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METHODOLOGY

Extended two-stage designs 
for environmental research
Francesco Sera1,2*  and Antonio Gasparrini2,3,4 

Abstract 

Background: The two-stage design has become a standard tool in environmental epidemiology to model multi-
location data. However, its standard form is rather inflexible and poses important limitations for modelling complex 
risks associated with environmental factors. In this contribution, we illustrate multiple design extensions of the classi-
cal two-stage method, all implemented within a unified analytic framework.

Methods: We extended standard two-stage meta-analytic models along the lines of linear mixed-effects models, by 
allowing location-specific estimates to be pooled through flexible fixed and random-effects structures. This permits 
the analysis of associations characterised by combinations of multivariate outcomes, hierarchical geographical struc-
tures, repeated measures, and/or longitudinal settings. The analytic framework and inferential procedures are imple-
mented in the R package mixmeta.

Results: The design extensions are illustrated in examples using multi-city time series data collected as part of the 
National Morbidity, Mortality and Air Pollution Study (NMMAPS). Specifically, four case studies demonstrate applica-
tions for modelling complex associations with air pollution and temperature, including non-linear exposure–response 
relationships, effects clustered at multiple geographical levels, differential risks by age, and effect modification by air 
conditioning in a longitudinal analysis.

Conclusions: The definition of several design extensions of the classical two-stage design within a unified frame-
work, along with its implementation in freely-available software, will provide researchers with a flexible tool to address 
novel research questions in two-stage analyses of environmental health risks.

Keywords: Environmental epidemiology, Two-stage design, Meta-analysis, Temperature, Pollution

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In environmental epidemiological studies, it is common 
practice to investigate short-term associations between 
environmental exposures and health outcomes by analys-
ing data collected from multiple locations. An analytical 
approach applied in this setting is based on the two-stage 
design, which has become the standard method for the 
analysis of multi-location data [1–12]. The design is 
based on the separation of the analysis into two steps: 

in the first stage, location-specific exposure–response 
associations are estimated while adjusting for various 
confounders; then, in the second stage, the estimates are 
pooled using meta-analytic methods, which can poten-
tially incorporate location-specific meta-predictors.

The two-stage design offers several advantages. 
First, the pooling of data collected in multiple loca-
tions increases the statistical power, thus facilitating the 
detection of small risks usually associated with envi-
ronmental stressors [13]. At the same time, the separa-
tion in two steps provides a flexible and computationally 
efficient analytical framework compared to one-stage 
approaches [2, 14, 15]. This allows analyses of large data-
sets collected across multiple populations, increasing the 
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representativeness of the findings. Finally, an important 
advantage of the two-stage design is the enhanced abil-
ity to examine heterogeneity in risk across populations, 
which can be linked to contextual characteristics.

However, there are known limitations of this analyti-
cal method. For instance, the standard two-stage design 
requires the association of interest to be represented 
by a single effect summary (e.g., a relative risk or odds 
ratio) for being pooled in the second stage. However, in 
the context of modelling exposure–response associa-
tions, this step requires the simplification of potentially 
complex relationships and/or the adoption of strong 
functional assumptions (e.g., linearity). Similarly, this 
restriction prevents combining multiple estimates of the 
association of interest from the same location, for exam-
ple when collected from different age groups or periods. 
Finally, the standard two-stage analytic design does not 
take into account potential geographical dependencies, 
often occurring in the presence of clustering. These limi-
tations represent important barriers to the application of 
the two-stage framework for addressing more complex 
research questions about environmental health risks.

In this contribution, we illustrate a unified framework 
that combines multiple design extensions of the clas-
sical two-stage method for environmental health stud-
ies, some of which were described independently in 
published analyses [6, 16–19]. This extended two-stage 
framework is based on linear mixed-effects meta-analyt-
ical models, previously developed and published by our 
research group [20], that can combine multivariate out-
comes, longitudinal settings, multilevel structures, and/
or repeated measurement [20]. This framework relaxes 
the constraints described above and offers a flexible and 
generally applicable tool to implement more advanced 
study designs using multi-location data.

