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Abstract

The cellular functions are regulated by a complex interplay of diffuse and local signals. Studying the latter is challenging, but ex-
perimental work in cell physiology has led to recognize that understanding a cell’s dynamics requires a deep comprehension of
local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multienzyme
assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion
channels and transporters modulates the ion concentration around a channel mouth or transporter binding site. Extreme signal
locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A para-
digmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate
response are essential in growth and development and have innumerable pathological implications. The process involves bidir-
ectional signal transduction by complex supramolecular structures that link integrin receptors to ion channels and transporters,
growth factor receptors, cytoskeletal elements, and other regulatory elements. The dynamics of such complexes are only begin-
ning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated Kþ

channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood
and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in can-
cer cells, where Kv11.1 is often overexpressed and appears to reassume functions it presumably exerts during embryogenesis,
such as controlling cell proliferation/differentiation, apoptosis, and migration. Kv11.1 is implicated in these processes through its
linking to integrin subunits, which in turn regulates channel expression. Specific cellular functions, such as proliferation and
migration, appear to be modulated by distinct conformational states of the channel (e.g., open and closed), whose balance is
affected by the link with integrin subunits.

cancer; cell adhesion; conformational states; development; ERG

INTRODUCTION: LOCAL AND DIFFUSE CELL
SIGNALS

No matter how biophysically sophisticated we may be,
when reasoning about cell signaling it is difficult to resist the
temptation to view the cell as a small sac containing an elec-
trolytic solution governed by the macroscopic physicochem-
ical parameters. This intuitive analogy is acceptable under
some respects but can otherwise lead us far astray. True,
classic work has shown that the diffusion coefficient andmo-
bility of Kþ in the axoplasm are close to those measured in
aqueous solutions of similar ionic strength, suggesting that
classic electrodiffusion can be applied in this context (1).
Likewise, secondmessengers such as cAMP and inositol 1,4,5
trisphosphate (IP3; 2, 3) can quickly coordinate by diffusion
the activity of different parts of the cell (e.g., the apical and
basolateral membrane of epithelia). Nevertheless, this sim-
ple line of reasoning cannot even be applied to all the physi-
ologically relevant ions. As is well known, Ca2þ diffusion

in the cytoplasm is considerably restricted by organelle
absorption and protein binding (2, 4, 5), which reminds us
that we cannot disregard the microscopic structure of cy-
tosolic and membrane-associated cell compartments.
There is however much more than this. Work of the last
three decades has revealed the great physiological rele-
vance of supramolecular complexes, which carry out cellu-
lar processes whose dynamics depend on closely
interacting molecular components and cannot be under-
stood by relying on macroscopic measurements, such as
the determination of average cytosolic pH or [Ca2þ ].
Mitochondrial physiology provides a major example. The
random diffusion model of electron transfer along the
inner mitochondrial membrane has been progressively
substituted by a model in which the elements of large mul-
tiprotein aggregates undergo direct electron exchange,
which is coupled to proton flux (6).

Recent work has considerably extended the spectrum
of cell functions regulated by the proximity of
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molecular elements. In the extreme case, this entails
direct conformational coupling (Fig. 1), which was to
the best of our knowledge first proposed to mediate the
excitation-contraction coupling in the T-tubules of skel-
etal muscle (7, 8).

A good example is offered by Hþ transport. The type I
Naþ /Hþ exchanger (NHE1) is a large membrane protein
with 13 transmembrane domains and a large cytoplasmic
C-terminal domain, which closely interacts with the cyto-
skeleton, calcium-regulated proteins, and a variety of
other regulatory elements (9). NHE1 phosphorylation
stimulates the binding of carbonic anhydrase type II (CA-
II) to the cytosolic face of the transporter, which tightly
couples the Hþ generated from CA-II activity with the
proton transfer domain of NHE1 (10). Other well-defined
examples regard calcium signals. Store-operated calcium
entry (SOCE) is a response to calcium depletion in intra-
cellular stores. It is typically mediated by the Orai1 cal-
cium channels expressed on the plasma membrane.
These channels are activated through conformational
coupling by stromal interaction molecule (STIM)1 pro-
teins, which serve as calcium sensors on the endoplasmic
reticulum (ER) membrane. When [Ca2þ ] in ER decreases,
STIM1 proteins undergo a wide conformational change
that leads to protein clustering and translocation to the
ER-plasma membrane contact sites, through which
STIM1 proteins can bind and activate Orai1 channels (11,
12). Moreover, the association of big conductance Ca2þ -
activated Kþ channels (BKCa) and voltage-gated Ca2þ chan-
nels (Cav) is thought to permit quick localized Ca2þ -dependent
regulation of Kþ channels during action potential (AP) repola-
rization (13).

