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Abstract
Several systematic reviews have highlighted the role of multiple sources in the investigation of psychiatric illness. For what 
concerns fMRI, the focus of recent literature preferentially lies on three lines of research, namely: functional connectivity, 
network analysis and spectral analysis. Data was gathered from the UCLA Consortium for Neuropsychiatric Phenomics. The 
sample was composed by 130 neurotypicals, 50 participants diagnosed with Schizophrenia, 49 with Bipolar disorder and 
43 with ADHD. Single fMRI scans were reduced in their dimensionality by a novel method (i-ECO) averaging results per 
Region of Interest and through an additive color method (RGB): local connectivity values (Regional Homogeneity), network 
centrality measures (Eigenvector Centrality), spectral dimensions (fractional Amplitude of Low-Frequency Fluctuations). 
Average images per diagnostic group were plotted and described. The discriminative power of this novel method for visual-
izing and analyzing fMRI results in an integrative manner was explored through the usage of convolutional neural networks. 
The new methodology of i-ECO showed between-groups differences that could be easily appreciated by the human eye. 
The precision-recall Area Under the Curve (PR-AUC) of our models was > 84.5% for each diagnostic group as evaluated 
on the test-set – 80/20 split. In conclusion, this study provides evidence for an integrative and easy-to-understand approach 
in the analysis and visualization of fMRI results. A high discriminative power for psychiatric conditions was reached. This 
proof-of-work study may serve to investigate further developments over more extensive datasets covering a wider range of 
psychiatric diagnoses.
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AFNI  Analysis of Functional NeuroImages

AUC   Area Under the Curve
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Introduction

Several systematic reviews have highlighted the role of mul-
tiple sources in the investigation of psychiatric illness (Kes-
havan et al., 2020). In particular, for what concerns func-
tional Magnetic Resonance Imaging (fMRI), the focus of 
recent literature lies on three lines of research, namely func-
tional connectivity (Damiani et al., 2021; Du et al., 2018; 
Giraldo-Chica et al., 2018; Sheffield & Barch, 2016; Sörös 
et al., 2019; L. Zhang et al., 2020; Y. Zhou et al., 2015), 
network analysis (Jiang et al., 2019; Scalabrini et al., 2020; 
M. Zhou et al., 2019a, 2019b; Q. Zhou et al., 2017; Y. Zhou 
et al., 2007), and spectral analysis (Malhi et al., 2020; Shang 
et al., 2016; P. Zhang et al., 2018; C. Zhou et al., 2019a, b).

Functional Connectivity in fMRI mainly stresses two 
different phenomena during image acquisition. The first 
is the long-distance relationship between brain areas, with 
one main region serving as a seed or reference. The second 
phenomenon is local connectivity between a brain region 
and its neighborhood, which can be measured by Regional 
Homogeneity – ReHo (Zang et al., 2004).

Measures of centrality in fMRI derive from graph-based 
analyses and are considered a computationally efficient tool 
for capturing intrinsic neural networks architecture in the 
human brain (Achard et al., 2006; He et al., 2009; Sporns 
et al., 2007). In this study, we investigated Eigenvector Cen-
trality—ECM (Lohmann et al., 2010), as other commonly 
used centrality measurements (e.g. Degree of Centrality) are 
more sensitive to higher order cortical regions and less sensi-
tive to subcortical ones (Zuo et al., 2012). As recent research 
in fMRI has shifted attention from cortical to subcortical 
areas in the investigation of psychiatric disorders (Damiani 
et al., 2020; Giraldo-Chica & Woodward, 2017; Lottman 
et al., 2019; Q. Zhou et al., 2017), ECM was preferred.

Spectral analyses in fMRI are based on the notion that 
valuable information can be found analyzing results in a 
time-domain manner, as opposed to the more commonly 
used space-domain. In our spectral analyses, we used frac-
tional Amplitude of Low-Frequency Fluctuations—fALFF 
(Zou et al., 2008). Recent research has focused on fALFF as 
one of the most promising parameters for detecting regional 
signals change in relation to spontaneous activity (F. Liu 
et al., 2013; Yu-feng et al., 2007).

