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Introduction

This thesis deals with the mathematical modelling of hemorheology that consists
in the study of blood flow either as a homogeneous fluid or as suspension of cells
in plasma. Hemorheology is also concerned with the study of the interactions be-
tween blood components and between these components and the endothelial cells
lining blood vessels. These aspects, however, are not explored in the thesis. An
important impetus for progress in this field has been the evidence that many cardio-
vascular diseases have their main cause in poor circulation. Basically, pathologies
with hemorheological origin such as leukemia, hemolytic anemia, thalassemia, or
pathologies associated with risk factors for thrombosis and atherosclerosis, such
as myocardial infarction, hypertension, stroke, or diabetes, are mainly associated
with disturbances in local homeostasis. Therefore, the mathematical and numeri-
cal study of constitutive models that can capture the main rheological features of
blood over a range of own conditions is ultimately recognized as an important tool
for clinical diagnosis and treatment planning.

In the sequel, we will look at a few areas of hemorheology. In particular, we
will deal with microcirculation, the part of the circulatory system that includes
venules, arterioles, and capillaries. The microcirculation plays a fundamental role
in the circulatory system, as it is the part of the system responsible for trans-
porting blood to the periphery. The aging process naturally leads to a significant
decrease in microcirculation, but this process can be accelerated by certain factors
such as bad habits, environmental factors that are not positive or a poor lifestyle,
leading to many diseases. For these reasons, it is particularly important to study
the physiology of microcirculation, as it is still not fully understood. Specifically,
in this thesis we will analyze the blood flow that occurs in vessels whose diame-
ter is between about 100 and 500 micrometers. In this “segment”two important
phenomena occur that are not yet fully explained.

The first fundamental phenomenon is the F̊ahraeus-Lindqvist effect [35], which is
observed in vessels with diameter less than about 500µm. It consists in a variation
in blood viscosity according to the vessel’s diameter through it flows. This effect
was discovered in the 1930s, and since then its causes are almost unknown. The
most widely accepted qualitative explanation is due to R.H. Haynes [58], who
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INTRODUCTION

hypothesized the presence of a marginal layer attributable to the migration of
red blood cells to the center of the vessel. As for its usefulness, recent studies
have shown that while it leads to a substantial reduction in flow resistance and
increasing discharge, it does not reduce energy dissipation [7].

The second phenomenon of greatest importance to the physiology of the microcir-
culatory system is the vasomotion, a rhythmical contraction-relaxation mechanism
of microvessels, that regulates fluid and nutrient exchange between the vascular
system and peripheral tissues.

This thesis is devoted to the mathematical modeling of these two phenomena, for
which, as already mentioned, there are even nowadays no exhaustive theoretical
explanations.

The first aim of this thesis is to study the F̊ahreus-Lindqvist effect by means
of a mathematical model capable of explaining the peculiar behavior of blood
in vessels with a diameter of less than or on the order of 500-300 micrometers.
The second goal of the thesis concerns the mathematical modeling of vasomotion.
Existing models such as [36, 38], which describe the effects on blood flow, are
poorly developed because they use inappropriate constitutive laws and consider
rectilinear vessels. Therefore, both the rheological aspect and the study of flow
in non-flat-walled channels need to be refined, in order to improve the knowledge
gained so far and develop new ones based on it. To this end, we will approach the
problem by modeling blood as a viscoplastic fluid, more specifically as a Casson
fluid.

It is important to emphasize the original and innovative aspect of our research
from the mathematical-modelling point of view. Indeed, we have developed out
the study of a Casson flow in a duct with symmetric but not parallel walls in an an-
alytical way. This study has been faced in the past using only numerical methods,
since the tracking of the yield surface is extremely complex from a mathematical
point of view. In viscoplastic fluids, the yield surface represents the interface be-
tween the part of the medium characterized by the behavior of a rigid body and
the part characterized instead by the classical fluid behavior. The determination
of the correct position of the yield surface is fundamental to describe the flow cor-
rectly. Because of these difficulties, the study of the peristaltic motion of a Casson
fluid has never been tackled. In [55] we have developed a mathematical model
allowing to correctly track the spatio-temporal evolution of the yield surface in
vessels with non-flat walls and to provide the basis for a similar study on vessels
with moving walls, as in the case of peristalsis.

Concerning the F̊ahreus-Lindqvist effect, various theories have succeeded each
other over the years, aiming to describe it theoretically. None of them, however,
has been able to explain the peculiar curves of viscosity versus vessel diameter
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INTRODUCTION

obtained F̊ahreus and Lindqvist in their 1930 paper [35]. In [54] the problem has
been approached in a different way. The blood has been modeled as an inhomoge-
neous fluid, linking this inhomogeneity to the distribution of red blood cells over
its cross section. With this mathematical model the Haynes’ conjecture, which
assumes migration of red blood cells towards the center of the vessel, has been
justified. We have thus laid the foundation for a possible interpretation of the
F̊ahreus-Lindqvist effect from a fluid dynamical point of view.
After this brief introduction, the thesis develops as follows: In Chapter 1 we will
make a quick historical excursus on how hematology emerged from obscurity and,
the role of blood and, more generally, of medicine throughout the centuries. Then
we analyze the main features of the human circulatory system. In Chapter 2 we
will deal with the rheology of blood, deepening its composition of blood, and then
analyzing its non-Newtonian properties from a mathematical point of view. We
discuss its viscosity, its viscoelasticity and its thixotropic properties in order to
describe the main mathematical models able to model its behavior. In Chapter
3, we enter the heart of our research activity by analyzing the F̊ahraeus-Lindqvist
effect. In particular, after a brief introduction in Section 3.1, we introduce the
concept of apparent viscosity [50]. To better interpret and analyze experimental
data on blood, we review the literature on the rheology of particle suspensions
in Section 3.2. For rigid particles, there is a large amount of published litera-
ture. However, the study of suspensions with multiple, interacting, and highly
deformable particles such as blood has received less attention and presents a chal-
lenge for both theoretical and computational fluid dynamics research. In Section
3.3, we introduce the concept of Marginal layer in a suspension, while Section 3.4
and the following ones are devoted to the definition of the mathematical model
based on an entrance flow effect coupled with the Prandtl boundary layer theory.
Finally, in Chapter 4 we address the issue of vasomotion and the modeling of blood
as a Casson fluid. In detail: in Section 4.2 we introduce the mathematical model,
the dimensionless form is obtained in Section 4.3 and the asymptotic expansions
in Section 4.4, while the corresponding numerical results are given in Sections 4.5,
4.6. The peristaltic flow is studied in Section 4.9. Some final remarks will be
drown in the last chapter.
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Chapter 1

Historical aspects

The aim of this section is simply to give a brief sketchy overview of how hema-
tology, one of the most sophisticated branches of medicine because of its close
connection with biochemistry, emerged from obscurity. The importance of blood
for life must have been clear to people in ancient times, with many implications
on a religious level, e.g. from the Leviticus the Jews are obliged not to eat meat
containing fresh blood. Closely related to this, in the ancient world health and
disease were seen as expressions of supernatural forces, related to the will of gods
and demons. In this mixture of superstition and magic, blood always played a
crucial role: just think of the rites of blood sacrifice and drinking by which ancient
civilization sought to obtain the grace of the gods.
Egyptian expertise in medicine was also highly valued by the Greeks, to the point
of being praised by Homer in the Odyssey (c. 800 BC). The Egyptians were very
familiar with the interior of the human body through the practice of mummifi-
cation. They knew the main blood vessels (about 46) and the prominent role of
the heart. According to clay tablets from the library of Ashurbanipal in Nineveh
(7th century BC) reveal a much more mystical approach to medicine: the heart
was the center of mental activity, blood was the essence of life, and the organ
that controlled circulation was the liver. Egyptians and Mesopotamians certainly
practiced bloodletting as a treatment for numerous diseases.
Hippocrates (c. 460 BC - c. 370 BC) was certainly the most influential figure in
Western civilization from the standpoint of medicine. The main merit attributed
to Hippocrates is the separation of medicine from religion (which in Greece was
then dominated by the cult of Asklepios). According to Hippocrates, health de-
pends on the balance of the four humors (blood, phlegm, black bile and yellow bile)
became a paradigm that went unchallenged for centuries. Along with Hippocrates
another important scholar was Alcmaeon of Croton (5th century BC), who was
the first to distinguish arteries and veins on the basis of direct observations prac-
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ticing dissection of animals. It should be remembered that Hippocrates theory,
i.e. the interpretation of health as a balance of “entities”, was also a defining
feature of Eastern doctrines, at least as old as Ayurveda, the traditional Indian
medicine. One of its basic principles is that the doshas, the three inner life forces,
must be in balance to be healthy. Ayurveda is still widely practiced and includes
bloodletting as one of the “five actions”. Just as old and current as Ayurveda is
traditional Chinese medicine, which is also inspired by the concept of the balance
of two “principles”: yin and yang, opposites and complementary forces [77].
Galen of Pergamon (131-201) achieved great fame in Rome where he became known
as Aelius (Claudius) Galenus. Galen perfected the theory of Hippocrates by consid-
ering the combination of the four temperaments (choleric, melancholic, sanguine,
phlegmatic) and the four qualities (cold, hot, humid, dry). Galen gave bloodlet-
ting fundamental importance as he believed that it restored the balance of the lost
humors of the body. It is not for nothing that bloodletting was practiced almost
until today, when it proved itself be a generally useless and even dangerous practice.

As already mentioned, over the centuries, blood circulation has fascinated scholars
and intellectuals. However, only after the sixteenth century, hematology got rid of
many false knowledge and embarked on the path that would lead it to one of the
most important sectors of medicine. Aristotle (384-322 B.C.) declared that the
heart was an organ with three chambers and the seat of the soul, a concept that
has penetrated our civilization since even today heart and soul are used as syn-
onyms. Aristotle’s thought “no one will derive any benefit from their body after
death”encouraged the practice of dissection of corpses resulting in many impor-
tant discoveries. Vivisection of animals and even criminals sentenced to death, was
performed publicly by Erasistratus (304-250 BC) and Herophilus (335-280 BC).
The theory of humors was also followed in Islamic medicine, although the famous
Persian scientist Muhammad ibn Zakariya Razi (865-925), opposed to several of
Galen’s statements on the basis of his experimental observations. It is important
to emphasize before 16th century the theories of Hippocrates, Aristotle and Galen,
which later turned out to be wrong, dominated Western medicine.
Great credit for founding medicine as a modern science goes to Andries van Wesel
(1514-1564), a Flemish anatomist better known as Andreas Vesalius, who revolu-
tionized physiology by basing his studies on direct observation of dissected human
bodies. In his most important work, De Humani Corporis Fabrica Libri Septem
(1543), inspired by Razi’s books, he pointed out several of Galen’s errors (espe-
cially in the description of the circulatory system). During his life he was severely
attacked by the followers of Galen, especially by the Church: It is said that he was
sentenced to death in Spain because an autopsy appeared to show the heart of a
presumed dead man beating (Leonardo da Vinci also had to stop his studies on
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dissected corpses during his time in Rome because of accusations of witchcraft).
Another brilliant scientist who gave an enormous contribution to the development
of medicine was William Harvey (1578-1657) who in his famous treatise Exercitatio
Anatomica De Motu Cordis et Sanguinis in Animalibus (1628) provided the first
correct systematic description of blood circulation, limited to the great vessels.
In this text he, based on a mechanical model, defined the heart the pump of the
circulatory system. He also measured the amount of blood present in the body.
He found that two ounces (about 59 ml) of blood leave the heart with each beat,
so that at 72 heartbeats per minute, the heart pumps 540 pounds (about 245 l)
of blood into the circulatory system every hour. Harvey, applying the principle of
mass balance, showed that such a large amount of blood could not be created in
the body and therefore the blood did not form but simply circulated in the body,
thanks to the pumping action of the heart.
We also cite Andrea Cesalpino (1519-1603), an Italian anatomist and botanist,
who demonstrated that the heart is the sole responsible for the movement of blood
and that blood moves to and from the heart. This was shortly followed by the
important contributions of the eclectic English scientist Stephen Hales (1677-1761),
who determined the volume of blood in the body, the heart’s power, and the blood
pressure. To understand the composition of the blood, we had to wait until the end
of the sixteenth century. Indeed, it was during this period that the microscope,
attributed to the Dutchmen Hans and Zacharias Jannsen, was invented. The
studies of Anthony Leeuwenhoek (1632-1723) paved the way for microbiology. In
1674 he studied red blood cells (RBCs), which had previously been identified in the
blood of frogs by Jan Swammerdam (1658) and also observed by Marcello Malpighi
(1628-1694). Because of their remarkably small size, it was necessary to wait much
longer for the discovery of platelets, which occurred in 1842 with the advent of more
powerful microscopes. In terms of size, it is quite curious that white blood cells
(WBCs) or leukocytes, which are much larger than platelets, were not discovered
in blood until a year later (1843). The reason for this late discovery is not because
of the size of white blood cells, in fact they had already been observed in pus, but
it had not been understood that they were part of the blood components. It was
not until the nineteenth century that hematologists began to reap the benefits of
many technological and scientific innovations. It was during this period that Lionel
Beale (1828-1906), in his book The Microscope in its Applications to Practical
Medicine, illustrated in great detail the constituents of blood known in his day.
More recently, we recall the discovery of the system of blood groups A, B, O by
the Nobel Prize winner (1930) Karl Landsteiner (1868-1943), who, together with
the American scientist Alexander Solomon Wiener (1907-1976), also discovered
the Rhesus factor (1937), which may (Rh+) or may not (Rh-) be present on the
surface of red blood cells.
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Chapter 2

Blood rheology

In this section we present a brief overview of the rheological properties of blood,
including its most significant non-Newtonian characteristics and discuss the main
constitutive models introduced to capture one or more of these properties.

2.1 Blood composition

Blood is a concentrated and complex heterogeneous suspension of various cellular
elements, the hematocytes, in an aqueous solution, the plasma. Plasma is very
abundant in blood, accounting for about 55% of its volume and consisting of
about 92% of water. The rest is made up of proteins, waste products, and organic
molecules. The most important cells carried by the blood are red blood cells
(RBCs or erythrocytes), white blood cells (WBCs or leukocytes) and platelets
(thrombocytes). The main function of plasma is to transport the substances it
contains through the circulatory system. Let us now analyze the properties of
hematocytes in more detail.
Leukocytes have an almost spherical shape, their diameter ranges from 6 to 17 µm
and in an average man they have a concentration of about 7 − 11 · 103 per cubic
millimeter. They are our body’s defense cells and are particularly responsible for
innate (natural, nonspecific) and acquired (adaptive, specific) immune responses.
Erythrocytes are biconcave disks of a much smaller size than leukocytes, but of
a much higher concentration. They have a mean diameter of 6 − 8µm and a
maximum thickness of 2 − 3 µm. In an average man, the concentration of red
blood cells is about 5− 6 · 106 per cubic millimeter of blood. Red blood cells make
up more than 99% of all blood cells. Hematocrit is defined as the percentage of
red blood cells per unit volume of blood (about 40 − 45% in an average man).
The primary function of erythrocytes is to transport oxygen and carbon dioxide
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throughout the body, thanks to hemoglobin.
Thrombocytes, on the other hand, are small fragments of nonnucleated disk-shaped
cells, much smaller than erythrocytes and leukocytes, with a volume of about
2− 3 µm3.
Platelets are essential for blood clotting. Leukocytes and platelets make up about
1% of the remaining particles in the blood and are therefore of little importance
in the study of blood rheology.

2.2 Blood rheological properties

A fluid is called Newtonian when shear stress and shear speed are proportional,
the constant of proportionality being referred to as viscosity. Plasma, consisting
mainly of water, can be considered a Newtonian fluid, but, in general, this is not
true of blood due to the many particles it contains. To describe the rheological
behavior of blood it is therefore necessary to use more sophisticated models than
the simple Newtonian model. In particular, some of blood properties emerge when
the size of the hematocytes is comparable to the size of the lumen. At the level
of the systemic circulation, where the vessels have “larger“diameters blood can be
considered as a homogeneous non-Newtonian fluid. On the other hand, if we con-
sider the pulmonary circulation, where the diameter of the vessels is comparable to
the size of the red blood cells, the blood cannot be modeled as a homogeneous fluid
and we have to consider it as a suspension of hematocytes, mainly erythrocytes, in
the plasma. The presence of cellular elements in the blood and their interactions
lead to significant changes in the rheological properties of the blood and reliable
measurements must be made to derive appropriate microstructure models.

