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Abstract

The recent SARS CoV-02 pandemic has put enormous pressure on intensive care staff,

making it imperative to relieve them of repetitive tasks with little added value such as drug

replenishment. We propose a decision support system based on a hybrid policy to manage

the inventory of critical drugs with low and intermittent demand at an Intensive Care Unit

(ICU). Demand forecasting is at the heart of any inventory policy. We claim that in the ICU

setting drug demand patterns must be therapy based. Heterogeneous data have been col-

lected during an on site study, and information have been extracted to provide a faithful

abstract representation of the ward as a system, as well as the potential evolutions of ICU

patients clinical conditions. Together with medical guidelines, this provides the foundation of

a therapy based demand forecasting tool. This study integrates schedule optimization and

demand forecasting, and exploits simulation for evaluation purpose in the long run. At the

beginning of every period, drug orders are optimally scheduled with respect to forecast

demand. Then, scheduled orders are deployed day by day and confronted with the real

demand in a simulated environment. Potential stock outs trigger rush orders to restore

safety stocks. The comparison between the proposed policy and a standard policy mimick-

ing current practice in an ICU ward shows that information on therapy patterns can be suc-

cessfully incorporated into drug replenishment processes to reduce the number of rush

orders, a primary goal in designing an efficient system.

1 Introduction

In most developed western countries, costs related to drug logistics make up an ever growing

share of hospital expenses. According to [1], retail pharmaceutical spending has grown slowly

or even declined across Europe in the last decades; nevertheless, hospital pharmaceutical

spending has steadily expanded, raising a financial sustainability issue regarding public health.

Saving opportunities rely on improving the different components of the drug supply chain

and on coordinating their integration [2]. Inventory management at point of care, in particu-

lar, can be a potential source of inefficiency. This is not only due to frequent overstocking or

stock out-driven emergency orders, but it is also related to the time highly trained personnel
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spend looking after frequent replenishment operations. The recent SARS CoV-02 pandemic

has put enormous pressure on intensive care staff, making it imperative to relieve them of sim-

ple repetitive tasks with little added value such as drug replenishment. Moreover, the waste

commonly associated with poor drug management in ICU is even more socially and economi-

cally unacceptable in light of the dramatic situation we are experiencing.

In light of the above mentioned considerations, decision makers in health care organiza-

tions have started looking towards inventory theory in search for well-assessed practices to

hedge against the rise of drug inventory costs. Most of these practices come from the

manufacturing industry. Drug inventory management, indeed, shares some of the most chal-

lenging features of inventory problems arising in manufacturing, such as (i) limited storage

areas, (ii) multi-item inventory, (iii) intermittent demand, (iv) different sizes of units used in

consumption (dosage) with respect to replenishment (boxes), and these data may even vary

from drug to drug, as well as (v) the need to take into account different stakeholders in the

decision process. Despite such common issues, though, drug inventory presents peculiarities

that make it difficult to transfer to the health care industry the best practices that have proven

successful in manufacturing. In particular, (vi) since patient health is the primary goal, service

level prevails over revenue in performance evaluation; (vii) since back orders are not allowed,

stock out events trigger expensive rush orders.

This work concerns drug replenishment policies at an Intensive Care Unit (ICU), with a

focus on antibiotics. In ICU settings, the above mentioned features are exacerbated since: most

patients are in critical conditions, drug shortages may have dramatic consequences on fragile

patients, and staff work under tight time constraints. Regarding the search for consensus (v),

in particular, ICUs are sensitive realities in which the involvement of different stakeholders

with possible conflicting priorities plays a pivotal role; hospital management, clinicians, and

nurses have to coordinate complex and strictly intertwined decisions while pursuing a shared

patient-centered perspective. Drug inventory management is no exception, as each stakeholder

evaluates an inventory policy according to his/her own potentially diverging perspective [3].

Two features that usually characterize the ICU wards complicate matters further: the limited

number of hospitalized patients and the frequent changes in therapy they are subject to. Both

these features cause high demand variability over time, with different demand patterns for

each drug. Such high demand dynamicity, on the one side encourages to keep hidden stocks at

ward as a means to promptly react to a therapy switch, on the other side it makes drug inven-

tory management at ICUs a labour intensive activity that erodes nurse time to the detriment of

patient care.

In our case study, the process is ruled according to the following procedure. ICU’s regular

orders for drugs are forwarded to the hospital pharmacy and are fulfilled within a short lead

time (one or two days). In case of stock out, though, emergency (rush) orders are forwarded to

the upper tier of the distribution chain (a regional warehouse) and are fulfilled within shorter

lead times (typically within few hours) at a much higher cost. This cost has a substantial impact

on hospital expenditure and its containment plays a crucial role in the design of efficient

replenishment policies.

In an effort to reduce drug-related costs, this work focuses on capping rush orders. To this

aim, the role of demand forecast is crucial. The direct observation of the processes related to

drug management at the ICU of a large public hospital in Italy suggests that drug consumption

is therapy driven rather than drug driven. More precisely, the total quantity of drugs consumed

in one day is of scarce utility to predict drug consumption in the following ones. The drug

demand on a certain day, instead, depends on the therapies prescribed to the hospitalized

patients in the previous days. We conjecture that stock outs may be reduced while still keeping

the inventory level below a reasonable threshold, thanks to the exploitation of available
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knowledge on the therapies that drive drug consumption. To the best of our knowledge, we

are not aware of studies addressing drug replenishment in ICUs while leveraging a therapy-

driven demand. On the other hand, many studies [4–6] claim that it would be extremely useful

for ICUs to have tools to predict the evolution of patients’ clinical conditions. We believe that

predicting demand is closely linked to predicting the evolution of the patient’s condition

which motivates our study. As a byproduct, this study provides the building block of a decision

support system due to assist nurses in charge of drug logistics.

We discuss an integrated tool consisting of the following three components: the predictor,
the optimizer, and the simulator.

The predictor is built upon a formalization of the decision process driving the demand of

antibiotics and it is used to forecast the demand of drugs in a given time period, hereinafter

referred to as the planning period. For each period, prediction relies on the status of the current

patients. Specifically, the predictor assumes that patients are clustered in groups according to

the severity of their clinical conditions at admission, and for each patient cluster it generates a

set of paths representing the possible evolutions of their clinical conditions. Paths are gener-

ated by combining together two kinds of information: (i) medical guidelines that suggest care

plans, and (ii) patient-related information. The paths, which demand generation relies upon,

revealed to be a crucial structure in capturing the peculiarity of the care process.

Once the predictor has issued a scenario, its demand forecast is forwarded to the optimizer

which computes an optimal drug order agenda for the planning period, based on the current

stock levels. The optimizer solves an inventory problem at point of use by means of a Mixed

Integer Linear Programming (MILP) model inspired by the Lot-Sizing problem.

Based on empirical distributions, the simulator generates patients, assigns each generated

patient to a cluster and assigns her/him a therapy. In addition, it reproduces the drug re-stock-

ing process. Orders may either anticipate demand (what in manufacturing is known as push

orders) or fix a shortage (the equivalent to pull orders in manufacturing). The former follow

the drug order agenda defined by the optimizer. The latter, instead, are issued to restore safety

stocks and to deal with stock outs. The larger the discrepancy between forecast and actual

demand, the larger the number of pull orders that will be issued.

Each simulation covers a scheduling period which is not longer than the planning period. At

the end of the current scheduling period the whole mechanism is iterated, providing the fore-

cast tool with the updated data about patients and inventory. Given a planning period, the

closer the length of the scheduling period to the length of the planning one, the greater the

confidence in the prediction tool.

This hybrid push-pull policy, which aims at order reduction and regularity, is tested against

a variant in which the forecast is not therapy driven but drug driven. In the competitor, the

forecast tool relies on a Monte Carlo process whose parameters have been empirically esti-

mated (based on the average demand for each drug). With respect to our forecasting method,

the Monte Carlo-based predictor considers, for each drug and for each day, the probability

that the number of doses administered will be equal to a discrete number. Such a predictor

does not consider neither patients’ therapies nor the drugs administered on previous days.

Finally, both variants, i.e., the integrated tool based on the therapy-driven predictor and the

competitor tool based on a Monte Carlo process, are tested in the long run against a fixed

review period strategy that is widely used as common practice. The latter consists of placing

regular orders once a week, according to an (S, s) pattern, i.e., if stock level is below s an order

up to S is issued, and resorting to extra orders when required. The computational results sup-

port our claim about the importance of incorporating therapy-based demand forecasting in

the designed policy.
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In summary, the contributions of this work are as follows: The study (i) integrates schedul-

ing tools and demand forecast in a rolling horizon framework, (ii) provides a prediction tool

that reflects the peculiarities of drug consumption whenever the process is therapy driven

rather than drug driven, (iii) gives evidence of the relevance of considering therapies instead of

independent drugs in reducing the number of stock outs and consequently costs, (iv) provides

a comparison between two integrated tools based on different prediction components, (v) tests

the two resulting integrated tools against a classical fixed review period policy that mimics the

current practice in wards, and (vi) is based on real/realistic data collected at a large public hos-

pital in Italy and on a deep knowledge of the complex processes regulating the ward.

The rest of the paper is organized as follows: related works are reviewed in Section 2, with a

focus on those devoted to inventory policies at point of use in health care. Our case study is

introduced in Section 3. Section 4 is devoted to the demand forecasting process. The proposed

solution approach is presented in Section 5 and results are discussed in Section 6. Section 7

briefly describes a preliminary decision support system, and, finally, future research directions

are discussed in Section 8.

2 Literature overview

Research in the area of health care inventory has been thriving, as testified by an ever increas-

ing body of literature published in the last two decades. In this setting, cost containment is of

paramount importance since expenditure on medical supplies, equipment, and pharmaceuti-

cals is second only to personnel costs [7]. However, in the health care setting the supply chain

management has a more recent history than in other industries [8]. Consequently, many

authors see leveraging cutting edge supply chain management practices as an effective strategy

to realize cost containment in hospital logistics and procurement. Some recent reviews provide

an updated selection of the most significant contributions. In particular, [2] surveys state-of-

the-art research on material logistics in hospital, including pharmaceuticals, covering the

period from 1998 to 2014; more recently, [9] addresses medical supply logistics with a focus on

the operating room environment; [10] underlines the criticalities of pharmaceuticals inventory

in case of personalized treatment plans both on patients and on service providers, whereas

[11] broadens the analysis to encompass the distribution of medical supplies from the central

pharmacy to the point of care. The reader is addressed to these papers for a broad picture of

health care logistics. Hereafter, we focus on studies presenting pharmaceutical inventory poli-

cies at point of use and highlight, when present, the integration of demand forecasting tools in

the inventory policy.