The technical barrier between the neuroimaging field 
and clinical practice may delay the transition of analytic 
results from the overall scientific debate to professional 
applications. Therefore, the present study aimed to offer a 
novel method to aid in analyzing, reporting, and visualizing 
fMRI results in a structured and integrated manner. A more 
accessible method to analyze and report fMRI results could 
support both research and clinical practice, as well as ben-
efitting rapid fruition in a dual manner: through numerical 

dimensionality reduction for machine-learning potentials, 
through color-coding for human readability. The authors 
refer to this new proposed methodology by its acronym 
i-ECO (integrated-Explainability through Color Coding).

Aims of the study

The purpose of the present study was to evaluate a novel 
method of visualizing and interpreting fMRI results, based 
on the integration between functional connectivity, network 
analysis and time-domain analyses. The primary endpoint 
was to report the results of the proposed novel method of 
visualization. The secondary endpoint was to observe the 
discriminative power of the proposed novel method in the 
classification of participants based on their psychiatric clini-
cal status.

Materials and methods

Study design

The present study was conducted on a shared neuroimaging 
dataset from the UCLA Consortium for Neuropsychiatric 
Phenomics, which included imaging and clinical data for 130 
healthy adults, men or women between 21 and 50 years old. 
The shared dataset also included 50 participants diagnosed 
with Schizophrenia, 49 participants diagnosed with Bipolar 
disorder and 43 participants diagnosed with ADHD. Diagno-
ses were reached following DSM-IV TR criteria (American 
Psychiatric Association, 2000), through the Structured Clini-
cal Interview for DSM-IV, SCID-I (American Psychiatric 
Association, 2000), in addition to a structured interview for 
Adult ADHD derived from the Kiddie Schedule for Affec-
tive Disorders and Schizophrenia, Present and Lifetime Ver-
sion (Ambrosini et al., 1989; Poldrack et al., 2016; Schmidt 
et al., 2013). Further details about the sample can be found 
in the original study (Poldrack et al., 2016).

Sample—procedures

fMRI data preprocessing steps were implemented in AFNI 
(http:// afni. nimh. nih. gov/ afni) (Cox, 1996; Cox & Hyde, 
1997; Taylor et al., 2018). Firstly, the structural and func-
tional reference images were co-registered (Saad et al., 
2009). The first 4 frames of each fMRI run were removed in 
order to discard the transient effects in amplitude observed 
until magnetization achieves steady state (Caballero-Gaudes 
& Reynolds, 2017). Slice timing correction (Konstantareas 
& Hewitt, 2001) and despike methods (Satterthwaite et al., 
2013) were applied. Rigid-body alignment of the structural 
and functional image was performed. The anatomical image 
was then warped using the Montreal Neurological Institute 
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standard space (MNI152_T1_2009c) template provided 
with the AFNI binaries. Volume registration was then used 
to align the functional data to the base volume, warping 
it to the stereotactic space of choice. Spatial blurring was 
performed, with a kernel of full width at half maximum of 
6 mm. Bandpass (0.01–0.1 Hz) was performed (William R. 
Shirer et al., 2015). Each of the voxel time series was then 
scaled to have a mean of 100. To control for non-neural 
noise, regression based on the 6 rigid body motion param-
eters and their derivates was applied, as well as mean time 
series from cerebro-spinal fluid masks (Fox et al., 2005; 
Vovk et al., 2011) eroded by one voxel (Chai et al., 2012). 
Regression of white matter artefacts was performed through 
the fast ANATICOR technique as included in AFNI (Jo 
et al., 2010). To further improve motion correction, censor-
ing of voxels with a Framewise Displacement above 0.5 mm 
was applied (Power et al., 2014) to the timeseries in network 
and functional connectivity analyses, while the time-domain 
analyses used non-censored data in order to preserve conti-
nuity along the time axis.

Subjects with excessive motion were excluded (> 2 mm 
of motion and/or more than 20% of timepoints above FD 
0.5 mm). Overall, 44 subjects were excluded from the fMRI 
analysis: 11 Neurotypicals, 18 participants with Schizophre-
nia, 11 subjects with a diagnosis of Bipolar Disorder, and 4 
with a diagnosis of ADHD.