The viscosity of blood is generally 2-4 times higher than that of plasma and de-
pends mainly on the hematocrit. In particular, the non-Newtonian behavior of
blood becomes more evident as the concentration of red blood cells increases,
causing the hematocrit to rise. It has been observed that erythrocytes in blood at
low shear rates tend to form an aggregate structure in the form of rods of individ-
ual cells called Rouleaux, which in turn can coalesce and form a three-dimensional
branched structure. As a result, the viscosity of the suspension increases. In par-
ticular, the apparent viscosity increases slowly until the shear rate decreases to
less than 1s−1, and then increases dramatically. Some studies have experimentally
shown that rouleaux do not form when plasma proteins, fibrinogen, and globulins
have been removed from the blood. In fact, suspensions of erythrocytes in plasma
show strong non-Newtonian behavior, whereas the suspension in saline (without
fibrinogen or globulins) shows Newtonian fluid behavior. When blood that has a
high hematocrit and is nearly stationary, the presence of Rouleaux can induce a
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2.2. BLOOD RHEOLOGICAL PROPERTIES

yield stress that serves as a stress threshold for flow. At high shear rates, larger
than 400s−1, the RBCs assume an elongated, ellipsoidal shape. Under these con-
ditions, there is almost no collision between red blood cells and their contours
revolve around their internal fluid. Therefore, the apparent viscosity decreases,
a feature that becomes significant for vessels less than 1mm in diameter but is
strongly pronounced for vessels with diameter less than 300µm.
Geometric packing effects and radial migration of red blood cells can create a very
thin layer of cell-free plasma near the vessel wall that has a lubricating effect. This
is known as the F̊ahraeus-Lindqvist effect. Plasma skimming is another effect that
leads to a decrease in the apparent viscosity when blood flows in small vessels to
the side of the parent vessel. This is due to a decrease in viscosity associated with
a reduction in hematocrit (F̊ahraeus effect). This occurs in small vessels or in re-
gions of stable recirculation, such as the venous system and in parts of the arterial
vascular system where the geometry has been altered (e.g., stenoses or aneurysms).
However, in the system of large arteries, blood flow is basically Newtonian under
normal physiological conditions.

A viscous fluid that is capable of storing and releasing energy is called viscoelas-
tic. As we have mentioned in the previous sections, the behavior of blood depends
greatly on the circumstances under which we analyze it. In blood with a nor-
mal hematocrit value, viscoelasticity is due to the reversible deformation of the
3D microstructures of red blood cells [29, 123], in particular, the elastic energy is
due to the properties of the RBC membrane, which shows stress relaxation [34].
Considering the available experimental evidence, it is reasonable to develop non-
Newtonian fluid models for blood that are capable of shear thinning and stress
relaxation, where the relaxation time depends on the shear rate. For shear rates
larger than 10s−1, the viscoelastic behavior of blood must be considered, while for
shear rates below this threshold, the elastic nature of blood is negligible. Another
important property of blood is its thixotropic behavior, i.e., the ability of pseudo-
plastic fluids to change their viscosity when subjected to shear stresses. In blood,
this property is essentially due to processes such as the formation and dissolution
of the 3D microstructure, the elongation and recovery of RBCs, and the formation
and dissolution of the layers of aligned erythrocytes that develop in a finite time [8].

There are some substances, such as pastes, that do not deform at a shear stress
below a critical value usually referred to, usually referred to as yield stress, while at
a higher stress they start to flow. Materials with a yield stress are called Bingham
fluids [15]. The explanation for this phenomenon is related to the energy required
to break the internal bonds of the material: If this energy is sufficient, the material
behaves like a fluid, otherwise it behaves like a rigid body. The critical stress level,
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also known as the yield value or simply the yield, is considered to be a material
property of the fluid. Blood is also believed to possess this property.
However, it is debatable whether the yield point of blood really exists, as the mea-
surements made show a large variability, ranging from 0.002 to 0.40 dynes/cm2[30].
This large difference is attributed to artifacts resulting from the interactions be-
tween the erythrocytes and the surfaces of the rheometer, as well as from the
experimental methods used to measure the yield stress and the duration of the
experiments [8].

2.3 Blood constitutive models

In this section, we will discuss the basic models most commonly used in large and
medium-sized arteries i.e. radius larger than about 500 µm, to describe local blood
flow. In these vessels, the blood behaves as a homogeneous fluid. This assumption
does not hold true in smaller vessels (arterioles, venules and capillaries) where
significant changes in rheological behavior occur.
In reality, blood is a non-Newtonian fluid, but assuming that all macroscopic length
and time scales are sufficiently large relative to the length and time scales at the
level of the individual erythrocyte so that the continuum assumption holds, it can
still be considered a Newtonian fluid. For example, the apparent viscosity in ar-
teries with diameters larger than 300µm is in the range of 3 to 4 times the one
of water. The models we are going to illustrate are not suitable in the capillary
network.
For an overview of hemorheology in the microcirculation, see the article by Popel
and Johnson [98].

Blood flow in the cardiovascular system, as with other fluids, is subject to the
conservation laws of momentum, mass, and energy described accordingly. Further
constraints and conditions can be derived from the constitutive equations for the
walls of the vessel. These walls are indeed flexible and subject to the mechanical
drive of the heart, which strongly influences the dynamics of blood flow. For
macroscopic modeling of blood flow, we consider the most general form of the
constitutive equations for incompressible viscous fluids by defining the Cauchy
stress tensor T such that

T = −pI + τ (2.1)

where p is the Lagrange multiplier arising from the incompressibility constraint
usually referred to as pressure, I is the identity matrix and τ is the extra-stress
(or deviatoric stress) tensor, representing the forces which the material develops
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2.3. BLOOD CONSTITUTIVE MODELS

in response to being deformed.
We also introduce the strain rate tensor or rate of deformation tensor

D(u) ≡ D =

(
∇u +∇uT

)
2

. (2.2)

where u is the fluid velocity.
In the sequel we will introduce some models characterized by a particular type of
τ .
Talking about blood circulation, we can assume that blood is a Newtonian fluid
when flows in large healthy arteries (diameter & 1 mm). However, under certain
experimental or physiological conditions, especially at low shear rates, blood ex-
hibits non-Newtonian properties and more complex constitutive models must be
used. In this case, we need a more general constitutive equation that relates the
stress to the shear rate. A very important class of constitutive equations that
satisfy the invariance requirements can be written as follows

τ = φ1(IID, IIID)D + φ2(IID, IIID)D2 (2.3)

where IID and IIID are the second and third principal invariants of the rate of
deformation tensor D, given by

IID =
(tr D)2 − tr(D)2

2
, IIID = det(D). (2.4)

Incompressible fluids like (2.3) are called Reiner-Rivlin fluids. Particular attention
is given to a special class of Reiner-Rivlin fluids called generalized Newtonian fluids,
for which

τ = 2µ(IID, IIID)D (2.5)

from which, assuming µ as a constant (called dynamic viscosity) we obtain the
Navier-Stokes equations

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+ µ∆u

∇ · u = 0

(2.6)

where ρ is the blood density.
Since many fluids are mechanically incompressible tr D = 0 and it turns out that
IID = −(tr D2)/2. Moreover, since also IIID vanishes in many flows, it is useful
to introduce a measure of the rate of deformation, the so-called shear rate, usually
denoted by γ̇, and defined by

γ̇ =
√

2tr (D2) =
√
−4IID, (2.7)
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CHAPTER 2. BLOOD RHEOLOGY

and write the generalized Newtonian model (2.5) in the form

τ = 2µ(γ̇)D, (2.8)

where µ(γ̇) is a shear dependent viscosity function. A simple example of a gener-
alized Newtonian fluid is the power-law fluid, for which the viscosity function is
given by

µ(γ̇) = Kγ̇n−1 (2.9)

the positive constants n and K being the power-law index and the consistency,
respectively. From this model we derive for n = 1 the Newtonian fluid model, i.e.
the one with constant viscosity. For n < 1 we obtain a monotonically decreasing
function of the shear rate, so that the fluid is called shear-thinning, while for n > 1
the viscosity increases with the shear rate and the fluid is called shear-thickening.
In modeling blood, the shear thinning model is often used because it leads to
“simple”analytical solutions, even though it imposes unphysical conditions: In
fact, it predicts unbounded viscosity at zero shear rate and zero viscosity when
γ̇ → ∞. Viscosity functions that generalize (2.9) in the sense that have bounded
and non-zero limiting values, can be written in the form

µ(γ̇) = µ∞ + (µ0 − µ∞) β(γ̇), (2.10)

or, in non-dimensional form as

µ(γ̇)− µ∞
µ0 − µ∞

= β(γ̇). (2.11)

Here, µ0 and µ∞ are the asymptotic viscosity values at zero and infinite shear
rates and β(γ̇) is a shear dependent function, satisfying the following natural limit
conditions

lim
γ̇→0

β(γ̇) = 1, lim
γ̇→∞

β(γ̇) = 0. (2.12)

Different choices of the function β(γ̇) correspond to different models for blood
flow, depending for example on hematocrit, temperature, plasma viscosity or other
factor strictly related to the individual (age, gender and health condition).
An example of the beta function, which plays a major role in modeling blood is

β(γ̇) = [1 + (λγ̇)a]
n−1
a , 0 < n < 1 (2.13)

which is the Carreau-Yasuda model [18]. The parameters λ, n and a are the
material constants specific for that kind of model.
Concerning viscoelasticity, a huge number of nonlinear viscoelastic constitutive
models for blood are available. We are not going to use this kind of models in this
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thesis, so we just give some information concerning them. One of the simplest rate
type models accounting for the viscoelasticity of blood is the Maxwell model

τ + λ1
∇
τ = 2µD (2.14)

where λ1 is the relaxation time and

∇
τ =

dτ

dt
+ (u · ∇) τ −∇uτ − τ∇uT (2.15)

stands for the so-called upper-convected Oldroyd derivative, a generalization of the

material time derivative dτ
dt

= ∂τ
∂t

+ u · ∇u, chosen so that
∇
τ is objective under a

superposed rigid body motion and the resulting second-order tensor is symmetric
[100][199].
A more general class of rate type models, includes the Oldroyd-B models [87]
defined by

τ + λ1
∇
τ = 2µ(D + λ2

∇
D) (2.16)

where the material coefficient λ2 denotes the retardation time and is such that
0 ≤ λ2 < λ1. Oldroyd-type fluids are considered Maxwell fluids with additional
viscosity. These types of models, also called upper convection Maxwells, are a
generalization of the earlier model (2.14). Thurston [121, 122] was one of the
first (1972) to recognize the viscoelastic nature of blood, noting that viscoelastic
behavior becomes less pronounced with increasing shear rate.
Among the differential viscoelastic constitutive models recently proposed in the
literature we just mention the empirical five-constant generalized Oldroyd-B model
introduced by Yeleswarapu [125]. In this model, the constant viscosity µ of (2.16)
was replaced by a generalized Newtonian viscosity of the form

µ(γ̇) = µ∞ + (µ0 − µ∞)

[
1 + ln(1 + ζγ̇)

1 + ζγ̇

]
. (2.17)

The 3 parameters µ0, µ∞ and ζ have been derived by fitting experimental data for
steady capillary flow. This model captures the shear thinning behavior of blood
over a large range of shear rates but it has some limitations, since the relaxation
times do not depend on the shear rate, which does not agree with experimental
observations.
We now illustrate some viscoplastic models that are often encountered in hemorhe-
ology. The behavior of viscoplastic materials shows a critical value of stress below
which the material does not flow. As mentioned before, such a critical value is
usually referred to as yield stress. Viscoplastic materials are also called Bingham
plastics, after Bingham [16], who was the first to describe several types of paint in
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this way in 1919. The models used for these materials included also the Herschel-
Bulkley model [59], the Casson model [22] and the Heinz-Casson model [42]. A
detailed review of viscoplastic fluids can be found, in Bird, Dai and Yarusso [17],
Mitsoulis [81], Huilgol [61], Frigaard and Nouar [43] and Farina et al. [37].

All these models have various practical applications. The Herschel-Bulkley models
are used for muds, foams, ceramics and slurries. The Casson model is widely used
to model blood flow [39, 36] as it describes blood flow quite well in low shear
regions. Indeed, the Casson fluid undergoes no deformation until the shear stress is
below the critical threshold and above such a threshold it displays a shear thinning
behavior. Merrill et al. [79] found that at shear rates in the range 0.1−1.0 s−1 the
Casson constitutive equation fitted very well the experimental data. We however
remark that yield stress models can be useful to model blood flow in low shear rate
regions though the existence of a yield stress for blood and its use as a material
parameter is still nowadays a controversial issue.
Yield stress materials require a finite shear stress τo (the so-called yield stress) to
start flowing. A relatively simple, and physically relevant yield criterion is given
by

|τ | = τo, (2.18)

where |τ | =
√
IIτ , IIτ being the second invariant of the extra stress tensor, τ (see

(2.4)). We mean that, for |τ | < τo, the fluid does not flow.
The simplest yield stress model is the Bingham fluid [15] which can be written in
the form D = O if |τ | < τo,

τ = 2

[
µ+

τ0√
2γ̇

]
D if |τ | ≥ τo

(2.19)

where µ is the viscosity attained when the fluid flows and γ̇ is given by (2.7).
Other yield stress models commonly used for blood are the Herschel-Bulkley and
the Casson models (see e.g. [100, 101]), both capturing a nonlinear dependence of
viscosity on shear rate.
The Herschel-Bulkley model displays a power-law viscosity like (2.9) and can be
written in a form similar to (2.19)

D = O if |τ | < τo,

τ = 2

[
Kγ̇n−1 +

τ0√
2γ̇

]
D if |τ | ≥ τo,

(2.20)

where γ̇ is the shear rate given by (2.7).
The most common yield stress model for blood is the Casson constitutive model
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[109] which, has the form
D = O if |τ | < τo,

τ = 2

[
√
µ+

√
τ0√
2γ̇

]2

D if |τ | ≥ τo,
(2.21)

As for the Herschel-Bulkley fluid, the Casson fluid behaves rigidly until (2.18) is
satisfied, and after that it displays a shear thinning behavior.

When constitutive equations (2.19)-(2.21) are considered, one has to solve a very
complex problem even in a simple 2D setting. In particular, one has to track the
evolution of the σ interface, where the constitutive equation exhibits a “singular-
ity”. Indeed, for Casson model (2.21), it is easy to see extrapolate the relation
between the norm |τ | = tr (τ 2) and γ̇ given by (2.7), namely

|τ | =
[√

µγ̇ +
√
τo

]2

γ̇ > 0,

|τ | ∈ [0, τo] γ̇ = 0,

(2.22)

which is a graph and not a function. Moreover (2.22) is not differentiable in γ̇ = 0.
To bypass this difficulty, it is generally used to smooth the constitutive relationship
by considering (see [81] for more details) the Papanastasiou model [88],

|τ | =
[√

µγ̇ +
√
τo(1− e−

√
mγ̇)
]2

, Papanastasiou (2.23)

or alternatively with the Bercovier-Engelman model [14]

|τ | =

[√
µγ̇ +

√
τoγ̇

γ̇ + e

]2

, Bercovier-Engelman, (2.24)

where m and e are positive parameters. In particular (2.23) and (2.24) converge to
the Casson model (2.21) for m→∞ and for e→ 0. The advantage of using (2.23)
or (2.24) lies in the fact that the apparent viscosity µ(γ̇) is now a differentiable
function of γ̇ for all γ̇ > 0.
In Figure 2.1 we have plotted the regularized constitutive equations (2.23), (2.24)
for different values of the parameters m, e. Using the regularized models (2.23),
(2.24) the constitutive equation can be rewritten as

τ = µi(γ̇)D i = P, BE
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Figure 2.1: Shear stress vs Shear rate: regularized models. In the left panel

Papanastasiou regularized model, in the right one Bercovier-Engelman regularized

model

with
µp(γ̇) =

(√
µ+
√
τo

(1− e−
√
mγ̇)

γ̇

)2

, (Papanastasiou).

µbe(γ̇) =

(
√
µ+

√
τo

γ̇ + e

)2

, (Bercovier-Engelman).

(2.25)

When we consider (2.25) the Navier-Stokes system (2.6) becomes
div v = 0,

ρ
dv

dt
= −∇p+ div (µi(γ̇)D) .

