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Abstract: In recent years, the efficient numerical solution of Hamiltonian problems has led to the
definition of a class of energy-conserving Runge–Kutta methods named Hamiltonian Boundary Value
Methods (HBVMs). Such methods admit an interesting interpretation in terms of continuous-stage
Runge–Kutta methods. In this review paper, we recall this aspect and extend it to higher-order
differential problems.
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1. Introduction

Continuous-stage Runge–Kutta methods (csRK methods, hereafter), introduced by
Butcher [1–3], have been used in recent years as a useful tool for studying structure-
preserving methods for Hamiltonian problems (see, e.g., [4–19]). In particular, we shall at
first consider methods, within this latter class, having Butcher tableau in the form:

c a(c, τ)
b(c)

, (1)

where
a : [0, 1]× [0, 1]→ R, b : [0, 1]→ [0, ∞), (2)

are suitable functions defining the method. Hereafter, we shall use the notation (1), in place
of the more commonly used acτ , bc, in order to make clear that these are functions of the
respective arguments. For later use, we shall also denote

ȧ(c, τ) =
d
dc

a(c, τ). (3)

When used for solving the ODE-IVP

ẏ(t) = f (y(t)), t ∈ [0, h], y(0) = y0 ∈ Rm, (4)

the method (1)–(3) provides an approximation

σ̇(ch) =
∫ 1

0
ȧ(c, τ) f (σ(τh))dτ, c ∈ [0, 1], σ(0) = y0, (5)
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to (4), and therefore,

σ(ch) = y0 + h
∫ 1

0
a(c, τ) f (σ(τh))dτ, c ∈ [0, 1], (6)

with the approximation to y(h) given by

y1 = y0 + h
∫ 1

0
b(c) f (σ(ch))dc. (7)

In particular, we shall hereafter consider the natural choice

b(c) ≡ 1, c ∈ [0, 1], (8)

though different choices have been also considered [9]. In such a case, because of consis-
tency, one requires that ∫ 1

0
b(c)dc = 1.

In this review paper, we consider the csRKs derived from the energy-conserving meth-
ods called Hamiltonian Boundary Value Methods (HBVMs), which have been the subject of
many investigations in recent years (see, e.g., [4,5,20–37]). In particular, the used arguments
strictly follow those in [21] (in turn, inspired by [12,38,39]). However, we also consider an
interesting generalization, with respect to the arguments in [21], as explained below.

With this premise, the structure of the paper is as follows: in Section 2 we recall the
basic facts concerning the initial value problem (4); in Section 3 we generalize the approach
to the case of second-order problems, thereby obtaining a continuous-stage Runge–Kutta-
Nyström method (csRKN method, hereafter), whose generalization for kth-order problems
is also sketched out; Section 4 is devoted to derive relevant families of methods for the
previous classes of problems, and we report some numerical testing; at last, in Section 5 a
few conclusions are given.

2. Approximation of ODE-IVPs

Let us consider, at first, the initial value problem (4). As done in [21], for our analysis
we shall use an expansion of the vector field along the orthonormal Legendre polyno-
mial basis:

Pi ∈ Πi,
∫ 1

0
Pi(x)Pj(x)dx = δij, i, j = 0, 1, . . . , (9)

where, as usual, Πi denotes the vector space of polynomials of degree i, and δij is the
Kronecker symbol. Consequently, assuming for sake of simplicity that f is analytical, we
can rewrite (4) as

ẏ(ch) = ∑
j≥0

Pj(c)γj(y), c ∈ [0, 1], y(0) = y0 ∈ Rm, (10)

with

γj(y) =
∫ 1

0
Pj(τ) f (y(τh))dτ, j = 0, 1, . . . . (11)

Integrating side-by-side, and imposing the initial condition, one then obtains that the
solution of (10) is formally given by

y(ch) = y0 + h ∑
j≥0

∫ c

0
Pj(x)dx γj(y), c ∈ [0, 1]. (12)
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For c = 1, by considering that, by virtue of (9),
∫ 1

0 Pj(x)dx = δj0, and taking into account (4),
one obtains:

y(h) = y0 + h
∫ 1

0
f (y(ch))dc ≡ y0 +

∫ h

0
ẏ(t)dt, (13)

i.e., the fundamental theorem of the calculus. Interestingly, by setting

a∞(c, τ) = ∑
j≥0

∫ c

0
Pj(x)dxPj(τ), (14)

one obtains that (10)–(13) can be rewritten (see (3)), respectively, as:

ẏ(ch) =
∫ 1

0
ȧ∞(c, τ) f (y(τh))dτ, y(0) = y0 ∈ Rm,

y(ch) = y0 + h
∫ 1

0
a∞(c, τ) f (y(τh))dτ, c ∈ [0, 1], (15)

y(h) = y0 + h
∫ 1

0
f (y(ch))dc.