The article is organized as follows. Firstly, we introduce 
the extended two-stage design and its features, includ-
ing the design structure and related modelling frame-
work. Then, after presenting the specific example and 
the related dataset, we will demonstrate applications 
of the various design extensions in multiple case stud-
ies using multi-location analyses of health risks of tem-
perature and air pollution. In a final discussion section, 
we describe the epidemiological context, strengths and 
limitations, and area of further research. Notes, data, and 
R scripts for reproducing the examples are added as sup-
plementary material, with an up-to-date version available 
on the GitHub pages of the first and last authors.

Methods
Extended two‑stage design
In the classical two-stage design, the data are organ-
ised and analysed in first-stage models that provide 

independent estimates of a single parameter representing 
the association of interest in each study area, for instance, 
a city. These effect summaries are then pooled in the sec-
ond stage using meta-analytic techniques to combine the 
information and compute an overall estimate. As dis-
cussed above, these requirements pose important analyt-
ical constraints. The extended two-stage described here 
overcomes these limitations, first allowing different esti-
mates of single or multiple parameters to be computed in 
each location, and then relaxing the assumption of inde-
pendence of estimates within and between locations.

This extended framework provides a flexible setting 
that allows designing more complex epidemiological 
studies to address more elaborated research questions. 
For example, in each study area, multiple parameters 
could be used to represent complex exposure–response 
dependencies, such as non-linear and lagged tempera-
ture-health associations of temperature [21], or alter-
natively correlated effects of multiple exposures, such 
as different pollutants included in the same first-stage 
model [22]. At the same time, relaxing the independence 
assumption allows accounting for correlations arising 
when the locations are nested within higher geographical 
levels (e.g., cities within countries), therefore modelling 
patterns of similarities and differences [19]. Moreover, in 
each study area, the first-stage model can be applied mul-
tiple times to obtain repeated measures of the same asso-
ciation, for instance longitudinally at different times or 
for different sub-groups, such as by age or sex. This struc-
ture allows the investigation of temporal variations in risk 
[17] and the flexible pooling of effect modifications [16].

These analytic features, namely complex multivariate 
exposure–response relationships, geographical hierar-
chies, and longitudinal or repeated-measure structures 
can be incorporated individually or simultaneously in the 
extended two-stage framework, offering a flexible ana-
lytic context for modern environmental research studies.

Statistical framework
The extension of the two-stage design is made possible by 
the development of a unified statistical framework, pre-
viously developed and published by our research group 
[20], that specifies the second-stage meta-analysis as a 
mixed-effects linear model [20], as described below. Here 
we assume that estimates of the association of interest θ̂ i 
have been obtained from each of the i = 1, . . . , n loca-
tions. Here θ̂ i generally represents the output of the first-
stage analysis (see appendix A), and it can include single 
or multiple coefficients obtained by single or repeated 
measurements across times or groups, depending on the 
specific application. In addition, without loss of general-
ity, such estimates can be obtained from various types of 
first-stage models, such as time series for aggregated data 
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[23] or survival analysis of individual-level records [24], 
among others.

The first-stage estimates θ̂ i can be combined in the sec-
ond stage using an extended random-effects meta-analy-
sis that flexibly models potentially complex dependence 
structures. This extended meta-analytical model can be 
written as a linear mixed-effects model:

with bi ∼ N (0,�) , and εi ∼ N (0, Si).
The design matrix X i , potentially expanded to account 

for multivariate outcomes, includes fixed-effect predic-
tors and associated coefficients β . Random terms are 
represented by the design matrix Zi with coefficients bi , 
and by the errors εi . The random terms have (co)variance 
matrices � and Si , representing the deviations and errors 
between and within locations, respectively.

It is important to note that the association parameter  
θ̂ i could have a general nested design with L level induc-
ing possible non-independence of the estimates, e.g. 
associations estimated at multiple times, or in cities 
nested within a country. The extended framework natu-
rally considers the nested design with a hierarchy of the 
random-effects effects vectorbi , then bi consists of the 
random coefficients operating on the levels (from outer 
to inner)l = 1, . . . , L : bTi =

(
b
T
i1, . . . , b

T
iL

)
 , and the design 

matrix Zi of the random terms has the corresponding 
p ar t i t ioningZi = (Zi1| . . . |ZiL),Zil = (Zil1| . . . |Zilnl) . 
Note that every matrix Zilj has nonzero entries only in 
the rows that correspond to units in the group j 
(j = 1, . . . , nl) of levell .