If µi = const we recover the classical Navier-Stokes model (2.6).
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Chapter 3

Microcirculation and the

F̊ahraeus- Lindqvist effect

In 1930 a new blood effect, which was destinated to revolutionize the knowledge of
hemodynamics and be an hemodynamical open problem still nowadays, was first
documented by a German group, [74]. Shortly after, in 1931, it was reported inde-
pendently by the Swedish scientists Robin F̊ahraeus and Johan Torsten Lindqvist,
after whom the discovery is commonly named as the F̊ahraeus-Lindqvist effect [35].

This effect consists in the fact that blood viscosity seems to vary depending on
the diameter of the vessel in which blood flows. In particular, starting with ves-
sels smaller than 300µm in diameter and considering tubes whose diameters were
smaller and smaller until a minimum length of 4 − 5µm, the two scientists ob-
served a corresponding decrease in blood viscosity. Consequently, they concluded
that blood cannot be considered a Newtonian fluid, i.e., a linear viscous fluid (with
constant viscosity), when it flows through vessels whose diameter is less than or,
at least, equal to about 300µm: such interpretation is acceptable limited to blood
vessels greater than 300µm in diameter. In particular, this entails that blood
does not fulfill the Poiseuille law in all vessels: indeed, such law holds true only
for Newtonian fluids and, as we stated above, this is not the case for blood in
microvessels.

F̊ahraeus and Lindqvist experiment was carried out by using a viscosimeter which
was linked to a mercury manometer and a thermostat to keep pressure and tem-
perature constant. Moreover, there was an important difference between such
viscosimeter and those which had been developed since that moment: it made the
blood flow through an horizontal rotating glass tube, so red blood cells could not
accumulate on the vessel floor. In order to establish a possible viscosity change
depending on the tube diameter, they kept it constant, as well as pressure and
temperature, and they prevented blood coagulation by means of a sodium citrate
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Figure 3.1: Experimental results of R. F̊ahreus and T. Lindqvist [35]. In the axis

of ordinate is shown the apparent viscosity of blood relative to that of plasma. In

particular, in series 1 the plasma viscosity is 1.63, in series 2 the viscosity of the

plasma is 1.65, in series 3 the plasma viscosity is 1.60. Series 4 refers to artificially

plasma-depleted blood (plasma viscosity is 1.72).
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solution.
Through the years, lots of explanations of the phenomenon succeeded one another,
[7]. Nowadays, the interpretation which has received the largest agreement in the
scientific community is the plasma cell-free layer model, which was developed by
Haynes, [58], in the 1950s.
According to him, there is a thin layer adjacent to the capillary wall that is depleted
of red blood cells and it is usually called plasma layer or marginal zone or cell-free
layer.
Since it is red cell-poor, its (effective) viscosity is lower than that of whole blood,
resulting in a reduction of flow resistance within the capillary, with the net effect
that the (effective) viscosity is less than that for whole blood. Moreover, due to
the fact that the cell-free layer is very thin (approximately 2 − 3µm), [111], this
effect is insignificant in vessels whose diameter is large.
However, this explanation, while accurate, is ultimately unsatisfying, since it fails
to answer the fundamental question of why a plasma cell-free layer forms. Many
studies, the majority of which consisted of numerical simulations, [110], have been
carried out in order to find the way to solve this issue, but none of them proved
satisfactory.
The aim of this chapter is to propose a new approach to the problem. Drawing in-
spiration from another fluid dynamics phenomenon, the so-called channel entrance
flow, which is based on Prandtl boundary layer theory, our approach is to develop
a mathematical model aimed at describing the formation of the marginal layer.

3.1 Apparent viscosity

The flow resistance of a vessel is defined as

R =
∆p

Q
, (3.1)

where ∆p is the pressure drop driving the flow and Q is the discharge (or volume
flow rate). R is a quantity of obvious relevance in the study of blood flow in tubes
and shows (provided it is constant) that the blood flow Q is directly proportional
to ∆p, in other words the greater the pressure difference, the greater the flow.
Applying Hagen-Poiseuille law to the steady laminar flow of a Newtonian fluid
with viscosity µ, we get

Q =
π

128

∆pD4

Lµ
, (3.2)

which implies
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R =
128Lµ

πD4
.

So, flow resistance is proportional to the fluid viscosity, tube length L and sen-
sitively dependent on the diameter D by being proportional to its inverse fourth
power. This result is physiologically important, as it shows how relatively small
changes in the diameter of microvessels can cause substantial changes in flow re-
sistance and thereby control the distribution of blood flow to tissues at the local
level.
In order to analyze the rheological effects which are associated with RBCs in
microvessels, it is convenient to rearrange (3.2) and define the apparent viscosity
of blood as

µapp =
π

128

D4

L
R =

π

128

D4

L

∆p

Q
. (3.3)

Consequently, the relative apparent viscosity is given by µrel = µapp/µp, where µp
is the viscosity of the plasma or any other suspending medium. Of course, for a
Newtonian fluid µapp = µ but, in general (i.e., for a non-Newtonian fluid) µapp is
not the fluid “viscosity”.

In 1931, Robin F̊ahraeus and Johan Torsten Lindqvist, showed that the blood
apparent viscosity varies depending on the diameter of the tube it travels through,
[35], i.e. the so-called F̊ahraeus-Lindqvist effect.
Over the years many scholars have tried to theoretically explain the dependence
of apparent viscosity on the vessel diameter. The proposed theories have never led
to satisfactory results. However, in the 1990s, attempts were made to reproduce,
with best fitting techniques, the behavior of the apparent viscosity as a function of
the vessel diameter and blood hematocrit. In 1992, Axel Prieset al., [96], collected
and analyzed multiple experimental results on the flow of RBCs suspensions in
glass tubes and they developed an empirical equation for the dependence of the
relative apparent viscosity on the tube diameter D, in µm, and hematocrit HD

1,

µrel = 1 + (µ45 − 1)
(1−HD)C − 1

(1− 0.45)C − 1
, (3.4)

where

1Another effect that we are not going to discuss here is the F̊ahraeus effect, a phenomenon in

which the tube hematocrit, HT , i.e. the volume of red blood cells divided by total blood volume

in a tube, is less than the so-called discharge hematocrit, HD, i.e. the hematocrit of the blood

within the reservoir feeding the vessel.
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µ45 = 220 exp(−1.3D) + 3.2− 2.44 exp(−0.06D0.645)

is the relative apparent blood viscosity for a discharge hematocrit HD = 0.45. The
exponent C giving the dependence on hematocrit is governed by

C = (0.8 + exp(−0.075D))

(
−1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12
. (3.5)

In 1994, Pries et al., [50], through an indirect approach in which they examined the
distributions of blood flow and hematocrit in vivo, i.e. in microvascular networks,
derived an empirical relationship to describe the dependence of the apparent vis-
cosity on the vessel diameter and hematocrit for flows in vivo. Indeed the few such
data available suggested that the apparent viscosity in vivo was higher than the
one expected according to (3.4), developed for glass tube experiments.
The new formula elaborated by Pries and coworkers is

µrel =

[
1 + (µ45 − 1)

(1−HD)C − 1

(1− 0.45)C − 1

(
D

D − 1.1

)2
](

D

D − 1.1

)2

,

where

µ45 = 6 exp(−0.085D) + 3.2− 2.44 exp(−0.06D0.645)

is the relative apparent blood viscosity for HD = 0.45 and the quantity C is
given by equation (3.20). According to this result, the apparent viscosity in living
microvessels with a diameter of 30µm or less is markedly higher than its value
in glass tubes with corresponding diameters. The main cause of this difference
was found to be the presence of an ESL, or glycocalyx, on the inner surface of
endothelial cells, with a width of the order of 1µm. This layer consists of a dilute
matrix of loosely bound macromolecules, which largely impedes plasma flow in its
interior and thereby reduces the effective lumen available width for the flow of
plasma and RBCs.

During the past 20 years, the above equations for the apparent viscosity of blood
in vitro and in vivo have been used extensively in theoretical analysis of blood flow
in networks of microvessels. Nevertheless, the development of theories capable of
predicting the behaviors described by these equations and, moreover, explaining
the causes of RBCs migration to the central core has proved to be a formidable
challenge. In the remaining part of the chapter, we show that RBCs migration from
the blood vessel outer layer toward the central region can be rigorously modeled.
However, for the time being, we restrict ourselves to illustrate the most important
theories that have been proposed until now.
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3.2 Marginal layer

The formation of a cell-free layer near the vessel walls is the main reason for the
distinctive properties of blood in microvessels and, thus, for the F̊ahraeus-Lindqvist
effect.
Several studies about physical phenomena contributing to this behavior have been
carried out (just using simulation techniques) since 1970s and they are discussed
below. Many references on such issue may be found in the recent paper by Timothy
W. Secomb [110].

• Size exclusion Effect

The RBC center of mass is excluded from a zone near the wall as a result
of the finite size of the RBC. For an RBC in a disk-like configuration, the
minimum dimension is at least 2µm, so the center of mass of the cell cannot
physically approach within 1µm of the wall.

• Migration Away from Solid Boundaries

For Stokes flow of suspensions in tubes, migration away from the walls is
a consequence of particle deformability. Indeed, a neutrally buoyant rigid
particle in a dilute suspension does not generally migrate across the flow
away from a solid boundary in Stokes flow. For spherical particles, this re-
sult follows from the fact that equations of fluid motion are linear and that
a reversal of the flow direction would result in the opposite migration, which
would be a contradiction. For non-spherical particles, the same argument
applies if the particle and flow have symmetry with respect to a plane per-
pendicular to the flow direction at some point during motion. The migration
is demonstrated in three-dimensional simulations of motions of RBCs and
other deformable particles in shear flow near a solid boundary. However, a
general mechanistic understanding of the phenomenon has proved elusive:
no proof has been presented that such migration direction is always true for
this kind of particles.

• Migration Resulting from the Curvature of the Velocity Profile

The mechanism we discussed in the previous paragraph would occur in the
case of a linear shear flow over a solid boundary. A distinct mechanism
for migration arises from the fact that the fluid motion in tube flow has
a curved velocity profile, with a velocity gradient that increases from the
centerline to the wall (Poiseuille flow). Therefore, the effect of velocity profile
curvature is likely to play a significant role in the migration of RBCs to the
centerline in dilute suspensions, but experimental studies are still actually
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unable to understand how much such curvature is responsible for it owing to
the impossibility to separate wall effects from the velocity curvature ones.

• Effects of the Endothelial Surface Layer

The walls of living microvessels are lined with a layer of macromolecules at-
tached to endothelial cells forming the inner surface of the vessel walls: it is
referred to as the ESL or glycocalyx. Although static RBCs can compress
the layer, flowing of RBCs and plasma are excluded by a lubrication-type2

mechanism, which has been likened to skiing on powder snow. Despite the
fact that mechanics of interactions between suspended particles and a de-
formable porous wall layer is an interesting and biologically relevant topic,
it has only recently received little attention.

• Migration due to Cell-to-Cell Interactions

Under physiological conditions with a hematocrit of 40 − 45%, the RBCs
trend of migrating to the centerline is obviously opposed by the effect of
RBCs crowding in the interior of the vessel. In a suspension subject to shear
flow, the high concentration leads to frequent collisions, which cause fluctu-
ations in lateral velocity and drive a diffusion-like motion of the particles,
with a net flux down the concentration gradient. Such effect is called shear-
induced diffusion or dispersion. Therefore, the width of the cell-free layer is
governed by the balance between the various mechanisms driving the forma-
tion and enlargement of the layer and the opposing effects of shear-induced
diffusion. However when it comes to put such theory into practice, the pre-
dicted hematocrit profile should show a cusp in the vessel centerline which
has never been observed.

In recent years, advances in numerical techniques and in parallel computation ca-
pabilities have made it feasible to perform direct simulations of multiple RBCs
flowing in narrow tubes, including a fairly realistic representation of the cells’
mechanical properties. From such simulations, the apparent viscosity of the flow
can be deduced, and the statistical properties of the time-varying cell-free layer
thickness can be analyzed. In simulations by Dmitry Fedosov et al., [40, 41], the
predicted relative apparent viscosity agreed closely with experimental results for
hematocrits between 15% and 45% and tube diameters from 10 to 40µm. More-
over, the average cell-free layer thickness agreed with an estimated value of 1.8µm.
These findings support the view that the flow properties of blood in narrow glass

2In fluid dynamics, lubrication theory describes the flow of fluids (liquids or gases) in a

geometry in which one dimension is significantly smaller than the others. An example is the flow

above air hockey tables, where the thickness of the air layer beneath the puck is much smaller

than the dimensions of the puck itself.
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tubes can indeed be understood in terms of the mechanical properties of individual
RBCs and principles of fluid mechanics. At the same time, this approach requires a
separated, computationally intensive simulation for each case of interest, and fun-
damental fluid mechanical mechanisms may be difficult to deduce from the results.

3.3 Marginal layer in suspensions

The model that we will illustrate in the next sections to theoretically explain
the formation of the marginal layer is based on a different approach from those
listed in the previous section. To simplify the model as much as possible, we will
treat blood as a suspension of non-deformable particles in a Newtonian fluid. In
this framework, the hematocrit φ represents the volume fraction occupied by the
particles. Because of their importance in industrial and biological applications such
as fluidized beds [5, 52], pneumatic transportation [25], particle sedimentation [51],
[49], mud flows and landslides [116], blood [39, 110] and so on, the two-constituent
flows of a mixture composed of a Newtonian fluid and solid particles have been
the subject of numerous theoretical studies.
Suspensions present diverse rheological behavior such as shear thinning, shear
thickening, and thixotropy depending on the microstructure of the materials, the
nature of the interactions involved, and the properties of the carrier liquid. Rheol-
ogy of suspensions remains an active research field, and no unifying view has been
proposed yet [119].
Here we consider neutrally buoyant (i.e. the fluid and particles density is essentially
the same), chemically stable (nonaggregating) particles in a Newtonian fluid and
we model it as isotropic inhomogeneous linear viscous fluid with effective viscosity
that varies with concentration of the solid particles [9]

τ = −pI + 2µ(φ)D, (3.6)

where the viscosity µ is a positive function of φ. When φ is uniform on the flow
domain we recover the constitutive response of a Newtonian fluid. Conversely,
when φ is not uniform the flow is inhomogeneous.
The dynamics of φ is governed by a simple advection equation in which any dif-
fusive flux is ignored. In the framework of non-colloidal suspensions (the particles
characteristic diameter is assumed to be sufficiently large for Brownian effects
to be negligible), the solid-fluid interaction term depends on the Darcy’s number
[99, 32], which can become quite large being proportional to the square of the ratio
between the macroscopic length scale and the particles size. Hence the two phases
have practically the same velocity and the suspension can be considered as a single
non-homogeneous fluid [4, 44, 75]. The dynamics of such a fluid is governed by
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the equation of balance of linear momentum and the continuity equation for the
fluid and by the advection equation for φ, which simply reduces to the material
derivative equal to zero.

The viscosity of suspensions of solid particles in linear viscous liquids for the case
of φ ≤ 0.1, is calculated by the well-known Einstein formula [33] dating back to
1906. Improvements to the Einstein formula are based on the work of Batchelor
and Green [10, 11] and Batchelor [12]. In regimes where the average separation
distance between particles is smaller than the particle size, multiple-body and
short-range interactions give rise to strong non-Newtonian effects. This was first
suggested by the dimensional analysis of Krieger [66, 67] and also confirmed by
both experimental observations and numerical simulations.
As expected intuitively, suspension viscosity increases with the concentration, and
in the dense regime, a divergence of viscosity is observed at a maximum packing
fraction [24]. In particular, there have been numerous studies of suspension viscos-
ity as a function of particle concentration and composition. So many theoretical
and empirical models have resulted that it is difficult to find a unifying theme.
Here we just mention to the recent review by Hund et. Al. [62] and to the numer-
ous references therein reported.

In this thesis we will show how the formation of a marginal layer can be explained,
in the context of the fluid dynamics of suspensions treated as inhomogeneous
media, as an entrance effect, i.e. caused by to the particular flow profile that
develops right at the vessel inlet. As a viscous fluid flows through a channel, the
velocity profile undergoes a change from its initial entrance form to the familiar
parabolic Poiseuille profile far downstream from the entrance [108]. In the inlet
region (whose dimension is commonly referred to as entrance length) the pressure
gradient differs from that in the region in which the flow is fully developed and the
flow has a transverse component which then vanishes. However, this transverse
component of velocity has a very important effect: it “pushes” the particles towards
the channel center lowering φ near the vessel walls and so causing an increase in
the inhomogeneity. Actually, the formation of a particle depleted layer close to the
walls is one of the main distinctive flow properties of suspensions in vessels. Though
several physical phenomena contribute to this behavior [114], little attention has
been devoted the migration caused by peculiar flow that develops in the entry
region. We believe that the knowledge of the suspensions entry flow behavior
could turn out to be useful in investigating the particles migration towards the
vessels central core.

