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Abstract 

Building energy consumption reduction is fundamental to achieve sustainable green design 

and environmental impact lowering. Thermo-physics, different uses over time, 

heating/cooling plant and controlled mechanical ventilation system operation and users’ 

behaviour in the building affects energy saving conditions, indoor environmental quality and 

people wellbeing. In our research an experimental method for building energy performance 

evaluation under transient conditions was proposed. Monitoring experimental data of the 

external and internal microclimate, and of heat flux through each wall, under real dynamic 

conditions, were used for a real-time post-processing. The proposed method was based on the 

“modified” degree days calculated by the measured climatic data, taking into account the 

thermal phase shift and thermal capacity of the various construction materials. An 

experimental monitoring campaign was carried out for three years on a social housing 

development in Florence, as the case study. Results assessment provided a linear correlation 

function between the above mentioned parameters, with a coefficient of determination higher 

than 80%. The proposed method can be used for building energy consumption prediction that 

is fundamental for guaranteeing wellbeing, health and energy sustainability with the “green” 

transition from energy consuming community and buildings to energy producing community 

and buildings. 
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1. Introduction 

Our present condition described by the commitment made at COP26 in Glasgow [1], by the 

slowdown of the entire globalized world economy due to the COVID19 pandemic, which 

initially caused the closure of commercial activities, borders with major limitations on 

movement, considerable reduction of energy consumption and the production capacity of raw 

materials for energy uses, and subsequently, the resumption of activities, movements, 

consequent recovery of the economy, especially in the USA and China and therefore the 

recovery of energy consumption. We are also faced with a shift in the demand for resources 

from coal to methane gas, at the same time as a greater demand for energy with respect to the 

possibility of resuming production, but also with the commitment of all EU countries to 

reduce CO2 emissions. Nevertheless, the world energy and environmental situation is 

dramatic: it is well-known that any system does not progress linearly, but by means of some 

processes with positive and/or negative feedback that can produce effects capable of 

triggering other worse ones that contribute to the increase in temperature (global warming). 

On the other hand, the ecological transition and the development of renewable sources is only 

possible when the environmental impacts due to climate change have already slowed down 

by 2030. Therefore, all this requires the use of innovative and integrated technological 

solutions for a substantial change in the structure of cities and buildings, transport networks, 

energy networks and development models. It is certainly true that all this involves high 

investments, but the cost of damage is undoubtedly higher.  



In this context, the European Directives [2] on energy the efficiency push towards energy 

saving in the building sector, which represents 40% of final energy consumption, finalizing 

interventions to nZEB buildings with balanced energy balances [3]. 

 So, the well-known Smart Readiness Indicator derived from [2,3] can be used for the 

following objectives: awareness of the importance of rational use of energy, comfort, health 

and safety benefits of smart technologies and digital services in buildings; promoting 

investments in smart advanced technologies and integrated renewable resources application; 

support IoT and Konnex (KNX based on [4]) adoption in the building/construction sector 

[5,6]. This is certainly feasible in newly designed buildings. For existing and historic 

buildings, even protected ones, like very many of those in Italy, the question is very complex. 

It is not always easy and possible to modify plants, by means of mature technologies 

application, e.g. using methane in a thermodynamically correct way with cogeneration, which 

in winter would serve for district heating networks or entire cities, and in summer would 

provide the necessary air conditioning to buildings, offices and commercial centres. During 

the transition phase, these same systems, if used to the maximum, would allow the use of 

waste heat from the production of electricity for cooling / heating together with the direct use 

of electricity for heating with heat pumps in a widespread way, precisely in the existing 

buildings would represent a crucial step in the transition phase to predominantly electric 

systems. Plant system solutions, based on adaptivity, reversibility and sustainability concept 

can be implemented in existing buildings, only by starting from the crucial knowledge of 

energy consumption also connected to greenhouse gas emission. Most of the recent literature 

concerns building energy consumption prediction by means of use of different methods 

which are not easily applicable, especially at the urban built-up area level. An important 

review has demonstrated that all the recent studies on this subject can be classified in six 

basic methodological approaches: physical methods, statistical methods, hybrid methods, 



artificial intelligence, machine learning and (artificial) neural network [7]. In particular, 

several authors have proposed robust and effective methods based on machine learning and 

artificial neural network or deep learning algorithms [8-11]. Some authors have suggested 

different methodological approaches to evaluate and predict energy consumption of non-

residential buildings, taking into account the variability of building-plant system operation 