Importantly, paradoxes may arise when neglecting the
small scale of cellular compartments. In synaptic vesicles, a
transmembrane electrochemical gradient established by
Hþ -ATPases favors neurotransmitter accumulation (14, 15).
Measurements carried out by pH-sensitive fluorescent

probes suggest intravesicle pH between 5 and 6 (16). It has
been noted that as the volume of synaptic vesicles is �2 �
10�20 L, with a pH � 5, no more than 0.1 proton is present in
each vesicle at a given time, on average (17). Once more, the
macroscopic notion of concentration becomes meaningless,
at this size scale. To gain a better picture of the trans-vesicle
transport mechanism one should 1) estimate the local [Hþ ]
close to the transporters’ binding sites and 2) consider the
possibility of direct proton exchange between the pump
and the antiporter. Solving the difficult experimental task
of determining the local concentration fluctuations in sub-
compartments has driven some major lines of cell physio-
logical research in the last three decades. A thorough
understanding of local signaling could also help to explain
how cells expressing a wide spectrum of different G pro-
tein-coupled receptors (GPCRs) could manage to obtain
specificity of downstream responses, even though these
depend on a limited number of signaling pathways. Indeed,
recent results show that certain GPCRs can generate highly
localized (approximately, about tens of nanometers) cAMP
domains around the receptor itself, which appear to operate
independently from similar domains generated by other
GPCRs (18).

In the following, we expand on the implication of these
concepts in the cellular response to the local extracellular
environment, by focusing on recent advances in the compre-
hension of the mechanisms by which cells engage ion chan-
nels to transduce extracellular matrix (ECM) signals. In the
final section, we compare in more detail the main features of
local and diffuse signaling in different pathophysiological
contexts. Broadly speaking, signal transduction between
closely interacting molecules is quicker, more efficient, and
decreases the signal-to-noise ratio. Second messenger cas-
cades are more effective in carrying out slower large-scale
coordination of cellular activity but can be energetically ex-
pensive, depending on the number of biochemical steps
involved.

A B C

Figure 1. Long range and local signal transduction. A: long range diffusion; B: local transfer of ions and metabolites; C: conformational coupling. Created
with BioRender.com.
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INTEGRINS MEDIATE CELL INTERACTION
WITH THE MICROENVIRONMENT BY
MECHANOTRANSDUCTION AND DIFFUSE
SIGNALS
Integrin receptors are heterodimeric integral membrane

proteins formed by different pairs of a and b subunits with
different affinities for ECM proteins such as collagens, fibro-
nectin, laminin, and cell-cell adhesion receptors such as
ICAM and VCAM (19). On binding its partner molecule,
integrin activates by extending the extracellular domains of
both subunits and separating their cytoplasmic tails.
Activation stimulates integrin clustering and assembly of
the focal adhesion complex, a large cytoplasmic signaling
hub comprising hundreds of proteins, including integrin
receptors and their interactors, proteins regulating the actin
cytoskeleton, force transducers like talin and vinculin, and
many other regulatory elements (20). Focal adhesion struc-
tures transmit to the ECM, the force generated by the cyto-
skeleton and in turn allow the cell to respond to the
mechanical changes occurring in the matrix itself. Integrin
activation thus mediates bidirectional signaling, and it
increases ECM binding affinity while stimulating intracellu-
lar mechanisms that regulate cell motility and migration or
differentiation (20).