Inventory policies are influenced by the technology implemented to keep track of inven-

tory, by the process automation level and by the integration of the information systems

involved, if present. In the recent past, nurses used to be in charge of all inventory and replen-

ishment duties often without the support of information technology [12]: they would conduct

periodic eyeballing surveys of inventory, anticipate future needs based on common practice,

and issue replenishment orders on the basis of such empirical demand forecasting. This role,

which is extremely demanding and time consuming, has been progressively replaced by the

adoption of so called cyclic policies. These are based on a combination of review frequency and

ordered quantity. The most common one is the so called order up to policy (T, S), a periodic

review in which every T periods what is needed to restock up to a level S is ordered. Cyclic pol-

icy adoption moved the replenishment decision-making task away from clinical personnel to a

centralized administrative body, in charge of sizing the best parameters [7]. The evolution of

technology, such as the introduction of barcodes and radio frequency identification (RFID)

systems [13], automatized the time consuming visual evaluation of the items in need for
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replenishment and made perpetual inventory possible, i.e., real-time perfect knowledge of the

current and incoming stock levels. This allowed policies based on continuous review, accord-

ing to which the current stock level is compared to fixed quotas and orders are triggered

accordingly: for example, in the (s, S) policy as soon as inventory goes below s an order up to

level S is issued, while in the (s, Q) policy a fixed quantity Q is ordered. Also the adoption of

Automated Point of Use (APU) systems such as the Automated Dispensing Cabinets (ADCs)

make it possible continuous review policies [14]; indeed, such a technology allows to store

drugs and data concerning the prescribed therapies, to automatically update the inventory

level and place orders whenever the stock level of an item drops below its s threshold. How-

ever, ADCs are not fit for the ICUs setting as ICU’s demand is dynamic and intermittent. On

the contrary, ADCs are suitable in case of regular demand, high consumption rate, and high

level of automation (see [15] for a discussion on the Artima system and [16] for a discussion

on the use of the Pyxis Med Stations).

Many papers study cyclic inventory policies under the following assumptions: (i) the time

interval between demand events of the same drug is exponentially distributed, (ii) daily con-

sumptions of different drugs are independent, and (iii) demand is stationary over time. The

abovementioned review [10] searches the literature on pharmaceutical inventory in hospital

pharmacies regarding how often periodic replenishment should be performed, which policy to

adopt, and how to set the thresholds that govern decision making in these policies. As an

example, [17] addresses the inventory of disposable items at point of use in case of tight storage

capacity and short lead time, aiming to maximize service level and compares three periodic

review policies.

Others explore the effects of introducing additional information such as drugs criticality

and expiration date within this classical framework. For example, a comparative study of infor-

mation-aware policies conducted in [7] shows that the most informed policy provides the

highest cost containment but stock outs often arise. The authors advocate the need of demand

forecasting tools incorporating information about the number of patients in the ward and the

prescribed drugs, as a way to reduce stock outs. In [18], a hybrid policy is discussed, which

combines periodic and continuous policies: ADMs are restocked periodically according to a (s,
S) policy, whereas whenever inventory falls below a critical level R, an urgent replenishment

order of Q = S − R is issued to avoid stock outs. The study focuses on a single item with station-

ary demand, and proposes a simulation-optimization-based heuristic to estimate the parame-

ters’ value. In a later work [19], the same authors explore the so called 2-bin policy, according

to which replenishment orders are triggered proactively, based on inventory levels.

The development and integration of patient based demand forecasting plays a pivotal role

to address the challenge of non stationary demand. This may be realized in many different

ways.

In [20], demand forecasting of a chemotherapy drug is based on real-time availability and

reliability of data concerning patients and therapies, and on the formalization of the rules that

govern decision making in that clinical setting.

Reliable real time information is also envisioned in [21] where look-back and look-ahead

policies are discussed. Integrated information flows are exploited to pull replenishment at

points of use and at the hospital pharmacy. By discrete event simulation, a Periodic Automatic

Replenishment (PAR) policy is compared with a look-ahead policy based on patients’ needs as

derived from medical prescriptions, for 19 drugs and 3 medical units. Drug demand is mod-

eled as a Monte Carlo process based on the known demand frequency distribution and assum-

ing the uniform usage of drugs throughout the consumption period. The look-ahead policy

allows significant savings, provided real-time information flows are available.
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In [22] the authors report their experience for a non stationary demand case. In case of a

perishable drug, the number of patients currently on therapy have been incorporated into the

state space of the Markov decision process that models the system.

Time series are exploited in [23] where drug demand forecasting is based on temporal pat-

tern matching and in [24], where inventory forecasting for a medical store is based on data

mining techniques applied to transactional data of medical consumptions. A data mining tech-

nique is also used in [25] to identify temporal relationships between drugs prescribed to dia-

betic patients.

As a final remark, [2] acknowledge the potential of demand forecasting based on clinical

guidelines applied to current patients, together with information flow integration. Research on

the implications of demand forecasting on inventory policies is advocated, with the aim to

address the correlation among items and low turnovers.

When the perspective is expanded to encompass general inventory problems, many more

attempts have been made to take advantage of any information over the process that drives

demand, on the premise that demand forecast integration within an inventory policy is crucial

in improving the efficiency of the resulting system. An option is to dynamically vary the value

of the parameters used in cyclic policies, i.e., the reorder point s and the order-up-to level S, as

discussed in [26]. This suggests that more complex situations, such as those with interdepen-

dent and nonstationary demand, may benefit from other means of knowledge representation.

Recently, expert systems have been proposed to extract useful information on the decision pro-

cess that rules demand. In particular, [27] investigate non-probabilistic inventory control strat-

egies and propose a belief-rule-based inventory control method which is initialized by expert

knowledge and historical demand information and trained over several time periods, to yield

the rules that determine the optimal order quantity given current inventory and short-term

demand forecast.

In summary, from the literature concerned with pharmaceutical inventory at the point of

use emerges that: (i) information-aware replenishment policies are still scant and most needed;

(ii) focussing on the process that generates the data (drug consumption) rather than on data

themselves represents a promising avenue for the development of these policies; (iii) efficient

policies should rely on forecasting tools taking into consideration the patients currently hospi-

talized, the therapies they are subject to, as well as the complex decision process regulating the

drug prescription and administration, and finally (iv) as far as critical settings are concerned,

these policies should, first and foremost, aim at minimizing stock outs and, consequently, rush

orders.

In this paper we present a novel hybrid policy that meets these requirements and we evalu-

ate its effectiveness via simulation.

3 Problem statement

In this section, we describe the addressed problem in terms of objectives and constraints,

according to our observation of the ICU of a large public hospital in Italy. The drug manage-

ment issues characterizing this ICU, however, are common to most of the ICUs we are aware

of and can be summarized as follows:

1. Rush orders tend to be frequent and their fulfilment is very expensive. In case of antibiotic

stock out, patients suffer from delayed treatments, and while waiting for the required drugs,

they need continuous attention from nurses. The fulfillment of a rush order, in general,

causes coordination problems (and cost) all along the supply chain. In our case, rush orders

are fulfilled within two hours by a regional warehouse located 15 kilometers away from the

ICU.

PLOS ONE Rush order containment of critical drugs in ICUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0264928 June 23, 2022 6 / 41

https://doi.org/10.1371/journal.pone.0264928


2. A lack of effective traceability systems, coupled with the presence of multiple stocking

points, often dislocated far away one another, implies that nurses spend much time in non-

value-added activities, such as stock level checking, drug ordering and drug restocking.

3. There is a need to contain the operating working capital by reducing the amount of drugs

kept in stock. However, the need to ensure the availability of life-saving drugs inevitably

makes the cost containment issue less important than in other settings.

4. The unpredictability of the patients’ response to certain drugs and the (rather common)

presence of comorbidities often determine ongoing changes in the therapies being pre-

scribed, inevitably resulting in a large variability in patients’ Length of Stay (LoS) and in the

drugs administered.

Consistent with this scenario, our first goal is to decrease the number of rush orders.

The second goal is to reduce the time nurses spend in non-value-added activities. This goal

is pursued by grouping orders on the same day, by minimizing the number of days in which

an order occurs, and by looking for regularity in the process. Note that by assuring the first

goal we also address the second one as we reduce the burden of rush orders that is in charge to

nurses.

Third, cost-control is achieved by setting a soft upper bound to the operating working capi-

tal which is calculated as the number of drug boxes in stock times their cost.

In our case study, we deliberately focus on a restricted set of antibiotics considered critical

by medical staff because of (i) their price, which makes hidden stocks prohibitive, (ii) their low

and intermittent demand (they are selectively used in specific therapies devoted to patients

who show up irregularly), and (iii) the fact that these antibiotic therapies require a continuous

and regular treatment to succeed (intermittent use of the same drug is highly discouraged).

Unfortunately, infrequently used items challenge well-assessed inventory strategies in

manufacturing, such as Kanban and Lean Six Sigma, which work well for items that are regu-

larly used. In addition, drug demand should not be analyzed individually, as the demand for

each drug is governed by therapy plans, and each plan consists of several drugs; therapies, in

turn, are triggered by patients’ arrival in the ward and by their evolution during their hospitali-

zation. For these reasons, we do not apply classical inventory policies whose parameter estima-

tion (e.g., s, S, R, and Q) relies on stationary demand and independence [28].

In terms of constraints, we model a quite general situation that can occur when drugs have

alternative storage spaces. Specifically, in our case study, each drug has its own dedicated stor-

age space in a medicine cabinet located in the inpatient room for prompt use as well as a

shared storage space in other shelves and cabinets. Specific storage requirements, such as

refrigeration, are considered. In these premises, we assume that drugs are partitioned in

groups, i.e., drugs in the same group share a dedicated storage unit. The pharmaceuticals con-

sidered here have long expiration windows, so we disregard the perishability issue contrarily

to what done in [29, 30] in a different setting.

Also, we consider the general case in which lead time may vary from day to day; as an exam-

ple, in our case study, the lead time is one day but on a Saturday, while drugs ordered on Satur-

day will be available on the next Monday. Contrarily, urgent orders can be triggered anytime.

The details are provided in Section 5.1.

In addition, the literature advocates the importance of involving several stakeholders in

complex decision process such as the one concerning drug inventory. As an example, in our

case study, nurses, hospital management, and clinicians play a pivotal role. Here, we build on a

previous work [3] in which we formalized their preferences with respect to scheduling policies
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and we investigated their mutual interaction. Motivated by this previous study, we select the

most influential stakeholder and include its perspective in our decision-making process.

In summary, our policy is driven in a hierarchical way by rush order reduction, minimiza-

tion of order events, and cost containment. While the hierarchy among the criteria may vary

from one setting to another, we believe that all of them are shared by public health care facili-

ties. The same holds for the constraints considered.

For all these reasons, we propose an ad hoc solution approach for the inventory manage-

ment of the critical drugs tailored to ward features, whose main components are detailed in

the next sections.

4 The demand generation process: From data collection to model

building

4.1 Data collection

Hospitals in general, and the ICU considered in our case study in particular, are usually char-

acterized by several heterogeneous data sources. In our study, we consider the following 5 data

sources:

1. Prosafe data [31]: prosafe is the critical care information system in place over the data col-

lection period—digital data

2. data from the microbiology laboratory—digital data

3. data on therapies and clinical evolution of patients—paper data

4. data on drug orders—mix of digital and paper data

5. protocols, guidelines, interviews with clinicians.

In the following, for each of the 5 data sources, we specify the categories of data collected

and the period observed.

In regards to data coming from Prosafe, we collected the records of daily admissions/dis-

charges in the ward and patients’ clinical condition severity at admission along five years

(from January 2011 to April 2016, summing up to 2502 hospitalization). Data from Prosafe

belong to the following categories:

• administrative data of the patient: biographical data, medical record number and admission/

discharge dates from the hospital and ICU

• clinical conditions on admission, including any diseases, cancers and types of diabetes

• scores of patient severity, calculated from the values of important vital parameters, including

heart rate, systolic blood pressure, white blood count (WBC), platelets and bilirubin

• information on any patient support devices

• information on any surgical procedures.

Prosafe data represent only a snapshot of the patient’s condition on arrival in the ward and

on discharge; daily information is therefore missing in this database.

In regards to the microbiology tests, we use a structured set of data coming from the micro-

biology laboratory. These data refer to a six-year period (from January 2010 to February 2016)

and are organized in 3 different.csv files. They contain the list of patients with the date tests are

requested, the sequence of tests done on the same patient according to the evolution of clinical
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conditions, test results, and, for each test with a positive result, a rank of antibiotics, personal-

ized patient by patient, which identifies the most expected effective treatments (antibiograms).