[12-16]. Due the fact that non-residential buildings (e.g. healthcare facilities, schools, 

administrative buildings) have fitful load fluctuations over time so that traditional forecasting 

methods imply limitations in the application of forecasting models, some authors have 

implemented the Cox proportional hazard model for their energy consumption prediction and 

efficient energy management [17-19]; others have used the genetic algorithms to target long 

and short-term memory adaptive neural networks and vector machine support [20,21]. Most 

recent research on the prediction and monitoring/control of building energy consumption, 

based on deep learning models, artificial neural networks, smart retrofit solution approaches 

using IoT task management implementation have highlighted that building-plant system 

dynamic simulation, ensemble learning based on energy consumption pattern classification 

and many specific data taking into account design and thermo-physics parameters are 

necessary [11,16, 22-25]. However, building and plant system data/information is usually 

limited or difficult to find and transient simulations with the connected model validation 

require considerable time and computational costs. Building energy prediction is crucial for 

energy demand and supply balance and building-plant system control and management, but 

above all, to identify and evaluate, on the basis of the life cycle assessment and therefore the 

circular economy, the possibility, efficiency and effectiveness of the integrated use of 

renewable sources not on a single building scale but on a district and/or urban scale of Net 

Zero Energy communities [26]. As a matter of fact, some authors have proposed a 

comprehensive energy and cost-effective method for Net Zero Energy Settlements applying 



advanced environmental energy technologies [27]. Other authors have investigated x user-

building interaction by means of intensive surveys and energy simulation for the NZE at 

settlement and community level [28]. In our research, a simple new effective method, based 

on the “modified” degree days calculated by the measured climatic data taking into account 

the thermal phase shift and thermal capacity of the different construction materials, was 

proposed. This method is a simple and easily applicable tool for building energy consumption 

prediction that is fundamental for guaranteeing wellbeing, health and energy sustainability 

with the “green” transition from a "consumption community and consumption buildings" to 

"an energy community and energy producing buildings". The novel contribution of this 

method concerns the practical possibility of a real-time control of building energy 

consumption, plant management and user behaviour interaction. 

 

2. Methods and Materials 

2.1 Experimental monitoring/set-up and the case study 

The proposed method is shown in Fig.1 by a flowchart explaining the experimental and 

numerical process implemented under real operating conditions. The proposed method was 

derived from the analysis of a real context in Florence. From 2017 to 2021 thermo-

hygrometric parameters of the indoor environment of a building section and the 

corresponding external one, were monitored continuously. The building complex, under 

study, is owned by Casa spa a subsidiary company of the Florence municipality for                         

social housing management.  



 

Fig. 1 - Flow-chart showing the proposed method 

The building complex meets the nZEB requirements [29]. The building is a typical example 

of a wooden house: the structural material (wood) is properly insulated by layers of 

glass/rock wool and the certified/declared total energy consumption is 16 kWh/m2 per year.  

Fig. 2 shows some images of the studied building: in particular, the bedrooms of the two flats 

respectively on the third and fourth floors were investigated by means of an experimental set-

up and monitoring system. 

 

   
 

  

 
Fig. 2 - Some images of the studied building: (left) top view contextualized in the urban area; (centre) 

front view; (right) three-dimensional scheme used for the experimental set-up development. 