The (co)variance matrix of the random terms has then 
the following structure:

where � l is the covariance of the random terms operat-
ing at level l .

Example and data
The various extensions of the two-stage design will be 
illustrated using the same analytical example of multi-city 
time-series data collected as part of the National Morbid-
ity, Mortality and Air Pollution Study (NMMAPS) [25]. 
This database contains, among other information, daily 
series of mortality counts and weather and pollution 
measurements totalling 5114 observations for the period 
1987–2000 in each of 108 cities in the USA. This data 
resource has been used in several epidemiological analy-
ses to assess health risks associated with air pollution and 
later with temperature [5, 26–30].

(1)θ̂ i = X iβ + Zibi + εi

� =

nl∑

j=1

Zilj� lZ
T
ijl

The NMMAPS data consisted of daily series of all-
cause and cause-specific mortality, also stratified by age 
groups (0–64, 65–74, 65 and older), and various indices 
of daily levels of several pollutants and weather variables. 
In addition, the database included city-level metadata 
with several variables on geographical, climatological, 
demographic and socio-economic characteristics. The 
original datasets were collected on the 15th of May, 
2013 through the package NMMAPSdata in the R soft-
ware [31]. The package is now archived and the mortal-
ity series are not provided anymore. The data are here 
complemented with information on air conditioning use, 
collected longitudinally for a subset of cities and obtained 
from different sources [17].

The database is used in a series of case studies 
described in the next sections to illustrate the various 
extensions of the two-stage design. In each of them, we 
assume that first-stage models have been performed sep-
arately in the 108 locations, collecting summary esti-
mates of association parameter(s)  θ̂ i and their (co)
variance matrix V

(
θ̂ i

)
 , and optionally location-specific 

metadata. These summaries are made available in the 
Supplementary Material, together with the R code for the 
first-stage step to produce these quantities from the orig-
inal data, and the R code and data for the second-stage 
step to reproduce the results of the case studies. Method-
ological and analytical details, in particular related to the 
first-stage modelling, are omitted to focus on specific 
aspects of the extensions of the two-stage design, with 
additional information provided in the Supplementary 
Material. As methodological case studies, these analyses 
should be considered illustrative examples and are not 
meant to offer substantive epidemiological evidence.

Results
Case study 1: modelling complex multi‑parameter 
associations
Motivation
As mentioned earlier, an important limitation of the 
standard two-stage design is the need to simplify the 
relationship estimated in the first stage in a single effect 
summary, for it to be pooled in the second stage. This 
prevents the modelling of more complex associations 
represented by multiple parameters.

This limitation can be addressed by extending the two-
stage design so that multiple quantities can be jointly 
combined in the second stage, using meta-analytic mod-
els that take into account their multivariate structure 
and their covariance (correlation) within and between 
locations. The meta-analytical methods can be fur-
ther extended to multivariate meta-regression models 
that include specific predictors to explain (part of ) the 
observed heterogeneity. This extension of the two stage 
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design has been known as a multivariate meta-analy-
sis or multivariate meta-regression [15], and it can be 
represented as a specific parametrisation of the linear 
mixed effects meta-analytic framework presented above. 
These extensions can be implemented with the R pack-
age mvmeta [32] or with the updated and more general R 
package mixmeta [33].

In this case study, we offer an example of this extension 
to assess health risks associated with outdoor tempera-
ture, often characterised by marked non-linearity and 
heterogeneity of the effects across locations. In particu-
lar, we will investigate the association between heat and 
all-cause mortality during the summer months and the 
potential role of city-specific characteristics in modifying 
the risk. This extension of the two-stage design has been 
previously used in published analyses which evaluated 
the short-term health impacts of temperature [6, 16, 34].

Brief description of the data, model, and analysis
We assume that summer-only time series models have 
been fitted in each of the 108 NMMAPS cities to esti-
mates temperature-mortality relationships using spline 
functions (see Supplementary Material B1), obtaining 
sets of four coefficients and their (co)variance matri-
ces that represent the multi-parameter non-linear asso-
ciations. In the second stage, we use these estimates as 
multivariate outcomes in the extended meta-analytical 
framework.