Consequently,
c a∞(c, τ)

1
(16)

is the csRK “method” providing the exact solution to the problem.

2.1. Vector Formulation

For later use, we now rewrite (14) in vector form. For this purpose, let us introduce
the infinite vectors,

P∞(c) =

 P0(c)
P1(c)

...

, I∞(c) =
∫ c

0
P∞(x)dx, (17)

and the infinite matrix,

X∞ =


ξ0 −ξ1
ξ1 0 −ξ2

ξ2
. . . . . .
. . .

, ξi =
1

2
√
|4i2 − 1|

, i = 0, 1, . . . , (18)

and recall that, by virtue of (9), and due to the well-known relations between the Legendre
polynomials and their integrals,

I∞(c)> = P∞(c)>X∞,
∫ 1

0
P∞(τ)P∞(τ)>dτ = I,

∫ 1

0
P∞(τ)I∞(τ)>dτ = X∞, (19)

with I being the identity operator. Consequently, (14) can be rewritten as

a∞(c, τ) = I∞(c)>P∞(τ) = P∞(c)>X∞P∞(τ) (20)

and, in particular, one may regard the Butcher tableau, equivalent to (16),

c P∞(c)>X∞P∞(τ)
1

, (21)

as the corresponding W-transformation [40] of the continuous problem.
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It is worth mentioning that, by defining the infinite vector (see (11))

γ :=

 γ0(y)
γ1(y)

...

 ≡ ∫ 1

0
P∞(τ)⊗ Im f (y(τh))dτ (22)

where, as is usual, ⊗ denotes the Kronecker product, then (12) can be rewritten as

y(ch) = y0 + hI∞(c)> ⊗ Imγ

and, consequently, the vector γ satisfies:

γ =
∫ 1

0
P∞(τ)⊗ Im f (y0 + hI∞(τ)> ⊗ Imγ)dτ, (23)

with (compare with (15))
y(h) = y0 + hγ0(y). (24)

2.2. Polynomial Approximation

In order to derive a polynomial approximation σ ∈ Πs of (15), it suffices to truncate
the infinite series in (14) after s terms:

as(c, τ) =
s−1

∑
j=0

∫ c

0
Pj(x)dxPj(τ), (25)

so that

ȧs(c, τ) =
s−1

∑
j=0

Pj(c)Pj(τ), (26)

and therefore, (15) is approximated by

σ̇(ch) =
∫ 1

0
ȧs(c, τ) f (σ(τh))dτ, σ(0) = y0 ∈ Rm,

σ(ch) = y0 + h
∫ 1

0
as(c, τ) f (σ(τh))dτ, c ∈ [0, 1], (27)

y1 := σ(h) = y0 + h
∫ 1

0
f (σ(ch))dc.

Remark 1. As it was shown in [21], the csRK method

c as(c, τ)
1

, (28)

with as(c, τ) given by (25), is equivalent to the energy-preserving method, named HBVM(∞, s),
introduced in [4] (in particular, when s = 1 one obtains the AVF method [10]; see also [6] for a
related approach).

The following property holds true ([5] Theorem 1):

y1 − y(h) = O(h2s+1); (29)

i.e., the approximation procedure has order 2s.

Remark 2. If H : Rm → R, and

f (y) = J∇H(y), with J> = −J;
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then H(y1) = H(y0). In the case of Hamiltonian problems, H is the energy of the system.
Consequently, the csRK method (28) is energy-conserving, as is shown in [5] Theorem 3).

A corresponding vector formulation of the csRK method (28) can be derived by
replacing the infinite vectors and matrix in (17)–(18) with

Pr(c) =

 P0(c)
...