 



The monitoring system layout was designed to be integrated in the living spaces for a long 

time (about ten years) ensuring easy removal, management and maintenance and reduced 

invasiveness in compliance with the use of spaces and environments by the occupants. Some 

common commercial transducers were installed on the internal walls for air temperature and 

relative humidity measurement. The basic technical features of these sensors provide an 

accuracy at ±1° for the air temperature and ±4% for relative humidity. All the outer walls 

facing South-West, i.e. six for each bedroom, were equipped with 12 flux tiles developed at 

the University of Florence and amply dealt with in a recent article [30], (Fig. ). The flux tiles 

provided a direct measurement, under transient conditions, of the heat power per unit area, 

passing through the wall, taking into account the external parameter fluctuations, thermo-

physics properties of building materials (e.g. thermal conductivity, specific heat, thermal 

diffusivity, thermal capacity) and heat loads due to occupants, lighting, equipment, and 

different uses of the environment, the natural renewal of the air (i.e. manual opening and 

closing of doors and windows) and heating plant management. The tile sensors were fixed to 

the wall and detected the thermo-physical and capacitive phenomena of building materials, 

responding in a short time (minutes) to the impulsive stresses that produce the indoor air 

temperature variation. The output signal of each tile sensors, directly proportional to the 

thermal flux passing through it, is connected to the temperature difference between the 

opposite surfaces of the same tile sensor. The relative measurement error due to this device 

was 3.5%. The installation was completed collecting all the signals with shielded cables 

running inside special ducts under the plaster up to the fifth floor, where a commercial 

analogue data-logger was placed. 



 

Fig. 3 - Layout of the flux tiles in one bedroom. In the white boxes on the right, cables are collected 

and sent to Data Acquisition Unit. 

 

Data were registered and collected by a csv file, every 5 minutes by means of the average 

value of the entire time step. This short time interval was chosen to take into account     

impulsive and unpredictable user behaviour (e.g. opening windows and doors).  

It must be noted that it was not possible to obtain specific information by means of surveys 

based on questionnaires and / or interviews due to the difficulty of accessing environment and 

privacy restrictions. The dataset three heating seasons, from November to April during the 

years 2017-2018, 2019-2020 and 2020-2021 was considered. The corresponding external 

climatic conditions concerning the hourly values of the air temperature and relative humidity 

and global solar radiation were provided by the LaMMA CNR-IBIMET Institute for a 

weather station in Florence. Another system of the Department of Industrial Engineering of 

Florence, was used for the external climatic data collection. In particular, a pyrheliometer 

tracking the Sun position, provided the Direct Normal Irradiation values that were post-

processed to find out thermal load on the outer surface of monitored wall, due to incident 

solar radiation. 

The different user behaviour of the flats on the third and fourth floor should be noted. They 

are actually very similar in dimension, functional distribution and thermo-physical properties 

of building materials and external boundary conditions because they are oriented towards the 



same direction (which means the same incoming solar radiation). However, space use and 

plant management by the tenants is very different. The indoor measurements demonstrated 

that temperature levels are markedly different throughout the colder season: e.g., Fig.  shows 

the hourly internal temperature trend from November 1st to April 15th. Clearly these values 

are almost always below the design limit (20°C) for the third floor (with 17.4°C average 

value), while they usually exceeded it on the upper floor (with 21.4°C average value). 

 

Fig. 4 - Hourly indoor air temperature for the flats on the 3rd and 4th floors during the colder season 

2020-2021. 

 

Consequently, total thermal loss is expected with an important variation. In  

  

Fig. 5 on the left, the trend of daily heat loss per unit area [Wh/m2] is provided for the colder 

period 2020-2021, while the global monthly amount is integrated in the histogram on the 

right. The comparison between the two flats, highlights that the average difference of 4°C of 

the average indoor air temperature involves a heat loss that is more than tripled. This means 

an increase from 2944 Wh/m2 to 13827 Wh/m2 for the entire period. It is interesting to 



highlight that the national building energy certification sets a value of 4742 Wh/m2 of the 

theoretical design (evaluated by means of a standard climatic database and a constant 

reference design temperature of 20°C).  

  

Fig. 5 - Heat loss curves (energy per unit area) for the test walls (left) and monthly energy losses 

comparison for the two flats (right). 

 

2.2 Experimental data assessment 

As explained above, our research was aimed at defining a simple but robust method, easy to 

use and apply, for the evaluation of the real/transient thermal behaviour of a building. The 

method is based on the integration in real time and transient conditions, between 

experimental measurements and a proper transfer function. According to [31], the building 

thermal energy consumption was connected to the heating degree days HDD concept [°C]. 