First, we fit a multivariate meta-analysis using a 
maximum likelihood (ML) estimator to pool the 
first-stage results and obtain an estimate of the 

average heat-mortality exposure–response curve. We 
then attempt to identify possible contextual characteris-
tics that explain a quota of heterogeneity. Among poten-
tial factors, we consider population size, education (% of 
people with high-school degree) and unemployment (% 
of unemployed). These variables are included as predic-
tors in multivariate meta-regressions, and their effects 
tested through likelihood ratio (LR) tests. Finally, a step-
wise procedure is applied to select the best set among 
univariable and multivariable models. See Supplemen-
tary Material B1 for details.

Results
The basic multivariate meta-analytic model (with no 
predictors and only intercepts) produces pooled esti-
mates of the set of coefficients representing the average 
heat-mortality association across the 108 cities. These 
coefficients can be used to compute the non-linear expo-
sure–response curve expressed as relative risk (RR) by 
applying the same spline transformations on an aver-
age summer temperature distribution represented in a 
relative percentile scale [15]. The results are displayed in 
Fig. 1, showing a minimum mortality risk at low summer 
temperatures (MMT) and the sharp increase of the RR 
beyond the  90th percentile.

The simple meta-analysis shows a substantial het-
erogeneity in heat-mortality associations across cities, 
with an  I2 of 61.5% and a highly significant Cochran Q 
test (p-value < 0.001). Therefore, we assess if some of 
this heterogeneity was explained by some city charac-
teristics, specifically population size, education, and 

Fig. 1 Pooled association between relative temperature (percentiles) and all-cause mortality in 108 US cities during the summer period in 
1987–2000 in Case Study 1. The x-axis is scaled so that the summer temperature distribution match the average percentiles of all the cities. The left 
panel shows the average heat-mortality curve estimated by the multivariate meta-analysis. The right panel illustrate the effect modification from 
population size, predicted from the full multivariate-meta-regression at the  10th-90th percentile values of the city-specific meta-variable
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unemployment, by adding them as predictors in multi-
variate meta-regressions. Results are reported in Table 1. 
When tested separately in univariable models, each pre-
dictor is significantly associated with modification of 
the heat-mortality association. The full multivariable 
model identifies instead independent associations only 
for population size and unemployment, and these results 
are consistent with the selection of the forward stepwise 
procedure.

The tests above demonstrate an effect modification 
by specific city-level meta-variables, but provide little 
information on its direction. This can be identified by 
using the parameters of the multivariate meta-regression 
models to predict the multivariate outcome, namely the 
coefficients of the spline function representing the heat-
mortality relationship, for given values of the meta-pre-
dictors. As an example, we used this method to isolate 
the effect modification of population size, keeping the 
other meta-predictors constant. The results, shown in 
the right panel of Fig. 1, indicate a higher mortality risk of 
heat in larger cities.

This case study demonstrates an extension of the two-
stage design to pool multi-parameter associations. The 
specific example illustrates an application for complex 
exposure–response relationships, but the multi-param-
eter definition can be generalised, and the method is 
applicable for instance also to pool effects of multiple 
pollutants or multiple health outcomes [22].

Case study 2: modelling complex hierarchical structures
Motivation
Another important limitation of the standard two-stage 
design is the assumption of conditional independence 
between first-stage estimates. In environmental epide-
miological associations, this assumption is invalid in 
the presence of geographical clustering, occurring when 
estimates are more similar in locations within the same 
region than between regions.

The two-stage design can be extended accordingly by 
modelling the dependencies among estimates through 
a hierarchical structure (e.g., cities within countries, 
or countries within states). This extension can be 
implemented through a second-stage multilevel meta-
analysis that defines multiple sets of random effects at 
different geographical levels.

In this case study, we provide an example in an anal-
ysis of the association between air pollution and non-
accidental mortality in a multi-city time series study. 
Specifically, we assess the increased risk associated 
with exposure to ozone in a sample of NMMAPS cities 
accounting for clustering within states. We previously 
applied this extended two-stage design in a study evalu-
ating the short-term health effects of pollutants [19].

Brief description of the model, data, and analysis
As in the previous case study, we assume that first-stage 
time series models have been performed in each city, 
collecting estimates of the log-RR for an increase in 
ozone of 10 µg/m3, along with its variance as a meas-
ure of the uncertainty (see Supplementary material B2). 
Estimates for cities with no or limited daily measure-
ments of ozone were set to missing, leaving a sample of 
98 cities within 38 states.

