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A B S T R A C T

In this paper we present the high-level functionalities of a quantum–classical machine learning software, whose
purpose is to learn the main features (the fingerprint) of quantum noise sources affecting a quantum device,
as a quantum computer. Specifically, the software architecture is designed to classify successfully (more than
99% of accuracy) the noise fingerprints in different quantum devices with similar technical specifications, or
distinct time-dependences of a noise fingerprint in single quantum machines.
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1. Introduction

Quantum technologies are a fast developing scientific and industrial
field [1]. They have been already implemented in several different
platforms, as for instance photonic circuits [2,3], but also Rydberg
atoms [4], superconducting devices [5] and others. Likely, the most
promising quantum technology is represented by quantum computers,
i.e., quantum devices for quantum computing, among which it is worth
mentioning superconducting circuits [6,7], trapped-ions quantum com-
puters [8,9], photonic chips [10,11] and topological qubits [12]. Both
academic laboratories and industrial companies are devoting lots of

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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effort and funding to boost research and technological improvements,
towards the so-called quantum supremacy [13], i.e., a quantum advan-
tage to solve (numerical) problems that no classical computer will never
solve. The actual drawback of these devices is the absence of a standard
hardware (and thus even software) architecture, on which research
activities may be jointly coordinated. For each of these platforms,
indeed, ad hoc solutions are proposed and then realized, and this makes
such a technologies still very expensive and incompatible from a device
to another.

However, in quantum computing, the main issue to be still solved
is the unavoidable presence of external noise sources that dramatically
https://doi.org/10.1016/j.simpa.2022.100260
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Fig. 1. Pictorial figure showing the structure of the software architecture and how its different parts depend each other. On the left, one can observe the part of the software that is
esigned for the generation of the testbed quantum circuit. Specifically, createCircuit.py is used to launch the quantum circuit on the IBM cloud services with the aim to get

the raw data from the measurement procedure in each execution of the circuit. The file extractExecutions.py computes the probabilities to get the measurement outcomes
from the execution of the testbed quantum circuit. Either createDataset.py and createDatasetTimeSeries.py is used to pack in datasets the measurement outcomes
probabilities. The former creates datasets with data collected on two or more machines, while the latter collects data taken on the same machine but at different times. On the
right side of the figure, we represent the workflow for the training of ML methods. Specifically, the files runSvmDatFile.py, runSvmTable.py, runSvmTableHoriz.py
and runSvmTableTriang.py are employed to generate the output data that we have shown in the tables and plots in [17]. All these scripts call the function runSVM in the
ile runSvm.py that contains the main code for the definition, training and evaluation of the SVM models. Note that the function is called with one of the configuration names
config in the picture) that is listed in the config file configurations.py. The configuration name denotes what is the generated dataset that is used for the training of the
L models.

imit the accuracy of quantum computations, as well as the large-scale
ealization of quantum circuits and algorithms. The negative impact
f noise on quantum computing is so noticeable that the acronym
oisy Intermediate-Scale Quantum (NISQ) technology has been recently

ntroduced [14]. Furthermore, commercial quantum devices as for
xample the quantum computers by the companies Q-IBM® [15] and
igetti® [16], albeit they have been made available by anyone who
reates a free account on their database, are not physically accessible
nd several specifications on the chip’s parameters are not made public.

In the paper [17], we have recently observed on some IBM quantum
omputers that main features of the noise sources affecting the devices
re specific of each single computer and have a clear time-dependence.
or such a purpose, a testbed quantum circuit – composed by a fixed
umber of qubits – is designed, then made run for a sufficient number
f times and finally locally measured in correspondence of each qubit.
rom the measurements of the qubits (the measurement observable
as the Pauli matrix 𝜎𝑧), a set of measurement outcomes is recorded,

ollected, and then used to train a machine learning (ML) algorithm [18,
9]. However, it is worth noting that in [17] the features of the
uantum noise are not reconstructed but just classified from a quantum
evice to another. Specifically, the classification task was successfully
arried out by means of a support vector machine (SVM) [18,19], with a
lassification accuracy equal or greater than 99%. Hence, thanks to our
rocedure, one just needs to collect an informative statistics of quan-
um measurement outcomes (that are quantum data) from the testbed
uantum circuit, and subsequently train ML (classical) algorithms. In
act, no quantum noise modelling is required nor, in principle, the
estbed circuit has to be controlled by time-dependent pulses [20].
lso for these reasons, the use of a ML technique is the most natural
hoice to perform classification, since it naturally provides a black-box
odel with predictive outcomes. In this regard, we recall that in the

urrent literature ML has been already adopted to distinguish open
uantum dynamics [21–23] and to perform quantum sensing tasks [24–
7], as for example the learning and classification of non-Markovian
oise [24,26] or the detection of qubits correlations [25].