Pr−1(c)

, r = s, s + 1, Is(c) =
∫ c

0
Ps(x)dx, (30)

and the matrices

X̂s =



ξ0 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1
ξs−1 0

ξs

 ≡
(

Xs
0 . . . 0 ξs

)
∈ Rs+1×s, (31)

such that

Is(c)> = Ps+1(c)>X̂s,
∫ 1

0
Pr(τ)Pr(τ)

>dτ = Ir,
∫ 1

0
Ps(τ)Is(τ)

>dτ = Xs, (32)

with Ir ∈ Rr×r being the identity matrix. Consequently, with reference to (25), one has

as(c, τ) = Is(c)>Ps(τ) = Ps+1(c)>X̂sPs(τ), (33)

and in particular, one may regard the Butcher tableau, equivalent to (28),

c Ps+1(c)>X̂sPs(τ)
1

, (34)

as the corresponding W-transformation of a HBVM(∞, s) method [21].
Further, according to [32], setting the vector

γs :=

 γ0(σ)
...

γs−1(σ)

, (35)

with γj(σ) defined as in (11), by formally replacing y with σ, one has that such vector
satisfies the equation (compare with (23))

γs =
∫ 1

0
Ps(τ)⊗ Im f (y0 + hIs(τ)

> ⊗ Imγs)dτ, (36)

with (compare with (27) and (24))

y1 = y0 + hγ0(σ). (37)

3. Approximation of Special Second-Order ODE-IVPs

An interesting particular case is that of special second order problems, namely, prob-
lems in the form

ÿ(t) = f (y(t)), t ∈ [0, h], y(0) = y0, ẏ(0) = ẏ0 ∈ Rm, (38)
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which, in turn, form a special case of the more general problems:

ÿ(t) = f (y(t), ẏ(t)), t ∈ [0, h], y(0) = y0, ẏ(0) = ẏ0 ∈ Rm. (39)

Let us study, at first, the special problem (38), which is very important in many
applications (as an example, separable Hamiltonian problems are in such a form); then we
discuss (39). Setting ẏ(t) = p(t), and expanding the right-hand sides along the Legendre
basis, gives:

ẏ(ch) = P∞(c)> ⊗ Im

∫ 1

0
P∞(τ)⊗ Im p(τh)dτ, (40)

ṗ(ch) = P∞(c)> ⊗ Im

∫ 1

0
P∞(τ)⊗ Im f (y(τh))dτ, c ∈ [0, 1].

Remark 3. It is worth mentioning that, with reference to (3) and (20), the two previous equations
can be rewritten as:

ẏ(ch) =
∫ 1

0
ȧ∞(c, τ)p(τh)dτ, ṗ(ch) =

∫ 1

0
ȧ∞(c, τ) f (y(τh))dτ, c ∈ [0, 1]. (41)

Integrating side by side (40), and imposing the initial condition then gives:

y(ch) = y0 + hI∞(c)> ⊗ Im

∫ 1

0
P∞(τ)⊗ Im p(τh)dτ,

p(ch) = ẏ0 + hI∞(c)> ⊗ Im

∫ 1

0
P∞(τ)⊗ Im f (y(τh))dτ (42)

= ẏ0 + hI∞(c)> ⊗ Imγ, c ∈ [0, 1],

with the vector γ formally still given by (22). Setting, in general, ei the infinite vector whose
jth entry is δij, substitution of the second equation in (42) into the first one, taking into
account that ∫ 1

0
P∞(τ)dτ = e1 ≡

 1
0
...

, I∞(c)>e1 = c,

and considering (19) and again (22), gives:

y(ch) = y0 + hI∞(c)> ⊗ Im

∫ 1

0
P∞(τ)⊗ Im

[
ẏ0 + hI∞(τ)> ⊗ Imγ

]
dτ

= y0 + chẏ0 + h2I∞(c)> ⊗ Im

∫ 1

0
P∞(τ)I∞(τ)>dτ ⊗ Imγ

= y0 + chẏ0 + h2I∞(c)>X∞ ⊗ Imγ

≡ y0 + chẏ0 + h2
∫ 1

0

[
I∞(c)>X∞P∞(τ)

]
⊗ Im f (y(τh))dτ. (43)

By setting
ā∞(c, τ) = I∞(c)>X∞P∞(τ) ≡ P∞(c)>X2

∞P∞(τ), (44)

one has that (42) can be rewritten as:

y(ch) = y0 + chẏ0 + h2
∫ 1

0
ā∞(c, τ) f (y(τh))dτ, c ∈ [0, 1]. (45)

Remark 4. We observe that, from the second equation in (40), (41), and considering (20), one de-
rives:

p(ch) = ẏ0 + h
∫ 1

0
a∞(c, τ) f (y(τh))dτ, c ∈ [0, 1]. (46)
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Moreover, it is worth mentioning that (see (44), (14), and (19))