In regards to paper information, medical records for patients admitted in 2015 and 2016,

numbered and organized into files, are in the paper archives of the ICU. For earlier hospitaliza-

tions, the records are in an archive located in a neighboring municipality and can be consulted

one at a time after formal requests and time-consuming bureaucratic procedures. Each medi-

cal record is associated with the hospitalization of a patient and contains for each day of hospi-

talization a record compiled by clinicians and a record compiled by nurses. For each patient

and each day of hospitalization, the nursing record is updated manually every two hours and

contains information such as hemodynamic parameters, ventilation mode (if any), and Glas-

cow Coma Scale score. For each patient and each day of hospitalization, the medical record is

also updated manually every two hours and contains drug prescriptions, together with the

mode drugs are administered (e.g. intravenous, subcutaneous, intramuscular, fluid therapy,

oral).

In regards to drug orders, some of them are done automatically (ESTAR, [32]), while other

are filled manually. In this study, we digitized drug orders and medical records corresponding

to the 69 admissions (66 patients) occurred in June 2016. It is important to note that, unlike

reported on other studies [33], in our case the database population was not automatically done

and resulted in (i) burden on caregivers and (ii) interference with their workload. All the staff

at the ICU department was willing to provide us with information and transfer knowledge

about the entire processes ruling the ward, often outside of their work hours. However, to con-

tain the impact of data collection on their daily activities, the acquisition of patient data from

paper medical records, and data related to drug orders was limited to a time horizon of 1

month.

In regards to the acquisition of knowledge about the process ruling the system dynamics in

the ward, we collected information from medical guidelines and protocols [34], as well as from

interviews with clinicians, nurses and caregivers. Specifically, according to guidelines, when

clinicians suspect that an infection is in progress, they issue a microbiology laboratory test and

start an empirical treatment until the results from the lab are returned. Empirical treatment

(referred to as ET in the following) is broad spectrum and covers the most likely microorgan-

isms. As soon as laboratory tests identify the pathogen, a target treatment (referred to as TT in

the following) begins. The ongoing treatment is continuously monitored and possibly inter-

rupted (de-escalation) in case of clinical deterioration or drug resistance.

The 5 data sources feed two datasets. The first, consisting of 2502 admissions, is the result

of combining, in the same time horizon, data from Prosafe and the microbiology laboratory.

This dataset is used in Section 4.2 for data analysis and specifically, for patient stratification

and prediction of Los and infection outbreak. The second dataset instead, is composed of 66

patients, corresponding to 69 admissions, and is obtained by cross-referencing manually col-

lected data on therapies and drug orders. This dataset is used to recover the drug demand of a

specific month and to obtain a first comparison between the optimized solution and the real

case. The related results are shown in Section 6.2.

4.2 Data analysis

The information described above and coming from Prosafe and the microbiology laboratory

have been pre-processed through the R language and yielded a table whose rows are the

patients and columns the features, i.e. patient information, divided by category: administrative

data, vital parameters, clinical conditions at admission, devices, microbiology test results.

Admissions can be of three types: elective surgeries, urgent surgeries, medical. Specifically, in
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the data collection period, of the 2502 admissions, 1852 (74.02%) were elective surgeries, 341

(13.63%) urgent surgeries, and 308 (12.31%) clinical. A more in-depth analysis, stratified over

the years, shows how this relationship between the three types remains more or less constant

until 2014, with an even more pronounced prevalence of elective surgical admissions in 2014

and 2016 and evidence of a reverse trend in 2015, when they decrease to make room for hospi-

talizations of medical type, which result in almost a doubling. Data from early 2016 show an

almost equal percentage of medical and urgent surgery admissions. In contrast, previous years

show an increase in admissions of the emergency surgical type at the expense of the medical

type. The data reflect two events that occurred in the ICU during the observation period: (i)

the expansion of the ward from 4 to 6, and finally to 8 beds; (ii) the change in the specialty of

elective surgical patients. In fact, in the hospital considered there are several ICUs organized

by specialty. In the period of observation, 209 deaths occurred, mostly in the first days of hos-

pitalization. Specifically, looking at the data stratified by type of admission, the number of

deaths occurred are respectively 50, 51, and 108 for elective surgeries, urgent surgeries, and

medical, corresponding respectively to death rates equal to 2.7%, 15.0%, and 35.0% for the

three types. It clearly emerges that the mortality rate is significantly higher for medical patients

than for the other two categories, in accordance with the severity of their clinical conditions.

In the observation period, over the years, the percentage of patients with at least one request

to the microbiology laboratory ranges from a minimum of 17.42% in 2016 to a maximum of

32.24% in 2015. In the same period, the percentage of positive results ranges from a minimum

of 58.24% in 2014 to a maximum of 70.37% in 2016.

4.2.1 Patient stratification. A correct estimate of the patient LoS plays a pivotal role in

the ward management since the LoS is strictly correlated to clinical condition severity and

usage of human and material resources. We conducted a preliminary analysis in which

patients are stratified according to the type of admissions and several metrics on the LoS are

observed. The results of such an analysis are given in Table 1. Specifically, the columns report

separately for each year and admission type, respectively the year considered, the type of

Table 1. Statistics on LoS stratified by year and admission type.

Year AdmType Min Max avg median StdDev Variance 95% NHosp NDeath

2011 ElectiveSurgery 1 44 2.84 2 3.91 15.28 8 248 16

2012 ElectiveSurgery 1 57 2.90 2 4.75 22.56 6 258 13

2013 ElectiveSurgery 1 18 2.37 2 2.41 5.82 6 275 7

2014 ElectiveSurgery 1 10 1.90 1 1.38 1.89 5 537 3

2015 ElectiveSurgery 1 43 2.60 1 3.81 14.55 7 411 8

2016 ElectiveSurgery 1 11 2.11 1 1.74 3.02 5 123 3

2011 UrgentSurgery 1 82 7.78 4 13.04 170.18 21 54 16

2012 UrgentSurgery 1 54 5.36 3 7.65 58.57 16 67 6

2013 UrgentSurgery 1 64 7.24 3 10.79 116.42 25 51 6

2014 UrgentSurgery 1 37 5.55 3 6.61 43.66 16 85 9

2015 UrgentSurgery 1 43 5.10 3 6.74 45.41 18 68 11

2016 UrgentSurgery 1 17 7.73 8 6.16 37.92 17 16 3

2011 Medical 1 39 7.56 5 7.91 62.52 19 45 18

2012 Medical 1 37 9.28 7 8.19 67.12 22 36 9

2013 Medical 1 78 8.90 5 13.78 189.94 34 42 13

2014 Medical 1 27 5.84 3 6.20 38.43 19 69 30

2015 Medical 1 38 7.38 6 7.11 50.48 26 100 32

2016 Medical 1 28 7.69 5 7.36 54.10 22 16 6

https://doi.org/10.1371/journal.pone.0264928.t001
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admission, the minimum, maximum, average and median values of the LoS in the class, stan-

dard deviation and variance, the 95 percentile, the number of hospitalizations (NHosp) and

deaths (NDeath).

As the table clearly shows, the average and median LoSs are lower for elective surgical

patients than for the others, as they typically have less severe conditions. For almost all the

groups of patients observed (i.e., for each table row), there is a significant difference between

the minimum and maximum value of LoS, and the standard deviation is very high. The results

thus clearly show that a patient stratification based exclusively on type of admission provides

only a poor estimation of the LoS. Motivated by these considerations, we investigated the pos-

sibility of classifying patients according to multiple features. The features to consider have

been extensively discussed with clinicians and two alternative classifications were identified as

the most promising ones among possible classifications: a 3-feature classification, and a 4-fea-

ture classification. In both the classifications, the following features have been considered: type

of admission (elective surgery, urgent surgery, medical), reason of admission (medium care

intensity, high care intensity), and ventilation (yes/no). In the 4-feature classification, the pres-

ence of an infection at admission (yes/no) is also considered. The number of classes in which

patients are organized clearly depends on the number of features and the number of values

each feature can assume. Thus, the number of classes is 3 for the 1-feature classification, 12 in

the 3-feature classification and 24 in the 4-feature classification. Each class is then stratified by

year since, as observed above, during the observation period, the department has undergone

reorganization phases that have modified both the number and type of patients admitted. The

quality of the classifications has been measured via a weighted standard deviation computed as

the average of the standard deviations of each class of patient in each year, weighted by the

number of hospitalizations corresponding to the class considered. Such a quality indicator has

been computed also excluding the deaths. Table 2 reports for each classification the features

considered, their number and the weighted standard deviation including and excluding the

deaths. The table clearly shows that in all the classifications the accuracy improves significantly

excluding the deaths. The 4-feature classification, as expected, performs better than the others,

but with respect to the 3-feature classification a limited quality improvement is observed. In

addition, considering a high number of classes, it may happen that some classes are made up

of few patients, thus affecting the applicability of the results obtained. For these reasons, in

agreement with the clinicians, it was concluded that the 3-feature classification represents a

good compromise between accuracy and significance. The demand generator described in Sec-

tion 4.3 is based therefore on the 3-feature classification of the patients.

The probability of death (Death Prob) and the probability that a patient arriving at ICUs

belong to a certain class (Class Prob) have been computed for each class and they are reported

in Table 3.

The 3-feature classification has also been the basis of a first attempt to predict LoS and

infection outbreak. The preliminary results obtained are briefly described in the following.

4.2.2 LoS prediction. An accurate prediction of LoS is critically important for the depart-

ment management. In this section, we report preliminary results obtained with a set of predic-

tion tools used to predict the LoS of patients belonging to a certain class. Specifically, the

Table 2. Classification quality—With and without deaths.

Class NFeatures WeightedSD WeightedSD_noDeaths

AdmType_AdmRea_Vent_InfAdm 4 3.43 2.55

AdmType_AdmRea_Vent 3 3.67 2.73

AdmType 1 4.30 3.27

https://doi.org/10.1371/journal.pone.0264928.t002
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3-feature classification described in the previous section is assumed to stratify patients. Data

are organized in a table where rows correspond to samples (the patients) and columns to fea-

tures (data from Prosafe along five years). The target value is the LoS. A pre-processing phase

is required to: (i) transform categorical features into binary features; (ii) scale feature values;

and (iii) identify correlation between data. The tools used are: SVR with linear kernel for pre-

diction, k-fold cross-validation with k = 3 for validation, and Relieff [35] for features ranking.

The Mean Absolute Error (MAE) is used to measure solution quality. For each patient class,

we use 4/5 of the data for the training phase and 1/5 for the test phase. Only classes with at

least 50 patients have been considered. As an example, Table 4 reports the MAE value (aver-

aged over the folds) obtained for the best ten configurations of parameters � and C used in the

validation phase for the largest class in the database (872 patients), i.e. elective surgery,

medium care intensity, no ventilation.

The accuracy obtained in test phase for the best performing parameter configuration (first

row in the table) is equal to 1.16 days. The feature selection reveals that with only 6 of the 143

features characterizing patients in this class the accuracy can even improve to 1 days. Specifi-

cally, the 6 key features seem to be the following: average blood pressure, digestive tract perfo-

ration, surgical department from which the patient comes, metabolic failure, vascular

abdominal surgery, and type-2 diabetes.

Table 3. Statistics on the 3-feature classification.