Analytically, the heating degree days are provided by the eq. (1): 

𝐻𝐷𝐷 = ∑(𝑇𝑜 − 𝑇𝑒)

𝑛

𝑒=1

 (1) 

where Te is the external air temperature, T0 is the reference indoor air temperature suggested 

for thermal comfort, (known as design air temperature), e is the number of days for the 

conventional heating season. Italy is divided into six climatic zones (from A to F), from HDD 

under 600 (warmer areas, in the South), up to HDD over 3001 (colder areas, in the North). 

Italian legislation establishes the heating period and the allowed heating daily hours for each 

climatic zone. Florence stands in the D zone with HDD equal to 1821 i.e. the heating plant 

turned on for 8 hours per day from November 1st to April 15th. The HDD is a general 



parameter that does not consider the real internal and external constrains of buildings on a 

specific site (i.e. territorial and climatic context). A modified degree days parameter, from 

here on the HDD*, was proposed: it took into account the real building-plant system thermo-

physical performances at transient operative conditions. The constant indoor reference air 

temperature T0 was substituted with the measured values of the Tmi that is the real indoor air 

temperature measured. Consequently, the external air temperature was evaluated considering 

the effects of incident solar radiation on the building façades. Therefore, the sun-air 

temperature value Tew was calculated for the external wall with eq. (2): 

𝑇𝑒𝑤 = 𝑇𝑒 +
𝜑 ∙ 𝛼

ℎ𝑒
 (2) 

where α is the adsorption coefficient of the wall (e.g. 0.5 for light paintings), he is the external 

heat transfer coefficient (23 W/m2 °C as usually suggested [32]) and φ is the incoming 

thermal flux due to solar radiation [W/m2]. Incident solar radiation was calculated by the 

measured Normal Direct Irradiance (DNI) using the cosine of the incident angle θ on the 

building façade with hourly values schedule, as eq. (3) shows: 

𝜑 = 𝐷𝑁𝐼 ∙ 𝑐𝑜𝑠𝜃 (3) 

The hourly values of the angle between the direction of DNI and the normal vector to the wall 

was assessed by means of the on-line SOLPOS-NREL calculator [33]. The global solar 

radiation used for the Tew calculation (eq.2) was assed adding the contribution of the diffuse 

and albedo components derived from the weather station. In particular, the external surface of 

the studied wall was modelled as a vertical plan with its real latitude, longitude and 

orientation (i.e. the normal vector looks towards south-west, about 238° from nautical 

azimuth). It is well known that building characteristics have an important impact on the 

overall energy performance and plant management: periodic thermal transmittance, thermal 

phase shift and dumping factor play a crucial role affecting the operative regimes of the 

building-plant system. Current Italian legislation [34] sets specific limits for the thermal 



transmittance U of newly designed buildings (e.g. from 2019 for the D zone, this limit is 

U<0.29 W/m2 °C for external walls), but they do not take into account the thermal phase shift 

and dumping factor. In particular, only for lightweight walls (surface mass less than 230 

kg/m2), is the periodic thermal transmittance evaluation required, and must be less than 0.10 

W/m2 °C. This last condition is mainly related to summer loads, in the presence of solar 

radiation values higher than the average value of 290 W/m2 for the month with the highest 

solar radiation values. Furthermore, for the same hotter conditions, the standard [35] suggests 

a thermal phase shift over 8-12 hours in order to have the peak thermal power, due to the 

incoming heat flux, during the night when cooling is easy accomplished with natural 

ventilation (i.e. the night purge condition).  However, thermal capacity and thermal inertia of 

any building wall are fundamental parameters affecting the outside and inside temperature 

gradient both for summer and winter periods. The studied building (popular housing) was 

designed in compliance with the standards [36,37]. Casa Spa has obtained an energy 

certification for A4 class building (i.e. 16 kWh/m2 per year) with a dumping factor and 

thermal phase shift respectively of 0.084 and 13 hours, obtained by means of dynamic 

simulations with a standard commercial software validated by European and Italian (i.e. EN-

UNI standards) legislation. This last parameter was used to upgrade the HDD parameter, 

coupling every internal measured value (i.e. air temperature, air relative humidity, thermal 

flux) with the weather data (i.e. air temperature, air relative humidity, solar radiation), but 

shifted by 13 hours behind. The obtained modified degree days HDD* are provided in eq. 