Primary aim—methods

The ReHo value was calculated to measure the similarity 
of the time series of a given voxel to its nearest 26 voxels 
(Taylor & Saad, 2013; Zang et al., 2004). In each participant, 
the Kendall’s Coefficient of Concordance (KCC) for each 
voxel was normalized using Fisher z-transformation with 
the formula:

where 
∼
� represents the normalized value of ρ, the voxel’s 

KCC value.
The ECM value was calculated through the Fast Eigen-

vector Centrality method as described by Wink et al. (Wink 
et al., 2012). 13 Neurotypicals, 5 participants with Schizo-
phrenia, 7 participants with Bipolar Disorder and 4 partici-
pants with ADHD were excluded as at least one region had 
an ECM value of 0, as it was not possible to calculate their 
ECM value due to computational or technical impossibility 
to determine result matrices from the data structure (Wink 
et al., 2012).

The fALFF value was calculated by FATCAT function-
alities (Taylor & Saad, 2013) in order to estimate spectral 
parameters. Firstly, data was bandpassed and the time series 

∼
�=

1

2
ln
(1 + �)

(1 − �)

average, as well as the Nyquist frequency, were excluded. 
After the exclusion of selected frequencies and perform-
ing a bandpass, the time series was transformed in a peri-
odogram using a Fast Fourier Transform (FFT). The fre-
quency domain thus was in the range from 1/T to the Nyquist 
frequency, where T was the total duration of the time series. 
The step size between frequencies was given by the sampling 
time (1/TR), where TR was the repetition time or the length 
in time between two consecutive points on a repeating series 
of acquisitions.

By calculating the voxel-wise values, individual vari-
ations were summarized by averaging results per Region 
of Interest (ROI). For each participant, average values per 
functional network were obtained. Reference network masks 
were retrieved from the Functional Imaging in Neuropsychi-
atric Disorder Lab website – University of Stanford (Gre-
icius & Eger, 2021; W. R. Shirer et al., 2012) and referred to 
as Regions of Interests (ROIs). Individual values were then 
scaled through the following formula:

where x̃ represents the scaled value of x, the individual sub-
ject’s value, and max and min represented respectively the 
overall maximum and minimum value per subject, per vari-
able, per ROI.

The ECM, ReHo and fALFF values, per subject, per ROI, 
were then condensed through a color mixing technique using 
an additive color model (RGB). ECM values were inter-
preted as the red component, fALFF as the green component 
and ReHo as the blue component.

Images for each subject were then compiled through 
Python 3.8.5 (Van Rossum & Drake, 2009) and the fol-
lowing libraries: numpy (Harris et al., 2020), PIL (Umesh, 
2012). Average images per diagnostic group were drawn 
by averaging values by group and compiling the resulting 
image. Images obtained by subtracting resulting images per 
diagnostic group versus neurotypicals were drawn. An heat-
map describing the numerical differences in scaled feature 
values was plotted. A MANOVA test for each feature (ECM, 
fALFF, ReHo) was carried forward, with the diagnostic 
labels as fixed factors.

Secondary aim—methods

A Convolutional Neural Network (CNN) was computed 
in order to discriminate between neurotypicals (TYP) and 
psychiatric participants. Each diagnostic group (participants 
with Schizophrenia – SCH; participants with a diagnosis 
of Bipolar Disorder – BIP; participants with a diagnosis 
of Attention Deficit/Hyperactivity Disorder – ADHD) was 
compared to neurotypicals, and the resulting Precision-
Recall Area Under the Curve (PR-AUC) for the model was 

x̃ = 255 ×
x − min

max − min
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presented. The neural network was built using Python 3.8.5 
(Van Rossum & Drake, 2009) and the following libraries: 
TensorFlow (Martín Abadi et al., 2015), Keras (Chollet, 
2015). The neural network had the following structure: 
firstly, images were scaled to low resolution (14*1 pixel, 
one band of color per ROI, each row for a different sub-
ject). The overall sample was divided in a train and test set 
through a 80/20 ratio. The first layer rescaled pixel RGB 
values from the [0,255] range to [0,1]. Preprocessed data 
then served as the input to a convolutional neural network 
with activation pattern Rectified Linear Activation Function 
and sliding window of size 1 on the x-axis, 3 on the y-axis. 
A flattening layer was then added, and two dense layers were 
built as the final steps. The first dense layer had 4 neurons, 
and activation pattern Rectified Linear Activation Function. 
The second dense layer had 1 final neuron with activation 
pattern Sigmoid Function. The CNN models were built using 
optimizer adam (Kingma & Ba, 2017), loss was defined as 
the binary cross-entropy (Boer et al., 2005). A graphical rep-
resentation of the flow of information, from input to output, 
of the neural net was offered in Fig. 1.