Converting mechanical force into biochemical or electric
signals is an essential step linking a cell with its environment
during cell migration, morphogenesis, tissue differentiation
and remodeling, and the related pathological aberrations,
which occur e.g., in cancer, such as uncontrolled prolifera-
tion and metastasis. Integrins are essential players in these
mechanisms, and thorough studies have clarified how the
mechanical tension established across the plasma mem-
brane leads to strengthen the interaction between extracellu-
lar ligands, integrin receptors, and the cytoskeleton (21).
These studies also provide examples of the interplay
between signal transfer by protein-protein interaction and
signaling through ion-dependent and phosphorylation
mechanisms. Studies on the force responses at levels ranging
from the single-cell down to the single molecule are building
a picture of the richness of these signaling mechanisms and
how they can be integrated (21). By using a biomembrane
force probe, Chen et al. (22) studied the conformational
switches of single aLb2 integrin on binding to ICAM-1. The
initial weak bond is considerably strengthened and thus sta-
bilized by the pulling forces, which also promote the recruit-
ment of cytoskeletal proteins that strengthen the integrin-
actin connection. Proposed mediators are talin, which binds
directly to both the b-integrin cytoplasmic domain and to F-
actin (23), and vinculin, whose integrin-binding sites are
exposed by stretching and also binds F-actin (24). However,
direct force application to b1 integrins can also induce a
delayed conversion of unoccupied low-affinity integrins to
the high-affinity state, which promotes cytoskeletal remodel-
ing and thus reorientation, in capillary endothelial cells. In
this case, the initial tension quickly (within seconds) activates
stretch-activated Ca2þ influx throughmechanosensitive tran-
sient receptor potential vanilloid 4 (TRPV4) channels leading
to phosphatidylinositol 3-kinase (PI3K) activation (25), which
recruits further integrins with a time course of minutes.
Recent results also point to other types of stretch-activated

ion channels as possible mediators of integrin-dependent sig-
nals. The newcomers in the field are the mechanosensitive
PIEZO channels, which are generally permeable to cations
(26). PIEZO1 has been detected in human gliomas, with
expression correlating with tumor stage, and found to localize
to focal adhesions (27). PIEZO1 appears to stimulate the b1
integrin-focal adhesion kinase (FAK) pathway, presumably
through local Ca2þ influx. This regulates ECM remodeling,
tissue stiffness, and proliferation, although the details of the
interaction between PIEZO1 and b1 integrins remain to be dis-
sected (27).

In summary, a cell is driven toward different destinies
depending on local extracellular cues that include soluble
and cell-bound ligands as well as insoluble ECM substrates.
Integrin receptors are major players in the transduction pro-
cess and appear to act by both protein-protein interaction,
often entailing mechanotransduction, and signaling through
ion fluxes and intracellular biochemical pathways (Fig. 2).
These functions may be assisted by other membrane pro-
teins that associate with integrins to form macromolecular
complexes that constitute signaling platforms at the adhe-
sive sites. Growing evidence points to ion channels as major
interactors of integrin receptors.

MOLECULAR COMPLEXES BETWEEN
INTEGRIN RECEPTORS AND ION CHANNELS:
A HISTORICAL OUTLINE

The regulatory interaction between cell-cell or cell-sub-
strate adhesion receptors and ion transport was first identi-
fied �30 years ago. Evidence is now substantial for integrin-
mediated adhesion (28). Early studies on integrin modula-
tion of ion fluxes were prompted by two lines of reasoning.
First, cell adhesion to the substrate controls cell motility and
contraction through the actomyosin complex, which has
long been known to be modulated by cytosolic calcium (29).
Thus, integrin-dependent adhesion was found to stimulate
calcium signals in migrating endothelia (30, 31), contracting
smooth muscle (22), and stretching fibroblasts (32). Second,
the transition between proliferation and differentiation was
being increasingly recognized to be regulated by transmem-
brane ion flow, with early evidence, especially regarding
Ca2þ , Kþ (33), and Hþ (34). In fact, integrin-dependent
stimulation of Kþ currents favors the differentiation of leu-
kemia cells (35, 36) and neurite extension in neuroblastoma
(37). Moreover, cell spreading onto fibronectin was soon
found to stimulate intracellular pH (pHi) alkalinization in
fibroblasts (38) and neutrophils (39). The underlying mecha-
nisms turned out to be complex, as many parallel signaling
pathways appear to be involved, which depend on cell type.
Broadly speaking, initial work showed that the channel tar-
gets of integrin-mediated adhesion were regulated by classic
intracellular pathways leading to phosphorylation/second
messenger cascades (28, 40, 41). However, further work soon
revealed that direct physical interaction also takes place
between integrin subunits and voltage-gated (42–45) as well
as ligand-gated (46, 47) ion channels. Evidence is now rela-
tively abundant for voltage-gated potassium channels (Kvs).
The complex between b1 integrin subunits and Kv11.1 chan-
nels [encoded by the human ether-á-go-go-related gene
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(hERG1) or potassium voltage-gated channel subfamily H
member 2 (KCNH2)] is part of a supramolecular signaling
hub comprising growth factor receptors, cytoskeletal ele-
ments, and other signaling proteins (48, 49), which will be
fully described THE CASE OF KV11.1. In the brain, binding of
Kv2.1 (encoded by KCNB1) to a5 integrins regulates cell plas-
ticity and apoptosis (50, 51). Moreover, in an inflammatory
context, b1 integrin-mediated binding of T helper 17 (Th17)
cells to neurons that upregulate VCAM-1 stimulates gluta-
mate release from Th17 cells themselves, leading to neuronal
damage (52). The effect, which appears to be stronger in
patients with multiple sclerosis, depends on SNARE (SNAP
receptor protein) complex-dependent vesicle release stimu-
lated by b1 integrin/Kv1.3 signaling (52). Although themolec-
ular details await full elucidation, it is tempting to interpret
these results in the light of previous observations showing
direct coupling between Kv1.3 and b1-integrins (42, 45).