(4): 

𝐻𝐷𝐷∗ = ∑(𝑇𝑚𝑖 − 𝑇𝑒𝑤,𝑠)

𝑛

𝑒=1

 (4) 

where Tew,s is the outside wall surface temperature as previously defined, but shifted back in 

time. In particular, Tmi corresponds to the real indoor air temperature measured, that includes 



the effects due to the energy transfer through glazed surfaces and leakage and/or ventilation. 

These two phenomena have impulsive effects on the internal air temperature variations. For 

this reason, the actual measured data of the above measured effective regime indoor air 

temperature, and not the standard reference constant value of 20°C, were used. The 

experimental data showed appreciable temperature gradients in conjunction with the windows 

opening. This fact also occurs in relation to the heating plant management due to the 

occupants’ behaviour. 

The new parameter was evaluated for all the days during the periods of interest and then 

integrated on a monthly scale. The average heat flux values [W/m2], measured through the 

walls at third and fourth floor by the installed Tile sensors, were also aggregated in the same 

time step, obtaining the monthly energy losses per unit area De [Wh/m2] ( 

  
 

Fig. 6). 

 

  
 



Fig. 6 - Monthly energy losses for the two flats at 3rd (left) and 4th (right) floor during the three 

heating seasons under investigation. 

 

Comparison between the total energy losses of the two flats confirm their very different 

management by the tenants. In the bottom floor the maximum heat loss occurs in December 

2017 (1247 Wh/m2) while 3677 Wh/m2 are reached in January 2021 in the upper one. It can 

be deduced that the different plant set-up and internal thermostat temperature cause an 

important difference between thermal losses with a factor higher than 3 from 3rd to 4th floor. 

Data collected are provided in Table 1, organized by the reference period and flat. 

The reported values represent the thermal operative conditions of the monitored room with 

the HDD* matching the corresponding measured heat loss: the overall scatter plot is shown in 

Fig. . In particular, with reference to 1821 degrees day (due to climate zone D of Florence), 

the obtained value of HDD* for the years 2017-2018, 2019-2020, 2020-21, for the 4th floor 

was respectively 1809, 1627, 1896 and for the 3rd floor was respectively 1416, 1131, 1242. 

 

Fig. 7 - Energy loss as a function of modified degree days HDD*, for the monitored flats and periods. 

 

 

Tab. 1 - Aggregated data of HDD* and measured heat loss through the walls for the periods 

investigated. 

 

  3rd Floor 4th Floor 

Period Month 
HDD* 

[°C] 

De 

[Wh/m2] 

HDD* 

[°C] 

De 

[Wh/m2] 



2017-18 

November 223 525 309 1738 

December 305 1247 385 2676 
January 270 1027 345 2336 

February 309 1070 373 2415 

March 242 803 305 1993 

April 68 84 92 633 

2019-20 

November 189 672 268 1711 

December 243 961 316 2236 

January 263 1118 352 2485 

February 196 632 271 1856 
March 184 417 300 2080 

April 56 23 119 917 

2020-21 

November 169 98 302 1725 
December 270 898 376 2912 

January 270 1030 415 3677 

February 205 506 300 2420 

March 229 302 344 2137 
April 100 110 160 955 

3. Results and Discussion 

3.1 Extrapolation of the linear correlation function 

The displayed data set was used to find out a correlation function between HDD* and thermal 

loss through external walls and verify its linearity in the range of interest. All the 

measurements taken in April were disregarded: this period is usually not fully considered for 

the heating season as reported in [36] and the parameters integration is partial (limited to 15 

days). In particular, the experimental data of April were not considered, because they 

involved a very low value of the air temperature difference between indoor and outdoor, and 

a connected degrees day low value, compared to the other months. This fact was due to the 

working condition of the tile sensors in the presence of both the thermal flux value around 

zero, and some conditions with reversal of thermal flux. This effects provided an inaccurate 

result on the heat exchange through the wall studied, very noticeable during the post-

processing phase for monthly aggregation. 