We start the analysis by fitting a standard meta-anal-
ysis with city-specific random effects. Then, in order to 
account for potential geographical differences, we first 
perform a standard meta-regression with state indica-
tors as fixed-effects predictors, and then the extended 
model including two levels of random effects by cities 
nested within states. Finally, we compute state-level 
fixed-effects predictions from the meta-regression, and 
best linear unbiased predictions at both city and state 
level from the multilevel model [20]. See Supplemen-
tary material B2 for details.

Table 1 Degrees of freedom (df ),  I2, information criteria, and likelihood ratio (LR) tests for meta-predictors in second-stage multivariate 
regression models of Case Study 1. The last model selected by forward stepwise procedure includes only population size and 
unemployment

df I2 (%) AIC BIC LR test
(p‑value)

Model 0 Intercepts 14 61.5 -520.60 -463.64

Model 1  + population size 18 53.3 -529.81 -456.57 0.002

Model 2  + education 18 58.1 -530.26 -456.80 0.002

Model 3  + unemployment 18 55.7 -536.24 -463.11  < 0.0001

Model 4 Full model 26 48.3 -539.60 -433.82

Model 5 Stepwise-selected model 22 49.7 -543.67 -454.16
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Results
The standard meta-analytic model with single-level ran-
dom effects for cities returns a pooled RR of non-acci-
dental mortality of 1.0037 (95%CI: 1.0027 to 1.0047), 
corresponding to a percentage increase of 0.37%, with a 
between-city variance equal to 0.00492. The inclusion of 
state indicators in the meta-regression suggests that there 
are significant geographical differences (LR test with 
a p-value < 0.001). Two drawbacks of this fixed-effects 
approach are the lack of a pooled effect estimate, and the 
high uncertainty in state-level predictions given the low 
number of cities within states and an highly-parameter-
ised model.

The multilevel random-effects model addresses these 
limitations. First, this model provides a pooled relative 
risk of 1.0038 (95%CI: 1.0024 to 1.0051), with a similar 
point estimate and slighter higher confidence intervals 
than the standard meta-analysis. The between-group 
heterogeneity is split between states (0.00302) and cities 
(0.00402), suggesting variation at both levels. Figure 2 dis-
plays these geographical differences by mapping the city-
level best linear unbiased predictions (BLUPs) of the RR 
for a 10 µg/m3 increase in ozone.

Second, the multilevel model can improve the state-
specific estimates by computing BLUPs at this geo-
graphical level. Figure  3 compares these quantities with 
fixed-effects predictions obtained from the standard 
meta-regression model. The results reveal the gain in 

precision of the BLUPs resulting from the shrinkage and 
borrowing of information across states [20]. These esti-
mates are more reliable than fixed-effects predictions, 
where only the within-state information is used.

This case study illustrates how to extend the classical 
two-stage design by accounting for hierarchical depend-
encies between estimates from different locations. This 
flexible multilevel structure offers the possibility to 
separate the heterogeneity across geographical levels 
and to obtain more reliable and informative association 
estimates. The approach can be seamlessly extended to 
multi-parameter associations, combining multilevel and 
multivariate models [18].

Case study 3: sub‑groups analysis, and dose–response 
relationships
Motivation
Common applications of the two-stage design entail the 
provision of single effect summaries from each location. 
However, the analysis can sometimes be repeated by sub-
groups of the population defined by specific character-
istics, such as sex or age, resulting in repeated measures 
and dependencies that the standard two-stage design is 
not able to handle.

The extended framework addresses this limitation, offer-
ing an adaptable grouping structure that allows multiple 
association estimates within a location. Moreover, the role 
of sub-groups characteristics can be flexibly examined in a 

Fig. 2 City-level best linear unbiased predictions of the RR of non-accidental mortality for 10 µg/m3 increase in ozone in 97 US cities (Honolulu not 
shown) during 1987–2000, as computed from the two-level random-effects meta-analysis in Case Study 2
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dose–response fashion by including either categorical and 
continuous variables in the fixed-part component. As for 
the extensions presented in the previous case studies, this 
framework is also applicable to multivariate outcomes.