An independent line of research was prompted by the
early observation that the ECM protein agrin stimulates
postsynaptic clustering of nicotinic ACh receptors at the
neuromuscular junction (NMJ; 53), which involves integrin

receptors expressed on the postsynaptic membrane (54).
Whether agrin exerts an inductive or stabilizing role (or
both) in NMJ formation remains an open question (55).
Nonetheless, subsequent work has shown direct interaction
between presynaptic Cav and laminin in NMJ (56), and sub-
sequent studies showed the complex to recruit a3-integrins,
cytoskeletal elements, and active zone components in
Torpedo electric organ synapses, similar to the NMJ (57). The
studies on the ECM-dependent modulation of synaptic
structures have been subsequently extended to the central
synapses (47, 58–60). The role of integrin receptors in synap-
tic development and plasticity is beyond our scopes and we
refer the reader to recent reviews (61, 62).

THE CASE OF KV11.1

Different Physiological Roles in Mature And Developing
Excitable Tissue

Among the ion channel interactors of integrin receptors,
the widest experimental evidence concerns Kv11.1, whose

Figure 2. Integrin receptors main transduction processes. Integrin receptors are major players in the transduction process and appear to act as regulat-
ing signaling, protein-protein interaction, through mechanotransduction, but also mediating signaling via ion fluxes and intracellular biochemical path-
ways. Created with BioRender.com. ECM, extracellular matrix.
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interplay with integrins appears to be specific of developing
and cancer tissues. Because of its peculiar voltage-dependent
gating properties, Kv11.1 has distinct physiological roles in
adult and developing organs. At depolarized (or positive) Vm,
KV11.1 activates and quickly inactivates, thus giving a little
contribution to the overall Kþ conductance. On repolariza-
tion, however, inactivation is quickly removed and the chan-
nel thus contributes a significant transient Kþ current,
which further accelerates and sustains repolarization. Next,
the channel deactivates (and then closes), with relatively
slow time constants (in the order of hundreds of millisecond;
63). These biophysical features make Kv11.1 an effective reg-
ulator of action potential (AP) shape and frequency, in
mature excitable cells. In the heart, in particular, Kv11.1
underlies the cardiac repolarizing current rapid depolarizing
current (IKr). The mutant hERG1 genes that lead to abnor-
mally long repolarization (which is reflected in a longer elec-
trocardiographic Q-T interval) are linked to the long QT type
2 (LQT2) syndrome, which can cause fatal arrhythmia (64,
65). In endocrine cells, Kv11.1 contributes to regulate hor-
mone release, which is driven by action potential frequency
(66, 67); in the central nervous system (CNS), it regulates
neuronal spike frequency adaptation (68) and other aspects
of excitability (reviewed in Ref. 69); in smooth muscle, it
contributes to regulate contractility (70). Work in cardiac
cells (71) and endocrine tissue (72) suggests that a macromo-
lecular complex between Kv11.1 and integrin subunits is gen-
erally absent in mature excitable tissues. We attribute this
fact to the prevalent association of Kv11.1, in mature tissues,
with its canonical accessory subunits potassium voltage-
gated channel subfamily E regulatory subunit 1 (KCNE1) and
KCNE2. Direct experimental evidence is currently available
for KCNE1, which indeed prevents the channel from associ-
ating with integrin subunits (71).

