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1. INTRODUCTION 

The quantification of the type A uncertainty contribution in 

the case of a small sample ( = 1,2,3n ) is a subject of research 

and passionate debate in the Working Group 1 of the Joint 
Committee for Guides in Metrology (JCGM WG1), the 
standards working group involved in the maintenance and 
development of the Guide to the Expression of Uncertainty in 
Measurement (GUM, [1]) and its supplements. The topic is so 
felt that, at the end of 2019, the “JCGM WG1 Workshop on 
Type A evaluation of measurement uncertainty for a small set of 
observations” was held at the Bureau International des Poids et 
Mesures (BIPM, Sèvres, Paris). The problem arose following the 
negative reaction to the Committee Draft (CD) of the review of 
the GUM, circulated at the end of 2014 [2]. 

One of the most criticized issues of the draft of the “new 
GUM” is the type A evaluation of uncertainty based on the use 

of a Student’s t probability density function having −1n  degrees 

of freedom, shifted by the mean y  of the n  observations 
iy , 

=1,2,...,i n , and scaled by the standard deviation of the mean 

s n , where 

 (1) 

and 

. (2) 

By following this approach, the type A evaluation of standard 
uncertainty is 

, (3) 

which is not valid for a sample having a size of less than = 4n . 

Such solution originates from a Bayesian approach to inference, 
where improper priors (Jeffreys prior) are adopted for the mean   

and variance  2  parameters of the parent normal probability 

density function (PDF), i.e. 
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ABSTRACT 
An informed type A evaluation of standard uncertainty is here derived based on Bayesian analysis. The result is mathematically simple, 
easily interpretable, applicable both in the theoretical framework of the Guide to the Expression of Uncertainty in Measurement 
(propagation of standard uncertainties) and in that of the Supplement 1 of the Guide (propagation of distributions), valid for any size 
greater than or equal to 1 of the sample of present observations. The evaluation consistently addresses prior information in the form of 
the sample variance of a series of recorded experimental observations and in the form of an educated guess based on expert’s 
experience. It turns out that distinction between type A and type B evaluation is, in this context, contrived. 
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, (5) 

where ( ) 2

0p  represents the improper prior adopted for  2 , 

namely  

. (6) 

Note that the information conveyed by these priors is the one 
strictly relevant to the character of the two parameters:   is the 

location parameter and  2  is the scale parameter. In contrast, 

practitioners in testing and calibration have much richer 
information about the variability of the measurement process 
that is represented by (6).  

The Bayesian approach is the one followed by the Supplement 
1 of the GUM (GUMS1, [3]) and the intent of JCGM WG1 was 
precisely to align the GUM to GUMS1 by attributing the same 
Student's t probability density to a sample of repeated 
observations. The problem is that, by doing so, it is possible to 
propagate the distributions (as foreseen by GUMS1) but it is not 
possible to propagate the standard uncertainties (as foreseen by 

the GUM) if the sample size is less than = 4n . This is generally 

not acceptable (e.g., in destructive), particularly if implemented 
as a standard (mandatory) method. 

The GUM and the GUMS1 approaches are therefore 
inconsistent. They produce substantially different results when 
random variability is a significant contribution to measurement 
uncertainty and the number of measurements used for its 
estimate is low [4]. The JCGM WG 1 did not seemingly yet 
identify a way out of the inconsistence between the GUM and 
the GUMS1. 

Both frequentists and Bayesians can agree on the fact that the 
estimate of the average value obtainable from such a small 
sample is not very reliable. In favor of the Bayesian approach to 
inference, one can observe that no other way to enrich the 
estimate is available than the use of prior information on the 
variability of the measurement process that integrates the meagre 
experimental observation. In this sense, a Bayesian approach is 
useful because, differently from the frequentist approach, it 
provides us with a method for combining prior information with 
experimental observation.  

From the applicative point of view these concepts have 
relevance to the evaluation of measurement repeatability. 
Measurement repeatability quantifies the variability of 
measurement results obtained under specified repeatability 
conditions. Measurement repeatability is an essential 
contribution to measurement uncertainty in every field of 
experimental activity. 