In this case study, we extend further the investigation 
of the association between heat and all-cause mortality 
illustrated in Case Study 1 by stratifying the analysis by 
age. This provides repeated estimates for each of the 108 

Fig. 3 Relative risk (RR) of non-accidental mortality for a 10 µg/m3 increase in ozone across US states during 1987–2000 in Case Study 2. Estimates 
were obtained as state-level fixed-effects predictions from a standard meta-regression model (blue) and as best linear unbiased predictions (BLUPs) 
from a two-level random-effects model (red)
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NMMAPS cities and the opportunity to apply flexible 
models to examine patterns of risk varying by age.

Brief description of the model, data, and analysis
The stratified analysis involves the fitting of the same 
first-stage regression model as in Case Study 1, but this 
time repeated separately for the three age groups (0–64, 
65–74, 65 and older) using age-specific mortality series 
(see Supplementary material B3). We assume that this 
step has been performed and that we have obtained 324 
sets of coefficients and associated (co)variance matrices 
representing age-specific heat-mortality associations in 
three age groups and 108 cities.

In the second stage, we first fit a standard meta-regres-
sion that ignores the city-level clustering and models 
the 324 multivariate outcomes using categorical indica-
tors for age groups and unit-specific random effects. This 
model is first extended to account for clustering by defin-
ing the random-effect grouping structure at the city level. 
Then, we specify a continuous age variable by assigning 
specific values to the groups (60, 70, and 85  years) and 
finally we model it using either a linear or non-linear 
spline parametrisation. See Supplementary Material B3 
for details.

Results
Table  2 offer a comparison between the different mod-
elling strategies. All the models indicate evidence for an 
effect modification of age, but those correctly accounting 
for clustering by defining city-level groups (Models 1–3) 
demonstrate a better fit. The comparison of the more 
flexible models that define a continuous dose–response 
parametrisation (Models 2 and 3) suggests the presence 
of non-linearity. Note that the spline model (Model 3) 
has virtually an identical fit of the model with categorical 
indicators (Model 1), given that the number of groups/
values equals the spline terms. However, the more flex-
ible option defining the effect modification on a continu-
ous scale has still some advantages, as illustrated below.`

The analysis has similarities to Case Study 1, which 
illustrated the effect modification related to city-specific 
variables, but, in this case, modelling within-city varia-
tions in risk. Still, the direction of the effect is difficult to 
ascertain when applying complex multi-parameter func-
tions. Therefore, we rely on the same approach to pre-
dict average heat-mortality exposure–response curves 
for specific age values, taking advantage of the continu-
ous dose–response parametrisation of the repeated-
measure multivariate model. The results are reported in 
Fig. 4, suggesting a clear age pattern with the risk of heat 
increasing at older ages.

This case study shows how to extend the classical two-
stage design to account for repeated measures originat-
ing, for instance, in the presence of multiple estimates 
from population sub-groups in the same location. This 
design extension also offers the possibility of model-
ling effect modifications by specific characteristics using 
flexible dose–response parametrisations on a continu-
ous scale. It is interesting to note that this approach 
relaxes the requirement of defining fixed sub-groups 
(e.g., by age), as different values can be attributed across 
locations.

Case study 4: modelling longitudinal patterns of risk
Motivation
A different setting in which repeated measures can arise 
in two-stage analyses is when multiple estimates are col-
lected at different times for the same location. This situa-
tion poses methodological problems that, similarly to the 
previous case study, standard designs are not equipped to 
handle.

The development of the two-stage methods to address 
these limitations requires accounting for the longitudinal 
structure of the data and modelling temporal trends in 
the exposure–response association. This extension pro-
vides environmental epidemiologists with the possibility 
of studying longitudinal patterns of risk, and considering 
potential time-varying factors explaining the variability 
of the estimated association over time.

Table 2 Comparison of various second-stage repeated-measure meta-analytical models to examine age-specific associations 
between heat and all-cause mortality in Case Study 3. The table report if clustering is accounted for, the parametrisation of age, the  I2 
index and information criteria

Clustering Age parametrisation I2 (%) AIC BIC LR test 
for age 
(p‑value)

Model 0 No Categorical 36.0 -480.99 -367.82 0.004

Model 1 Yes Categorical 36.0 -553.06 -439.38  < 0.001

Model 2 Yes Linear 36.9 -543.27 -450.26  < 0.001

Model 3 Yes Non-Linear 36.0 -553.06 -439.38  < 0.001
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In this case study, we again revise the analysis of heat-
mortality relationships described in Case Study 1 by fit-
ting the model in multiple sub-periods in each city. This 
step offers the opportunity to study temporal changes in 
the exposure–response curve and to assess the role of air 
conditioning (AC) in attenuating the risk. This case study 
is an illustrative example of a published analysis by our 
research group [17].