More specifically, in the sequel we investigate how the “entrance effect” causes a
particles migration away from vessel walls. In particular, considering an almost
uniform inlet profile for φ, we want to analyze to what extent the transverse
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velocity changes the profile itself, causing the so-called flow “marginalization”.
We also provide further insight into the influence of Reynolds number, particles
size and effective viscosity on the particles migration away from the walls.

The intrinsic practical importance of understanding the hydrodynamical develop-
ment of laminar flow in the entrance of a channel have been the motivation behind
many theoretical, numerical and experimental investigations [19, 21, 27, 57, 69, 73,
106, 107, 108, 113, 117, 118]. All of them are based on the Prandtl approach but
differ on the analysis of the mathematical problem. Some of them are based on
the integral formulation of motion and continuity boundary layer equations, others
consist in dividing the entrance region into two parts: boundary layer theory is
applied to the first one, while the second one is treated by perturbing the velocity
field. Further approaches appeal to inertial terms linearization. In this thesis, in
order to treat the flow of a suspension, we construct a suitable generalization of
the Langhaar method [69].

Particles migration towards the tube center is common in practical situations such
as pressure-driven flow in tubes and channels. It has been quantified for the first
time by Segré and Silberberg [112] who showed that at low Reynolds numbers
a rigid sphere transported along in Poiseuille flow through a tube is subject to
radial forces which tend to carry it to an equilibrium position at about 0.6 tube
radii from the axis, irrespective of the radial position at which the sphere first
entered the tube. The steady long-time decrease as well as the short-time increase
in the effective viscosity of a concentrated suspension in a Couette viscometer
was observed also by Gadala-Maria and Acrivos [48] and by Leighton and Acrivos
[71], who argued that small-scale surface roughness of the particles leads to irre-
versible motion during interparticle interaction. We also mention the studies by
Nott and Brady [86] who show that net irreversible migration is produced even
when suspended particles are perfectly smooth hard spheres. In particular, they
also estimate the channel length L in terms of its height and particle radius, for
achieving steady state in the pressure-driven flow of a viscous suspension. Similar
analysis have been performed by Hampton et al. [56], Phan-Thien and Fang [94]
and in the recent paper by Lecampion and Garagash [70].

The earliest experimental study of inhomogeneous suspension have been conducted
by Karnis et al. [64], who reported substantial blunting of the velocity profiles, by
Koh et al. [65], whose Laser Doppler Velocimetry (LDV) experiments reveal con-
siderable inhomogeneity in the particle concentration due to migration of particles
towards the center of the channel. Other experimental studies have also con-
firmed the migration of particles from regions of high to low shear rate, Leighton
and Acrivos [72], Abbott et al. [1], Sinton and Chow [115], Arp and Mason [6],
Hookham [60] and Phan-Thien et al. [93]. Also the experiments performed in a
biological context, have shown that in arteries terminal branches, arterioles and
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venules (i.e. microcirculation) the red blood cells do not distribute uniformly on
cross section [23, 28].
There are essentially two approaches for suspension flow, the diffusive flux model
originally proposed by Leighton and Acrivos [71], and the “mixture” model. Dif-
fusive flux models provide a kinematic description of the shear-induced particle
migration in which the particle migration flux is expressed in terms of the gradi-
ents of the particle concentration and shear rate. This model was later applied
by Phillips et al. [95] to pressure-driven suspension flow in tubes. However, as
pointed out in [95], such a model predicts that in a steady Couette, or Poiseuille,
flow the particles volume fraction attains a cusp at the centerline (never observed
in experiments performed on suspensions) where it takes its maximum admissible
value.
In the “mixture” model there are no diffusion considerations; rather mass, mo-
mentum, and energy balances are written for the particulate phase and the fluid
phase (or for the solid phase and the entire suspension). Applying then the mass
and momentum balance equations the particle migration is driven by the diver-
gence of the normal stresses of the particle phase. Models of that kind have been
recently developed by Monsorno et Al. [82, 83], Lecampion, Garagashp [70] and
Boyer et Al. [20] and applied to confined pressure-driven laminar flow of neutrally
buoyant non-Brownian suspensions [2]. Essentially they treat the suspension as
a mixture [99, 32] and are characterized by considerable mathematical difficulties
due to the boundary conditions. Indeed, one of the thorny obstacles when it comes
to putting mixture theory in practice, is our inability to prescribe boundary condi-
tions for stress boundary value problems, since we do not know how to distribute
the traction (or compression) among the various mixture components.
In conclusion, we can state that adopting model (3.6), i.e. inhomogeneous fluid and
no particles diffusion, we are able to obtain a simple model for the entrance flow
of a suspension in a rectilinear channel. It is worth pointing out that our approach
allows to evaluate the particles migration towards vessel center, at least when the
inlet φ has a simple profile, solving a system of two autonomous ODE’s, whose
equilibrium solution provides the essential characteristics of the fully developed
flow.

3.4 Governing equations

As an incompressible viscous fluid flows through a channel, the velocity profile un-
dergoes a change from its initial entrance form to the familiar parabolic Poiseuille
profile at an axial location far downstream from the entrance: that distance is
commonly referred to as entrance length.
We consider a mechanically incompressible flow in a channel of amplitude 2H and
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undefined length, but larger than H. We denote by x the longitudinal coordinate
and by y the transversal one. The velocity field is

v = uex + vey , (3.7)

and, recalling (3.6), we set µ (φ) = µrefµ(φ), where µref is a reference viscosity
and µ (φ) is dimensionless. The mathematical formulation of the problem is

∂φ

∂t
+ v · ∇φ = 0, (3.8)

∇ · v = 0, (3.9)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µref∇ · (2µ(φ)D) , (3.10)

where ρ is the constant and uniform suspension density. Symmetry demands that
u is even in y and v is odd, whereas the pressure and φ are even, provided the
inlet profile is symmetric [124].
Phan-Thien and Fang in [94] consider in the r.h.s of (3.8) a diffusive flux of the
solid phase N , whose constitutive equation is the one of [95]. Such a system
has been solved numerically using the finite volume method, widely used to solve
convection-diffusion transport problems.
We rescale now the problem (3.8), (3.9), (3.10) with

x̃ =
x

L
, ỹ =

y

H
, ũ =

u

U
, ṽ =

v

V
, p̃ =

p

ρU2
,

where U is the characteristic inlet velocity, L = H
√
Re, with Re = ρUH/µref is

the Reynolds number which is assumed to be sufficiently large and V = UH/L.
Setting

α =
1√
Re
,

and neglecting “∼”to keep notation as light as possible, we rewrite system (3.8)–
(3.10) neglecting all terms O(αn), n ≥ 2. We thus get

u
∂φ

∂x
+ v

∂φ

∂y
= 0,

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ α

∂

∂y

(
µ(φ)

∂u

∂y

)
∂p

∂y
= 0, =⇒ p = p(x).

. (3.11)
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Fig. 1. A schematic drawing of the geometrical model.

We have already remarked that ⌃ is the material curve. Hence

 
�0

0
u (0, y) dy =  

�ÿ

0
uÿ (y) dy,

so that �0 and �ÿ are linked through (see also Fig. 4 in Section 4)

�0 =
3
2

�
�3ÿ + �

�
1 * �3ÿ

�
4
�ÿ + �3ÿ

0
2
3�

* 1
15

. (12)

We easily realize that �ÿ ô 1 as �0 ô 1, i.e. as � ô 0, regardless
of �, meaning that the amplitude of the particle-free layer remains
practically unchanged in those vessels whose radius is much larger than
the particles radius a<. Next, (12) clearly states that �ÿ depends only
on � and �0: the Reynolds number does not play any role. We however
remark that Eq. (12) simply provides the link between the initial and
asymptotic radius of the core, but it does not give any information on
the behavior of � (x). The solution to (8)–(10) will provide � (x). In
particular, we will be able to estimate the influence of Reynolds number
on the decay of � (x) towards the asymptotic value �ÿ.

3. Approximate solution

It is not possible to solve analytically problem (8)–(10) as it stands,
but we shall now look for an approximate solution fulfilling the mass
conservation and momentum balance to secure the physical consistency
of the theory, i.e.

d
dx  

1

0
u(x, y)dy = 0, d

dx  
1

0
u2(x, y)dy = *p®(x) + ↵ )u

)y
ÛÛÛÛy=1 . (13)

Our starting point is the method developed in [28] and also illustrated
in Chapter 16 of [63]. We linearize the inertia terms through an
auxiliary function �, which is assumed to depend only on x. The gener-
alization that we propose here consists in treating the outer and inner
regions separately and then use the boundary conditions (9)2–(9)4 to
find the global solution.

Let us start with the outer region and introduce

outer = u )u
)x

+ v )u
)y

+ p (x) * ↵�2u, � f y f 1, (14)

where � = �(x) is unknown at this stage. We then assume that outer =
outer (x) and, after substituting (14) into (10)2 we obtain

↵ )
2u

)y2
= ↵�2u + outer (x) ,

whose symmetric solution, imposing (10)4, is

u (x, y) = C [cosh (�y) * cosh �] ,

where C = C (x) has yet to be determined.

Proceeding in a similar way in the inner region, we introduce4

inner = u )u
)x

+ v )u
)y

+ p (x) * ↵�2u, 0 f y < �,

still assuming inner = inner (x), and rewrite (8)2 in this way

�↵ )
2u

)y2
= ↵�2u + inner (x) ,

whose symmetric solution is

u (x, y) = D cosh

H
�˘
�
y

I
*

inner
↵�2

.

with D = D (x) integration parameter. We then use (9)2–(9)5 to express
D and inner in terms of C (x), getting

u =
hnlnj

C Fout (y, �) , � < y < 1,

C Fin (y, �, �) , 0 < y < �.
(15)

where

Fout (y, �) = cosh (�y) * cosh � , (16)

and

Fin (y, �, �) =
sinh (��)

˘
� sinh

0
��̆
�

1
L
cosh

H
�y˘
�

I
* cosh

H
�˘
�

IM

+ cosh (��) * cosh � . (17)

Finally, to determine C we exploit (13)1 getting

C (�, �) =

T
sinh � * sinh (��)

�
+ � cosh (��) * cosh �

+ sinh (��)
˘
� sinh

0
��̆
�

1
L˘

�
�

sinh

H
��˘
�

I

* �
˘
� cosh

H
��˘
�

IMU*1

. (18)

Remark 1. To check the compatibility with the asymptotic behavior
(11), we assume limxôÿ � (x) = 0 and limxôÿ � (x) = �ÿ. Next,
expanding (16) and (17) as x ô ÿ, we have

u =

hnnlnnj

*C�2

2
�
1 * y2

�
, �ÿ f y f 1,

*C�2

2

H
1 * �2ÿ +

�2ÿ * *y2

�

I
, 0 f y < �ÿ.

On the other hand from (18) we obtain

lim
xôÿ

C = * 3
�2

�
�3ÿ + �

�
1 * �3ÿ

� ,

and so (11) is recovered.

To write explicitly the equation for �, i.e. (9)1, we need v that we
recover from the continuity equation, namely v = î 1

y
)u
)x dy

®. So (9)1
rewrites

�® =
 

1

�

)u
)x

dy

u (x, �)
. (19)

Recalling now (15), (16) and (18), we can rewrite (19) as

�® =
 

1

�

40
)C
)�

�® + )C
)�

�®
1
Fout + C

)Fout
)�

�®
5
dy

CFout
,

4 Following strictly the Langhaar approach we should assume that outer =
inner = 0, but that is not fulfilled by the solution.

4

Figure 3.2: A schematic drawing of the geometrical model.

Here we consider a simpler version of (3.11), assuming that the inlet velocity is
uniform on the cross section

u (0, y) = 1, v (0, y) = 0,

and the inlet solid volume fraction is

φin(y) =

{
Φ, 0 ≤ y ≤ 1− δ,
0, 1− δ < y ≤ 1,

(3.12)

with Φ constant and δ = H/a, where a is the particle radius. The reason of such a
distribution is essentially geometrical. The finite size of particles limits the radial
distribution of their centers. Indeed, for sphere-like practicles the center of mass
cannot physically approach within a certain length of the wall. Hence, a particles-
depleted layer, whose dimensionless thickness is O (δ), forms close to the wall.
Starting from x = 0, our aim is to evaluate the evolution of such a particles
depleted layer. If its amplitude grows with x, then the particles migrate towards
the tube center. So, focussing only in the upper half of the canal for reasons of
symmetry, we denote by Σ the interface3 between the marginal layer and the inner
core, see Fig. 3.2, whose equation is

y = σ (x) , with σ(0) = 1− δ,

The interface Σ is the material curve being the flow line starting from (0, 1 − δ),
and therefore its equation is

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0.

3Actually Σ is a free boundary since its position is unknown.
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So Σ splits the channel into two regions: the marginal layer in which φ = 0 and
the inner core where φ ≡ Φ (see again Fig. 3.2). Hence the dimensionless viscosity
is

µ =

{
µ (Φ) , 0 ≤ y ≤ σ,

1, σ < y ≤ 1.
(3.13)

We have two different Prandtl systems, matched together with suitable boundary
conditions obtained imposing continuity of velocity and normal stress [26]. So,
denoting by [[ · ]] the jump of the quantity ( · ) across Σ and writing µ in place of
µ (Φ), the final formulation of the free boundary problem is the following:
Inner Region, 0 ≤ y < σ

∂u

∂x
+
∂v

∂y
= 0, x ≥ 0, 0 ≤ y < σ(x),

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ αµ

∂

∂y

[
∂u

∂y

]
, x ≥ 0, 0 ≤ y < σ(x),

p = p(x), x ≥ 0,

∂u

∂y
= 0, v = 0, x ≥ 0, y = 0,

u = 1, v = 0, x = 0, 0 ≤ y ≤ 1− δ.

, (3.14)

System (3.14) is nothing more that Prandtl equation, i.e. system (3.11), where to
keep notation as light as possible we set µ(φ) = µ (3.13).

Outer region, σ < y ≤ 1

∂u

∂x
+
∂v

∂y
= 0, x ≥ 0, σ(x) < y ≤ 1,

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ α

∂2u

∂y2
, x ≥ 0, σ(x) < y ≤ 1,

p = p(x), x ≥ 0,

u = 0, v = 0, x ≥ 0, y = 1,

u = 1, v = 0, x = 0, 1− δ < y ≤ 1.

. (3.15)
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System (3.15) is the Prandtl equation (3.11) with µ = 1, because of (3.13).

Free boundary Σ, y = σ(x)

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0,

[[ u ]] = 0,

[[ v ]] = 0,

[[ p ]] = 0,

µ
∂u

∂y

∣∣∣∣
y=σ−

=
∂u

∂y

∣∣∣∣
y=σ+

,

σ (0) = σ0 = 1− δ.

(3.16)

Σ is a material surface whose equation is therefore given by (3.16)1, usually called
kinematics condition. The other equations in system (3.16) represent the continu-
ity of velocity and stress across Σ.

While the transversal velocity v vanishes as x→∞, the longitudinal-one velocity
develops from the entrance flat profile to a “final” Poiseuille-like profile which,
setting σ∞ = limx→∞ σ (x), is given by

u∞ =


3

2

µ

σ3
∞ + µ (1− σ3

∞)
(1− y2) , σ∞ ≤ y ≤ 1

3

2

µ

σ3
∞ + µ (1− σ3

∞)

(
1− σ2

∞ +
σ2
∞ −−y2

µ

)
, 0 ≤ y < σ∞.

(3.17)

We have already remarked that Σ is the material curve. Hence∫ σ0

0

u (0, y) dy =

∫ σ∞

0

u∞ (y) dy,

so that σ0 and σ∞ are linked through (see also Fig. 3.5 in Section 3.6)

σ0 =
3

2

µ

σ3
∞ + µ (1− σ3

∞)

[
σ∞ + σ3

∞

(
2

3µ
− 1

)]
. (3.18)

We easily realize that σ0 → 1 as σ∞ → 1, i.e. as δ → 0, regardless of µ, meaning
that the amplitude of the particle-free layer remains practically unchanged in those
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vessels whose radius is much larger than the particles radius a. Next, (3.18) clearly
states that σ∞ depends only on µ and σ0: the Reynolds number does not play any
role. We however remark that equation (3.18) simply provides the link between
the initial and asymptotic radius of the core, but it does not give any information
on the behavior of σ (x). The solution to (3.14)-(3.15) will provide σ (x). In
particular, we will be able to estimate the influence of Reynolds number on the
decay of σ (x) towards the asymptotic value σ∞.