The other side of Kv11.1’s function regards developing ex-
citable tissues, before AP maturation, and cancer. In these
tissues, KV11.1 regulates the resting Vm, because of its steady-
state properties. The KV11.1 activation and inactivation
curves cross around �40 mV. Hence, the KV11.1 “window”

current is centered around the typical resting membrane
potential (Vrest) of cycling and tumor cells. In mouse devel-
opment, the Kv11.1 transcript (erg) is first expressed in the
heart and CNS at embryonic day 9.5 (E9.5; 73, 74). Next, at
midgestation (around E14), it also appears in peripheral gan-
glia (dorsal root ganglia, DRG; sympathetic ganglia, SG; and
myenteric plexus), in the neural layer of retina, skeletal mus-
cle, and other tissues (74, 75). In adult mouse and rat, Kv11.1
expression is maintained in the heart, various CNS struc-
tures, DRG, and retina (73, 74, 76–78), although with a more
restricted pattern of expression. The function of Kv11.1 at
early developmental stages is largely unknown. Because of
the pathological implications in LQT2, several studies have
investigated the results of impairing Kv11.1 in murine
embryos. Kv11.1 loss-of-function leads to cardiovascular tera-
togenesis and embryonic lethality, likely caused by the
severe alteration of cardiac rhythm and the associated pro-
pulsive flow (79). The defects in vasculogenesis, however, are
independent of electrophysiological alterations and appear
instead to depend on differentiative and proliferative signals
downstream to the transforming growth factor b (80). This
observation points to alternative early functions of Kv11.1,

i.e., preceding the electrophysiological maturation. Further
hints about these functions come from studies in quail
embryos, where Kv11.1 is expressed in the heart at�E1.5 (stage
11, according to Hamilton and Hamburger, HH), and in CNS
and eye at HH stage-13 (81). In situ hybridization on sections
from older embryos (E3) detected expression in both cardiac
atrium and ventricle, in the neural tube and encephalic
vesicles, and in the myotome. At E4, the gene was expressed
in the ciliary ganglion (CG) and the nervous part of the retina.
Since E5, ergwas also detected in DRG, SG, and adrenal gland
(AG). CG, DRG, SG, and AG derive from the neural crest and
were also investigated from an electrophysiological stand-
point. In brief, neural crest cells explanted at the 10–13-somite
stage (HH 10–11) display Kv11.1 currents, which are also
observed during early differentiation of CG, DRG, SG, and AG.
However, in these structures, Kv11.1 is progressively substi-
tuted by classic inward rectifier Kþ channels (IRK) during the
electrophysiological differentiation process, which is charac-
terized by a significant Vrest hyperpolarization (which would
be not allowed by the steady-state properties of KV11.1), and
the appearance of the AP machinery (e.g., voltage-gated Naþ

currents). The timing of such a switch cover stages between
E4 and E12 depending on the anatomical structure (82). In
conclusion, Kv11.1 appears to exert peculiar physiological
roles in early phases of mammalian and avian development.
These roles are apparently different from those typically
observed in adult organs, where Kv11.1 (when present) is
mainly implicated in modulating action potential shape and
firing. These early roles are still virtually unknown, especially
as far as the interaction with integrin receptor is concerned. It
is nonetheless intriguing to notice that the sequential pattern
of expression of Kv11.1 and IRK revealed in peripheral nervous
tissue is reversed in glioma tumors. The typical IRK (specifi-
cally, Kir4.1) expression in astrocytes tends to subside with
glioma progression (83) and leaves the stage to other Kþ

channels, including Kv11.1 (84) and the biophysically analo-
gous Kv11.2 (85). In fact, a wealth of suggestions about the pos-
sible roles of Kv11.1 and the macromolecular complexes it
forms with integrins before the establishment of excitability
are provided by the biology of tumors.