The matrix with the data from November to March was implemented in the curve fitting tool 

provided by Matlab® software, obtaining the interpolation with least square method (eq. (5)): 

𝐷𝑒 = 12.98 ∙ 𝐻𝐷𝐷∗ − 2166 (5) 



The linear trend is really significant thanks to a coefficient of determination equal to 0.85 and 

a normalised Root Mean Square Error of 23%. This means that the modified local degree 

days are representative of the building thermal behaviour and can be used as a suitable 

indirect measure of the building energy performance. 

HDD* take into account the wall thermal capacity and thermal phase shift. The same data set 

was elaborated without shifting the reference time between internal and external conditions 

(13 hours) and the correlation function decrease in significance, reducing the coefficient of 

determination to 0.72. Eq. (5) and the statistical parameters related to it, provides a consistent 

correlation between HDD* and thermal loss of the monitored façade. The heat loss of the 

building walls is not easy and directly measurable in situ and the Tile sensors installation 

needs a proper set-up that is certainly invasive for people/tenants. On the contrary, the 

internal air temperature detection is a common issue and could be easily managed and stored 

with standard building/house automation systems. At the same time, the specific external 

constrains (i.e. air temperature and incident solar radiation) can be derived from local weather 

stations and building location by simple calculation. In addition, the sun-air temperature 

value Tew could also be derived by means of experimental data processing by using 

commercial sensors placed on the outside walls. The proposed HDD* are of simple 

application and allow a direct and immediate calculation of the energy needs of different 

buildings in different real contexts. They can also describe the energy behaviour of different 

zones of the same building.  

4. Conclusions 

In this research a simple method, based on “modified” degree days was proposed. HDD* 

were evaluated using measured climatic data, thermal phase shift and thermal capacity of the 

different building materials. The obtained linear correlation function can be used as a basic 

tool for building energy consumption knowledge and dynamic energy-environmental control, 



real-time management and regulation of any HVAC plant. The main finding concerns the 

practical, simple and effective application to any building-plant system, especially if 

integrated advanced technologies and renewable energies use are the objective of sustainable 

energy environmental design at urban built-up areas level (i.e. the smart city). The method 

can be effectively used for building energy consumption prediction that is fundamental for 

guaranteeing wellbeing, health and energy sustainability with the “green” transition from a 

"community and buildings of consumption" to "energy community and energy producing 

buildings". It is important to highlight the interesting aspects of the proposed tool: 

 it can be a useful and easy to implement tool for building energy consumption 

knowledge and dynamic energy-environmental control, real-time management and 

regulation of any heating ventilation and air conditioning system (HVAC), especially 

at urban built-up areas level, for the integrated advanced technologies and renewable 

energies use; 

 it is simple and easily replicable without the necessity of invasive experimental set-

ups (a wireless internal temperature sensor and site weather data are the only 

necessary instruments) and without the definition and implementation of a complex 

method (e.g. physical methods, statistical methods, hybrid methods, artificial 

intelligence, machine learning and (artificial) neural network etc) that require skills 

and are not easily usable; 

 it provides a simple and practical possibility of a real-time control of building energy 

consumption, plant management and users’ behaviour interaction; 

 all the parameters’ values used for the correlation include the basic aspect of the 

users’ profile because the two flats, at the same external climatic conditions, have 

different degree day values and thermal losses, due to the different uses (see the 



indoor air temperature trend, Fig. 5); this confirms the robustness and general validity 

of the function found; 

 the correlation function was implemented and improved taking into account the 

temperature shift and heat exchange delay which are fundamental parameters for 

transient analysis and real operation conditions; 

 the correlation function can be used for newly designed buildings, but also for 

existing and historic ones (e.g. cultural heritage), whose thermo-physical and 

structural characteristics are not usually available, thanks to the strong link between 

HDD* and thermal losses (i.e. R2 equal to 0.72). 

Further development of the research foresees that the proposed method is applied and tested 

on rooms with different orientation and on different floors of the building, but also that it can 

be extended to the summer condition considering the cooling degree day. 
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