3.5 Approximate solution

It is not possible to solve analytically problem (3.14)-(3.15) as it stands, but we
shall now look for an approximate solution fulfilling the mass conservation and
momentum balance to secure the physical consistency of the theory, i.e.

d

dx

∫ 1

0

u(x, y)dy = 0,

d

dx

∫ 1

0

u2(x, y)dy = −p′(x) + α
∂u

∂y

∣∣∣∣
y=1

.

(3.19)

In particular (3.19)1 represents the continuity equation, i.e. the discharge is the
same in any cross section. To justify (3.19)2 we combine the Prandtl equation and
the continuity equation, obtaining

∂u2

∂x
+

∂

∂y
(uv) = −p′(x) + α

∂2u

∂y2
.

Then, integrating both sides over the interval 0 ≤ y ≤ 1 and using the boundary
conditions, we get (3.19)2.
Our starting point is the method developed in [69] and also illustrated in in Chapter
16 of [68]. We linearize the terms of inertia through an auxiliary function β, which
is assumed to depend only on x. The generalization that we propose here consists
in treating the outer and inner regions separately and then use the boundary
conditions (3.16)2-(3.16)4 to find the global solution.
Let us start with the outer region and introduce

κouter = u
∂u

∂x
+ v

∂u

∂y
+ p (x)− αβ2u, σ ≤ y ≤ 1, (3.20)

where β = β(x) is unknown at this stage. We then assume that κouter = κouter (x)
and, after substituting (3.21) into (3.15)2 we obtain

α
∂2u

∂y2
= αβ2u+ κouter (x) ,
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whose symmetric solution, imposing (3.15)4, is

u (x, y) = C [cosh (βy)− cosh β] ,

where C = C (x) has yet to be determined.
Proceeding in a similar way in the inner region, we introduce4

κinner = u
∂u

∂x
+ v

∂u

∂y
+ p (x)− αβ2u, 0 ≤ y < σ,

still assuming κinner = κinner (x), and rewrite (3.14)2 in this way

µα
∂2u

∂y2
= αβ2u+ κinner (x) ,

whose symmetric solution is

u (x, y) = D cosh

(
β
√
µ
y

)
− κinner

αβ2
.

with D = D (x) being arbitrary. We then use (3.16)2 and (3.16)5 to express D and
κinner in terms of C (x), getting

u =


C Fout (y, β) , σ < y < 1,

C Fin (y, β, σ) , 0 < y < σ.

(3.21)

where
Fout (y, β) = cosh (βy)− cosh β , (3.22)

and

Fin (y, β, σ) =
sinh (βσ)

√
µ sinh

(
βσ√
µ

) [cosh

(
βy
√
µ

)
− cosh

(
β
√
µ

)]
+ cosh (βσ)− cosh β. (3.23)

Finally, to determine C we exploit (3.19)1 getting

C (β, σ) =

{
sinh β − sinh (βσ)

β
+ σ cosh (βσ)− cosh β+

+
sinh (βσ)

√
µ sinh

(
βσ√
µ

) [√µ
β

sinh

(
βσ
√
µ

)
− σ√µ cosh

(
βσ
√
µ

)]
−1

. (3.24)

4Following strictly the Langhaar approach we should assume that κouter = κinner = 0, but

that is not fulfilled by the solution.
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To check the compatibility with the asymptotic behavior (3.17). We assume
limx→∞ β (x) = 0 and limx→∞ σ (x) = σ∞ and expanding (3.23) and (3.24) as
x→∞, we have

u =


−Cβ

2

2
(1− y2) , σ∞ ≤ y ≤ 1,

−Cβ
2

2

(
1− σ2

∞ +
σ2
∞ −−y2

µ

)
, 0 ≤ y < σ∞.

On the other hand from (3.25) we obtain

lim
x→∞

C = − 3

β2

µ

σ3
∞ + µ (1− σ3

∞)
,

and so (3.17) is recovered.
To write explicitly the equation for σ, i.e. (3.16)1, we need v that we recover from

the continuity equation, namely v =

∫ 1

y

∂u

∂x
dy′. So (3.16)1 rewrites

σ′ =

∫ 1

σ

∂u

∂x
dy

u (x, σ)
. (3.25)

Recalling now (3.22), (3.23) and (3.25), we can rewrite (3.26) as

σ′ =

∫ 1

σ

[(
∂C

∂β
β′ +

∂C

∂σ
σ′
)
Fout + C

∂Fout
∂β

β′
]
dy

CFout
,

which, after some manipulations, becomes

σ′ = Q (β, σ) β′, (3.26)

where

Q (β, σ) =

∂C

∂β
F1 + CF2

CFout −
∂C

∂σ
F1

, (3.27)

with

F1 (β, σ) =

∫ 1

σ

Fout (β, y) dy

=
sinh β − sinh βσ

β
− (1− σ) cosh β,
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and

F2 (β, σ) =

∫ 1

σ

∂Fout
∂β

dy

= (σ − 1) sinh β +
cosh β − σ cosh (βσ)

β
+

sinh (βσ)− sin β

β2
.

What remains is to determine the equation for β from momentum balance (3.19)2.
Following [69], we compute p′ through (3.14)2 evaluated in y = 0, and so obtain

2

∫ 1

0

u
∂u

∂x
dy =

[
u
∂u

∂x
− αµ∂

2u

∂y2

]
y=0

+ α
∂u

∂y

∣∣∣∣
y=1

. (3.28)

Starting from the l.h.s. we have

2

∫ 1

0

u
∂u

∂x
dy = 2

[∫ σ

0

CFin
∂ (CFin)

∂x
dy +

∫ 1

σ

CFout
∂ (CFout)

∂x
dy

]
= 2

{
C

(
∂C

∂β
β′ +

∂C

∂σ
σ′
)

(K1 +K3) + C2 [β′ (K2 +K4) + σ′K5]

}
,

where

K1 =

∫ 1

σ

F 2
outdy, K2 =

∫ 1

σ

Fout
∂Fout
∂β

dy,

K3 =

∫ σ

0

F 2
indy, K4 =

∫ σ

0

Fin
∂Fin
∂β

dy, K5 =

∫ σ

0

Fin
∂Fin
∂σ

dy.

The explicit expressions of Ki, i = 1, 2, 3, 4, 5, computed with the aid of the com-
puter software MAXIMA R© [76], are displayed in the Appendix. Focussing then
on the r.h.s of (3.29) we identify 3 terms, for which we give here the explicit
expression:

• First term on the r.h.s of (3.29), u∂u
∂x

∣∣
y=0

u
∂u

∂x

∣∣∣∣
y=0

= C

(
∂C

∂β
β′ +

∂C

∂σ
σ′
)
W3 + C2 (β′W4 + σ′W5)

where

W3 = F 2
in

∣∣
y=0

, W4 = Fin
∂Fin
∂β

∣∣∣∣
y=0

, W5 = Fin
∂Fin
∂σ

∣∣∣∣
y=0

.

Again, the explicit expressions ofWi, i = 3, 4, 5 are showed in the Appendix.
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• Second term on the r.h.s of (3.29), −αµ∂2u
∂y2

∣∣∣
y=0

−αµ∂
2u

∂y2

∣∣∣∣
y=0

= −αµC ∂2Fin
∂y2

∣∣∣∣
y=0

= −αCβ2 sinh (βσ)
√
µ sinh

(
βσ√
µ

) .

• Third term on the r.h.s of (3.29), α ∂u
∂y

∣∣∣
y=1

α
∂u

∂y

∣∣∣∣
y=1

= αCβ sinh β .

So inserting the above expressions in (3.29) and recalling (3.27), (3.28) we have

β′ =
N (β, σ)

D (β, σ)
,

where

N = αC

β sinh β − β2 sinh (βσ)
√
µ sinh

(
βσ√
µ

)
 ,

D = C

(
∂C

∂β
+
∂C

∂σ
Q

)
[2 (K1 +K3)−W3] +

+C2 [2 (K2 +K4)−W4] + C2Q [2K5 −W5] .

Ultimately we come to the following ODE system
β′ =

N (β, σ)

D (β, σ)
,

σ′ =
N (β, σ)

D (β, σ)
Q (β, σ) ,

(3.29)

which has to be supplemented with suitable “initial” conditions. While σ (0) = σ0

is well defined, we know from the standard theory (Chapter 16 of [68]) that β
diverges as x→ 0. Hence, we prefer focusing on x→∞ (which reads as x = n

√
Re,

with n � 1) where β → 0, and σ → σ∞, which can be expressed in terms of σ0

(the actually available datum) inverting (3.18).
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3.6 Numerical simulations

To check the numerical solver, but also the model, we compare the solution to
(3.30) when µ = 1 with the classical Langhaar solution. Indeed, when µ = 1, we
are dealing with a homogeneous flow and the curve y = σ (x) represents the flow
line staring from (0, σ0).
According to the Langhaar theory the equation for β (x) is

1

α

∂

∂x
S(β(x)) = −H(β(x)), (3.30)

where

S =

1

cosh(β)
− 3

2

tanh(β)

β
+

1

2(
1− tanh(β)

β

)2 ,

H = β2

 1− 1

cosh(β)

1− tanh(β)

β

− 1

 .

The equation for σ is still given by (3.16)1 where now

u(x, y) =

1− cosh(βy)

cosh β

1− tanh β

β

,

while v, i.e. the transversal velocity, has a more complicated expression5 that
we are not reporting here. Fig.s 3.3, 3.4 display the difference between β and σ
computed using system (3.30) with µ = 1 and the ones coming from the Langhaar
theory [69]. This difference is in the order of magnitude of 10−5 at maximum (see
left panel of Fig.3.3), implying that both model (3.30) and the numerical solver
are very accurated.
Figure 3.5 displays σ∞ (σ0) obtained inverting (3.18), for µ = 1, 5, 10, 15, 20.
Actually, since µ = µ (Φ), Fig. 3.5 shows that the largest migration occurs when
the suspension is very diluted, i.e. µ ∼ 1. A “large” Φ, that is a “large” µ,
reduces the marginalization. The latter depends on the particles radius a trough
σ0 = 1− a/H (provided is finite).
The widening of the marginal layer (as a consequence of the particles migra-
tion towards the center) is highlighted in Fig. 3.6, where, still exploiting (3.18),

5v can be determined after some algebra from the continuity equation.
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Figure 3.3: Difference between β (x) computed using (3.30) with µ = 1 and the

one computed using (3.31), for Re = 102, and Re = 103.
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Figure 3.4: Difference between σ (x) computed using (3.30) with µ = 1 and the one

computed using the classical Langhaar solution [69], for Re = 102, and Re = 103.

δ∞ = 1 − σ∞ is plotted versus δ0 = 1 − σ0. In particular, as µ increases the
dependence of δ∞ on µ vanishes, as evident from (3.18). Therefore, for a given
marginal layer inlet amplitude δ0, there exists a maximum value towards which δ∞
tends asymptotically as µ → ∞. We also note that each curve δ∞ (δ0), although
monotonously increasing, is concave. In fact, the largest increase in the particle-
free layer amplitude occurs for small values of δ0. Considering, for instance µ = 1,
we have δ∞ (0.1) ∼ 0.275, i.e. the marginal layer has more than doubled, while
δ∞ (0.2) ∼ 0.39.

In Fig. 3.7 the behavior of σ (x) for different values of Re, µ and σ0 is reported.
The numerical data obtained show that the flow indubitably stabilizes in a core-
annulus configuration and that the lowest is µ the largest is the particles drifting
towards the center, as in Fig. 3.5. Actually, the curves showed in Fig. 3.7 provide a
“visual” explanation of migration occurring just in the entrance region. Indeed, the
transversal velocity drives the particles away from the vessel walls (thus enlarging
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Figure 3.5: Behavior of σ∞ (σ0) given by (3.18) for µ = 1, 5, 10, 15, 20.
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Figure 3.6: Behavior of δ∞ = 1 − σ∞ as a function of δ0 = 1 − σ0, inlet marginal

layer width, for µ = 1, 5, 10, 15, 20.

the marginal layer) within the inlet region, while has no effect far downstream
(where it vanishes). This therefore explains either the particular structure of the
asymptotic flow and the particles migration towards the center (migration caused
by the peculiar structure of the flow in the entrance region).
As expected, Re has no influence on the radius of the asymptotic inner core σ, but
just on the extension of the entrance region, which increases as Re increases (as in
the classic entrance flow theory).
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Figure 3.7: Behavior of σ (x) for Re = 100, 500, 1000, and finite σ0. In particular,

σ0 = 0.8 , 0.9. For each case five value of µ have been considered.
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3.7 Final remarks

The formation of a low particles concentration layer near the walls of the vessel
is one of the distinctive flow properties of suspensions in tubes. Though several
physical phenomena contribute to the particles migration, a general mechanistic
understanding of this effect has proved elusive.
In this chapter, we have faced up to a very important and still unexplained
phenomenon, as mentioned before, occurring in microcirculation: the F̊ahraeus-
Lindqvist effect. Such an effect was discovered almost a hundred years ago and it
has signed the history of hemodynamics due to the inability of the scientific com-
munity to find a satisfactory fluid dynamical explanation for it. Nowadays, the
only step which is universally accepted towards this goal is Haynes interpretation,
according to which the F̊ahraeus-Lindqvist effect is caused by the formation of
a RBCs-depleted layer close to the wall of blood vessels smaller than 300µm in
diameter. In other words, in blood vessels of more or less these dimensions, RBCs
tend to accumulate in the middle zone and this leads to the formation of a central
RBCs-containing core which is surrounded by a plasma layer. However, in fluid
dynamics nobody has ever succeeded in understanding why such a layer forms.
This is the crux of the problematic role which is played by the F̊ahraeus-Lindqvist
effect in hemodynamics. As we discussed in Section 3.2, many hypothesis have
been proposed through the years to justify the RBCs migration towards the blood
vessel cross section, but all of them, while reasonable, proved insufficient. More-
over, they whole consisted in numerical simulations: a mathematical model being
able to explain the F̊ahraeus-Lindqvist effect has never been developed. We have
tried to fill this lack by proposing an original approach. We have indeed built
a mathematical model and applied the Prandtl boundary layer equations for the
channel entrance flow. In previous Sections, considering an inhomogeneous flow
model, namely equations (3.6), (3.8)-(3.10), we have investigated to what extent
the peculiar velocity field that develops at the vessel inlet causes the particles
migration towards the center, inducing a larger flow inhomogeneity.

To investigate qualitatively and quantitatively this phenomenon, we considered a
“step” particles distribution at the vessel inlet setting φ = 0 in a layer close to the
wall (whose amplitude is related to the particles radius) and φ constant elsewhere.
This profile finds its physical justification in the so-called “size exclusion effect”:
the suspended particles cannot approach the wall without their radius.