Kv11.1 in Cancer

Kv11.1 is commonly overexpressed in human cancers
and, what is more, it is functionally implicated in all
stages of tumorigenesis, from cell proliferation and sur-
vival to the modulation of growth factor release, invasive-
ness, and metastasis (49, 86–92; references in Table 1).
Therefore, Kv 11.1 represents a promising cancer bio-
marker. Because those processes where Kv11.1 is impli-
cated are generally regulated by cell adhesion to the
ECM, a unifying mechanism in the Kv11.1 role in neoplas-
tic progression may indeed be constituted by the chan-
nel/integrin functional and physical link. Depending on
the pathophysiological context, such interplay between
the channel and the integrin can modulate different
cancer-related signaling pathways. Especially common
among these appear to be FAK, ERK, and AKT phospho-
rylation, nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB), and hypoxia-inducible factor
(HIF)-a activation and nuclear translocation, activation
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of small GTPases and the modulation of f-actin organiza-
tion and dynamics (Fig. 3 and Table 1).

Studying the dynamics of Kv11.1 interplay with the b1
integrin subunit has greatly contributed to uncover the
oncological relevance of Kv11.1 overexpression. In tumor
cells, the Kv11.1-mediated current increases when b1 integrin
is activated by cell adhesion onto the ECM or by specific
antibodies (37, 43, 115). The underlying mechanism is still
uncertain, especially regarding the relative contribution of
Kv11.1 activation and higher membrane expression. The
implication of a Gi protein downstream to integrin engage-
ment is suggestive of an increased channel transfer onto the
plasma membrane (116). Regardless of the mechanism of
channel stimulation, a complex regulatory interplay appears
to occur between KV11.1 and integrin subunits, which com-
prises different phases subsequent to cell adhesion. First,
integrin-dependent Kv11.1 stimulation determines Vrest

hyperpolarization. Such an early increase of the Kv11.1
conductive function appears to specifically regulate FAK
phosphorylation and cell proliferation (71). Next, Kv11.1
physically associates with the b1 integrin subunit (37, 43, 87),
which preferentially recruits Kv11.1 in the closed state (71,
117). Hence, formation of the macromolecular complex is
accompanied by a decay of the hyperpolarization signal.
Moreover, other signaling elements are recruited by the mul-
tiprotein structure, which exerts their downstream effects
when they are bound to the complex, suggesting signal
transfer by conformational coupling (115). One such mecha-
nism is operant in colorectal cancer (CRC) cells. On integrin-
dependent CRC cell adhesion, the Kv11.1/b1 integrin complex
recruits the PI3K p85 subunit, which stimulates AKT phos-
phorylation and thus regulates autophagy (117). Because p85
specifically binds to Kv11.1, we hypothesize that Kv11.1 could
transduce by conformational coupling the integrin-depend-
ent microenvironment signal. This would point to a noncon-
ductive function of KV11.1, related to cell adhesion but
different from canonical mechanosensitivity (as Kv11.1 is not
gated bymembrane strain, to the best of our knowledge).

Further recent evidence better clarifies the main role of
the Kv11.1/b1 integrin complex, which can recruit other ion
channels and transporters and appears to be mostly impli-
cated in controlling cell motility and migration. In CRC cells,
the b1 integrin-mediated adhesion increases pHi by activat-
ing NHE1. On cell adhesion, the transporter assembles with
b1 integrin and Kv11.1 and the complex sustains CRC cell mo-
tility (86; Fig. 3). Another Kv11.1-centered mechanism sus-
tains cell motility in pancreatic adenocarcinoma (PDAC)
cells. In these cells, the channel sustains prometastatic sig-
nals through a reorganization of f-actin in stress fibers and a
modulation of filopodia formation and dynamics, thanks to
the interplay with small GTPases, which also involves the
modulation of [Ca2þ ]i (88; Fig. 3). In leukemia cells, Kv11.1
forms a complex with b1 and the chemokine receptor, CXC
chemokine receptor-4 (CXCR4), which triggers the activation
of both the ERK1/2 and PI3K/Akt prosurvival signaling path-
ways. At the same time, leukemia cells became markedly re-
sistant to chemotherapy-induced apoptosis (118; Fig. 3).
Finally, the Kv11.1/b1 integrin complex recruits CA-IX, in
clear-cell renal carcinoma (ccRC) cells and primary cancer
tissues (119). Interestingly, hERG1 and CAIX together repre-
sent biomarkers of ccRC progression (119). In the light of theT
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available information on NHE1 and CAIX physiology, the
Kv11.1/b1-integrin/NHE1 and Kv11.1/b1-integrin/CA-IX com-
plexes constitute functional hubs that locally control intra-
and extracellular pH, especially in hypoxic conditions,
which drive progression-prone, prometastatic signaling
pathways.