In the context of testing and calibration if a stable item is re-
tested or re-calibrated, the new measurement results are expected 
to be compatible with the old ones. Two distinct operators 
should provide compatible measurement results when testing or 
calibrating the same item. Measurement repeatability is then a 
reference for qualification of personnel. Monitoring 
measurement repeatability contributes to assuring the validity of 
test and calibration results. In an accreditation regime [5], 
measurement repeatability must be kept under statistical control. 
Periodic assessments are carried out by the accreditation body 
aimed at verifying, through an appropriate experimental check, 
the robustness of the estimate of measurement repeatability, see 
[6], equation (6), p. 5 (in Italian), and [7], clause 6.6.3. 

The GUM provides type A evaluation of standard uncertainty 
as the tool to quantify measurement repeatability. Type A 
evaluation is based on a frequentist approach, thus implying that 
information on the quality of the estimate of measurement 
uncertainty must be conveyed to the user. This is done in terms 
of effective degrees of freedom. The GUMS1 adopts a 
knowledge based (in contrast to frequentist) approach to model 
measurement repeatability. The quality of the estimate of 
measurement uncertainty is accounted for by the available prior 
knowledge, which eventually determines the width of the 
coverage interval. 

The use of numerical methods for professional (accredited) 
evaluation of measurement uncertainty is expected to increase in 
the future. Indeed, the GUMS1 numerical method, which is 
based on the propagation of probability distributions, accounts 
for possible non-linearity of the measurement model, is simple, 
less prone to mistakes (partial derivatives are not required), 
provides all the available information about the measurand in 
terms of its probability distribution. Further, the use of numerical 
methods is practically unavoidable when the measurement model 
is complex and/or the measurand is an ensemble of scalar 
quantities (vector). On the other extreme, the analytical method 
(based on the law of propagation of uncertainty) is consolidated 
and the one predominantly adopted nowadays. A further point 
of strength of the analytical method is its great pedagogical value. 
Achieving consistence between the analytical and numerical 
approaches to measurement uncertainty quantification is 
therefore desirable since both have arguments of strength and 
are expected to coexist in the future. 

What is proposed here is a knowledge-based approach to the 
type A evaluation of measurement uncertainty and, specifically, 
measurement repeatability. An estimate of the repeatability of a 
measurement system may be available, representative of its 
performance in testing. This knowledge may be derived from: 

• Systematic recording of periodic verifications of the 
measurement system 

• Analysis and quantification of the individual sources of 
variability in the measurement chain 

• Normative reference (for standard measurement systems 
used in testing) 

• Information from manufacturers of measuring instruments 

• Experience with the specific measurement chain or similar 
ones. 
As in the GUMS1, use is made here of Bayesian inference 

since it provides a straightforward method to incorporate prior 
knowledge. Differently from the GUMS1 Bayesian approach, 

here an informative prior PDF is assigned to  2 . To obtain 

analytical results, useful in the framework of the law of 
propagation of uncertainty, a normal probability model is 
assumed with a non-informative prior PDF for the mean and a 
conjugate prior PDF for the variance. 

In section 2 the theoretical approach is described and in 
subsection 2.1 is compared with another one [8] previously 
presented in the scientific literature and proposed by a member 
of JCGM WG1. In section 3 theoretical results are applied to a 
practical case, based on the experience of the author, as an 
assessor of accredited testing laboratories. Conclusions follow in 
section 4. Finally, an appendix is devoted to the mathematical 
derivations supporting the results presented in section 2. 

( )~ 2 2

0p

( )


2

0 2

1
p



 

ACTA IMEKO | www.imeko.org June 2022 | Volume 11 | Number 2 | 3 

2. TYPE A EVALUATION WHEN PRIOR INFORMATION IS 
AVAILABLE 

By prior information we mean here information on the 
variability of the measurement process obtained before that a 
certain test (or calibration) is carried out. Let us consider the case 
in which the a priori information consists of a relatively long 
series of experimental observations. The important hypothesis 
that must be verified is that the previous experimental 
observations are obtained under repeatability conditions that are 
representative of those that occur during the test, both as regards 
the measurement system and the measurand. If this is not 
verified, the a priori information is not valid to represent the 
variability observed during the test. This hypothesis is necessarily 
realized following an experimental procedure based on a physical 
modeling aimed at identifying the causes of the variability and at 
limiting its effects. It is the experimenter's task to ensure that the 
hypothesis is verified in practice. 

