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Particle trajectories in linear water waves
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1 Introduction

The aim of this paper is to show that for a linear water wave no particle trajectory
is closed, unless the free surface is flat. Each trajectory involves over a period a back-
ward/forward movement of the particle, and the path is an elliptical arc (which degener-
ates on the flat bed) but with a forward drift. Our result can be viewed as a more detailed
version of the classical theory for the trajectories of particles below a water wave, as it
was summarized by Longuet-Higgins :

“In progressive gravity waves of very small aplitude it is well known that the orbits of
the particles are either elliptical or circular. In steep waves, however, the orbits become
quite distorted, as shown by the existence of a mean horizontal drift or mass-transport
in irrotational waves.”
We show that within linear water wave theory, the particle paths are almost closed and
the more we approach the free surface, the more pronounced the deviation from a closed
orbit becomes. This is in agreement with Stokes’ observation :

“It appears that the forward motion of the particles is not altogether compensated by
their backward motion; so that, in addition to their motion of oscillation, the particles
have a progressive motion in the direction of the propagation of the waves ...”

The conclusions reached in this paper must have occured to many people interested in
water waves, but, to our knowledge, the point has never been clearly put on record. We
do so in this paper, with the simplest means. We expect that similar conclusions hold
for the governing equations (without linearization), that is, for Stokes waves (irrotational
flow) and for periodic traveling waves with vorticity. While explicit formulas are not
available for these wave motions, qualitative features of the underlying flow are known
and could possibly lead to a confirmation of the features we prove here within the confines
of linear water waves.
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2 Preliminaries

2.1 The governing equations

Most of the waves propagating on the surface of the sea or on a lake are, as a matter of
common experience, approximately two-dimensional. That is, the motion is identical in
any direction parallel to the crest line. To describe these waves consider a cross section
of the flow that is perpendicular to the crest line with Cartesian coordinates (x, y), the
y-axis pointing vertically upwards and the x-axis being the direction of wave propagation,
while the origin lies on the flat bed. Let (u(t, x, y), v(t, x, y)) be the velocity field of the
flow over a flat bed y = 0 and let y = h0 +η(t, x) be the water’s free surface. Here h0 > 0
is the mean water level.

Homogeneity (constant density) is a physically reasonable assumption for gravity waves
, and it implies the equation of mass conservation

(2.1) ux + vy = 0.

Under the assumption of inviscid flow (experimental evidence confirms that the length
scales associated with an adjustment of the velocity distribution due to laminar viscosity
or turbulent mixing are long compared to typical wavelengths, in support of the inviscid
setting), the equation of motion is Euler’s equation

(2.2)

{

ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,

where P (t, x, y) denotes the pressure and g is the gravitational constant of acceleration.
The free surface decouples the motion of the water from that of the air, a fact that is
expressed by the dynamic boundary condition

(2.3) P = P0 on y = h0 + η(t, x),

if we neglect surface tension, where P0 is the (constant) atmospheric pressure. Since
the same particles always form the free surface, we also have the kinematic boundary
condition

(2.4) v = ηt + uηx on y = h0 + η(t, x).

On the flat bed we have the kinematic boundary condition

(2.5) v = 0 on y = 0,

expressing the fact that the flow is tangent to the horizontal bed (or, equivalently, that
water cannot penetrate the rigid bed). The governing equations for water waves are
encompassed by the nonlinear free-boundary problem. In our discussion we suppose that
at some distant point in the past a disturbance of the flat surface of still water was created
and we analyze the subsequent motion of the water. The balance between the restoring
gravity force and the inertia of the system governs the evolution of the mass of water
and our primary objective is to understand the behaviour of the water particles below
the free surface.
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An important category of flows are those of zero vorticity (irrotational flows), charac-
terized by the additional assumption

(2.6) uy = vx.

The vorticity of a flow, ω = uy −vx, measures the local spin or rotation of a fluid element
so that in irrotational flows the local whirl is completely absent. This relation ensures
the existence of a velocity potential φ(t, x, y) defined up to a constant via

φx = u, φy = v.

In view of (2.1), φ is a harmonic function, i.e. (∂2
x+∂2

y)φ = 0 so that the powerful methods
of complex analysis become available for the study of irrotational flows. Concerning
the physical relevance of irrotational water flows, field evidence indicates that for waves
entering a region of still water the assumption of irrotational flow is realistic. Moreover, as
a consequence of Kelvin’s circulation theorem, a water flow that is irrotational initially
has to be irrotational at all later times. It is thus reasonable to consider that water
motions starting from rest will remain irrotational at later times.

3 Particle trajectories

If (x(t), y(t)) is the path of the particle below the linear wave then

dx

dt
= u,

dy

dt
= v,

so that finally, after having taken in account the linearized problem, the motion of the
particle is described by the system











dx

dt
= M cosh(ky) cos k(x − ct),

dy

dt
= M sinh(ky) sin k(x − ct),

(3.1)

with initial data (x0, y0). We denoted

(3.2) M =
ε ωh0

sinh(kh0)
.

3.1 Classical approximation theory

We seek approximations of the solution in terms of the small parameter M . In this
subsection we mainly describe the classical approach.

We restrict our attention to a the fixed time interval [0, T ], where T = λ/c > 0 is the
wave period. Since y belongs to a set bounded a priori as 0 ≤ y ≤ h0(1 + ε), from (11)
we readily obtain that

x(t) − x0 = O(M), y(t) − y0 = O(M), t ∈ [0, T ],

where O(M) denotes an expression of order M . Using the mean-value theorem, we may
write (11) on [0, T ] as











dx

dt
= M cosh(ky0) cos(kx0 − ωt) + O(M2),

dy

dt
= M sinh(ky0) sin(kx0 − ωt) + O(M2),
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since ω = kc. Neglecting terms of second order in M , we find that











dx

dt
≈ M cosh(ky0) cos(kx0 − ωt),

dy

dt
≈ M sinh(ky0) sin(kx0 − ωt),

so that by integration we obtain

(3.3)

{

x(t) ≈ x0 −
M

ω
cosh(ky0) sin(kx0 − ωt),

y(t) ≈ y0 + M
ω

sinh(ky0) cos(kx0 − ωt)
)

.

Thus

(3.4)
[x(t) − x0]

2

cosh2(ky0)
+

[y(t) − y0]
2

sinh2(ky0)
≈

M2

ω2
,

which is the equation of an ellipse: to a first-order approximation the water particles
move in closed elliptic orbits, the centre of the ellipse being (x0, y0).

3.2 Exact theory

To study the exact solution to (3.1) it is convenient to re-write it in a moving frame
with scaled independent variables: the transfomation

(3.5) X = k(x − ct), Y = ky,

maps (11) into











dX

dt
= k M cosh(Y ) cos(X) − kc,

dY

dt
= k M sinh(Y ) sin(X).

(3.6)

Working in the phase plane we are able to show that the particle traces a loop that fails
to close-up: there is a small forward drift which is minimal on the flat bed.
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