Brief description of the model, data, and analysis
We assume that in the first stage the data for the subset 
of 89 NMMAPS cities with information on AC data were 
split into five sub-periods (1987–98, 1990–92, 1993–95, 
1996–98, and 1999–2000), and that separate time series 
models were fitted in each city/period combination, 
deriving a total of 445 sets of coefficients (co)variance 
matrices representing the multivariate association. Each 
city/period combination can be assigned a measure of 
AC prevalence use (%) reconstructed from an external 
database [17] (see Supplementary Material B4).

In a second step, we apply a longitudinal multivariate 
random-effect meta-regression to evaluate changes in 
heat-related mortality risks, accounting for both within 
and between-city variations. We include in the model a 
smooth spline function of calendar year and a linear term 
for AC as time-varying predictors, assessing their contri-
bution with LR tests. As in the previous case study, this 
flexible continuous parametrisation allows the prediction 
of non-linear exposure–response curves for any given 
year and potential scenarios of AC use. See Supplemen-
tary Material B4 for details.

Results
The longitudinal meta-regression model suggests 
an independent effect of both calendar year (LR test 
p-value = 0.038) and air conditioning (p-value = 0.008). 
We evaluate their role by predicting the exposure–
response associations in RR scale for different AC preva-
lence levels (80% vs 20%) in the year 1990. The curves are 
displayed in Fig. 5 (left panel), indicating how increasing 
AC has a protective effect at hot temperatures.

In order to assess the joint contributions of trends and 
AC use, we depict two scenarios to represent longitudinal 
changes in risk along years: a factual scenario using the 
observed trend in average AC prevalence, and a coun-
terfactual scenario with AC use kept constant in time 
at the value of 1987. The right panel of Fig. 5 shows the 
results, summarising the heat effects as the RR computed 
at the  99th percentile versus the MMT along the period 
1987–2000. The predicted risk under the counterfactual 
scenario (in blue) reveals a decreasing trend independ-
ent from AC use. Nonetheless, the comparison with the 
factual scenario (in red) suggests that the increase in AC 
prevalence during the period contributed somehow to 
attenuate the risk.

This last case study demonstrates the extension 
of the two-stage design to study longitudinal asso-
ciations, evaluating changes in risk across both spa-
tial and temporal dimensions. The flexibility of the 
extended framework allows parametrising effects on a 
continuous scale and performing second-stage meta-
analysis with balanced and unbalanced data, with 
important design advantages.

Fig. 4 Average temperature-mortality relationships across 108 US cities during the summer period in 1987–2000 predicted at different ages (in 
years) from the extended model with a continuous spline parametrisation (Model 3) in Case Study 3
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Discussion
In this contribution, we presented several design exten-
sions of classical two-stage studies, and introduced sev-
eral examples that illustrate how the flexibility of this 
modelling tool can improve the investigation of the effect 
of environmental exposures on health outcomes. Specifi-
cally, we showed how the extended two-stage design can 
be applied to investigate complex exposure–response 
dependencies, multilevel longitudinal structures, and 
repeated-measure dose–response associations. The ana-
lytic framework can be applied using classical inferential 
procedures and can be easily implemented using the R 
package mixmeta.

The two-stage design was proposed for the analysis of 
multi-location data. The methodology has been popular-
ised by multi-city time series studies investigating short-
term risk associations with environmental stressors [2, 
5, 10], and it has become a common tool to assess the 
acute effects of pollutants [4, 7–9, 11] and temperature 
[1, 3]. The two-stage design has been also implemented 
in multi-cohort studies (e.g. ESCAPE project) to evalu-
ate to long-term effect of pollutants [12, 24, 35], and in 
genetic epidemiology studies [36, 37]. Several extensions 
of a standard design have been proposed over the years, 
all of which can be represented as specific applications of 
the unified framework proposed here.