Class

AdmissionType CareIntensity Vent NHosp NOutliers Death Prob Class Prob LoS estimate 95% LoS estimate

ElectiveSurgery Medium No 872 34 0.46% 34.99% 1-3 1-4

ElectiveSurgery Medium Yes 772 27 1.17% 30.94% 1-5 1-6

ElectiveSurgery High No 32 1 12.50% 1.28% 1-6 1-7

ElectiveSurgery High Yes 175 8 18.86% 7.01% 1-8 1-10

UrgentSurgery Medium No 62 3 3.23% 2.48% 1-4 1-6

UrgentSurgery Medium Yes 95 4 6.32% 3.81% 1-6 1-6

UrgentSurgery High No 21 1 9.52% 0.84% 1-7 1-14

UrgentSurgery High Yes 161 6 24.84% 6.45% 1-14 1-18

Medical Medium No 52 3 9.62% 2.08% 1-10 1-11

Medical Medium Yes 17 1 5.88% 0.68% 1-9 1-9

Medical High No 34 2 35.29% 1.36% 1-8 1-8

Medical High Yes 201 6 43.28% 8.06% 1-18 1-27

https://doi.org/10.1371/journal.pone.0264928.t003

Table 4. Results of LoS prediction for the ElectiveSurgery_MediumCareIntensity_NoVentilation class—SVR with

3-fold cross-validation.

� C accuracy

0.0625 0.0625 0.989

0.125 0.0625 1.004

0.0625 0.125 1.008

0.0625 0.25 1.010

0.0625 0.5 1.011

0.0625 16 1.012

0.0625 4 1.012

0.0625 2 1.012

0.0625 8 1.012

0.0625 1 1.012

https://doi.org/10.1371/journal.pone.0264928.t004
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Table 5 reports for the 8 over 12 classes considered, the accuracy obtained (MAE) in test

phase averaged over the folds without and with feature selection. Then, the Los range provided

by classification is reported in brackets in column Class, and finally, the last two columns give

the number of features used without and with features selection.

4.2.3 Prediction of infection outbreak. As discussed above, when the clinician suspects

an infection, an empirical therapy is carried on until the results from the lab arrive and a target

therapy can then start. Usually, test results arrive after 3-7 days, so having an accurate predic-

tion of any microorganisms present would be of paramount importance to define the target

therapy at an early stage and also to limit drug resistance, which is particularly dangerous in

fragile patients. Such an objective, although very challenging, is unfortunately beyond the

scope of our study mainly due to the lack of data. What we did, therefore, was to carry out a

study on the prediction of the presence of microorganisms (yes/no answer). To this purpose,

data from microbiology were used, but the observation period was restricted to the period

before the events that changed the number and type of patients admitted (2011-2014). It was

decided to use the oldest part of the database both because it is a longer period with respect to

the more recent part, and to avoid the effects of the transitional period that necessarily follows

an event. The total number of samples thus decreased to 653, of which 553 used in the training

phase and 100 in the test phase. In addition, patients are not stratified to avoid small and unus-

able classes. In this section, we report very preliminary results obtained with: SVM for predic-

tion, k-fold cross-validation with k = 3 for validation, and Relieff [35] for features ranking. The

mean of sensibility (accuracy in predicting the “yes” label) and specificity (accuracy in predict-

ing the “no” label) is used to measure solution quality.

Table 6 reports the accuracy value, averaged over the folds, obtained for the best ten config-

urations of parameters γ and C. For the best performing configuration sensibility and specific-

ity are respectively 1 and 0.85 and their mean (accuracy) is 92.5%. Feature selection allows to

consider only 5 over the 213 features obtaining 0.91 and 0.80 respectively for sensibility and

specificity with an accuracy equal to 85% in the test phase which, though preliminary, is a

quite encouraging result.

4.2.4 Extraction of empirical probability distributions. From data collection, we

extracted the following probability distributions which have been used to feed the demand

generator:

• pd1 probability that on a given day a certain number of incoming patients are admitted

• pd2 probability that a certain patient belongs to a certain class

Table 5. An overview of LoS prediction. Each class with at least 50 patients is considered separately as a dataset, CI in the name of the dataset stands for Care Intensity.

Accuracy is computed as average MAE—expressed in number of days. Feature selection can be enabled (FeatSel) or not (NoFeatSel), column Class reports the LoS range

provided by classification, outliers excluded.

Dataset MAE NFeatures

NoFeatSel FeatSel Class NoFeatSel FeatSel

ElectiveSurgery_MediumCI_NoVent 1.16 1.00 [1, 4] 143 6

ElectiveSurgery_MediumCI_Vent 1.46 1.75 [1, 6] 135 4

ElectiveSurgery_HighCI_Vent 5.15 4.46 [1, 10] 145 6

UrgentSurgery_HighCI_Vent 5.68 5.56 [1, 18] 154 7

UrgentSurgery_MediumCI_NoVent 1.43 1.30 [1, 6] 102 7

UrgentSurgery_MediumCI_Vent 1.83 2.08 [1, 6] 117 19

Medical_MediumCI_NoVent 3.00 3.40 [1, 11] 90 7

Medical_HighCI_Vent 7.45 6.20 [1, 27] 155 8

https://doi.org/10.1371/journal.pone.0264928.t005
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• pd3 probability that the LoS of a certain patient belonging to a certain class is a certain num-

ber of days

• pd4 probability that there is suspicion of infection for a certain patient belonging to a certain

class and with a certain LoS, on a given day after admission

• pd5 probability that for a certain patient (with given class and Los) new laboratory tests will

be required after a certain number of days (or equivalently that the ongoing treatment has

not been working for a certain number of days).

Specifically, Table 7 reports for each probability distribution the sources of data used to

compute them.

While pd1, pd2, and pd3 are at the core of the prediction of the ward occupancy, as illus-

trated in Fig 1, pd4 and pd5 rule the transition from a patient status to the next, for a given

patient of a certain class with a certain LoS, as depicted in Fig 2.

4.3 Description and use of demand generator

The demand generator exploits the empirical probability distribution functions above

introduced.

Regarding daily patient admission, pd1 has been derived by the data recorded in the Prosafe

database concerning admission and discharging date of each patient and patient death. In par-

ticular, for each day t, the following data can be extracted: i) number of admitted patients int;
ii) number of patients outt who leave the ward, either discharged (whatever the cause) or

because of their death; iii) bed occupancy level bolt 2 {0‥B}, where B is the number of beds the

ward is equipped with in that period. Clearly, bolt = bolt−1 − outt + int holds. The number of

empty beds is given by vacancyt = B − bolt−1 + outt. Then, pd1(i|v) returns the probability that

Table 6. Results of infection prediction—SVM with 3-fold cross-validation.

γ C accuracy

0.125 0.25 0.790

0.25 1 0.788

0.25 0.25 0.787

0.0625 0.03125 0.784

0.25 0.5 0.784

0.125 0.125 0.783

0.0625 0.5 0.783

0.125 0.5 0.783

0.125 0.0625 0.780

0.0625 0.125 0.779

https://doi.org/10.1371/journal.pone.0264928.t006

Table 7. Data source for each empirical probability distribution.

ProbDistr Prosafe LabResults Therapies Drug Orders Process Knowledge

pd1 ✔
pd2 ✔ ✔
pd3 ✔ ✔
pd4 ✔ ✔ ✔ ✔ ✔
pd5 ✔ ✔ ✔ ✔ ✔

https://doi.org/10.1371/journal.pone.0264928.t007
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i patients are admitted given a vacancy of v. Such probability is computed as the ratio of the

number of days t in which i patients were admitted, given v empty beds, over the number of

days when v beds were available, i.e., pd1ðijvÞ ¼ ð
P

t2T:vacancyt¼v
gtiÞ=ð

P
t2T:vacancyt¼v

1Þ where

gti ¼ 1 if int = i, 0 else.

Fig 1. Flow chart of the generation process of ward bed occupancy.

https://doi.org/10.1371/journal.pone.0264928.g001

Fig 2. A representation of (part of) a tree describing the evolution of a patient clinical conditions. In the full tree, each decision node (such as infection

onset date if ever, therapy outcome, or the time needed for the answer from the microbiology lab) will have as many descendants as the possible decision

outcomes. Dice icons represent stochastic events (tree nodes), while dotted lines model time progress.

https://doi.org/10.1371/journal.pone.0264928.g002
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The other empirical probability distribution functions have been likewise computed, as the

ratio of favourable cases over possible cases.

Fig 1 represents the flow chart of the patient generator process. It is intended to reproduce

the patient flow through the ward, including the patient type. Each day t, the number of empty

beds available after discharge is computed. Given the current vacancy, a certain number of

new patients are admitted according to pd1. Each new patient belongs to a certain class,

according to pd2, and has a certain LoS, according to pd3, given that class.

The concept of path is very helpful in building an abstract representation of the ward as a

system. The generator, for each patient class, defines a set of paths representing possible evolu-

tion of patients’ clinical conditions. Indeed, the chain of events which characterize the evolu-

tion of the clinical conditions of a patient, can be modeled as a path along a tree, whose nodes

correspond to stochastic events and branches to possible evolutions. Examples of events are

the antibiogram laboratory response, the development of antibiotic resistance, the clinician’s

choice regarding the empirical therapy, and the patient’s response to therapy. The generator

also introduces fuzzy events that occur with a given probability and model a stochastic event

(e.g., death) or the expertise of the clinician who, at any time, may decide to do a therapy de-

escalation and a therapy switch. A treatment and its daily drug prescription are associated with

each node of the tree. Individual patient prescriptions are summed up to yield the daily ward

drug demand. A (partial) representation of a patient tree is provided in Fig 2. Different paths

can be followed from admission on day d0 to discharge on d0 + LoS. The first stochastic event

concerns the onset day of an infection, if ever. In such a case, the empirical therapy may fail or

succeed (second stochastic event) and so on, as already discussed.

The generator is used in two different ways in our optimization-simulation approach. In

both cases, it receives as input the current population of patients in the ward. In the first case,

when it is used in the simulator, it evolves a patient’s status, day by day, patient by patient, and

it populates the ward with new patients according to the arrival process, thus revealing the

actual demand incrementally. In the second case, the generator is used as a predictor to yield

in one shot the drug demand for the coming planning period. The resulting demand is used to

feed the optimization model.

4.4 Some hints on alternative approaches to uncertainty

We conclude Section 4 with a brief discussion on alternative approaches to handle demand

uncertainty. Indeed, suppose you are facing an optimization model in which some problem

data are uncertain, i.e. drug demand in our problem. If probability distribution function of

random parameters is known, a straightforward approach is to compute their expected values

and solve the model with respect to such values as it were deterministic. When the probabilistic

description is missing, a similar option may be pursued by computing the most likely value of

the random parameters by exploiting historical data sets or by relying upon experts knowledge.

In all cases, results can be quite far from optimality, as the optimal solution of such a model

typically does not correspond to the one providing the optimal expected value of the objective

function, thus providing the decision maker with misleading directions.

A more realistic representation of the parameters variability exploited by stochastic optimi-

zation [36] involves computing a limited set of scenarios, corresponding to the different reali-

zations of the random parameters. Each scenario is then weighted by a probability, and an

optimization model is solved which optimizes the weighted cost function and whose con-

straints model each scenario. This option captures potential inter-dependencies among ran-

dom parameters that may be difficult to represent analytically. However, some scenario

aggregation techniques are often to be used to reduce the size of the resulting model. When
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the probability distribution function of the parameters in unknown, one can resort to robust

optimization [37]. In robust optimization, the uncertain domain is set based rather than being

described by a probability function. For example, the uncertain parameters are allowed to con-

tinuously vary within an interval or in a discrete set. The total deviation from each nominal

value of the uncertain parameters is constrained. A risk adverse attitude is implemented, in the

sense that a solution is searched such that is feasible for any realization and it provides the best

solution in the worst scenario.