As depicted in Fig. 1, our software architecture adopted in [17]
as two distinct parts: The one on the left of the figure generates the
estbed quantum circuit (see Section 2), while the other is designed
or the implementation of the ML models that classify quantum noise
ingerprints (refer to Section 3).

. Testbed quantum circuit

For our experiments of quantum noise classification in [17], we
ade use of the IBM Quantum cloud services to remotely run quantum

Algorithm 1: Generation of the testbed quantum circuit (baseline
version)
Require: IBM-Q backend (specific device to fingerprint)
Ensure: |0⟩𝑖 ∀𝑖 ∈ 0, ..., 3
for number of repetitions do

0 ← 𝐻 ⊳ Hadamard gate on the 0𝑡ℎ qubit
1 ← 𝐻
CNOT(0 → 2) ⊳ Controlled NOT gate on the 2𝑛𝑑 qubit

conditioned on the qubit 0
CNOT(1 → 3)
0 ← 𝑋 ⊳ X gate on the 0𝑡ℎ qubit
1 ← 𝑋
Toffoli(0, 1 → 2) ⊳ Toffoli gate on the 2𝑛𝑑 qubit conditioned on

the qubits 0, 1
end for
Measure(2) ⊳ Projective measurements of the 𝑖𝑡ℎ qubit
Measure(3)
return 1000 shots from the measurements

circuits on different machines. In particular, to interact with the cloud
services, one can use the Qiskit sdk [28] that is an open-source python
package, useful both to simulate quantum dynamics and to program a
given set of operations on a real quantum computer. Currently, one has
at disposal up to 11 superconducting quantum computers, ranging from
a single qubit up to 15 qubits, with different topology and calibration
routines. For all the available devices and their specifications, we direct
the reader to the IBM documentation [15].

In Algorithm 1 we provide the pseudo-code for the generation of
the testbed quantum circuit in its baseline version (see also panel (c)
in Fig. 2 for a pictorial representation of the circuit) realized in [17]
to carry out the classification of noise fingerprints. For the quantum
computation in the aforementioned circuit, we made use of standard
gates whose mathematical definitions is given in terms of matrices
that one can easily find in quantum computing textbooks [29]. The
baseline version of the testbed quantum circuit is repeated 3 times
overall for a total of 9 measurements (also denoted as measurement
steps) of both qubits 2 and 3. Indeed, operationally, the 9 measurement
steps are not performed all in the same run (i.e., sequentially), but on
consecutive runs by implementing incremental parts of the quantum
circuit. To clarify this aspect as much as possible, in Fig. 2 we have
represented pictorially the first 4 measurement steps of the testbed

quantum circuit, whose baseline version (returned by Algorithm 1) is

2
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Fig. 2. Pictorial representation of the first 4 measurement steps (the panels of the figure) applied to the testbed quantum circuit designed in Ref. [17]. The 4 panels have to be
read from left to right, and from top to bottom. The baseline version of the testbed quantum circuit (provided by Algorithm 1) is the one depicted in panel (c), in correspondence
of the third measurement step. The full set of measurement outcomes is obtained by repeating 3 times the baseline circuit and then performing a total of 9 measurement steps,
each of them acting on the qubits 2 and 3. The outcomes collected in the 9 measurement steps come from executing incrementally the testbed quantum circuit in different runs,
where the qubits 2 and 3 are measured only at the end of the implemented circuits.

depicted in the panel (c) of the figure. Specifically, first we execute
the part of the circuit that is obtained by cutting the testbed quantum
circuit after the first measurement step, i.e., after the measurement of
qubit 2 and 3 following the Hadamard gates on the 0th and 1th qubits
and the CNOT gate from qubit 0 to 2). Then, the measurement outcomes
are recorded. Subsequently, we execute part of the testbed quantum
circuit until the second measurement step (measurements of qubits 2
and 3 included), thus by also taking into account the 𝑋-gate on the
th qubit and the CNOT gate from qubit 1 to 3, and again we record
he measurement outcomes. The procedure is then repeated for all the
measurement steps. Before proceeding, it is worth stressing that, for

ach implemented quantum circuit, the measurements of the qubits 2
nd 3 are performed only at the end of the circuits.