ā∞(c, τ) =
∫ 1

0
I∞(c)>P∞(ξ)I∞(ξ)>P∞(τ)dξ ≡

∫ 1

0
a∞(c, ξ)a∞(ξ, τ)dξ. (47)

From (40) and (45), one obtains that the values at h will be given by:

ẏ(h) ≡ p(h) = ẏ0 + h e>1 ⊗ Imγ = ẏ0 + hγ0(y) ≡ ẏ0 + h
∫ 1

0
f (y(ch))dc, (48)

and (see (18))

y(h) = y0 + hẏ0 + h2e>1 X∞

∫ 1

0
P∞(c)⊗ Im f (y(ch))dc

= y0 + hẏ0 + h2e>1 X∞

∫ 1

0
P∞(c)⊗ Im f (y(ch))dc

= y0 + hẏ0 + h2
∫ 1

0
(ξ0e1 − ξ1e2)

>P∞(c)⊗ Im f (y(ch))dc

= y0 + hẏ0 + h2
∫ 1

0
[ξ0P0(c)− ξ1P1(c)] f (y(ch))dc

≡ y0 + hẏ0 + h2
∫ 1

0
(1− c) f (y(ch))dc. (49)

In other words, the exact solution of problem (38) is generated by the following
csRKN “method”:

c ā∞(c, τ)
1− c

1
≡

c I∞(c)>X∞P∞(τ)
1− c

1
≡

c P∞(c)>X2
∞P∞(τ)

1− c
1

. (50)

3.1. Vector Formulation

An interesting alternative formulation of the method (50), akin to (23) and (24) for first
order problems, can be derived by combining (22) and (43):

γ =
∫ 1

0
P∞(τ)⊗ Im f

(
y0 + τhẏ0 + h2I∞(τ)>X∞ ⊗ Imγ

)
dτ, (51)

with values at t = h given by (compare with (48) and (49)):

ẏ(h) = ẏ0 + hγ0(y), y(h) = y0 + hẏ0 + h2(ξ0γ0(y)− ξ1γ1(y)). (52)

3.2. The Case of the General Second-Order Problem

The arguments used above can be extended to cope with problem (39) in a straightfor-
ward way. In fact, by following similar steps as before, (45) and (46) now become:

y(ch) = y0 + chẏ0 + h2
∫ 1

0
ā∞(c, τ) f (y(τh), ẏ(τh))dτ,

ẏ(ch) = ẏ0 + h
∫ 1

0
a∞(c, τ) f (y(τh), ẏ(τh))dτ, c ∈ [0, 1], (53)

with the values at h given by

ẏ0 + h
∫ 1

0
f (y(ch), ẏ(ch)))dc, y(h) = y0 + hẏ0 + h2

∫ 1

0
(1− c) f (y(ch), ẏ(ch))dc. (54)



Axioms 2022, 11, 192 8 of 17

Consequently, we obtain the general csRKN method

c ā∞(c, τ) a∞(c, τ)
1− c 1

≡ c I∞(c)>X∞P∞(τ) I∞(c)>P∞(τ)
1− c 1

≡ c P∞(c)>X2
∞P∞(τ) P∞(c)>X∞P∞(τ)

1− c 1
, (55)

in place of (50).
The bad news is that now the system of Equations (53) has a doubled size, with respect

to (45). On the other hand, the good news is that, upon modifying the definition of the
vector γ in (22) as follows,

γ :=

 γ0(y, ẏ)
γ1(y, ẏ)

...

 ≡ ∫ 1

0
P∞(τ)⊗ Im f (y(τh), ẏ(τh))dτ, (56)

one has that the Equations (53) can be rewritten as

y(ch) = y0 + chẏ0 + h2I∞(c)>X∞ ⊗ Imγ,

ẏ(ch) = ẏ0 + hI∞(c)> ⊗ Imγ, c ∈ [0, 1].

Consequently, we obtain again a single equation for the vector γ defined in (56):

γ =
∫ 1

0
P∞(τ)⊗ Im f

(
y0 + τhẏ0 + h2I∞(τ)>X∞ ⊗ Imγ, ẏ0 + hI∞(c)> ⊗ Imγ

)
dτ. (57)

Similarly, the new approximations in (54) become:

ẏ(h) = ẏ0 + hγ0(y, ẏ), y(h) = y0 + hẏ0 + h2(ξ0γ0(y, ẏ)− ξ1γ1(y, ẏ)). (58)

Remarkably enough, the Equations (57) and (58) are very similar to (51) and (52),
respectively.