In our framework, these options would give rise to the following. The expected values strat-

egy would solve the mathematical model introduced in Section 5.1 in which the daily demand

of each drug is the average demand in one day in that period. The current ward situation, in

terms of hospitalized patients and their therapies, would be completely disregarded. Regarding

scenario based stochastic optimization, each scenario could correspond to a possible patient

path on the patient’s tree, and its probability could be computed based on the previously intro-

duced distribution functions. On regards to solution cost, rush orders should be included as

second stage recourse actions (see [38]) to be taken in case of stock outs. Given the width of

the time horizon the model encompasses and the many possible options along a path, the

number of scenarios would likely rise to a number that makes this approach unpractical. A

robust optimization approach could be realized by considering a tree for each patient rather

than the patient’s nominal path, that is much smaller than the full patient tree. Such a tree

could be obtained from the nominal path by adding only one branch at each node, the one

that leads to the most probable outcome different from the one followed by the nominal path

at that decision node, and then proceeds along a unique trajectory with no other branches.

The resulting structure is a particular binary tree for each patient, with one branch per level.

The robust problem is solved with the constraint that at most a certain number of patients can

deviate from their nominal path. These approaches could be worth exploring, and will the sub-

ject of further studies.

5 The optimization-simulation approach

We propose to exploit the knowledge on hospitalized patients and therapies in order to peri-

odically set up an agenda of push orders that should provide baseline replenishment for the

current period, which is intended to reduce the need for additional orders, day by day. The

push order agenda, once computed, may be sent to and managed by the hospital pharmacy.

Nurses would thus be aware of the order agenda and would be able to plan their time in

advance as in periodic review policies, but they would be released from the decision-making

process. Push orders are set by solving a deterministic MILP model with respect to a forecast

demand scenario. The model (see Section 5.1) encompasses all the features in Section 3, as it

aggregates drug orders over time, guarantees regular order quantities, handles limited storage

and budget, and considers the most influential stakeholder perspective. The simulator then

deploys the push agenda day by day, updates the inventory and issues rush and extra orders

(i.e., pull orders) when the realized demand differs from the forecast. Rush orders are

required to cope with stock outs, whereas extra orders restore safety stocks (see Section 5.2

for their estimate). At the end of each period, based on the status of current patients, another

demand forecast spanning the next period is generated (Section 4.3) and forwarded to the

mathematical model, together with the actual inventory levels. The process is thus iterated in

a rolling horizon framework (Section 5.3). The main aforementioned components of the

algorithm are detailed hereafter, and Fig 3 provides a graphical representation of the overall

approach.
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5.1 An MILP mathematical model

The mathematical model used in this study extends [39] in several directions. Given the

demand for the current period, a set of drugs, and other parameters such as the inventory on

the first day, the model determines, for each drug: (i) when a drug is to be ordered (reorder

points) and (ii) the quantity to be ordered every time an order of this drug is triggered in the

planning horizon (reorder lot). The main variables thus concern the stock level of each drug at

the end of each day of the planning period, the order quantity of each drug, and the schedule

of order events. The mathematical notation and the model variables are summarized in Tables

8 and 9.

The constraints describing the operations in the ward can be organized in the following

blocks: (i) flow conservation constraints on the stock level of drugs, (ii) warehouse capacity

constraints (dedicated and shared storage), (iii) budget constraints, (iv) constraints on the reg-

ularity of orders, (v) constraints on stakeholders’ perspective, and (vi) constraints on the vari-

able domain. The model is defined as follows:

min εþM
X

d2D;w2W

udw þ
�O
X

f2F

�n
f
01 þ

X

f2F

X

d2D;w2W

cf

Bdw
sfdw ð1Þ

sf01 ¼ lf � qf
01 þ Uf �yf

01�n
f
01 8f 2 F ð2Þ

sfdw ¼ sfd� 1;w � qf
dw þ Uf yfd� 1;w 8f ; 8d 2 D; d 6¼ 0; 8w � 1 ð3Þ

Fig 3. System components and their integration.

https://doi.org/10.1371/journal.pone.0264928.g003
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sfdw ¼ sf6;w� 1 � qf
dw 8f 2 F; d ¼ 0; 8w � 2 ð4Þ

sfdw � Uf ðCf þ xf
dwÞ 8f 2 F; 8d 2 D; 8w 2W ð5Þ

X

f2Fg

xf
dwV

f � �Vg 8g 2 G; 8d 2 D; 8w 2W
ð6Þ

ðb
f
dw � 1ÞUf þ 1 � sfdw 8f 2 F; 8d 2 D; 8w 2W ð7Þ

Table 9. Variables.

sfdw stock level of drug f at the end of day d of week w, expressed in number of doses

yfdw order quantity of drug f on day d of week w, expressed in number of boxes

n
f
dw

equal to 1 when a standard order of drug f occurs on day d of week w; 0 otherwise

υdw equal to 1 when a standard order occurs on day d of week w; 0 otherwise

�n
f
01

equal to 1 when an urgent order of drug f occurs on day 0 of week 1; 0 otherwise

ρf order quantity of drug f, expressed in number of boxes

xf
dw

number of boxes of drug f in the shared storage unit on day d of week w

a
f
dw

number of boxes of drug f in the dedicated storage unit on day d of week w

b
f
dw

number of boxes of drug f in stock at the end of day d of week w

g
f
dw

equal to 1 if the storage unit dedicated to drug f is full on day d of week w

υmax maximum number of drugs in an order over the planning period

υmin minimum number of drugs in an order over the planning period

ε maximum violation of the budget constraint

https://doi.org/10.1371/journal.pone.0264928.t009

Table 8. Sets and parameters.

F set of drugs (indexed by f)
G set of drug groups (indexed by g)—drugs in the same group share the storage unit

Fg� F set of drugs in group g 2 G
D = {0, . . ., 6} ordered set of days (indexed by d, 0 corresponds to Sunday, etc)

W set of weeks (indexed by w, with w� 1)

qf
dw

demand of drug f on day d of week w (number of doses)

Uf number of doses in each box of drug f
cf cost of each dose of drug f
Bdw maximum allowed stock monetary value on day d of week w
lf doses of drug f in the ward at time 0

sfdw safety stock of drug f on day d of week w

Cf capacity of the storage unit dedicated to drug f—number of boxes

�Cf maximum number of drug f boxes in the shared storage unit

Vf volume of a drug f box in number of units in the shared storage unit

�Vg capacity of the shared storage unit for group g, expressed in number of units

Gf ¼ Cf þ �Cf upper bound on the number of boxes of drug f in stock

�O cost of an urgent order

�yf
01

number of boxes of drug f in rush order on day 0 week 1

�u reference value for the level of inhomogeneity in orders

https://doi.org/10.1371/journal.pone.0264928.t008
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sfdw � Ufb
f
dw 8f 2 F; 8d 2 D; 8w 2W ð8Þ

b
f
dw ¼ a

f
dw þ xf

dw 8f 2 F; 8d 2 D; 8w 2W ð9Þ

a
f
dw � Cf 8f 2 F; 8d 2 D; 8w 2W ð10Þ

g
f
dw � a

f
dw=Cf 8f 2 F; 8d 2 D; 8w 2W ð11Þ

xf
dw �

�Cf g
f
dw 8f 2 F; 8d 2 D; 8w 2W ð12Þ

X

f2F

cf ðsfdw � sfdw � Uf �yf
01�n

f
01Þ � Bdw þ ε d ¼ 0; w ¼ 1 ð13Þ

X

f2F

cf ðsfdw � sfdwÞ � Bdw þ ε 8d 2 D; 8w 2W ð14Þ

udw ¼ 0 d ¼ 6; 8w 2W ð15Þ

rf � Gf 8f 2 F ð16Þ

yfdw � n
f
dwG

f 8f 2 F; 8d 2 D; 8w 2W ð17Þ

yfdw � rf 8f 2 F; 8d 2 D; 8w 2W ð18Þ

yfdw � rf � ð1 � n
f
dwÞG

f 8f 2 F; 8d 2 D; 8w 2W ð19Þ

n
f
dw � udw 8f 2 F; 8d 2 D; 8w 2W ð20Þ

X

f2F

n
f
dw � umax 8d 2 D; 8w 2W ð21Þ

umin �
X

f2F

n
f
dw þ ð1 � udwÞjFj 8d 2 D; 8w 2W ð22Þ

umax � umin � �u ð23Þ

ε � 0 ð24Þ

sfdw � sfdw 8f 2 F; 8d 2 D; 8w 2W ð25Þ

yfdw; x
f
dw; a

f
dw; b

f
dw 2 Zþ 8f 2 F; 8d 2 D; 8w 2W ð26Þ
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g
f
dw 2 f0; 1g 8f 2 F; 8d 2 D; 8w 2W ð27Þ

udw 2 f0; 1g 8d 2 D; 8w 2W ð28Þ

n
f
dw 2 f0; 1g 8f 2 F; 8d 2 D; 8w 2W ð29Þ

�n
f
01 2 f0; 1g 8f 2 F ð30Þ

We first describe the constraints according to the block structure mentioned above, and

then we come back to the objective function. Constraints (2) to (4) are classical flow conserva-

tion constraints regulating the stock level for each drug depending on the day considered, i.e.,

on the first day of the planning horizon (2), on week days (3), and on Sundays when no order

is received (4). They guarantee that for each drug and for each day, the stock level of that drug

at the end of the day is equal to the stock level at the end of the previous day plus the quantity

of drug that possibly arrives in the ward on that day minus the consumption of that drug for

that day. These constraints mirror the weak lot-sizing formulation [40] and could be tightened,

as suggested in [41]. In a rolling-horizon framework, we cannot assume that the initial quan-

tity of drugs in stock covers the demand on the first day of the current planning period, as

opposed to using the model in one shot, as it happens in a single planning period. To over-

come the potential infeasibility, we equipped the model with the possibility of triggering an

urgent order on the first day of each planning period. Drugs ordered urgently are indeed avail-

able in the ward within two hours from order and thus can be promptly used on same day on

which the order was made. For each drug f, the number of boxes �yf
01 required to cover a possi-

ble stock out on the first day of the planning period can be a priori computed as follows:

�yf
01 ¼ maxf0;

�
qf

01 þ sf01 � lf

Uf

�

g 8f 2 F:

Thus, constraints (2) consider the possibility that an urgent order relative to drug f is triggered

(variable �n
f
01 equal to one) to receive a number of boxes �yf

01 of drug f sufficient to cover the

demand. Quantity �yf
01 is expressed in boxes, as orders occur in boxes, consistent with (3). If the

demand is assumed to be known in advance, urgent orders later than day 1 lead to more

expensive solutions, so we disregarded them. However, should urgent orders be used as a

tool to avoid other kinds of infeasibilities, the model can be extended to take them into

consideration.

The block of constraints (5) to (12) allows the management of dedicated and shared storage

spaces. Specifically, constraints (5) and (6) impose that on each day, the quantity of drugs

stored in dedicated, as well as in shared, spaces should not exceed the capacity. Capacity is

expressed in number of boxes or in volume according to the type of storage considered, and

proper conversions are done when required. In addition, constraints (7) to (12) guarantee, for

each drug f, that the common storage space can be used only when the shared space is full.