We therefore tackled the study of migration, also known as marginalization, in
the development of a model for the central core radius σ (x). The longitudinal
evolution of σ not only provides a “visual” explanation of the particles migra-
tion, but also allows for an estimate of the influence played by the main physical
and geometric quantities characterizing the flow. To this aim, we generalized the
entrance flow theory developed in the 1940s by Langhaar [69], considering a typi-
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cal core-annulus structure. The mathematical problem results in the autonomous
system (3.30) for the auxiliary function β and the interface σ, which we solved
numerically. The results showed that the flow attains downstream a steady config-
uration. In particular, we highlighted that migration is more evident the more the
suspension is diluted. In fact, a “large” viscosity (which obviously occurs when
the suspension is concentrated) reduces the particles radial drift, i.e. the marginal
layer widening. The latter depends also on the particles size, provided the ration
between the particles radius a and the channel half-amplitude H is finite.
The Reynolds number does not affect the asymptotic core radius but strongly
influences the length of the entrance region.
Our model, despite its limitations, has therefore shown that in rectilinear flows
the movement of the particles towards the duct axis can also be explained as an
entrance effect, i.e. in terms of the transversal velocity occurring in the entrance
region.
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Chapter 4

Use of viscoplastic models in

microcirculation

4.1 Vasomotion

Blood vessels equipped with smooth muscle cells may undergo radial oscillation
that are independent of heart pulsation or respiratory rhythm, and have indeed
a different frequency. This phenomenon, called vasomotion, is more pronounced,
in terms of frequency and relative amplitude, at the level of the vessels character-
ized by a large pressure drop, and as a matter of fact it has been studied more
intensively for arterioles and venules, for which frequency can reach 25 cpm and
amplitude can peak to 100% of mean diameter [63]. Despite a quite numerous lit-
erature on vasomotion physiology, its influence on microcirculation is still a matter
of debate. In venules there is no doubt that vasomotion favors blood flow, thanks
to the action of valves [36]. However in [80] and in [53] are provided clues for oppo-
site interpretations argument in terms of arterioles resistance. In [31] the authors,
experimenting with bat wings, provided new evidence that venules vasomotion acts
as a pump, enhancing blood flow, thus supporting the old claim by Jones in quan-
titative terms. Anyway, we emphasize that venules valves, preventing backflow,
produce a scenario which differs substantially from the one observed in arterioles
[38]. In [36] and [38] the rheological model proposed to describe blood flow was
the Newtonian one. This is undoubtedly not useful to our approach because, as
illustrated above, we are modeling the microcirculation flows. In this chapter we
propose a first attempt to improve the model, considering a more appropriate rhe-
ological model such as the Casson model. We will then develop a model for the
peristaltic flow of a Casson fluid. This problem is completely original. In fact, as
regards the Casson flow, in the literature there is no theoretical study concerning
neither the peristaltic flow nor the flow in a channel with non-flat walls. We will
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therefore first tackle the study of the Casson flow in a channel with non-flat walls
and then the study of the flow guided by the motion of the walls (peristaltic flow).

Concerning Casson flows most of the efforts in the theoretical analyses focus on
the extent and the shape of yielded/unyielded regions, which are the main feature
of viscoplastic materials. A possible approach is the one introduced in [45, 46]
where the equation of motion of the unyielded part is written in an integral form.
According to this method, originally developed by Safronchik [105], the unyielded
region is treated as a rigid body of variable mass whose dynamics is governed by
the cardinal equations. We remark that the yield surface can be determined using
other methods, such as the ones illustrated in [43, 84, 85, 97].
In this chapter we focus on the Casson model and analyze the flow in a symmetric
channel with “small” aspect ratio so that the lubrication approximation can be
safely used. We analyze the dynamics considering two conditions driving the
flow: prescribed inlet-outlet pressure difference and peristaltic motion. The case
of prescribed inlet discharge has been already analyzed in [47]. We investigate
also the conditions ensuring that the inner plug does not come in touch with the
walls. Peristaltic flow (for which walls are set in motion by a traveling velocity
profile) is studied because of their great importance in understating artery and
vein physiology [36, 39].

4.2 Mathematical model

The constitutive equation for a Casson fluid is given by (2.21)
We investigate the 2D flow in a channel as the one depicted in Fig. 4.1. The x axis
coincides with the channel symmetry line and y = ±h(x) are the channel walls.
The velocity field is given by

v(x, y, t) = u(x, y, t)e1 + v(x, y, t)e2.

The yielded part of the flow, i.e. |τ | > τo, and the unyielded part, i.e. |τ | 6 τo,
are separated by the sharp interfaces y = ±σ(x, t). Because of symmetry we may
confine our analysis only to the upper part of the channel.
The motion of the unyielded region (schematically depicted in Fig. 4.2)

Ωt = {(x, y) : 0 ≤ x ≤ L, 0 ≤ y ≤ σ(x, t)} ,

obeys to the equation of balance of linear momentum that we write in an integral
form [37] ∫

Ωt

∂

∂t
(ρv)dV +

∫
∂Ωt

ρv(v · n)dS =

∫
∂Ωt

τndS, (4.1)
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Figure 4.1: Flow in a symmetric channel with curved walls. The yielded region

|τ | > τo, and the unyielded one |τ | 6 τo are separated by a sharp interface

y = ±σ(x, t).

where n is the normal to Ωt pointing outward. In the yielded region σ 6 y 6 h
the governing equations of the system

∂u

∂x
+
∂v

∂y
= 0,

ρ

(
∂u

∂t
+
∂u

∂x
u+

∂u

∂y
v

)
= −∂p

∂x
+
∂τ11

∂x
+
∂τ12

∂y
,

ρ

(
∂v

∂t
+
∂v

∂x
u+

∂v

∂y
v

)
= −∂p

∂y
+
∂τ12

∂x
+
∂τ22

∂y
,

(4.2)

where body forces have been neglected. In the unyielded part, because of symme-
try, the motion is a pure translation and the velocity is given by

v = uc(t)e1,

To write the equations of the unyielded part component-wise we look at Fig. 4.2
where the boundary ∂Ωt has been divided into 4 components

∂Ωt = F1 ∪ F2 ∪ F3 ∪ F4 .

The first component of equation (4.1) is given by

∂

∂t
(ρuc)

∫
Ωt

dV + ρu2
c

∫
∂Ωt

(e1 · n)dS =

∫
∂Ωt

(τn · e1)dS, (4.3)
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Figure 4.2: The unyielded domain.

while the second by

0 =

∫
∂Ωt

(τn · e2)dS. (4.4)

Since the stress tensor is given by

τ =

 −p+ τ11 τ12

τ12 −p+ τ22

 ,

on the surfaces F1 and F3 the only non zero components of the applied stress are
the normal ones, namely

τ
∣∣∣
x=0

=

 −pin 0

0 −pin

 , τ
∣∣∣
x=L

=

 −pout 0

0 −pout

 ,

which implies that no torque is applied to the rigid core. Under these hypotheses,
setting σin = σ(0, t), σout = σ(L, t) and recalling that

dS =
√
σ2
x + 1dx,
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we find that (4.4) is automatically fulfilled, while (4.3) becomes

2
∂

∂t
(ρuc)

L∫
0

σdx = 2(pinσin − poutσout) +

+2

L∫
0

(
σxp− σxτ11 + τ12

)∣∣∣
σ
dx.

Recalling that uc depends only on the t variable, integrating by parts we find

ρ
duc
dt

L∫
0

σ(x, t)dx =

L∫
0

[
−∂p
∂x
σ − ∂σ

∂x
τ11 + τ12

]∣∣∣∣
σ

dx, (4.5)

which is the motion of the unyielded phase. To conclude the formulation of the
model we specify the boundary conditions which are

u(x, h, t)=v(x, h, t) = 0, (No-slip and impermeability), (4.6)

u(x, σ+, t)=uc(t), v(x, σ+, t) = 0, (continuity of the velocity). (4.7)

Problem (4.2), (4.5), (4.6), (4.7) is very complex, even in a simple 2D setting.
Analytical solutions can be found in the case the aspect ratio of the channel is
sufficiently small. Indeed in that case we can make use of the lubrication approx-
imation to determine a semi-analytical solution.

4.3 Non dimensional formulation

We rescale the system as

x = Lx̃, y = εLỹ, t =

(
L

U

)
t̃, u = Uũ,

v = εUṽ, uc = Uũc, h = Hh̃, σ = Hσ̃,

τ =

(
µU

H

)
τ̃ , D =

(
U

H

)
D̃, p =

(
µUL

H2

)
p̃,

where L is the length of the channel, H = max[0,L] h(x) and

ε =
H

L
� 1,
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is the aspect ratio. We also introduce the dimensionless half-discharge as

Q =
1

UH

H∫
0

u dy =

1∫
0

ũ dỹ. (4.8)

With this scaling we get

D̃ =


2ε
∂ũ

∂x̃

(
∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃

)
(
∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃

)
2ε
∂ṽ

∂ỹ

 ,

τ̃ =

[
1 +

√
B√
˙̃γ

]2


2ε
∂ũ

∂x̃

(
∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃

)
(
∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃

)
2ε
∂ṽ

∂ỹ

 ,
where

B =

(
τoH

µU

)
, (4.9)

is the Bingham number and where

˙̃γ =

√√√√2ε2

[(
∂ũ

∂x̃

)2

+

(
∂ṽ

∂ỹ

)2
]

+

(
∂ũ

∂ỹ
+ ε2

∂ṽ

∂x̃

)2

. (4.10)

Equation (4.2)1 becomes
∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0,

while equations (4.2)2,3 become
εRe

(
∂ũ

∂t̃
+
∂ũ

∂x̃
ũ+

∂ũ

∂ỹ
ṽ

)
= −∂p̃

∂x̃
+ ε

∂τ̃11

∂x̃
+
∂τ̃12

∂ỹ
,

ε3Re

(
∂ṽ

∂t̃
+
∂ṽ

∂x̃
ũ+

∂ṽ

∂ỹ
ṽ

)
= −∂p̃

∂ỹ
+ ε2

∂τ̃12

∂x̃
+ ε

∂τ̃22

∂ỹ
,

(4.11)

where

Re =
ρUH

µ
,
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is the Reynolds number. Finally, equation (4.5)1 becomes

εRe

 ˙̃vc

1∫
0

σ̃(x̃, t̃)dx̃

 =

1∫
0

[
−∂p̃
∂x̃
σ̃ − ε∂σ̃

∂x̃
τ̃11 + τ̃12

]∣∣∣∣
σ̃

dx̃.

4.4 Leading order approximation

Let us now focus on the leading order approximation. In practice we simplify
the model retaining only those terms that do not contain ε. This is the so-called
lubrication approximation. Dropping the tildes to keep the notation as light as
possible we have

∂u

∂x
+
∂v

∂y
= 0,

∂τ12

∂y
=
∂p

∂x
,

∂p

∂y
= 0,

(Yielded phase) y ∈ [σ, h], (4.12)



1∫
0

[
−∂p
∂x
σ + τ12

]∣∣∣∣
σ

dx = 0,

u = uc v = 0,

(Unyielded phase) y ∈ [0, σ], (4.13)

where

τ12 =
∂u

∂y

1 +

√
B√∣∣∣∣∂u∂y
∣∣∣∣


2

. (4.14)

The yield condition is given by

γ̇
∣∣∣
σ

=

∣∣∣∣∂u∂y
∣∣∣∣
σ

= 0 (4.15)

Recalling that in the upper yielded part ∂u/∂y < 0 we find

∂u

∂y
= −

∣∣∣∣∂u∂y
∣∣∣∣ ,
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so that (4.14) rewrites as

τ12 = −

[√∣∣∣∣∂u∂y
∣∣∣∣+
√
B

]2

, (4.16)

implying that (4.15) is given by

τ12

∣∣∣
σ

= −B,

with B given by (4.9).
From (4.12)3 we see that p = p(x, t) so that, integrating (4.12)2 between σ and y
we find

τ12 = −B +
∂p

∂x
(y − σ). (4.17)

Inserting (4.16) into (4.17) we get[√∣∣∣∣∂u∂y
∣∣∣∣+
√
B

]2

= B +
∂p

∂x
(σ − y),

and hence

∂u

∂y
= −

(√
B +

∂p

∂x
(σ − y)−

√
B

)2

. (4.18)

Assuming that the pressure drop ∆p > 0 we expect px < 0 so that px(σ − y) > 0
in the yielded phase. Integrating (4.18) between y and h and exploiting (4.6) we
find

u =

h∫
y

(√
B +

∂p

∂x
(σ − ξ)−

√
B

)2

dξ.

Setting

P =
p

B
, (4.19)

we may rewrite u as

u

B
=

h∫
y

(√
1 + Px(σ − ξ)− 1

)2

dξ,

which, after some algebra, gives

u

B
=
Px
2

[
(σ − y)2 − (σ − h)2

]
+ 2(h− y) +

+
4

3Px

[
(Px(σ − h) + 1)3/2 − (Px(σ − y) + 1)3/2

]
. (4.20)
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Evaluating (4.20) on y = σ we find

−uc
B

=
Px
2

(σ − h)2 + 2(σ − h)− 4

3Px
[
(Px(σ − h) + 1)3/2 − 1

]
, (4.21)

where we recall that uc does not depend on x. Rearranging (4.20) and (4.21) we
find

u

uc
=

1−
Px
2

(σ − y)2 + 2(σ − y)− 4
3Px

[
(Px(σ − y) + 1)3/2 − 1

]
Px
2

(σ − h)2 + 2(σ − h)− 4
3Px

[
(Px(σ − h) + 1)3/2 − 1

]
 , (4.22)

so that we can easily check that u|h = 0 and u|σ = uc, i.e. (4.6), (4.7) are fulfilled.
We now exploit the constraint of incompressibility ux + vy = 0. Recalling the
conditions v|h = v|σ = 0 we find

0 =

h∫
σ

∂v

∂y
dy = −

h∫
σ

∂u

∂x
dy.

As a consequence

∂

∂x

 h∫
σ

udy

 = −uc
∂σ

∂x
+

 h∫
σ

∂u

∂x
dy


︸ ︷︷ ︸

=0

,

i.e.

∂

∂x

 h∫
σ

u

uc
dy + σ

 = 0, (4.23)

which we may write also as

∂

∂x



h∫
σ

u dy + σuc

uc


= 0. (4.24)

Recalling the definition (4.8), we easily realize that

Q =

h∫
0

u dy =

h∫
σ

u dy + σuc, (4.25)
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and since uc does not depend on x, (4.24) is equivalent to
∂Q

∂x
= 0, i.e. the non

dimensional discharge is the same at any cross section x of the channel. Inserting
(4.21) into (4.23) we find

∂

∂x

h− h∫
σ

Px
2

(σ − y)2 + 2(σ − y)− 4
3Px

[
(Px(σ − y) + 1)3/2 − 1

]
Px
2

(σ − h)2 + 2(σ − h)− 4
3Px

[
(Px(σ − h) + 1)3/2 − 1

]dy
 = 0.

(4.26)
Integrating the above in y, after some algebra we find

h+

Px
6

(σ − h)3 + (σ − h)2 + 4
3Px (σ − h)− 8

15P2
x

[
(Px(σ − h) + 1)5/2 − 1

]
Px
2

(σ − h)2 + 2(σ − h)− 4
3Px

[
(Px(σ − h) + 1)3/2 − 1

] =
Q

uc
,

(4.27)
where uc is the core velocity given by (4.21) and where we assume that Q, given
by (4.25), is positive. Introducing the quantity

` (x) = h (x)− σ (x) > 0, (4.28)

we rewrite the (4.27) as

−Px
6
`3 + `2 − 4

3Px `−
8

15P2
x

[
(1− Px`)5/2 − 1

]
Px
2
`2 − 2`− 4

3Px

[
(1− Px`)3/2 − 1

] =
Q

uc
− h. (4.29)

Next, the integral equation for the unyielded phase (4.13)1 that can be rewritten
as

−
1∫

0

Px(h− `)dx = 1. (4.30)

Finally, from (4.21), we observe that

d

dx

(uc
B

)
=

d

dx

[
Px
2
`2 − `− 4

3Px

[
(1− Px`)3/2 − 1

]]
= 0.

The above is due to the fact that uc cannot depend on x.
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In conclusion, the problem to be solved is the following

1

Px

−1
6
(Px`)3 + (Px`)2 − 4

3
(Px`)− 8

15

[
(1− Px`)5/2 − 1

]
1
2
(Px`)2 − 2(Px`)− 4

3

[
(1− Px`)3/2 − 1

] =
Q

uc
− h,

−
1∫

0

Px(h− `)dx = 1,

d

dx

[
Px
2
`2 − `− 4

3Px

[
(1− Px`)3/2 − 1

]]
= 0,

(4.31)

to which we must add the boundary conditions P|x=0 and P|x=1 if the pressure
difference is prescribed or alternatively Q and P|x=1 (actually in place of P|x=1 we
can prescribe P|x=0). The unknowns are: (P , `, Q) in the first case and (P , `,P|x=1)
in the second case. The problem is thus formally closed. However the solution
technique varies according to the conditions that are prescribed.