In mathematical terms, the Bayesian inference is made on the 

mean value   and the variance  2  of a Gaussian PDF assuming 

an improper uniform PDF for   and a scaled inverse  2  PDF 

[9], Table A.1, p. 576, for  2  . The choice of the improper 

uniform PDF for   is justified by the desire to avoid 

introducing an a-priori bias on the best estimate of the 
measurand value, which in this way depends solely on the 
experimental observation obtained during the test. The choice of 

the scaled inverse  2  PDF for  2  is justified by the desire to 

incorporate prior information while retaining the well-known 
Student’s t as the posterior PDF of   [9], section 3.3, p. 67. The 

parameters of the scaled inverse  2  PDF are the prior variance 

 2

0  and the associated degrees of freedom  0
. Another 

advantage stemming from the use of the scaled inverse  2  PDF 

is the immediate physical interpretation of the degrees of 

freedom  0
 as the number of measurements that have been 

necessary to derive the prior estimate  2

0  minus 1. At the same 

time  0
 can be linked to the degree of credibility trusted to  2

0  

as an estimate of  2 , as it is demonstrated here, through the use 

of (11). 
With this choice of the prior PDFs (see the appendix for the 

derivation) we obtain, for the posterior marginal PDF of   a 

Student’s t PDF with degrees of freedom 

, (7) 

shifted in 

 (8) 

and with scaling factor  2

n n , where 

. (9) 

According to this approach, the type A evaluation of standard 
uncertainty will be 

. (10) 

We observe from (7) that the number of degrees of freedom 

 0
 of the prior evaluation of variability,  0

, add up to the 

number of degrees of freedom −1n  with which the variability 

s  is evaluated during testing. The result is valid if the assumption 

that repeatability conditions are kept the same both in the prior 
investigation and testing is verified. 

The estimate (8) is determined by repeated observations 
obtained during the testing phase because a constant and 
improper prior PDF for   has been chosen. 

The result (9) is particularly simple and convincing: the 

variance  2

n  which quantifies the variability of the measurement 

process is the result of the pooling of the prior variance  2

0  and 

the sample variance observed in testing 2s  through a weighted 

average, the weights being the corresponding degrees of 
freedom. The type A evaluation of standard uncertainty passes 
from (3), in absence of prior information, to (10), which is valid 

also for = 1n  provided that  0 3 . 

The following consideration is also of interest. The prior 
information about the variability of the measurement process 
may be derived, for example, from the assessment of an expert. 

A simple form of this prior information is a best estimate  0
 and 

a quantile   that the expert judges to be exceeded with a small 

probability  . A link can be established among  ,   and  0
 

for a given  0
. This can be done through the cumulative 

distribution function of the scaled inverse  2  prior of  2  

evaluated at 
2 , namely 

, (11) 

where 

  

is the upper incomplete gamma function with parameters   and 

z , and ( ) z  is the gamma function. If  0
 is known then 

(11), for any given  , implicitly provides a value for  0
. This 

relationship can be represented through a plot such as the one in 

Figure 1. Note from Figure 1 that the larger is  0
 the smaller 

is  0
 for a given  . The smaller is   for a given  0

 the 

larger is  0
. 

The idea of pooling prior variability is not new in the context 
of the GUM. It is indeed briefly mentioned in clause 6.4.9.6 of 
the GUMS1 and in 9.2.6 of the CD of GUM review [2]. 

2.1. Comparison with the type A evaluation obtained truncating 

the improper prior for 𝝈𝟐 

In a recent paper [8] Cox and Shirono propose a solution to 
the problem of the type A evaluation in case of small sample 

where T
 is an upper bound (truncation) value for the improper 

prior of  2 , i.e. 
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. (12) 

The prior PDF of   is in [8], as in this work, a constant 

improper prior. By following [8], the type A evaluation of 

standard uncertainty can be expressed as   s n , where 

. (13) 

  0  if  2n  is a function of s , n  and T
.  

As shown in Figure 2, it results that    Ts  also when 

 Ts  and n  is arbitrarily large. This is problematic because, 

when observed variability is more credible (larger number of 
degrees of freedom) than prior knowledge of variability, then the 
observed variability, not its prior estimate, should dominate the 
type A evaluation. In other words, setting an upper bound on 

 2  is acceptable provided that irrefutable evidence is available 

of an upper truncation value. Otherwise, setting a large value 
with an associated small probability of being exceeded is a more 
cautionary approach. 

Another limitation of the approach in [8] is that necessarily 

 2n  (see (13),  = 0  if = 1n ) while, according to the solution 

here proposed, also the case = 1n  is tractable. 