These constraints, besides reflecting ward common practice, help reduce solution symmetries:

constraints (7) and (8) allow the computation of the number of boxes b
f
dw in stock on day d of

week w for drug f; bf
dw ¼ ds

f
dw=Uf e with (7) and (8) linearizing such condition, and impose that

b
f
dw be equal to the minimum number of boxes that can contain sfdw doses. Equivalently,

b
f
dw � 1 boxes would not be sufficient to contain the doses in stock, whereas b

f
dw does. Con-

straints (9), for each f, d, w, guarantee that the number of boxes in stock, namely, b
f
dw, is equal
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to the sum of the number of boxes stored in the dedicated space, namely a
f
dw, and the number

of boxes stored in the shared storage space, namely xf
dw. Constraints (10), separately for each

drug f, impose an upper bound on the number of boxes of drug f that can be stored on each

day in the storage space dedicated to f. For each f, d, w, constraints (11) guarantee that the

binary variable g
f
dw is fixed to zero whenever the storage space dedicated to f is not full (case

a
f
dw < Cf ); such a constraint, jointly with constraints (12), imposes that in this case, drug f can-

not be stored in the common space, i.e., xf
dw ¼ 0. Vice versa, when the dedicated storage space

is full (case a
f
dw ¼ Cf ), the binary variable g

f
dw can assume value one, and consequently, drug f

can be stored in the common space.

Constraints (13) and (14) allow the soft violation of budget constraints penalizing the viola-

tion in the objective function. Specifically, the cost of drugs stocked at the end of a day, exclud-

ing the cost of the safety stock and the cost of drugs that possibly arrive in the ward as a

consequence of an urgent order on the first day of the planning period, can exceed the daily

budget Bdw of at most ε. Variable ε thus represents the maximum violation of the budget con-

straints over the entire planning period, and it is minimized in the objective function. Even if,

as mentioned, the minimization of the inventory costs is usually not pursued in a ward, the

constraints used to control the daily budget are used as a means to prevent over stocking,

which represents an undesirable event for the Hospital Management.

The block of constraints (15) to (20) controls order regularity. Specifically, these guarantee

that for each drug, the same lot size is used every time such drug is ordered. In addition, they

manage the order event variables, assuring that the variable related to an order event on a

given day is equal to one, if at least one drug is ordered on that day.

The block of constraints (21) to (23) concerns nurses’ perspective. Nurses play a prominent

role among stakeholders because taking into consideration their needs positively affects the

quality of the solution even from the point of view of the two other stakeholders. Specifically,

nurses in charge of order management, besides minimizing the number of order events, ask

for homogeneous orders in terms of the number of drugs in each order to better plan their

activities. Indeed, the time required to store drugs into cabinets and update the system data (so

far, on paper) mainly depends on the number of different drugs involved in the order rather

than on the number of boxes, so they would like to keep this number steady. For these reasons,

variable υmax in constraints (21) measures the maximum number of different drugs in an

order over the planning period, whereas variable υmin represents the minimum number of dif-

ferent drugs in an order over the planning period. Then, in constraint (23), the difference

between such maximum and minimum values is constrained to not exceed the reference value

�u. In particular, the reference value is computed as follows:

�u ¼

�
X

i2I

ðuðiÞmax � u
ðiÞ
minÞ=jIj

�

� tl

where I is a set of instances used in the training phase and is considered a representative of the

reality in the ward, tl is the threshold value corresponding to a low level of flexibility, and uðiÞmax

and u
ðiÞ
min represent respectively the maximum and the minimum number of drugs in an order

over the planning period when the model is run on instance i 2 I.
Finally, constraints (24) to (30) define the variable domain, and specifically constraints (25)

impose that stock levels never decrease under the safety stock levels.

With regard to the objective function, it allows the hierarchical optimization of the follow-

ing criteria: (i) minimization of budget violation, (ii) minimization of the number of urgent

orders, (iii) minimization of the number of regular order events, and (iv) minimization of the
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monetary value of drugs in stock. Constant M is thus a weight properly set to reflect the hierar-

chy of the criteria involved. As explained above, the first two criteria, i.e., minimization of bud-

get violation and minimization of urgent orders, are introduced to prevent infeasibilities that

might occur when the model is used in a rolling horizon framework.

In conclusion, model (1)–(30) differs from that in [39] because (i) it allows urgent orders

during the first day of the planning period, (ii) it controls the daily monetary value of the

drugs in stock via soft constraints, (iii) it introduces safety stocks, and (iv) it prioritizes a dedi-

cated storage space over a shared space for each drug.

5.2 Estimating the safety stock levels

For each drug f, a safety stock threshold sf must be set and a pull order will be triggered if the

inventory falls below it. The safety stock is intended to hedge from drug demand fluctuations

during the lead time (equal to one day for regular orders in our setting). As we cannot rely on

any statistical distribution of drug demand, we propose two alternative policies to set up the

safety stock, both of which are based on our demand generator. The two policies will be

referred to respectively as basic and knapsack. Specifically, we propose a two-step procedure:

the basic policy is based only on the first step of the procedure, whereas the knapsack policy

comprises both steps of the procedure. The detailed description of these two steps follows.

Assume that Bss is the component of the budget B devoted to the safety stock. In the first step,

for each drug, the quantity required to treat one patient for one day is set aside. We call this set

the basic safety stock, and as mentioned above, it is the safety stock used in basic policy. Bss is

thus decreased by the cost of this first basic stock of drugs. Let �Bss denote the residual budget.

In the second step, the demand generator is run over a (very long) time horizon made of HP

days. Then, for each drug, the empirical probability distribution on daily consumption is built

by collecting the possible consumption values—usually integer multiples of a posology, i.e.,

what is required for one treatment—and then considering for each quantity the ratio of the

number of days in which this quantity has been consumed over HP as its mass probability. Let

Valf ¼ fdfig denote the set of (normalized with respect to the single posology amount) values

with a positive probability, and let Probf ¼ fp
f
ig be the associated empirical probabilities. As

an example, for a drug f, the posology can be equal to 4 doses, and the most frequent daily con-

sumption values could be 8, 16, and 20, corresponding respectively to 2, 4, and 5 posologies of

that drug. In such a case, Valf = {8, 16, 20} and set Probf would contain the relative probabili-

ties, with Probf = {0.4, 0.2, 0.2}, meaning that a consumption of two posologies occurs with a

probability equal to 0.4 whereas 4 and 5 posologies both occur with a probability equals to 0.2.

The following binary knapsack-like model is then solved

max
X

f2F

X

p
f
i 2Prob

f

p
f
i n

f
i s:t:

X

f2F

X

d
f
i 2Val

f

cfdfi n
f
i � �Bss; n

f
i 2 f0; 1g

8
<

:

9
=

;

to yield sf ¼
P

d
f
i 2Val

f d
f
i n

f
i for each f 2 F.

Note that more than one element in a set Valf may be chosen. This accounts for the fact that

in our strategy, safety stocks should ideally be sufficient until the next push order of the drug.

We call this enlarged set the knapsack-based safety stock, and it is the stock used in the knapsack
policy. These two policies, basic and knapsack, will be experimentally evaluated (see Section 6).

In some sense, we might state that the knapsack policy is therapy oriented, whereas the

basic one is drug oriented. In terms of the kind of information required to set up the two poli-

cies, the basic policy seems to be guided by the same information necessary to describe drug
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consumption as a Monte Carlo process, whereas the knapsack policy reflects the drug con-

sumption obtained by the demand generator.

5.3 A rolling horizon approach

The three system components, i.e., the demand predictor, the optimizer, and the simulator,

are integrated within a rolling horizon framework. In short, the agenda of push orders is itera-

tively planned for the current period (the planning period) by solving the MILP model, but the

decisions are implemented just for a shorter period, i.e., the scheduling period that covers

only the first part of the planning period. More formally, consider a time horizon of H days

TH = {1, ‥, H} and two integer values,O and ω, denoting respectively the length of the planning

period and the length of the scheduling one, with ω< O<H such that H,O and ω, are integer

multiples of 7, and H is an integer multiple of ω. At each iteration it = 2, ‥, H/ω, we have just

scheduled and processed the orders for the last ω(it − 1) days, i.e., we have scheduled the push

orders and set up the pull orders whenever the actual demand required it, and we are ready to

compute the push order agenda for the next O days. Thus, push orders are planned in the cur-

rent planning period TO, going from day ω(it − 1) to day ω(it − 1) + O − 1, while they are

implemented just for the first ω days, i.e., the scheduling period Tω = {ω(it − 1), . . ., ω it − 1}.

Fig 3 exemplifies the process for O = 28 and ω = 14, depicting the information flow from

the predictor, through the optimizer, to the simulator. More formally, let P(it) and Stockf(it)
denote the patient population hospitalized on the first day of TO and the inventory level of

drug f on the same day, respectively. Note that the status associated with each hospitalized

patient in P(it) on that day corresponds to one state along the flowchart discussed in Section

4.3 for the associated patient class.

The demand is forecast for each day in TO by launching the demand generator given P(it).
This process yields a demand matrix Qit that contains the demand of each drug f 2 F for each

day in TO. Then, the MILP model is solved over TO with respect to Stockf(it) and Qit, which

represent respectively the level of stock for each drug at the end of the previous scheduling

period, namely, lf8f 2 F, and the demand for the current planning period, namely,

qf
dw 8f 2 F; 8w; d 2 TO. According to what has been discussed above, only the orders in Tω are

passed to the simulator forming the pre-scheduled agenda of the push orders for the current

period. A brief sketch of the methodology proposed is given in Fig 4 as a pseudocode.

The rationale of the approach is that the MILP model requires a sufficiently large horizon

to search for regularity. However, the more that we move forward in time within the period,

Fig 4. Pseudocode of the proposed approach.

https://doi.org/10.1371/journal.pone.0264928.g004
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i.e., as we move ahead from the first day, the less reliable the demand forecast becomes. For

this reason, the solution is inserted in the push agenda only for the first ω days.

The agenda is returned to the simulator, and this reveals the actual demand day by day, by a

call to the demand generator one day at a time. Note that the patient evolution associated with

the simulator demand may well differ from the forecast, although the two originate from the

same decision rules. Now, rush and extra orders are triggered, if required. Specifically, if the

demand cannot be entirely satisfied, the simulator triggers a rush order to fill this gap, whereas

whenever the inventory of drug f at the end of the day is below sf , a restocking order is trig-

gered. Obviously, on the first day of the scheduling period, the demand forecast is likely to be

close to the real demand, but this tie soon vanishes as time elapses. We expect pull orders to

intensify at the end of each period. On this basis, in Section 6, we will experimentally test a

modified pull order restocking policy that considers the time lag before the next push order

for that drug, projects the current status in the ward for the next few days, assuming a con-

sumption decreasing with time for that drug (thus realizing short-term forecasting), and

orders the quantity required to cover the prediction in one shot. This policy aims to reduce

orders of the same drug potentially triggered in consecutive days, and it is referred to as aware
because it is an attempt to exploit fresh information coming from the actual status in the ward.

In Section 6, we will experimentally test different values for ω and compare the aforemen-

tioned variants.

6 Computational results

6.1 Testbeds

As mentioned, we deal with the containment of the number of orders, given the constraints on

budget (soft) and storage (hard). Recall that we distinguish regular orders, which have a one-

day lead time and whose cost is the time nurses devote to them, from rush orders; these are a

direct financial cost that affects hospital expenditure, are issued under pressure, and are served

within two hours. Regular orders include both push orders, those pre-planned in the agenda,

and the extra orders triggered by safety stock replenishment that can be issued at the end of

the day. Order regularity is advocated because it helps nurses plan their activities.

Given the criteria to evaluate a solution, experiments aim to test the effectiveness of our

strategy and all its variants. In particular, we aim to (i) assess the impact of the pre-planned

agenda with respect to a classical inventory policy, which is described in Section 6.3, (ii) ana-

lyze the impact of the length ω of the scheduling period, (iii) compare the basic and the knap-

sack variants to set the safety stock level sf , (iv) assess the additional benefit of a demand-aware

hybrid strategy introduced in Section 5.3, and (v) compare therapy-driven and drug-driven

demand forecasting. We run a few sets of experiments, all considering one year as the time

horizon TH and O = 28 days as the duration of the planning period TO, whereas ω ranges in {7,

21} concerning the scheduling period duration. We run 30 repetitions of each experiment to

smooth the effects of the specific demand realization.