4.5 Solution to system (4.31) when the discharge

and the outlet pressure are prescribed

Here we describe a method, different from the one illustrated in [47], to determine
the solution of system (4.31), when the dimensionless discharge Q is prescribed
and when the outlet pressure, i.e. p|x=1 is known. In particular, we rescale the
outlet pressure 0, setting p|x=1 = 0. Let us introduce the new function

z(x) = −Px (x) ` (x) , (4.32)

with ` given by (4.28). We remark that z > 0.
System (4.31) can be rewritten as

1

Px
N(z)

D(z)
=
Q

uc
− h,

1∫
0

(−z − Pxh)dx = 1,

d

dx

[
D(z)

Px

]
= 0

(4.33)
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where
N(z) = z3

6
+ z2 + 4

3
z − 8

15

[
(1 + z)5/2 − 1

]
D(z) = z2

2
+ 2z − 4

3

[
(1 + z)3/2 − 1

]
,

(4.34)

and, exploiting (4.21),
uc
B

= −D(z)

Px
. (4.35)

From (4.33)1 we get

1

Px
=

(
Q

uc
− h
)
D(z)

N(z)
, (4.36)

which plugged in (4.33)3 gives

d

dx


(
Q

uc
− h
)
D(z)2

N(z)

 = 0. (4.37)

Computing the derivative in (4.37) we find

dz

dx
=

hxD(z)N(z)(
Q

uc
− h
)

[2D′(z)N(z)−N ′(z)D(z)]

= F(z, x,Q, uc), (4.38)

where Q is prescribed and uc is unknown.
We now solve the nonlinear Cauchy problem

zx = F(z, x, uc),

Px =
N (z)(

Q

uc
− h
)
D(z)

,

P|x=1 = 0,

z
∣∣∣
x=1

= zo,

(4.39)

starting from x = 1 and proceeding backward. In particular, 0 < zo = O(1) is
some initial guess for the unknown z. Solving (4.39) we obtain the solution (P , z),

60



4.5. SOLUTION TO SYSTEM (4.31) WHEN THE DISCHARGE AND THE
OUTLET PRESSURE ARE PRESCRIBED

where both P and z are functions of x but depend also on the parameters zo and
uc. The latter are determined by imposing that (P , z) fulfils (4.33)2 and (4.35).
The numerical procedure used to solve (4.39) coupled with (4.33)2 and (4.35) is
illustrated in the next section.
We notice that when hx = 0, i.e. when h = 1, (4.38) entails zx = 0 and z = zo =
const., so that zo = −Px` = const. Recalling that Q is prescribed, equation (4.36)
gives

1

Px
=

(
Q

uc
− 1

)
D(zo)

N(zo)
= const., (4.40)

and therefore ` = const yielding σ = const., since ` = 1 − σ. We now exploit
(4.33)2 to evaluate Px, getting

−zo − Px = 1, ⇒ Px = − (1 + zo) , (4.41)

which, once plugged in (4.40), gives rise to the following algebraic equation

− N (zo)

(1 + zo)D (z0)
=
Q

uc
− 1. (4.42)

from which we can derive zo, provided we are able to express uc in terms of zo. To
this aim, we plug (4.41) into (4.35)

uc
B

=
D(zo)

1 + zo
, (4.43)

and exploit such a relation in (4.42)

− N (zo)

(1 + zo)D (z0)
=
Q

B

1 + zo
D (zo)

− 1, (4.44)

which is the final algebraic equation allowing to derive zo. In particular, introduc-
ing

F (z0) =
Q

B

1 + zo
D (zo)

− 1 +
N (zo)

(1 + zo)D (z0)
, (4.45)

we rewrite (4.44) as F (z0) = 0. So, solving F (z0) = 0, we find z0 then, in a chain,
uc from (4.43) and σ from (4.32), i.e.

σ = 1− zo
1 + zo

=
1

1 + zo
.

Clearly, z0 solution to (4.44) depends on the ratio Q/B. So, the first panel of Fig.
4.3 displays z0 = z0 (Q/B). We notice that z0 > 1, as Q/B > 0, and that z0 →∞,
when Q/B →∞.
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Figure 4.3: The first panel shows z0 = z0(Q/B), with z0 obtained by solving

F (z0) = 0, with F given by (4.45). The second plot displays σ = σ (Q/B). In the

last panel we take B = 1, and plot uc = uc(Q), given by (4.43).
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To solve (4.39) coupled with (4.33)2 and (4.35) we start from the solution cor-
responding to the flat channel, i.e. where h(x) ≡ 1. In particular, let z̄0 the
solution to (4.44) and ūc given by (4.43). We then consider a generic wall pro-
file h (x) 6= 1, and set up an iterative minimum-finding procedure. We proceed
by determining a grid around the values z̄0 and ūc and, after having selected a
pair (z0, uc) in the grid, we solve the Cauchy problem (4.39), obtaining the pair
(P (x; z0, uc) , z (x; z0, uc)) and compute

d1 =

∣∣∣∣∣∣∣∣
uc
B
−

(
Q

uc
− h
)
D2(z)

N(z)

∣∣∣∣∣∣∣∣ , (4.46)

d2 =

∣∣∣∣∣∣∣∣
∫ 1

0

z(ξ) + 1 + h(ξ)
N(z(ξ))

D(z(ξ))

(
Q

uc
− h(ξ)

)
 dξ

∣∣∣∣∣∣∣∣ . (4.47)

We then repeat the procedure all grid values and for each value (z0, uc) we compute
the norm

‖d‖ =
√
d2

1 + d2
2.

We stop the procedure when we reach a pair (z∗0 , u
∗
c), whose corresponding ‖d‖ is

smaller than a prescribed tolerance. In particular, once u∗c has been determined,
exploiting (4.32) and (4.36), we obtain the following explicit expression for σ

σ(x) = h(x) +

z(x)

(
Q

uc
− h(x)

)
D(z)

N(z)
.

In Fig. 4.4 some simulations for various values of Q/B are displayed. As wall
profile we considered

h (x) = 1± 1

δ
sin (πx) .

In agreement with the most recent literature, the yield surface σ (x) shows a pro-
file “inverse” with respect to h (x). Indeed, where the duct attains its maxi-
mum/minimum width the surface σ (x) attains its minimum/maximum thickness.
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Figure 4.4: Plots of the surface σ for δ = 20 and three values of Q
B

: 2, 1 and 0.5.

4.6 Solution to system (4.31) when the pressure

difference is prescribed

We now assume that, in place of the discharge Q, the pressure drop ∆p = p|x=0−
p|x=1, is prescribed, i.e. recalling (4.19)

−
∫ 1

0

Pxdx =
∆p

B
. (4.48)

In particular, recalling (4.19), we stipulate P (0) =
∆p

B
, and P (1) = 0. We then

proceed as in Section 4.5 and, recalling (4.36) and (4.38) in which we set K = Q/uc,
unknown parameter, we focus on the following Cauchy problem



Px =
N (z)

(K − h (x))D(z)
,

zx =
hxD(z)N(z)

(K − h) [2D′(z)N(z)−N ′(z)D(z)]
,

P (0) = ∆p
B
, z (0) = zo,

(4.49)

where z is given by (4.32) and zo is some initial guess (which, at this stage, plays
the role of an unknown parameter as K). Solving (4.49) we find P = P (x,K, zo),
and z = z (x,K, zo). To determine K and zo we impose the second boundary
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condition on P , i.e. P (1) = 0, and (4.33)2, namely

P (1, K, zo) = 0,

∫ 1

0

[
z (x) + h (x)

N (z)

(K − h (x))D(z)︸ ︷︷ ︸
Px

]
dx = −1.

(4.50)

The yield surface follows from (4.32), i.e.

σ (x) = h (x) +
z (x)

Px
= h (x) + z (x)

N (z (x))

(K − h (x))D(z (x))
. (4.51)

When hx = 0, i.e. h ≡ 1, (4.49)2 entails z (x) = z̄o, while (4.49)1, (4.49)3 imply

Px =
N (z̄o)(

K − 1
)
D(z̄o)

, =⇒ P (x) =
N (z̄o)(

K − 1
)
D(z̄o)

x+
∆p

B
. (4.52)

Therefore system (4.50) rewrites as

N (z̄o)(
K − 1

)
D(z̄o)

+
∆p

B
= 0,

z̄o +
N (z̄o)(

K − 1
)
D(z̄o)

= −1,

(4.53)

by which

N (z̄o)(
K − 1

)
D(z̄o)

= −∆p

B
, =⇒

(4.52)
P (x) =

∆p

B
(1− x) ,

and

z̄o =
∆p

B
− 1, K = 1− BN (z̄o)

∆pD (z̄o)
, (4.54)

with N and D given by (4.34). Next, exploiting (4.51) we obtain

σo = 1− z̄o
∆p

B

=
B

∆p
.

To solve problem (4.50) coupled with (4.53) we start considering z̄o and K given
by (4.54), i.e. the parameters corresponding to the flat channel h(x) ≡ 1. We then
consider a generic wall profile h (x) 6= 1, and set up an iterative minimum-finding
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scheme. We proceed by determining a grid around the values z̄o and K and, after
having selected a pair (zo, K) in the grid, we solve the Cauchy problem (4.49),
obtaining the pair (P (x; zo, K) , z (x; zo, K)) and compute

d1 = |P (1, K, zo)| ,

d2 =

∣∣∣∣∫ 1

0

(
z (x) + h (x)

N (z)

(K − h (x))D(z)
+ 1

)
dx

∣∣∣∣ .
We then repeat the procedure for all grid values and for each pair (zo, K) we
compute the norm

‖d‖ =
√
d2

1 + d2
2.

We stop the procedure when we reach a pair (z∗o , K
∗), whose corresponding ‖d‖

is smaller than a prescribed tolerance. Once (zo, K) have been determined, σ is
given by (4.51).
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Figure 4.5: Simulations for h (x) = 1± 1
δ

sin (πx), with δ = 20, for various values

of
∆p

B
.

4.7 Approximate solution

In this section we illustrate a technique to find an approximate solution to (4.31)
when the pressure difference is prescribed and peculiar conditions on the data are
fulfilled. We recall the generalized form of the binomial Newton formula

∞∑
k=0

(
α

k

)
xk = (1 + x)α, for |x| < 1, (4.55)
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where, given α ∈ R and k ∈ N,
(
α
k

)
is the generalized binomial coefficient(

α

0

)
= 1,

(
α

k

)
=
α (α− 1) . . . (α− (k − 1))

k!
, for k ≥ 1.

So, assuming

|Px(σ − h)| < 1, (4.56)

we exploit (4.55) in (4.20),

u

B
= − 1

12
P2
x

[
(σ − h)3 − (σ − y)3

]
+O(|Px(σ − h)|3) (4.57)

where the third order terms have been neglected. Proceeding similarly in (4.21)
we obtain

uc
B

=
1

12
P2
x(h− σ)3 +O(|Px(σ − h)|3). (4.58)

Then neglecting the higher order terms the velocity field u inside the channel can
be rewritten as

u =


uc −

1

12
BP2

x(h− σ)3 0 < y < σ

uc −
1

12
BP2

x(y − σ)3 σ < y < h

(4.59)

where we remind that Px < 0. We remark that the approximate expression (4.59)
fulfills the no-slip condition.
Let us now rewrite equation (4.23) as follows

∂

∂x

 h∫
σ

u

B
dy

 = −uc
B

∂σ

∂x
.

After some algebra and using (4.57) and (4.58) we obtain

σ(x) = −3h(x) + C, (4.60)

where C is a constant unknown at this stage. To determine C, we exploit equations
(4.60) and (4.30), namely 

∫ 1

0

pxσ dx = −B,

σ = −3h+ C.
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Imposing the boundary conditions for the pressure, i.e. p(x = 0) = ∆p, and
p(x = 1) = 0, we get this explicit expression for C

C =

B − 3

1∫
0

pxh dx

∆p
,

which, plugged into (4.60), gives

σ = −3h(x) +

B − 3

1∫
0

pxh dx

∆p
. (4.61)

At this point we are in position to determine p(x). We take (4.58), which, recalling
(4.28), can be rewritten as

uc
B

=
1

12
P2
x `

3 = 0,

and differentiate it with respect to x

pxx +
3

2
px

(
`x
`

)
= 0.

Now exploiting the (4.60) we obtain the following boundary value problem based
on an integro-differential equation

pxx +
6hx

4h(x) +

3

1∫
0

pxh dx−B

∆p

px = 0,

p|x=0 = ∆p,

p|x=1 = 0.

(4.62)

Remark 4.7.1 As already stated the approximation is meaningful when (4.56) is

fulfilled, i.e. |px|
B
|σ − h| < 1.

Considering, for simplicity, h ≡ 1, the pressure gradient is px = −∆p and, ex-
ploiting (4.61), we have σ = B

∆p
. Hence

|px|
B
|σ − 1| < 1 =⇒ σ >

1

2
.
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At the same time, in order to prevent the flow come to a stop, σ < 1 i.e. B
∆p

< 1.
Hence the approximation above developed is expected to hold true when

1

2
<

B

∆p
< 1. (4.63)

To solve the problem (4.62) we set up an iterative procedure. As first guess we
consider the linear function p(x) = ∆p(1 − x), and use (4.61), to give the first
guess of the yield surface. The solution at the nth, n ≥ 1, step is obtained solving
this boundary value problem

p
(n)
xx + 6hx

4h(x) +

3

1∫
0

p(n−1)
x h dx−B

∆p



−1

p
(k)
x = 0,

p(n)
∣∣
x=0

= ∆p,

p(n)
∣∣
x=1

= 0,

and the corresponding yield surface σ(n) is obtained by (4.61). We stop the pro-
cedure when

∥∥p(n) − p(n−1)
∥∥

L2([0,1])
becomes smaller than a prescribed tolerance.

Figure 4.6 displays the yield surface when the wall profile is h(x) = 1± 1
δ

sin(πx),
with δ = 20, for various values of B/∆p.
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Figure 4.6: Plots of the approximate yield surface σ (x) when h(x) = 1± 1
20

sin(πx),

for three values of ∆p
B

, namely 5
4
, 3

2
and 7

4
fulfilling (4.63).

The approximation here developed holds true for |Px||σ − h| < 1. So to validate
the procedure we have to verify if |Px||σ− h| < 1 is fulfilled. Figure 4.7 shows the
plot of |Px||σ − h| for the 3 cases displayed in Fig. 4.6.
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Figure 4.7: Plots of |Px||σ − h| for the cases in the Fig. 4.6.

In the right panel of Fig. 4.7 we notice that the condition under which the ap-
proximation is valid is not satisfied at the inlet and outlet, so just in these two
positions it is possible that there are problems determining σ(x).
In Fig. 4.8 we report the comparison between σ (x) given by (4.51) and σ (x)
obtained by the approximate model (4.62), (4.61). Figure 4.9 displays again the
comparison between σ (x) given by (4.51) and the approximated one, i.e. σ (x)
given by (4.62) and (4.61), but now B

∆p
< 1

2
, i.e. out of the range of validity of the

approximate model.
Figure 4.10 shows the comparison between p (x) obtained solving (4.49), (4.50)
and solving (4.62) when B

∆p
= 0.75, and B

∆p
= 0.91.
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Figure 4.8: Comparisons between σ (x) given by (4.51), continuous curve, and

σ (x) given by the approximate model (4.62), (4.61), dotted curve. In the upper

panels B
∆p

= 10
13

. In the lower panels B
∆p

= 2
3
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Figure 4.9: Comparisons between σ (x) given by (4.51), continuous curve, and

σ (x) given by the approximate model (4.62), (4.61), dotted curve, when B
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< 1
2
,

i.e. out of the validity range for the approximation model. In the upper panels
B
∆p

= 1
5
. In the lower panels B

∆p
= 1

10
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Figure 4.10: Comparisons between p (x) given by (4.51), continuous curve, and

p (x) given by the approximate model (4.62), dotted curve, for B
∆p

= 0.75, B
∆p

=

0.91. On the left side the wall profile is h (x) = 1 + 1
δ

sin (πx) on the right side

h (x) = 1− 1
δ

sin (πx). In both cases with δ = 20.
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4.8 Comparison with the pressure driven Bing-

ham flow in a channel

Problem (4.62) is very similar to the one governing the Bingham flow in a channel,
namely (see [45], equation (39))

pxx +


6hx∆p

3h∆p+ 2

1∫
0

pxhdx−B

 px = 0,

p|x=0 = ∆p, p|x=1 = 0,

(4.64)

with the yield surface given by (see again [45], equation (34))

σ (x) = −2h (x)) +
B

∆p
− 2

∆p

∫ 1

0

pxh dx. (4.65)

In Fig.4.11 we report the yield surface given by (4.65), i.e. the Bingham yield
surface, and σ (x) obtained solving (4.49), (4.50), i.e. the Casson yield surface.
We have considered three cases, B

∆p
= 0.1, 0.5 and 0.86.