The most straightforward extension considers multi-
ple estimates obtained in the first stage and the applica-
tion of multivariate meta-analytic models in the second 
stage. This approach was originally developed to pool 
lagged effects [2], multiple pollutants [22], and non-linear 

dependencies [15], or more complex distributed lag non-
linear associations [38].

Early applications of the two-stage design considered 
a small number of locations within a country, but the 
increased availability of environmental measures and 
health data now allows studies that include hundreds 
of locations within several countries [18, 19, 39]. In this 
setting, the locations can have a hierarchical structure 
that can be directly incorporated into the extended two-
stage design. This extension has been proposed to obtain 
global, country, and city-level estimates of the asso-
ciations by combining information within and between 
locations [18, 19, 39].

Environmental risk factors are often associated with 
risks that vary according to some individual or contextual 
characteristic [28, 40, 41]. The comparison of association 
measures across sub-groups was originally performed 
qualitatively and/or without consideration of the pos-
sible non-independence of multiple estimates collected 
within a location [42]. The extended two-stage design 
can directly model dependencies between the stratified 
estimates within each location, and appropriate inferen-
tial procedures can be used to evaluate differences across 
sub-group estimates.

In addition, such differences can be linked with meas-
urable characteristics that can be included as categori-
cal and continuous fixed-effects terms in the extended 
second-stage meta-regression. This extension allows 
modelling risks varying both within locations (e.g., age 
in Case Study 3) and between locations (e.g., population 
size and unemployment rate in Case Study 1). This effect 

Fig. 5 Left panel: predicted average heat-mortality association (in RR) during the summer predicted for different air conditioning (AC) prevalence 
(20% and 80%) in Case Study 4. Right panel: trends in RR at  99th summer temperature predicted under two scenarios of AC use, corresponding to 
the observed average and a constant 1987 value
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modification patterns can be modelled linearly or non-
linearly using flexible parametric functions, representing 
a further extension of dose–response pooling methods 
applied in observational studies [43, 44].

With the availability of longer time series of envi-
ronmental exposures and health outcomes, research-
ers have started to investigate the temporal variation in 
associations of short term environmental exposures and 
health outcomes [3, 17, 45–49]. In particular, modelling 
approaches have proposed time-varying extensions of 
distributed lag non-linear models [47, 48], Bayesian hier-
archical models [3, 46], and functional meta-regression 
[49]. The extended two-stage design naturally accommo-
dates balanced and unbalanced association parameters 
longitudinally directly accounting for possible non-inde-
pendences, and it provides the possibility to parametrise 
trends through linear and non-linear functions. It is 
important to note that the longitudinal setting can incor-
porate other extensions, such as multivariate outcomes 
and multilevel structures, modelling potentially complex 
structures of longitudinal associations [17].

The data example and the four case studies are consist-
ent with the most common application of the two-stage 
design in time series analysis of short-term effects of 
environmental exposures. However, it is worth noting 
that the framework proposed here is not restricted to 
the time series setting, and first-stage estimates can be 
obtained by any other approach such as case-crossover 
or time-to-event Cox models. Therefore, the extended 
two-stage design can similarly be applied in environmen-
tal epidemiological studies investigating either short or 
long-term effects of environmental exposure, using either 
individual-level or aggregated cross-sectional, case–con-
trol, and cohort data [12, 24, 35–37, 50].

An important advantage of the proposed development 
is the fact that it is grounded on a unified likelihood-
based inferential framework and implemented in freely 
available and easy-to-use software. All the analyses illus-
trated in the four case studies can be performed using 
the R package mixmeta, which offers a simple syntax to 
define all the different models and combinations of them. 
Similar extensions of the two-stage design were proposed 
based on Bayesian hierarchical models, for instance for 
multivariate [22], multilevel [14] and longitudinal data 
[46], but they usually require advanced statistical and 
programming skills and can be computationally more 
demanding. Nonetheless, the Bayesian framework offers 
more flexibility in accommodating random-effects and 
correlations, for instance spatial structures that are not 
yet available and generally more difficult to implement in 
our likelihood-based development.

Conclusions
Technological developments in environmental monitor-
ing, coupled with advancements in data linkage and col-
laborative tools, offer new opportunities for researchers 
to collect large multi-locations databases. The develop-
ment of a general and extended framework for two-stage 
designs is therefore timely and offers a flexible and gener-
ally applicable tool for modern environmental epidemio-
logical studies.
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