Control analyses – baseline models and the role 
of motion

Logistic models (GLM) were built in order to evaluate the 
discriminative power through interpretable and more com-
monly used Machine Learning Algorithms. The GLM mod-
els were built for each diagnostic label compared to neu-
rotypicals and served as a baseline model to compare and 
contrast CNN results. All the parameters used for building 
individual subject’s images were used for the prediction 
(ECM, fALFF, ReHo values for each ROI – for a total of 
42 features). As for the CNN model, the overall sample was 

split in a 80/20 ratio between test and training sets. The dis-
criminative power was evaluated through the PR-AUC on 
the test set.

As motion during scan is a common source of noise in 
fMRI (Makowski et al., 2019), the authors investigated base-
line models constructed on mean Framewise Displacement 
(Power et al., 2014) values per scan per subject. As for the 
other analyses, the overall sample was split in 80/20 ratio 
between test and training sets. The discriminative power was 
evaluated through the PR-AUC on the test set.

GLM models were built in R 4.0.3 (R Core Team, 2020), 
using RStudio 1.3.1093 (RStudio Team, 2020) and using the 
following libraries: tidyverse (Wickham et al., 2019), caret 
(Kuhn, 2008), PRROC (Keilwagen et al., 2014).

Results

Primary results

Average images per diagnostic group were plotted. Each 
image was composed by 14 bands of colors, one for each 
Functional Network. The resulting image was presented as 
Fig. 2. By a visual inspection, the average image for the 
participants with Schizophrenia had a higher component of 
purple color (+ Red -Green + Blue) in comparison to neu-
rotypicals. The average image for the patients with Bipolar 
Disorder in comparison to neurotypicals had a higher com-
ponent of purple color as well. The average image for the 
patients with ADHD showed similar color components than 
neurotypicals. Of particular interests, the Precuneus showed 
a prevalence of fALFF components (Green) in neurotypi-
cals and ADHD participants, whereas a higher presence of 
ReHo components (Blue) in participants with Schizophrenia 

Fig. 1  Flow of information 
through the Neural Network. 
ReLu = Rectified Linear Activa-
tion
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or Bipolar Disorder. The ECM component (Red) was low in 
the overall sample for the region.

Subtracted images (diagnostic group – neurotypicals) 
were plotted as Fig.  3. The group of participants with 

Schizophrenia and Bipolar Disorder had similar prevalence 
of green components overall (fALFF higher in neurotypi-
cals), but with visible differences in the dorsal and ventral 
Default Mode Networks, High Visual Network, Left and 
Right Executive Control Network, Primary Visual Network 
and the Visuospatial Network. The group of participants 
with Schizophrenia and Bipolar Disorder differed in the 
anterior Salience Network, Auditory Network and Basal 
Ganglia, with a higher prevalence of blue (ReHo) in Schizo-
phrenia and a higher presence of red (ECM) in Bipolar Dis-
order. The sample of participants with ADHD had a preva-
lence of black (0 values, as the two groups had comparable 
mean values) and blue (ReHo, higher in ADHD).

Numerical differences to neurotypicals were also plotted 
as a heatmap in Fig. 4.

MANOVA results were described in Supplementary 
Table S1, S2 and S3.

Only the group of participants with a diagnosis of Schizo-
phrenia had significant differences for ECM results (p-value 
0.045). Post-hoc ANOVA test were significant for the High 
Visual Network, Posterior Salience Network, Right Execu-
tive Control Network, ventral Default Mode Network, and 
the Visuospatial Network (minimum p-value 0.008, maxi-
mum 0.040). ECM results were reported in Supplementary 
Table S1.