Overall, in [17], several experiments have been conducted on dif-
erent IBM chips that have different physical specifications, as the
rchitecture of the qubits or the quantum volume [30]. Some quantum
achines, indeed, are inherently noisier than other, and even single

ubits inside a machine can have a distinctive noise profile. All these
eculiar differences in noise and topology contribute to the fingerprint
hat we aim to classify using our ML method.

.1. Data acquisition

The pipeline designed for the creation of the dataset, set as input of
he ML models, is constituted of several scripts that can be customized
ccording to the needs of the user. First, for each implemented quantum

circuit, the script createCircuit.py adopts Qiskit to interact with
the IBM quantum services for the measurement of a predefined number
of circuit executions. Specifically, such a script is parameterized to
launch the runs of the circuits on several quantum machines with a
specific amount of parallel tasks. The runs are executed in two different
modalities that generates the datasets that we called FAST and SLOW
in [17]. In the former dataset, the aim was to collect as many runs
as possible in the shortest time interval. For this purpose, the script
launches 20 parallel processes, each of them adds to the IBM queue a
predefined number of runs with 8000 execution-shots. After that, each
batch of 8000 execution-shots is split into 8 batches of 1000 shots that
are then employed to compute the outcomes’ probabilities. Instead, for
the dataset named SLOW, we collect a sequence of measurement out-
comes that are uniformly distributed over time. To obtain such dataset,
the script launches only one run at a time with 1000 execution-shots
and waits two minutes from a run to another.

The second script in the pipeline is extractExecutions.py,
whose objective is to compute the probabilities of the measurement
outcomes from the raw data returned by the calls to the IBM quantum
services (this is ensured by the previous script). After that, either
createDataset.py and createDatasetTimeSeries.py pack
the probability distributions in datasets. The difference between such
scripts is the following. The former builds binary or multiclass classifi-
cation dataset using data from at least two quantum machines, while
the latter builds classification datasets with data collected in a single
machine and labelled by the time interval in which the testbed quantum
circuit is executed.
3



S. Martina, S. Gherardini, L. Buffoni et al. Software Impacts 12 (2022) 100260

−
c
t
t
c
t
l
c
a
m
s

t

3

f
c
w
t

In the github repository at https://github.com/trianam/learningQu
antumNoiseFingerprint and on CodeOcean at https://codeocean.com/
capsule/fa6e1d85-c99f-4a38-9c16-ac204da85040/, we release the
source code of all the scripts and all the data obtained from the
execution of createCircuit.py on each quantum machine we
employed.

3. Machine learning models

3.1. Support vector machine

In [17] we have successfully classified the noise fingerprints on
several IBM quantum computers by training Support Vector Machine
models [18,19]. SVM is a machine learning technique that is usually
used to solve binary classification tasks. Generally speaking, a SVM
model is trained on a dataset composed of pairs (𝐱𝑖, 𝑦𝑖), where 𝐱𝑖 are
points in a certain space R𝑛 of dimension 𝑛, and 𝑦𝑖 is equal to 1 or
1 depending the corresponding point belongs to one or the other
lass. The Support Vector Machine is trained to find the hyperplane
hat divides the space representation of the two classes, by ensuring
he maximum distance from the points. When the points of the two
lasses are not linearly separable, a common solution is to resort
o the so-called ‘‘kernel trick’’, i.e., the points 𝐱𝑖 are mapped to a
arger dimension space until they become linearly separable. The most
ommon kernels are polynomial functions with varying degree number
nd the so-called Radial Basis Functions (RBF) [18,19]. Finally, SVM
odels can also be extended to multiclass classification tasks using the

trategies One-Versus-All (OVA), or One-Versus-One (OVO) [18,19].
In our work, to implement and train the SVM models, we leveraged

he scikit-learn python library [31].

.2. Data interpretation

The code that implements and train the SVM is defined by the
unctions in the file runSVM.py. Specifically, the main function is
alled runSVM: it requires a configuration object that (i) identifies
hat model has to be used, and (ii) set optional arguments to tune

he number of hyperparameters (mask) and to control if the method
is verbose (verbose) and if the results have to be written in an
output file (writeToFile). Practically, the function runSVM first
calls extractData whose purpose is to load the dataset file, extract
the data in the desired time steps and split them in training, validation
and test sets. After that, runSVM proceeds to train a set of possible SVM
models on the training set, by then evaluating them on the validation
set and computing on the test set the resulting accuracy of the model
that performed better on the validation set. The possible models that
can be employed are: (i) Standard linear SVM (using two different
libraries), (ii) SVM with polynomial kernel with degree from 2 to 4, and
(iii) SVM with RBF kernel.