3.3. Polynomial Approximation

Polynomial approximations of degree s to (40), σ(ch) ≈ y(ch) and σ1(ch) ≈ p(ch), can
be obtained by formal substitution of the matrices P∞(c), I∞(c) and X∞ in (40)–(49) with
the corresponding finite ones, Ps(c), Is(c) ≡ Ps+1(c)X̂s and Xs defined in (30) and (31).
Consequently, following similar steps as above, one obtains:

σ̇(ch) = Ps(c)> ⊗ Im

∫ 1

0
Ps(τ)⊗ Imσ1(τh)dτ, (59)

σ̇1(ch) = Ps(c)> ⊗ Im

∫ 1

0
Ps(τ)⊗ Im f (σ(τh))dτ, c ∈ [0, 1],

in place of (40). Similarly, setting (in place of (44))

ās(c, τ) = Is(c)>XsPs(τ) ≡ Ps+1(c)>X̂sXsPs(τ), (60)

from (59) one derives:

σ(ch) = y0 + chẏ0 + h2
∫ 1

0
ās(c, τ) f (σ(τh))dτ, c ∈ [0, 1], (61)

with the new approximations,

y1 := σ(h) and ẏ1 := σ1(h),
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given by

ẏ1 = ẏ0 + h
∫ 1

0
f (σ(ch))dc, y1 = y0 + hẏ0 + h2

∫ 1

0
(1− c) f (σ(ch))dc. (62)

Remark 5. Similarly to (41), one derives:

σ̇(ch) =
∫ 1

0
ȧs(c, τ)σ1(τh)dτ, σ̇1(ch) =

∫ 1

0
ȧs(c, τ) f (σ(τh))dτ, c ∈ [0, 1]. (63)

Moreover, (compare with (46)), from the second equation in (59), and considering (33), one obtains:

σ1(ch) = ẏ0 + h
∫ 1

0
as(c, τ) f (σ(τh))dτ, c ∈ [0, 1]. (64)

At last, (compare with (47)), from (60), (33) and (32), one has:

ās(c, τ) =
∫ 1

0
Is(c)>Ps(ξ)Is(ξ)

>Ps(τ)dξ ≡
∫ 1

0
as(c, ξ)as(ξ, τ)dξ. (65)

Summing all up, through (60)–(62) we have defined the following csRKN method:

c ās(c, τ)
1− c

1
≡

c Is(c)>XsPs(τ)
1− c

1
≡

c Ps+1(c)>X̂sXsPs(τ)
1− c

1
. (66)

Remark 6. This latter method is equivalent to the csRKN method obtained by applying the
HBVM(∞, s) method to the special second-order problem (38) [21].

An alternative formulation of the method (66) can be obtained by repeating arguments
similar to those used in Section 3.1. In fact, by setting the vector (compare with (35)–(37))

γs :=

 γj(σ)
...

γs−1(σ)

 ≡ ∫ 1

0
Ps(τ)⊗ Im f (σ(τh))dτ, (67)

by virtue of (60) and (61), such a vector satisfies the equation

γs =
∫ 1

0
Ps(τ)⊗ Im f

(
y0 + τhẏ0 + h2Is(τ)

>Xs ⊗ Imγs

)
dτ, (68)

with the new approximations given by (compare with (52)):

ẏ1 = ẏ0 + hγ0(σ), y1 = y0 + hẏ0 + h2(ξ0γ0(σ)− ξ1γ1(σ)). (69)

For the general problem (39), following similar steps as above, the generalized csRKN
method (55) becomes, with reference to (33):

c ās(c, τ) as(c, τ)
1− c 1

≡ c Is(c)>XsPs(τ) Is(c)>Ps(τ)
1− c 1

≡ c Ps+1(c)>X̂sXsPs(τ) Ps+1(c)>X̂sPs(τ)
1− c 1

. (70)
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Additionally, we can derive a vector formulation similar to (67) and (68). In fact, by
defining the vector

γs :=

 γj(σ, σ1)
...