MACROMOLECULAR COMPLEXES IN THE
PATHOPHYSIOLOGICAL CONTEXT

The features of local and diffuse signaling mechanisms
are better appreciated in the context of sensory transduction,
in which they have been thoroughly analyzed. Local signal
transfer considerably accelerates the transduction process
and decreases the effects of thermal noise by decreasing the
diffusion distances (120). An extreme example is the confor-
mational coupling between sensing structures and stretch-
activated ion channels. This is typical of mechanoreceptors,
where quickness of response is often essential. The underly-
ing protein conformational changes can occur at time scales
of microseconds and thus allow exquisite sensitivity to me-
chanical vibrations. In fact, the cutaneous Pacinian cor-
puscles are sensitive to mechanical vibrations in the order of
200 Hz (121), and auditory hair cells can discriminate sound
frequencies up to �20 kHz (122). In contrast, when the cellu-
lar signal must be transferred from the sensing region to dis-
tant compartments, such as synaptic terminals (as in
photoreceptors) or the cell soma (as in olfactory receptors), a
biochemical signaling cascade is needed, which is accompa-
nied by an energy gain of�5 orders ofmagnitude (122).

These considerations raise the question of whether the
high speed and lower sensitivity to thermal noise provided
by signal transfer through local signals and macromolecular
complexes are at all necessary for the efficiency of the rela-
tively slow cell adhesion processes that accompany embry-
onic development and pathological cancer cell spread. One
possibility is that direct conformational coupling between
integrins and ion channels avoids the energy expenditure
generated by multistep biochemical cascades. An order of
magnitude estimate is suggested by the simple case of a con-
formational transition between two protein states. The
energy required for full state transition is in the order of 60
kJ/mol, which is approximately equivalent to the free energy
released from cytoplasmic ATP hydrolysis (123). This suggest
that activating, e.g., an ion channel by direct conformational
coupling would require as much energy as a single step of a
multistep signaling cascade leading to the same effect.
Energy saving could be an advantage for the greedy embry-
onic cells, and even more for cancer cells. The latter could
opportunistically select the most advantageous mechanisms
normally used by the developmental process, as suggested
by the widespread occurrence of Kv11.1/integrin interplay in
tumors.

CONCLUSIONS AND PERSPECTIVES

The earlier-described mechanisms in cancer cell prolifera-
tion, survival, andmigration clearly suggest potentially fruit-
ful research lines aimed at clarifying the early roles of Kv11.1.
Although these processes are aberrantly regulated in cancer,
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and the occurrence of Kv11.1/integrin association in early de-
velopment is presently speculative, a reasonable working hy-
pothesis is that the morphogenetic functions of Kv11.1
should be related to the control of cell proliferation/differen-
tiation and migration. Whether the frequent expression of
Kv11.1 in cancer cells is a result of a selection process that
leads the tumor to exploit some of the normal functions the
channel exerts in development, or whether Kv11.1 is more
suitable than other Kþ channels in undertaking some tu-
mor-specific physiological roles remains to be determined.
Considering the stringent energy requirements of cycling
cancer cells, it is possible that exploiting an ion channel par-
ticularly susceptible to be recruited in macromolecular com-
plexes and to carry out signal transfer by conformational
coupling also offers energetic advantages. An energetic
advantage could be also offered by the narrow steady state
window current of Kv11.1, which rules out a strong Kþ

flux in
conditions in which Vrest oscillates slowly, as is typical of
cancers.

From a pharmacologic standpoint, we notice that the multi-
protein complexes described earlier offer unique opportunities
for cancer cell targeting. The latter can be achieved by using
several molecules such as bispecific antibodies, which are able
to simultaneously bind two or more proteins, impairing the
downstream signaling (115, 116, 124–126). In addition, the fact
that Kv11.1 preferentially associates with integrin receptors in
the closed conformation suggests that flexibility of treatment
could be obtained by targeting different conformational states.
Different cellular processes implicated in tumorigenesis can be
targeted relatively independently, by adding or not open-chan-
nel blockers to the pharmacological toolkit. The comparative
usefulness of selective as compared with combined treatment
(to simultaneously target different conformational states) will
have to be judged in specific pathological contexts.
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