6.2 Preliminary insights from a partial comparison with the real case

First of all, it has to be underlined that a full comparison between the as-is scenario and the

results of the optimisation was not possible due to the mentioned critical issues about lack of

data and difficulty in retrieving them. Specifically, as we mentioned in Section 4, we digitised

information on orders placed and therapies administered for only one month (June 2016).

The data collected cover 14 drugs, a subset of those used in the ward. In addition, for these

drugs it was not possible to assume the level of stock in the warehouse at the beginning of the

PLOS ONE Rush order containment of critical drugs in ICUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0264928 June 23, 2022 25 / 41

https://doi.org/10.1371/journal.pone.0264928


planning horizon. The optimisation model was therefore run assuming that only the drugs

required on the first day were in stock. This assumption means that the number of orders

placed by the model is potentially higher than that obtained from full knowledge of stock lev-

els. For example, for a certain drug, it is observed that the first order in the as-is scenario

occurred on day 7 while it was needed before. In the initial phase of the project, however, we

performed a comparison between the as-is scenario and the optimized solution assuming a

complete knowledge of the demand in the planning horizon considered (June 2016). We

report in this section the results obtained at that time. The optimisation model used for this

comparison is slightly different from the one described in this paper, which is the result of the

project’s progress. Specifically, the model of which we report the results in Table 10 (i) assumes

a hard constraint on the budget (limited to 3000 or 5000 euros per day); (ii) does not consider

the perspective of nurses; (iii) assumes a total capacity of 2, 3, or 5 shelves to store drugs (not

organized in dedicated and shared storage spaces). The number of orders done in the as-is sce-

nario is equal to 13, while in the optimized solutions the orders vary from 4 to 9.

Fig 5 reports some further information on the orders comparing the as-is scenario and the

best optimal solution (4 orders) in terms of days in which orders are done (x-axis) and number

of different drugs in an order (y-axis). Interestingly, the optimized orders are quite equally dis-

tributed in the planning period, and well balanced in terms of number of different drugs they

Table 10. Optimization results for varying capacity and budget parameters.

Capacity Budget (€) Number of orders

2 3.000 9

3 3.000 9

5 3.000 9

2 5.000 5

3 5.000 5

5 5.000 4

https://doi.org/10.1371/journal.pone.0264928.t010

Fig 5. Order information: The as-is scenario vs optimization (June 2016).

https://doi.org/10.1371/journal.pone.0264928.g005
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contain. Clearly, the optimized solution suffers from the lack of information on the initial

stock levels, as it is evident from the height of the bar on the first day. These results, even if pre-

liminary, have been discussed with clinicians and have motivated further investigations.

We conclude by briefly commenting on the benefits of optimized drug order management.

As noted earlier, rush orders have a much higher cost than standard orders. Reducing their

number therefore has a significant impact on ICU costs. However, reducing rush orders is not

the only benefit due to optimization. In fact, the reception of an order is a complex operation,

composed by several tasks: check the consistency of what ordered with what arrived; check the

consistency of what contained in the delivery note with what arrived; arrange the drugs in the

warehouse; update the stock levels, only to quote the main ones. Receiving an order engages

highly trained staff (nurses) in non-value-added activities. The time required by this activity is

difficult to quantify since it depends on the degree of ward automation. Optimized drug order

management allows this time to be used in patient care. Ultimately, an additional benefit of

optimization is that having the drugs ready for use on the ward allows for early initiation of

patient care. This is especially important on a ward where a delay in drug administration can

be life-threatening.

6.3 A periodic review policy as a benchmark

To provide a benchmark for our strategy, we implemented a classical (s, S) inventory policy

based on periodic review. As we learned during our observation period in the ward and

according to official national health service documents, replenishment is regularly performed

by nurses once a week, usually on a Monday. The PAR level Sf and reorder point sf for each

drug f have been estimated according to the literature.

As in [7], sf has been set as sf = df + δf z according to [42], where df is the average daily

demand of drug f, δf is the standard deviation of the daily demand, and z = 1.96 is set according

to the expected service level—97.5% with the demand normally distributed; the lead time of

regular orders in our case is one day, so it does not appear in the formula.

Likewise, Sf has been set as the sum of the reorder point sf and the Economic Order Quantity

(EOQ), which is computed as follows (again, see [42]): EOQf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2DfKÞ=ðhcf Þ

q
where Df is

the annual average demand of drug f in ward (in doses), K is the estimation of the cost of

receiving the order of one drug, considering a nurse hourly gross wage of 20€ and 6 minutes

to handle the replenishment operations for each drug, thus yielding 2€, h is the percentage of

the value held in stock that is to be lost (cost opportunity), and we set it to 0.8, and cf is the cost

of one dose of drug f. Note that such formulas are set in [42], taking for granted that demand is

normally distributed. In our case, we can only exploit the empirical distribution we mentioned

above to compute Df and df.

6.4 Experimental setting

In the following, we provide the details of the computational experiments concerning the

simulation.

The simulation model was created using Rockwell Arena and Python. Each day, for each

patient type, the simulation model creates a certain number of patient entities. The number of

entities to create is determined by sampling from suitable empirical distributions based on the

data collected on-site during the observation period. Upon arrival, each patient entity is

assigned with a therapy. The therapy depends on the patient type and defines (i) the patient’s

LoS and (ii) the number of doses of each drug that he/she will be administered each day. The

algorithm (coded in Python) that defines the therapy considers for each patient type the
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conditional probability of a drug being needed on day d, given the drugs that were adminis-

tered on day d − 1. Because of this, patients of the same type can be assigned with different

therapies. Once a patient entity is assigned with a therapy, the patient seizes a ward bed. The

bed will be subsequently released after a time interval equal to the LoS.

Every day, a nurse entity is created. This nurse checks the drugs needed by each patient in

the ward (which depends on the therapy) and administers the drugs, if available. If the amount

of drug in stock is smaller than the one required, the nurse issues a rush order. Upon drug

administration, the stock level for each administered drug decreases. The stock level is updated

after the rush order lead time. Once the drug is restocked, the pending administration eventu-

ally takes place. Then, for each administered drug, the safety stock is checked and an extra

order is issued, whose quantity will either restore sf or a larger quantity if the aware option is

active.

Every ω days (e.g., 7 or 21), the simulation model creates an order entity that triggers an

algorithm (either an optimization model or an (s, S) heuristic, depending on the scenario) that

indicates for each drug the number of boxes to order. The algorithm is executed in shell (i.e.,

while the algorithm runs, the simulation clock does not advance), and once a solution has

been computed, the simulation model reads it and triggers pre-planned orders accordingly.

After the regular order lead time has elapsed, the model updates the stock levels by adding the

ordered quantity.

In this study, we have considered 18 drugs, 6 patient types, a ward capacity of 8 beds, a lead

time for regular orders equal to 1 day, and a lead time for rush orders equal to 2 hours. A rush

order costs 300€ for each drug involved in the order. The real cost of the 18 drugs has been

used: it ranges from 0.30€ to about 113€ per dose. Drug boxes may contain from 1 to 25 units,

and the volume of the smallest item is 100-fold of the largest volume, whereas the daily dosage

for a drug ranges from 1 to 8.

6.5 Variants of the hybrid inventory policy: Numerical results

We report and discuss the results of the computational experiments deployed to answer

research questions (i) to (iv) set in Section 6.1.

First, we focus on the number of rush orders (if a rush order involves two different drugs, it

is counted as 2), which is proportional to the direct cost associated with this practice. We

report the boxplots of the results of the 30 instances for each variant in Fig 6, assuming that the

generator is used to forecast demand. Specifically, for ω = 7 and ω = 21, we report all four com-

binations concerning the safety stock strategy (basic vs. knapsack) and reorder policy (aware

vs. not aware). The last boxplot refers to the (s, S) policy benchmark.

At a glance, one can see that the (s, S) rush order cost can be halved or even decreased to

1/18. In particular, if we compare each basic variant with its knapsack version, we see that in

each version, the latter always dominates the former. In general, this can be expected because

the safety stock is intended to hedge against demand fluctuation avoiding rush orders; it also

means that the drugs whose stock has been increased have been wisely chosen. The savings is

larger when the basic policy cost is higher, which happens for the not aware basic variants. If

we compare the impact that the change from basic to knapsack provides in case of aware poli-

cies, this is still present but not so remarkable. This means that the rush order containment

that can be granted by a higher level of stock always present (knapsack policy) can almost

entirely be achieved by a wise (aware policy) replenishment sizing. Indeed, the aware policy

adapts the replenishment lot size to the patients currently in the ward and to the time lag to

the next push order for that drug in the agenda, thus avoiding the storage of large amounts of

drugs when the demand is low. Finally, concerning ω, we have an unexpected finding: despite
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having increased the width of the scheduling period ω (from 7 to 21) and, therefore, the poten-

tial gap from the forecast to the realized demand, the number of rush orders remains almost

stable which represents a noticeable result. As a whole, the most effective policies are the knap-

sack aware ones, with 21 certainly preferred to 7 by nurses because of the longer period

agenda.

Note that the best-performing policies lead to a maximum number of rush orders per year

less than 20 (namely, 15 for 7-KP-Generator-A and 16 for 21-KP-Generator-A), compared

with a maximum of 148 rush orders for (s, S). On average, the number of rush orders for (s, S)

is 134:6�6, whereas the figure is 7.3 for the best-performing policy. Given a cost of 300€ for

each rush order, the saving is about 38.000 €. This more than compensates for the larger bud-

get devoted to inventory required by our policies; see Fig 7. There, the average daily value of

the drugs tied in stock is depicted. Policy (s, S) holds about half the inventory value with

respect to ours. However, as opposed to manufacturing, in health care, stocked drugs are not

such a direct cost, and they provide a safety margin to sudden therapy changes. In addition, we

observe that the maximum increase of daily stock value between our policies and the (s, S)

Fig 6. Boxplots of the number of rush orders. Each boxplot shows the results of 30 instances. Policy names refer to the ω, safety stock option (basic or

knapsack), demand forecasting option (Generator), and aware (A) or not aware (N) variant.

https://doi.org/10.1371/journal.pone.0264928.g006

PLOS ONE Rush order containment of critical drugs in ICUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0264928 June 23, 2022 29 / 41

https://doi.org/10.1371/journal.pone.0264928.g006
https://doi.org/10.1371/journal.pone.0264928


policy is not over 3.000€, and if we assume an inventory cost roughly equal to 1% of the total

stock value, it would yearly affect the hospital expenditure for about 10.000€, which amounts

to about one third of what our policies save in rush order cost. Note that as ω increases, both

the average and the variance of the average daily inventory value tend to increase. Indeed, as

the scheduling period becomes larger, it is more likely that the drugs present in the forecast

scenario are not used in practice and remain in stock for a while, increasing the inventory

value.

Finally, let us turn to the number of orders and the number of different drugs involved in

each order, on average. The number of days on which an order event occurs is depicted in Fig

8, separately for push, replenishment, and total orders. Concerning push orders, depicted on

the left hand side of the picture, their number decreases as the scheduling period ω increases,

as expected. Basic aware seems to lead to more ordering days rather than basic not aware.

