time and storage is negligible w.r.t. the other tasks
involved in an OTA software update, like the installation. These results show that
security can be enhanced at a minimum cost.
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