3. APPLICATION IN THE CONTEXT OF ACCREDITATION TO 
ISO/IEC 17025 

National accreditation bodies require evaluation of 
measurement repeatability of the test methods in the scope of 
accreditation. Such evaluation is carried out by testing 
laboratories through periodic recording of measurement results 
obtained in representative conditions of actual testing. An 

estimate  0
 with corresponding degrees of freedom  0

 is thus 

obtained. How to incorporate this prior knowledge into test 
outcome? We here provide a numerical example in the context 
of electromagnetic compatibility (EMC) testing. Suppose that the 
estimate of the non-repeatability of the radiated emission 

measurement chain is  =0 0.8 dB and  =0 9 . Testing two 

times ( = 2n ) an absolute deviation between measured values of 

1.5 dB is obtained, then = 1.5 2s dB = 1.06 dB. By pooling 

standard deviations  0
 and s  we have 

( ) = − + = + =01 1 9 10n n , 

( )  




 + − +
= = =

− + +

2

0
2 22
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1 1 0
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n s
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= = =

− −

10 0.76
0.60 dB

2 10 2 2

n n
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As a second example consider the case where an expert of the 

specific test method provides a guess  =0 1dB, based on 

experience with similar test systems. The expert is also confident 

that, with a low probability  = 5 %,   exceeds  = 2.5 dB. 

This state of knowledge corresponds to approximately (see 

Figure 1)  =0 4 , from which  = 5n
 (instead of 10, as in the 

previous example),  = 0.86n
dB (instead of 0.76 dB), and 

 = 0.78 dB (instead of 0.60 dB). 

4. CONCLUSIONS 

Reliable statistical techniques to incorporate prior knowledge 
into the so-called “type A” evaluation of standard uncertainty 
should be identified to make evaluation more robust in case of 
small sample. The use of these statistical techniques should be 
promoted and confidently accepted in accredited testing if 
competence requirements are fulfilled. GUMS1 already provides 
such a tool by pooling prior variance and sample variance. A 
Bayesian derivation of the GUMS1 pooled variance is here 
illustrated along with and a more flexible interpretation aimed at 
addressing expert’s knowledge as a useful source of reliable 
information. 
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Figure 1: plots of the degrees of freedom  as a function of the ratio  

obtained by solving the implicit equation (11) for three values of probability 
 (see the legend).  

 

Figure 2: plots of  as a function of  and for selected values of 

 (see the legend). Note that  for any value of  and for any 

value of .  
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According to the results described in this work there is no 
need to distinguish between type A and type B evaluations since 
a homogeneous mathematical treatment is used to address prior 
information about variability (notwithstanding is originated from 
experimental evidence or expert’s experience) and its pooling 
with present observation. 

The main ideas and results in this work were presented by the 
author of this paper, during the 2019 JCGM-WG1 workshop 
mentioned in the introduction section. I would like to 
acknowledge, that during the same workshop, also Anthony 
O’Hagan (Emeritus professor, University of Sheffield), proposed 

the use of the scaled inverse  2  PDF to solve the problem of 

the Type A evaluation in case of small sample size. His 
formulation of the solution (still unpublished) was different from 
mine, but it is remarkable that two researchers, having a 
completely different background, arrived at similar proposal. The 
concluding section contains the major achievements of the 
research presented in the manuscript. It should be concise but 
informative. When numerical results are an essential part of the 
research, for instance a wider measurement range, higher 
uncertainty (6), they should be included in the conclusions. 

Notice that conclusions are not the same as an abstract. 
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APPENDIX 

We here derive the marginal posterior PDF of   given prior 

information in terms of the prior PDFs of   and  2  and the 

set of observations 
iy , where =1,2,...,i n . 

A uniform prior PDF is assigned to   as 

, (14) 

while the prior of  2  is a scaled inverse  2  PDF with prior 

variance  2

0  and associated degrees of freedom  0
 

. (15) 

 and  are a-priori independent, then the joint prior PDF of 

 and is, from (14) and (15), 

. (16) 

The likelihood of the observations is easily obtained as [9] 

, (17) 

where y  is a vector representing the set of observations 
iy , 

=1,2,...,i n . Due to Bayes theorem the joint posterior PDF of 

  and  2  is given by 

. (18) 

Substituting (16) and (17) into (18) and marginalizing with 

respect to  2  it is readily obtained 

 (19) 

where ( )|p y  represents the marginal posterior PDF of  . It 

is evident from (19) that ( )|p y  is a Student’s t PDF shifted 

in y  and scaled by  2

n n , where  2

n  is given by (9). 
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