γs−1(σ, σ1)

 ≡ ∫ 1

0
Ps(τ)⊗ Im f (σ(τh), σ1(τh))dτ, (71)

it turns out that it satisfies the equation

γs =
∫ 1

0
Ps(τ)⊗ Im f

(
y0 + τhẏ0 + h2Is(τ)

>Xs ⊗ Imγs, ẏ0 + hIs(τ)
> ⊗ Imγs

)
dτ, (72)

with the new approximations given by:

ẏ1 = ẏ0 + hγ0(σ, σ1), y1 = y0 + hẏ0 + h2(ξ0γ0(σ, σ1)− ξ1γ1(σ, σ1)). (73)

Remark 7. By comparing the discrete problems (68) and (72), one realizes that they have the same
dimension, independently of the fact that the latter one solves the general problem (39). This fact is
even more striking since, as we are going to sketch out in the next section, this will be the case for a
general kth order ODE-IVP.

3.4. Approximation of General kth-Order ODE-IVPs

Let us consider the case of a general kth order problem:

y(k)(ch) = f (y(ch), y(1)(ch), . . . , y(k−1)(ch)), c ∈ [0, 1], y(i)(0) = y(i)0 ∈ Rm, i = 0, . . . , k− 1. (74)

Hereafter, for sake of brevity, we shall skip the arguments of the Fourier coefficients γi.
Then, by repeating similar steps as above, by defining the infinite vector

γ ≡

 γ0
γ1
...

 :=
∫ 1

0
P∞(τ)⊗ Im f (y(τh), . . . , y(k−1)(τh))dτ, (75)

one has that it satisfies the equation:

γ =
∫ 1

0
P∞(τ)⊗ Im f

(
k−1

∑
i=0

(τh)i

i!
y(i)0 + hkI∞(τ)>Xk−1

∞ ⊗ Imγ, . . . , y(k−1)
0 + hI∞(τ)> ⊗ Imγ

)
dτ, (76)

with the values at t = h given by:

y(i)(h) =
k−1−i

∑
j=0

hj

j!
y(j+i)

0 + hk−i
k−1−i

∑
j=0

b(k−1−i)
j γj, i = 0, . . . , k− 1, (77)

b(k−1−i)
j , j = 0, . . . , k− 1− i, being the (j + 1)st entry on the first row of the matrix

Xk−1−i
∞ , i = 0, . . . , k− 1.

A polynomial approximation of degree s (resulting, as usual, into an order 2s method)
can be derived by formally substituting, in the Equation (76), P∞(τ), I∞(τ), and X∞, with
Ps(τ), Is(τ), and Xs, respectively, (consequently, the vector γ now belongs to Rsm), with
the new approximations y(i)1 ≈ y(i)(h), given by:

y(i)1 :=
k−1−i

∑
j=0

hj

j!
y(j+i)

0 + hk−i
k−1−i

∑
j=0

b(k−1−i)
j γj, i = 0, . . . , k− 1, (78)
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b(k−1−i)
j , j = 0, . . . , k− 1− i, being now the (j + 1)st entry on the first row of the matrix

Xk−1−i
s , i = 0, . . . , k− 1.

4. Discretization

“As is well known, even many relatively simple integrals cannot be expressed in
finite terms of elementary functions, and thus must be evaluated by numerical
methods.”

Dahlquist and Björk [41] p. 521

As is clear, the integrals involved in the Fourier coefficients (36) need to be ap-
proximated by using a suitable quadrature rule, which we choose as the interpolatory
Gauss–Legendre quadrature of order 2k, with k ≥ s, having weights and abscissae (bi, ci),
i = 1, . . . , k. In so doing, the vector of the Fourier coefficients (35) becomes

γ̂s :=

 γ̂0
...

γ̂s−1

, (79)

satisfying the Equation (compare with (36))

γ̂s =
k

∑
j=1

bjPs(cj)⊗ Im f (y0 + hIs(cj)⊗ Imγ̂s) (80)

with (compare with (37)),
y1 = y0 + hγ̂0. (81)

We observe that, by introducing the matrices (see (30))

Pr :=

 Pr(c1)
>

...
Pr(ck)

>

 ∈ Rk×r, Is :=

 Is(c1)
>

...
Is(ck)

>

 ∈ Rk×s, Ω =

 b1
. . .

bk

, (82)

one has, with reference to (31),

Is = Ps+1X̂s, P>s ΩPs = Is, P>s ΩIs = Xs. (83)

Further, by also introducing the vector e = (1, . . . , 1)> ∈ Rk, one obtains that (80) can
be rewritten as

γ̂s = P>s Ω⊗ Im f (e⊗ y0 + hIs ⊗ Imγ̂s). (84)

By setting

Y ≡

 Y1
...