For what concerned fALFF results, both the group of 
participants with a diagnosis of Schizophrenia and Bipo-
lar Disorder had significant differences in comparison to 
neurotypicals (p-value 0.032 and < 0.001 respectively). 
Post-hoc ANOVA test were significant in the Auditory 
Network, Language Network, Precuneus, Sensorimotor 
Network, ventral Default Mode Network, Visuospatial 
Network for both the group of participants with a diag-
nosis of Schizophrenia and Bipolar Disorder (minimum 
p-value < 0.001, maximum 0.042). Participants with 
Schizophrenia also showed significant difference in com-
parison to neurotypicals in the High Visual Network and 
Primary Visual Network, while participants with Bipolar 
Disorder in the dorsal Default Mode Network, Anterior 
and Posterior Salience Network, Left and Right Executive 
Control Networks. fALFF results were reported in Sup-
plementary Table S2.

ReHo showed significant differences for the Left Execu-
tive Network for both participants with Schizophrenia and 
ADHD, although borderline significant (p-value 0.040 and 
0.050 respectively). The Posterior Salience also had border-
line significant results for participants with Schizophrenia 
(p-value 0.049). Participants with Schizophrenia had statisti-
cally significant differences for ReHo in the Anterior Sali-
ence and Language Networks as well as the Basal Ganglia 
(p-values 0.015; 0.025 and 0.027 respectively). Participants 
with Bipolar Disorder exhibited significant differences for 
ReHo in the Primary Visual Network (p-value 0.011) and 

Fig. 2  Average Image per diagnostic group. Images were obtained 
through an additive color method through RGB coding: Eigenvec-
tor Centrality for the red channel, fractional Amplitude of Low-Fre-
quency Fluctuations for the green channel and Regional Homogene-
ity for the blue channel. A. Sal = Anterior Salience Aud. = Auditory 
Network B.G. = Basal Ganglia dDN = Dorsal Default Mode Network 
H.Vs. = Higher Visual Network Lng. = Language Network LE = Left 
Executive Control Network P.Sal = Posterior Salience Prec. = Pre-
cuneus P.Vis. = Primary Visual Network RE = Right Executive Con-
trol Network SeMo = Sensorimotor Cortex vDN = Ventral Default 
Mode Network ViSp = Visuospatial Network TYP = neurotypicals 
SCH = participants with Schizophrenia BIP = participants with Bipo-
lar Disorder ADHD = participants with Attention Deficit/Hyperactiv-
ity Disorder
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participants with ADHD in the Right Executive Control Net-
work (p-value 0.017). ReHo results were reported in Sup-
plementary Table S3.

Secondary Results – discriminative power

One Convolutional Neural Network (CNN) per diagnos-
tic group was built in order to discriminate between case 
(psychiatric participants) and controls (neurotypicals). The 

classification ability of the CNNs were evaluated through 
their Precision-Recall AUC (PR-AUC) on the test-set. All the 
models reached a PR-AUC > 80%. Results were described in 
Table 1. The highest PR-AUC was reached for the sample of 
patients suffering from Bipolar Disorder (96.8%), followed by 
the sample of patients suffering from Schizophrenia (91.8%) 
and patients with ADHD (84.6%).

Fig. 3  Average Image per 
diagnostic group, difference 
to neurotypicals. Images were 
obtained through an addi-
tive color method through 
RGB coding: Eigenvector 
Centrality for the red chan-
nel, fractional Amplitude of 
Low-Frequency Fluctuations 
for the green channel and 
Regional Homogeneity for the 
blue channel. A.Sal = Ante-
rior Salience Aud. = Auditory 
Network B.G. = Basal Ganglia 
dDN = Dorsal Default Mode 
Network H.Vs. = Higher Visual 
Network Lng. = Language 
Network LE = Left Executive 
Control Network P.Sal = Pos-
terior Salience Prec. = Precu-
neus P.Vis. = Primary Visual 
Network RE = Right Executive 
Control Network SeMo = Sen-
sorimotor Cortex vDN = Ven-
tral Default Mode Network 
ViSp = Visuospatial Network 
TYP = neurotypicals SCH = par-
ticipants with Schizophrenia 
BIP = participants with Bipolar 
Disorder ADHD = participants 
with Attention Deficit/Hyperac-
tivity Disorder

982 Brain Imaging and Behavior (2022) 16:977–990
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Fig. 4  Heatmap representing 
differences to neurotypicals, per 
feature and ROI. TYP = neu-
rotypicals SCH = participants 
with Schizophrenia BIP = par-
ticipants with Bipolar Disor-
derADHD = participants with 
Attention Deficit/Hyperactivity 
Disorder