The plots show that the two models give rise to very similar curves when B
∆p

= 0.1

and 0.5. If B
∆p

= 0.86 the difference between the two curves is much more evident.

We remark that, when h (x) = 1 + δ sin (πx), left panels, the largest difference
occurs in central region. On the contrary, when h (x) = 1 − δ sin (πx), right
panels, the largest difference occurs in the external regions.
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Figure 4.11: Comparisons between σ (x) given by (4.50), (4.51), i.e. Casson model,

continuous curve, and σ (x) given by model (4.64), (4.65), Bingham model, dotted

curve.
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4.9 Peristaltic Flow

We now consider the case where the duct walls move as traveling waves, i.e. the
peristaltic flow. We indeed assume that

h(x, t) = 1 +
1

δ
sin(2π(x− t)), (4.66)

that is a sinusoidal profile whose wave length and speed are equal to 1. Next, the
boundary conditions of adhesion on y = h, i.e. (4.6), change and become

u(x, h, t)=0, v(x, h, t) =
∂h

∂t
.

Recalling (4.25) and following the same approach of Section 4.4, we have that

0 =
∂Q(x, t)

∂x
=

∂

∂x

∫ h(x,t)

0

udy =
(4.12)1

− ∂

∂x

∫ h(x,t)

0

∂v

∂y
dy,

which yields
∂Q

∂x
= −∂h

∂t
.

or, because of (4.66),
∂

∂x
(Q− h) = 0,

from which we conclude that Q(x, t)−h(x, t) does not depend on x. Now, assuming
that the inlet discharge Qin(t) = Q(0, t), we have

Q(x, t)− h(x, t) = Qin(t)− hin(t),

where hin(t) = h(0, t). Proceeding as in Section 4.7, we insert (4.59) in (4.25) and
obtain

Qin+h−hin(t) = huc−
1

12
BP2

x

(h− σ)4

4
= huc−uc

(h− σ)

4
=
uc
4

(3h− σ) . (4.67)

Now setting

A (x, t) = Qin (t) + h (x, t)− hin(t)

= Qin (t) +
1

δ
[sin(2π(x− t)) + sin(2πt)] ,

rearranging (4.67) yields

σ(x, t) =
3h(x, t)uc(t)− 4A

uc(t)
, (4.68)
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with uc (t) still unknown at this stage. To determine the unknowns (uc, σ) we
exploit (4.30)2 and (4.67) obtaining this system

∫ 1

0

Pxσ dx = −1,

σ =
3huc − 4A

uc
.

(4.69)

To solve this problem we exploit (4.59)1 and (4.68) to determine Px as a function
of uc. We thus have

Px = −
√

12

B

u2
c

(4A− 2huc)
3
2

, (4.70)

where we choose the negative solution according to our assumption about px. Now
we put (4.70) in (4.69)1 getting√

12

B

∫ 1

0

uc
3huc − 4A

(4A− 2huc)
3
2

dx = 1, (4.71)

with uc = uc(t).
To solve equation (4.71), we have to impose some conditions on the integrand
function. We require

4A− 2huc > 0 =⇒ uc
A
<

2

h
,

3huc − 4A > 0 =⇒ uc
A
>

4

3

1

h
,

which, setting ψ (x, t) =
uc (t)

A (x, t)
, we rewrite as

4

3

1

h
< ψ < 2

1

h
.

So, rearranging (4.71), we get√
12

B

∫ 1

0

√
Aψ

3hψ − 4

(4− 2hψ)
3
2

dx = 1. (4.72)

So, dividing the time interval [0, 1] in n steps, we solve numerically (4.72) at any
time step.
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Figure 4.12: Yield surface and the wall profile at five different times. δ = 20,

B = 5 and Q(t) ≡ 1.
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Figure 4.13: Yield surface σ varying the parameters Q and B. On the left panel

Q(t) ≡ 1 while B varies. On the right panel B is kept constant while Q varies. In

both cases we set δ = 20.

78



4.10. FINAL REMARKS

4.10 Final remarks

In this chapter we have presented a mathematical model for a Casson flow in a
symmetrical channel of varying amplitude, whose walls can move over time as a
traveling wave. The formulation of the fluid dynamics problem is obtained by
imposing the mass and momentum balance. The latter, written for the central
rigid core, results in an integral equation. We have thus determined an explicit
expression for the velocity field and for the yield surface (which, being unknown,
is a free boundary). The problem has been solved in two cases: (i) the driving
force of the flow is the pressure difference applied between inlet and outlet; (iii)
the inlet flow rate is imposed and the walls of the channel are animated by a
traveling wave (peristaltic flow). Numerical simulations of the peristaltic flow
have shown that as the Bingham number increases and as the flow rate decreases,
the yield surface tends to occupy the entire channel. Regarding the analysis of
the flow driven by the pressure gradient ∆p, a comparison was made between
the flow of Bingham and that of Casson. The results obtained seem to show a
certain sensitivity to the B/∆p parameter. Specifically, the two yield surfaces are
very similar when B/∆p ∼ 0.5. As soon as B/∆p tends to 0.9, the two surfaces
detach significantly. In any case we have found a characteristic of viscoplastic
flows in channels of variable amplitude: the yield surface and the channel wall
have opposite monotonicity. That is, the plug shrinks (or widens) as the width of
the channel increases (or decreases).
The problem addressed, though exceedingly complicated, gives the basis of a new
theory for modeling blood as a viscoplastic fluid. Of greatest interest could be the
verification of compatibility between results obtained with Newtonian models [36]
[38] and those that can be obtained with this new approach. This leaves room for
new developments in the future.

79



CHAPTER 4. USE OF VISCOPLASTIC MODELS IN MICROCIRCULATION

80



Chapter 5

Conclusions

In this thesis, we have essentially dealt with mathematical modeling in hematology.
In particular, we have focused on two very particular phenomena that occur at
the level of the microcirculation. The first is the F̊ahreus-Lindqvist effect, which,
as already mentioned, occurs in blood vessels with diameter less than 500-300 mi-
crometers in diameter. Since the discovery of this phenomenon in 1930 and despite
various models aiming at a quantitative explanation, the F̊ahreus-Lindqvist effect
has not been theoretically explained until today. In this work, we have tried to
approach the problem in an original way by applying the Prandtl boundary layer
theory to a channel entrance flow. This has led to very satisfactory results, al-
though there is still a long way to go towards a model that can fully describe this
phenomenon.
The other topic we have addressed is vasomotion, a phenomenon that also occurs
at the level of arterioles and venules, i.e., the microcirculation. Again, we have
attempted to make a new contribution to existing theories by modeling blood as
a viscoplastic Casson fluid. Such work has never been done on vessels with non-
parallel walls, except by purely numerical methods. Our approach has led to some
significant results that allow effective modeling of blood flow at the microcircula-
tory level as a viscoplastic fluid.
An interesting future development concerning the F̊ahreus-Lindqvist effect could
involve three-dimensional flows, for example starting from axisymmetric flows. As
for the Casson model, the next step will be to implement it in the model for va-
somotion, a model nowadays consider the Newtonian constitutive equation. In
particular, it could be of great interest to verify the compatibility between the
results obtained considering Newtonian flow and those obtained with the Casson
model.
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Chapter 6

Appendix

In this chapter we report the explicit expressions of functions K1, K2, K3, K4, K5,
W3,W4 andW5 which appear in formula (3.29) in chapter 3. Thi expressions have
been obtained with computer software MAXIMA R© [76]

K1 =
1

8 β

[(
16 sinh (σβ) e2σβ cosh (β)− e4σβ + e2σβσ

(
−8 (cosh (β))2 β+

−4 β) + 1) e−2σβ −
(
16 sinh (β) cosh (β) e2β − 8 (cosh (β))2 e2β·

· β − e4β − 4 e2ββ + 1
)

e−2β
]
, (6.1)

K2 =
1

16 β2

[(
16 sinh (σβ) e2σβ sinh (β) β + e4σβ (−2σβ + 1) + e3σβ (8σ·

· cosh (β) β − 8 cosh (β))− 16 e2σβσ sinh (β) cosh (β) β2 + eσβ (8σ·
· cosh (β) β + 8 cosh (β))− 2σβ − 1) e−2σβ −

(
16 (sinh (β))2 e2ββ+

−16 sinh (β) cosh (β) e2ββ2 + cosh (β)
(
e3β (8 β − 8) + eβ (8 β+

+8)) + e4β (1− 2 β)− 2 β − 1
)

e−2β
]
. (6.2)
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K3 =
1

8µβ

((
sinh

(
σβ

1
√
µ

))2 (
sinh (σβ)

(
16 e

2 σβ√
µµ cosh (β)− 16 cosh

(σβ) e
2 σβ√

µµ
)
− 8 (cosh (σβ))2 e

2 σβ√
µσµβ + 16 cosh (σβ) e

2 σβ√
µσµ cosh

(β) β − 8 e
2 σβ√

µσµ (cosh (β))2 β
)

+

(
sinh

(
σβ

1
√
µ

)
· cosh

(
σβ

1
√
µ

)
·

·
(

16 (sinh (σβ))2 e
2 σβ√

µ + sinh (σβ)
(

16 cosh (σβ) e
2 σβ√

µσβ − 16 e
2 σβ√

µ ·

·σ cosh (β) β)) + (sinh (σβ))2
(

1− e
4 σβ√

µ

))√
µ− 8

(
cosh

(
σβ
√
µ

))2

·

· (sinh (σβ))2 e
2 σβ√

µσβ − 4 (sinh (σβ))2 e
2 σβ√

µσβ
)
· e
−2 σβ√

µ (sinh (σβ·

· 1
√
µ

))−2

− 1

8µβ

((
sinh

(
σβ

1
√
µ

))2 (
−8 (cosh (σβ))2 e

2 β√
µµβ+

+16 cosh (σβ) · e
2 β√

µµ cosh (β) β − 8 e
2 β√

µµ (cosh (β))2 β
)

+ (sinh(
σβ

1
√
µ

)
cosh

(
σβ

1
√
µ

)
sinh (σβ)

(
16 cosh (σβ) · e

2 β√
µβ − 16 e

2 β√
µ ·

· cosh (β) β) + 16 cosh

(
σβ
√
µ

)
(sinh (σβ))2 e

2 β√
µ sinh

(
β
√
µ

)
+ (sinh

(σβ))2 ·
(

1− e
4 β√

µ

))√
µ+ sinh

(
σβ

1
√
µ

)
sinh (σβ)

(
16 e

2 β√
µµ sinh(

β
√
µ

)
cosh (β)− 16 cosh (σβ) · e

2 β√
µµ sinh

(
β
√
µ

))
− 8 (cosh

(
σβ
√
µ

))2

(sinh (σβ))2 e
2 β√

µβ − 4 (sinh (σβ))2 e
2 β√

µβ

)
e
−2 β√

µ · (sinh

(
σβ

1
√
µ

))−2

(6.3)

84



K4 =
µ−

3
2

16 β2

(((
sinh

(
σβ

1
√
µ

))3 (
sinh (σβ)

(
cosh (σβ)σe

2 β√
µ
(
16µ β2+

−16 β2
)

+ σe
2 β√

µ
(
16 cosh (β) β2 − 16µ cosh (β) β2

))
− 16 cosh

(σβ) e
2 β√

µµ sinh (β) β2 + 16 e
2 β√

µµ sinh (β) cosh (β) β2
)

+ (sinh (σ·

·β 1
√
µ

))2(
(sinh (σβ))2 σe

2 β√
µ

(
16µ sinh

(
β
√
µ

)
β − 16 sinh

(
β
√
µ

)
·

·β) + sinh (σβ)
(

cosh (σβ)
(

8 e
β√
µµ− 8 e

3 β√
µµ
)

+ 8 e
3 β√

µµ cosh (β) +

−16 e
2 β√

µµ sinh

(
β
√
µ

)
sinh (β) β − 8 e

β√
µµ cosh (β)

)
+ 16 (cosh (σβ))2 ·

·σe
2 β√

µµ sinh

(
β
√
µ

)
β − 16 cosh (σβ)σe

2 β√
µµ sinh

(
β
√
µ

)
cosh (β) β

)
+

+ sinh

(
σβ

1
√
µ

)((
cosh

(
σβ

1
√
µ

))2

sinh (σβ)
(

32 cosh (σβ)σe
2 β√

µ ·

· β2 − 16σe
2 β√

µ cosh (β) β2
)

+ cosh

(
σβ

1
√
µ

)
(sinh (σβ))2

(
−8 e

3 β√
µβ+

−8 e
β√
µβ
)

+ (sinh (σβ))2
(

2 e
4 β√

µβ + 2 β
)

+ 8 sinh (σβ) cosh (σβ)σe
2 β√

µ ·

· β2
)

+ 32

(
cosh

(
σβ
√
µ

))2

(sinh (σβ))2 σe
2 β√

µ sinh

(
β
√
µ

)
β + cosh (σβ·

· 1
√
µ

)
(sinh (σβ))2 σ

(
2 β − 2 e

4 β√
µβ
))√

µ+

(
sinh

(
σβ

1
√
µ

))2

(cosh(
σβ

1
√
µ

)(
(sinh (σβ))2 σe

2 β√
µ
(
−16µ β2 + 16 β2

)
+ 16 sinh (σβ) e

2 β√
µµ·

· sinh (β) β2 − 16 (cosh (σβ))2 σe
2 β√

µµ β2 + 16 cosh (σβ)σe
2 β√

µµ cosh (β) ·

·β2
)

+ sinh (σβ)
(

cosh (σβ)
(

8 e
3 β√

µµβ + 8 e
β√
µµβ

)
− 8 e

3 β√
µµ cosh (β) β+

−8 e
β√
µµ cosh (β) β

))
+ sinh

(
σβ

1
√
µ

)(
cosh

(
σβ

1
√
µ

)(
(sinh (σβ))2 (8·

·e3 β√
µµ− 8 e

β√
µµ
)

+ sinh (σβ)

(
16σe

2 β√
µµ sinh

(
β
√
µ

)
cosh (β) β − 48 cosh
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(σβ)σe
2 β√

µµ sinh

(
β
√
µ

)
β

))
+ (sinh (σβ))2

(
µ− e

4 β√
µµ
)

+ sinh (σβ) cosh

(σβ)σ
(

2 e
4 β√

µµβ − 2µβ
))
− 16

(
cosh

(
σβ
√
µ

))3

(sinh (σβ))2 σe
2 β√

µ β2 − 8·

· cosh

(
σβ
√
µ

)
(sinh (σβ))2 σe

2 β√
µ β2

)
e
−2 β√

µ

(
sinh

(
σβ

1
√
µ

))−3

− µ−
3
2

16 β2 ·

·

(((
sinh

(
σβ

1
√
µ

))3 (
(sinh (σβ))2 e

2 σβ√
µσ (16µβ − 16 β) + sinh (σβ) (cosh

(σβ) e
2 σβ√

µσ2
(
16µ β2 − 16 β2

)
+ e

2 σβ√
µ
(
σ2
(
16 cosh (β) β2 − 16µ cosh (β) β2

)
+

−16µ sinh (β) β)) + 16 (cosh (σβ))2 e
2 σβ√

µσµβ + cosh (σβ) e
2 σβ√

µσµ (−16 sinh (β) ·

· β2 − 16 cosh (β) β
)

+ 16 e
2 σβ√

µσµ sinh (β) cosh (β) β2
)

+

(
sinh

(
σβ

1
√
µ

))2

·

· sinh (σβ)
(

cosh (σβ)
(

8 e
σβ√
µµ− 8 e

3 σβ√
µµ
)

+ 8 e
3 σβ√

µµ cosh (β)− 8 e
σβ√
µµ cosh (β)

)
+

+ sinh

(
σβ

1
√
µ

)((
cosh

(
σβ

1
√
µ

))2 (
32 (sinh (σβ))2 e

2 σβ√
µσβ + sinh (σβ) (32·

· cosh (σβ) e
2 σβ√

µσ2 β2 − 16 e
2 σβ√

µσ2 cosh (β) β2
))

+ cosh

(
σβ

1
√
µ

)
(sinh (σβ))2 ·

·
(
−8 e

3 σβ√
µσβ − 8 e

σβ√
µσβ

)
+ (sinh (σβ))2

(
2 e

4 σβ√
µσβ + 2σβ

)
+ 8 sinh (σβ) cosh

(σβ) e
2 σβ√

µσ2 β2
)

+ cosh

(
σβ

1
√
µ

)
(sinh (σβ))2

(
2σβ − 2 e

4 σβ√
µσβ

))√
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