The file runSVM.py is provided with a main method. Thus, it can
be directly called as a script using the configuration name as argument.
We have also designed some useful methods that call runSVM, build
directly the latex table with the results and calculate the points for the
figures shown in [17].

4. Impacts

In this paper, we have explained in great detail the software ar-
chitecture of the ML method, introduced in [17], to carry out quantum
noise classification. Such a tools are intended to be applied to quantum
technologies, as e.g., quantum computers.

The main impact of our software lies in its ability in classifying
the fingerprint left by quantum noise sources on devices that have
identical technical specifications and are thus expected to provide the
same outcomes. Unfortunately, in quantum machines, the influence of
the environment is so relevant that different noise fingerprints can be

identified depending on the type of quantum computer (as previously
explained, quantum computers can differ, e.g., on the number of qubits
and/or the quantum volume), on the time period in which the single
machine has worked, and on environmental changes mainly due to
temperature fluctuations. However, thanks to our quantum–classical
machine learning method, one can (i) distinguish the noise fingerprints
in different quantum devices; (ii) classify the noise fingerprint on the
same quantum devices but in different times; (iii) learn if and how a
given noise fingerprint changes over time.

In [17] our method is proved to be very accurate (more than 99%
of effectiveness) in classifying a clear machine-related noise fingerprint
in each of the analysed IBM quantum computers, and even robust
since any noise fingerprint is highly predictable over time in windows
of consecutive runs. Also an evident time-dependence of the noise
fingerprints has been classified, by observing changes over time after
few hours from the first execution of the testbed quantum circuit.

Another important feature of our software architecture is that the
ML models do not require a complete set of measurement outcomes as
input data, but conversely the outcomes from a sequence of repeated
measurements of a single observable. For an example, for the experi-
ments in [17], the chosen observable was the tensor product of 𝑠𝑖𝑔𝑚𝑎𝑧
Pauli matrices locally applied on each qubit of the testbed circuit.
Furthermore, the proposed method is able to distinguish and classify
noise fingerprints, even without knowing the microscopic model that
describes the (real or effective) interaction between the device and the
external noise fields. This important aspect allows the user to employ
our quantum–classical machine learning algorithm to classify the noise
fingerprints of even inaccessible quantum machines.

4.1. Applications

The experimental evidences in [17] lead us to conclude that dif-
ferent quantum devices exhibit distinctive, and thus distinguishable,
noise fingerprints that one can classify and predict. Therefore, in prin-
ciple, our method could be adopted to identify from which specific
quantum device certain data (a collection of measurement outcomes)
are generated, just looking at the noise fingerprint of the device.
Moreover, the proposed solution might be employed to certify the
time-scheduling in which a given quantum computation is executed.
Both these applications are expected to play a key role for diagnostics
purposes – especially in all those contexts where quantum computations
cannot be error-corrected [32] – and to accomplish benchmarking and
certification [33,34] of quantum noise sources within a default error
threshold.

4.2. Outlook

The proposed methodology, aimed to learn the noise fingerprint
of quantum devices from time-ordered measurements of a testbed
quantum circuit, may be in principle applied to any quantum devices,
and thus not only to the IBM quantum computers as done in [17].
The possibility to predict on which device, and at which time, a given
quantum operation (even time-varying) has been executed is expected
to help the mitigation of quantum computational errors (e.g., by means
of calibration routines), and to assist the application of ad-hoc error
corrections.

Furthermore, instead of SVMs, one could employ deep learning tech-
niques, as for example Recurrent Neural Networks (RNN) [18,35,36],
to make more efficient the classification of quantum noise fingerprints.
In such a case, the software architecture should be modified a bit, but
not in the part that concerns the generation of the quantum data placed
in input to the ML model. What should be different, indeed, is the way
the input data would be processed.

Finally, we are also confident that, thanks to specific modifications,
it is possible to carry out even the reconstruction of some quantum
noise features. However, for such a purpose, a minimal knowledge of
the way noise sources affect the quantum device under investigation
will be required.
4
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