Yk

 := e⊗ y0 + hIs ⊗ Imγ̂s, (85)

the vector of the stages of the corresponding Runge–Kutta method, from (84) and (85) one
obtains the stage equation

Y = e⊗ y0 + hIsP>s Ω⊗ Im f (Y), (86)

with the new approximation

y1 = y0 + h
k

∑
i=1

bi f (Yi). (87)
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Summing all up, (84)–(87) define the k-stage Runge–Kutta method:

c IsP>s Ω
b>

, b = (b1, . . . , bk)
>, c = (c1, . . . , ck)

>, (88)

named HBVM(k, s) [4,29,30]. It is worth mentioning that the Butcher matrix of the method,
with reference to the coefficients of the csRK (33), is given by:

IsP>s Ω ≡
(

bjas(ci, cj)
)
∈ Rk×k.

In particular, when k = s, one obtains the s-stage Gauss collocation method. However,
the use of values k > s (and even k� s) is useful, in view of deriving energy-conserving
methods for Hamiltonian systems [4,5,29,30]. In fact, it can be proved (see, e.g., [5] Corol-
lary 3) that a HBVM(k, s) method, with k ≥ s:

• Has order 2s;
• Is energy-conserving, for all polynomial Hamiltonians of degree not larger that 2k/s;
• For general (and suitably regular Hamiltonians), the Hamiltonian error is O(h2k+1).

In this case, however, by using a value of k large enough so that the Hamiltonian
error falls within the round-off error level, the method turns out to be practically
energy-conserving.

Remark 8. As is clear, the formulation (80) and (81) is computationally more effective than (86)
and (87), having the former (block) dimension s, independently of k, which is the dimension of the
latter formulation. As observed in [32], this allows the use of relatively large values of k, without
increasing too much the computational cost.

Similar arguments can be repeated in the case of the polynomial approximations
for problems (38), (39), and (74): here we sketch only those concerning the csRKN (66),
providing the correct implementation for a HBVM(k, s) method for the special second-order
problem (38). By formally using the same approximate Fourier coefficients (79) in place
of (67), one has that (68) is replaced by the following discrete counterpart,

γ̂s =
k

∑
j=1

bjPs(cj)⊗ Im f (y0 + cjhẏ0 + h2Is(cj)Xs ⊗ Imγ̂s) (89)

with the new approximations (compare with (69)) given by

ẏ1 = ẏ0 + hγ̂0, y1 = y0 + hẏ0 + h2(ξ0γ̂0 − ξ1γ̂1). (90)

Similarly as in the first order case, (89) can be rewritten as

γ̂s = P>s Ω⊗ Im f (e⊗ y0 + hc⊗ ẏ0 + h2IsXs ⊗ Imγ̂s), (91)

where c is the vector of the abscissae. Again, the vector

Y ≡

 Y1
...

Yk

 := e⊗ y0 + hc⊗ ẏ0 + h2IsXs ⊗ Imγ̂s (92)

is the stage vector of a k-stage RKN method. In particular, from (91) and (92) one obtains

Y = e⊗ y0 + hc⊗ ẏ0 + h2IsXsP>s Ω⊗ Im f (Y), (93)
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and some algebra shows that the new approximations are given by

ẏ1 = ẏ0 + h
k

∑
i=1

bi f (Yi), y1 = y0 + hẏ0 + h2
k

∑
i=1

bi(1− ci) f (Yi). (94)

Consequently, we are speaking about the following k-stages RKN method:

c IsXsP>s Ω
[b ◦ (e− c)]>

b>
, (95)

where ◦ denotes the Hadamard, i.e., componentwise, product. The Butcher tableau (95)
defines the RKN formulation of a HBVM(k, s) method [21,29,32]. It is worth mentioning
that, with reference to (60) and (65), the Butcher matrix can be written in terms of the
corresponding csRKN method (66) as follows:

IsXsP>s Ω ≡
(

bj ās(ci, cj)
)
≡
(

bj
∫ 1

0 as(ci, τ)as(τ, cj)dτ
)
∈ Rk×k.

Remark 9. As observed in Remark 8, also in this case, in consideration that k ≥ s, the formula-
tion (90) and (91) of the method is much more efficient than the usual one given by (93) and (94), in
view of the use of values of k� s, as in the case of separable Hamiltonian problems, as the numerical
example below will show.