Because awareness affects the lot size of pull orders, the effect on push orders is undirected by

way of inventory levels at the beginning of each planning period. As just noticed, aware

Fig 7. Stock value. For each variant, the average value of drugs in stock on a day, over the year (€). Each boxplot shows the results of 30 instances. Policy

names refer to the ω, safety stock option (basic or knapsack), demand forecasting option (Generator), and aware (A) or not aware (N) variant. sS_7 refers to

the periodic policy.

https://doi.org/10.1371/journal.pone.0264928.g007
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reordering may allow a lower average level of stock, consistent with the basic policy. A low

inventory may then raise the number of ordering days in the agenda. On the other hand, the

knapsack policy tends to keep a large inventory, so the awareness effect is negligible. We con-

sidered as push orders the periodic ones in the (s, S) policy because they are scheduled a priori.

Their number is almost constant because of periodicity. Recall that pre-scheduled ordering is

preferred by nurses with respect to just-in-time ordering.

The middle part of the picture clearly shows that unaware policies entail a greater number

of replenishment orders compared with the aware ones, and the number of replenishment

orders is more stable in the aware variants. On the right hand side of the picture, the number

of ordering days per year is reported, pull and push orders together. Interestingly, we see that

all the aware variants exhibit a lower number of total orders than (s, S), thus confirming the

importance of exploiting the information coming from the drug management process.

Now, we look at the average number of drugs in an order, as depicted in Fig 9, regarding

push orders (on the left column), pull orders for safety stock replenishment (in the middle),

and with respect to all orders (on the right). Policy (s, S) scores the lowest number, but the var-

iance, -as far as the boxplot conveys this information, is comparable to that of the other

Fig 8. Boxplots of the orders (push, replenishment, all). On the left are the boxplots of the number of days with push orders per year. In the middle is the

number of days with replenishment orders per year. On the right part, all orders are considered, push and pull. Each boxplot refers to 30 instances.

https://doi.org/10.1371/journal.pone.0264928.g008
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policies. Awareness seems to reduce the number of drugs in safety stock replenishment (see

ssR in Fig 9), probably because of the fact that different drugs may have quite different inven-

tory levels and fall below the threshold on different days. The (s, S) lowest total average may be

related to the frequent rush orders that typically involve single drugs.

In conclusion, the results suggest that we can pre-schedule on a long horizon without dete-

riorating performance, and the knapsack policy and aware restocking are essential tools to

contain the number of stock outs. Indeed, the former can be seen as a priori guess on the

future demand, while awareness exploits current information (patients’ status) and the knowl-

edge of the agenda to tailor restocking orders a posteriori.

6.6 Therapy-driven versus drug-driven forecasts: Numerical results

We report and discuss the results of the computational experiments used to answer research

question (v) set in Section 6.1. In this section, we compare the results given by the two different

types of forecasting methods, which are therapy driven and drug driven. As described in Sec-

tion 4.3, the first method (therapy driven) estimates the demand of drugs based on (i) the

Fig 9. Boxplots of number of drugs (push, replenishment, all). On the left are the boxplots of the average number of drugs in push orders only. In the

middle, only safety stock replenishment pull orders are considered, and the average number of drugs in all orders is shown on the right. Each boxplot refers

to 30 instances.

https://doi.org/10.1371/journal.pone.0264928.g009
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current number of patients in the ward, (ii) the therapy that each patient is currently undergo-

ing, and (iii) the possible evolutions that may occur in each therapy because of changes in the

patient’s condition.

The second method (drug driven), by contrast, is based on a simpler Monte Carlo simula-

tor, that generates, for each drug and for each day, a discrete demand expressed in number of

doses. Such a demand is obtained by sampling from Poisson distributions (one for each drug

f) with parameter λf. The parameter λf represents the expected value of the daily demand,

expressed in doses for the drug f. The idea of using Poisson distributions in the Monte Carlo

simulation is taken from the literature [27].

In this section, we report the results for the longest scheduling period only (ω = 21); the

results for the variants with ω = 7 are similar. Specifically, we show in Fig 10 the boxplots rela-

tive to the number of orders for the eight variants resulting from considering ω = 21 combined

with each of the two safety stock options (basic or knapsack), with each of the two demand

forecasting options (Generator or Poisson), and awareness or not. We observe that for the

given safety stock option and awareness option, the numbers of total and rush orders obtained

when the demand prediction is therapy driven are smaller than the corresponding values

Fig 10. Boxplots of the orders (push, replenishment, all). On the left are the boxplots of the number of days with push orders per year. In the middle are

the replenishment and rush orders. On the right part, all orders are considered, push and pull. Each boxplot refers to 30 instances.

https://doi.org/10.1371/journal.pone.0264928.g010
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obtained with the drug-driven prediction. The difference between the two policies tends to

decrease as we progressively incorporate knowledge within them. The drug-driven variants

tend to give a smaller number of push orders, but those orders are characterized by a quite

remarkable higher number of drugs per order, as Fig 11 clearly shows. On the contrary, with

the drug-driven forecast, the budget is, on average, 21.4% smaller than that obtained with the

therapy-driven forecast.

In summary, the analysis reveals that therapy-driven policies are more accurate than drug-

driven ones and lead to better results in terms of rush orders whose containment is our first

goal.

7 The decision support system: Prototype of the graphical user

interface

In the data collecting phase of the project, we created a desktop application with the twofold

objective of (i) allowing a rapid transcription of the patient therapies; (ii) providing a tool to

help clinicians and nursing staff to enter the data automatically. Specifically, we chose a desk-

top application rather than a web application to speed up implementation and reduce

Fig 11. Boxplots of the average number of drugs in push orders. Each boxplot refers to 30 instances.

https://doi.org/10.1371/journal.pone.0264928.g011
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bureaucracy. The application uses the Swing Java library and follows a top-down event-driven

approach: the main graphical area contains general information on a certain patient and is

organized in panels containing specific information that are filled when some event occurs. As

an example, Fig 12 is a screenshot of the main graphical area, while Figs 13 and 14 show the

panels to fill respectively when results from the lab arrive and when clinicians set the target

therapy. Text is in Italian as required by hospital’s management.

This simple application was designed as a building block for a future decision support sys-

tem (DSS) organized in a patient section and a ward section. The objectives of such a system

are: (i) collect and make easily accessible patient-related information from different sources;

(ii) provide a snapshot of patients admitted and resources allocated at a given time; (iii) allow

automatic drug order management; (iv) display the prediction results about LoS and infection

outbreak to support clinicians in making decisions and to allow a better management of the

department; (v) facilitate the exchange of information with other departments: for example, if

a patient was discharged from the ICU to be admitted to another department, information

about the patient (treatments, evolution of clinical conditions, etc) could be shared. As another

example, information (and prediction) about future bed availability could be used by a surgical

department to plan surgeries.

Fig 12. General information on patients and panels for specific information.

https://doi.org/10.1371/journal.pone.0264928.g012
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Ideally, the main decision flows concerning drug replenishment that would occur if our

tool were deployed, are depicted in Fig 15. Clearly, demand simulation is no longer needed to

mimic the realization of the real demand in the ward. Demand prediction on each forthcom-

ing planning period is used to feed the optimization module on the first day of each scheduling

period.

Fig 13. Therapy panel (Terapie antibiotiche) and lab sub-panel (Risultati laboratorio).

https://doi.org/10.1371/journal.pone.0264928.g013

Fig 14. Therapy panel (Terapie antibiotiche) and target therapy sub-panel (Terapia mirata).

https://doi.org/10.1371/journal.pone.0264928.g014
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The DSS briefly discussed in this section is intended to be only a first attempt of providing a

tool tailored to the specific needs of a ICU.

8 Conclusions and work in progress

We proposed and tested a replenishment policy for critical drug management in ICUs, whose

demand cannot be estimated by traditional means. Demand forecast is based on knowledge of

therapies and the current patient population in the ward. Specifically, we proposed a hybrid

push-pull inventory policy and evaluate its performance when used in a rolling horizon frame-

work. Push orders are scheduled by solving an MILP model receiving in input the forecast

demand. The optimization model minimizes the number of order occurrences (number of

days in the period when an order is issued), which is considered a KPI in this setting. Another

crucial target of the optimization model is to guarantee regularity in order management,

which is another important KPI. Regularity concerns the order size, and the model imposes

that the same size for each order of the same drug always occurs within each planning period.

Pull orders come into play when the realized demand deviates from the forecast. Several vari-

ants of the hybrid push-pull inventory policy have been proposed and experimentally investi-

gated by varying the length of the horizon in which the solution provided by the optimization

model is considered reliable (7 and 21 days). The longer the horizon is, the higher the confi-

dence in the optimization model is and, consequently, the smaller the frequency with which

the optimization model is run and the higher the regularity is. In addition, we consider two

alternative ways to fix safety stock, namely, basic and knapsack. For each combination of type

of safety stock and frequency of optimization runs, we also investigated an aware variant of the

push-pull policy that attempts to exploit information from the current status of the ward.

Indeed, in the not aware variants of the policy, both stock out and safety stock deficiencies

Fig 15. Main decision flows in the deployment of the tool. Prediction and optimization modules are launched at the beginning of each scheduling period.

https://doi.org/10.1371/journal.pone.0264928.g015
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trigger a pull order, either rush or regular. In this case, the ward asks for the minimal quantity

needed to satisfy demand or restore safety stock. In the worst case, however, the unpredicted

arrival of a patient requiring a particular drug not in stock triggers a sequence of periodic pull

orders, according to the therapy. An expert nurse would recognize the case and thus increase

the order size to a greater level than the safety stock if the next pre-planned order of the drug

lies further in time. The aware variants of the policy mirror the strategy of the expert nurse,

thus exploiting this kind of information. To further corroborate the importance of incorporat-

ing information in the inventory policy, we also evaluate the impact of using a therapy-driven

forecasting tool as opposed to a drug-driven tool.

The results stimulate a very interesting discussion. First, they allow the conclusion that each

of the policies proposed significantly outperforms the standard periodic review policy used as

a benchmark in terms of the number of stock outs. This is particularly important because

stock outs represent a prohibitive cost. In addition, they are a source of inefficiency and clinical

risk within a hospital. Second, the use of information serves as a crucial tool through which the

performance of the push-pull policy is improved. Third, the policy proposed seems to be quite

robust with respect to the length of the time horizon, thus allowing the conclusion that trusting

the optimization model for a longer period does not deteriorate performance and that indeed,

it allows an increase in regularity. The proposed models allow to simplify the work of nurses

working in ICUs, and to reduce the waste of the (expensive) drugs they use. Consequently,

they contribute to optimize the operation of organizational units (the ICUs) which is of para-

mount importance especially during a pandemic such as the one related to SARS-CoV-02.

However, the proposed push-pull policy does not come without limitations: drugs can indeed

be ordered to satisfy the forecast demand and remain in stock if the realized demand deviates

from the forecast one. Drugs in stock thus consume budget and affect the next orders. Even if,

as mentioned, inventory costs are not a direct cost in wards, a better use of the budget should

be done. This can be accomplished in at least two future research directions: (i) allowing a

dynamic management of the budget along the planning horizon and (ii) experimenting collab-

orative policies between two or more wards according to which they exchange drugs to cope

with demand variability. Preliminary results on the effect of lateral transshipment between col-

laborating wards are shown in [43]. Finally, an interesting research line concerns the introduc-

tion of uncertainty in the optimizer. Specifically, at the moment being, we assume for each

patient that drug consumption is given by one of the paths representing the possible evolutions

of his/her clinical condition, as provided by the demand generator. Indeed, the forecast path

can be very different from the realized one in terms of resource (drugs and bed) utilization,

thus vanishing the potential benefits coming from optimization. Taking into account demand

uncertainty surely deserves further investigation.
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