It must be emphasized that:

• Very efficient iterative procedures exist for solving the discrete problems (84) and (91)
generated by a HBVM method (see, e.g., [32]). As matter of fact, we mention that the
state-of-art Matlab code hbvm is available at the website of the book [29];

• When HBVMs are used as spectral methods in time, i.e., choosing values of s and k > s
so that no further accuracy improvement can be obtained, for the considered finite-
precision arithmetic and timestep h used [22,31,35], then there is no practical difference
between the discrete methods and their continuous-stage counterparts.

Numerical Tests

We now report a few numerical examples comparing energy-conserving methods
with respect to symplectic methods. For this purpose, we used the same Matlab code hbvm
mentioned above: in fact, for k = s, it also provides a very efficient implementation of
symplectic s-stage Gauss collocation methods. All tests have been executed on a 3 GHz
Intel Xeon W10 core computer with 64GB of memory, using Matlab© R2020b.

Symplectic methods usually perform very well when solving Hamiltonian problems
(see, e.g., the monographs [42–45] or [46–49]), but in some circumstances (e.g., when
relatively large timesteps are used) energy-conserving methods may be more reliable. As
an example of this fact, we consider the separable Hamiltonian problem described by the
following polynomial Hamiltonian:

H(q, p) =
1
2

(
p2

1 + p2
2

)
+

1
2

(
βq2

1 + q2
2

)
+ α(q1 − γq2)

2n, q, p ∈ R2. (96)

In particular, we consider the following values of the parameters:

α = β = n = 5, γ = 2.48. (97)

At first, we numerically integrated the trajectory starting at q(0) = (1, 1)>, p(0) = (0, 0)>,
with a timestep h = 5 · 10−3, on the interval [0, 250], by using the symplectic 2-stage Gauss
method (i.e., HBVM(2,2)), and the HBVM(10,2) method, which is energy-conserving: in both
cases, the methods were used as RKN methods. A reference solution has been computed by
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using a spectral HBVM [22,31,35]. The two methods required comparable execution times
(8.5 s vs. 12.8 s, respectively), and the obtained numerical results are comparable as well,
as is shown in Figure 1 where we have plotted: the Hamiltonian error; the phase–space
plot in the q1 − p1 plane; the phase–space plot in the q2 − p2 plane. The Gauss method,
though not energy-conserving, exhibits a quasi-conservation of the numerical Hamiltonian.
Subsequently, we integrated the same orbit with a timestep h = 10−2. Again, the two
methods required comparable execution times (6.5 s vs. 8.7 s, respectively) but the obtained
numerical results are quite different, as is shown in Figure 2, where we plot, as before: the
Hamiltonian error; the phase–space plot in the q1 − p1 plane; the phase–space plot in the
q2 − p2 plane. As one may see, now the energy-conserving method is qualitatively more
accurate than the symplectic 2-stage Gauss method, which does not exhibit anymore the
quasi-conservation of the energy.

Figure 1. Numerical solution of the problem defined by (96) and (97) by using the HBVM(10,2)
method (left-plots) and the 2-stage Gauss method, i.e., HBVM(2,2) (central plots), with a timestep
h = 5 · 10−3. The plots on the right are relative to the reference solution. On the upper line are the
Hamiltonian errors; on the central line are the phase plots in the q1 − p1 plane; on the bottom line are
the phase plots in the q2 − p2 plane.
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Figure 2. Numerical solution of the problem defined by (96) and (97) by using the HBVM(10,2)
method (left-plots) and the 2-stage Gauss method, i.e., HBVM(2,2) (central plots), with a timestep
h = 10−2. The plots on the right are relative to the reference solution. On the upper line are the
Hamiltonian errors; on the central line are the phase plots in the q1 − p1 plane; on the bottom line are
the phase plots in the q2 − p2 plane.

5. Conclusions

In this paper, we have reviewed the basic facts and reported some new insights on the
energy-conserving class of Runge–Kutta methods named HBVMs. Methods have been here
studied within the framework of continuous-stage Runge–Kutta methods. The extension
to second-order problems has been also recalled, providing a natural continuous-stage
Runge–Kutta-Nyström formulation of the methods. Further, also the extension to general
kth-order problems has been sketched out. The relation with the fully discrete methods has
been also recalled, thereby showing the usefulness of using such a framework to study the
fully discrete methods.
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