983Brain Imaging and Behavior (2022) 16:977–990
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Control analyses– baseline models and the role 
of motion

GLM models computed on the same data used to construct indi-
vidual integrated images resulted in an overall lower discrimi-
native power in comparison to CNN algorithms. PR-AUC was 
measured on the test-set. The highest PR-AUC was reached for 
the ADHD sample (78.5% GLM vs 84.62% CNN). Both the 
sample of participants with a diagnosis of Schizophrenia (77.8% 
GLM vs 91.8% CNN) and Bipolar Disorder (68.5% GLM vs 
96.8% CNN) reported significantly lower PR-AUC values in 
comparison to CNN results. Results were reported in Table 1.

When GLM models were trained on mean FD values per 
subject per run, their predictive power for diagnostic label was 
evaluated. The discriminative power of GLM models evalu-
ated on the test-set and built on motion parameters was mod-
erate, but significantly lower than GLM models built on inte-
grated data or CNN models. The highest PR-AUC was reached 
in the ADHD sample (65.9%), and the lowest in the sample of 
participants with a diagnosis of Schizophrenia (60.8%). The 
sample of participants with a diagnosis of Bipolar Disorder 
was moderate (62.7%). Results were reported in Table 1.

Discussion

Clinical significance and future prospects

In the development of the presented methodology, the 
authors focused on color-coding as a scheme of repre-
senting higher-order information through a simple and 
human readable content. Indeed, color schemes have 
long been used in communication technology as second-
ary notation. Color coding seems to offer a quick system 

of reference which may be easily discriminated by the 
human eye (Rozak & Rozak, 2014), aiding in reducing 
the perceived complexity of presented information (Yudit-
sky et al., 2002) as well as increasing consistency in the 
derived decision-making processes (Jonker et al., 2019). 
As recently stated in a review over neuroimaging tools for 
the psychiatric clinical practice (Scarpazza et al., 2020), 
most tools available to the present day were developed 
and validated for neurological disorders and are not suit-
able for application in the general psychiatric setting. 
Moreover, the authors suggested moving from a region-
of-interest to a whole-brain approach, as well as account-
ing for disease heterogeneity (Scarpazza et al., 2020). In 
authors’ opinion, i-ECO well addresses both suggestions 
in an accessible manner.

While the current study supports the usage of i-ECO to 
classify fMRI participants according to diagnostic groups, 
considering previous discussed views offered by the clini-
cal setting, the potential of a dimensional approach seems 
warranted. According to previous research in fact, neuro-
imaging biomarkers may have the potential to find differ-
ent correspondences of psychopathology (Kebets et al., 
2019; McTeague et al., 2017), in order to arrive to a more 
specific definition of cornerstone symptoms, their bio-
logical correlates and overall classifications supported 
by experimental results (Chang et al., 2020; Iravani et al., 
2021; Schilbach et al., 2015; Tokuda et al., 2018). An 
integrated approach to neuroimaging has the potential for 
direct implications in the treatment of mental suffering 
and psychiatric practice (Iravani et al., 2021; Price et al., 
2018), through a coordination of theoretical models for 
general psychiatry, psychotherapy, and neuroimaging—
e.g. attachment theory and depression (X. Zhang et al., 
2011); body image distortion and eating disorders (Cas-
tellini et al., 2013); face discrimination and gender incon-
gruence (Fisher et al., 2020). The current study and its 
proposed novel methodology may thus aid clinicians in 
overcoming the technical barrier of entry to the field of 
neuroimaging for what concerns fMRI results. In addi-
tion to the psychiatric field, fMRI has been employed in 
the study of at-risk regions of the brain during the plan-
ning of neurosurgery (Unadkat et al., 2019). While early 
usage focused on functional mapping during task-based 
fMRI (Unadkat et al., 2019), recent developments inte-
grated insight offered by resting-state information – either 
by functional connectivity, centrality measures or spectral 
dimensions (D’Andrea, Trillo’, Picotti, & Raco, 2017; Hart 
et al., 2016; Shimony et al., 2009). fMRI has also been 
investigated in the study of neurological disorders, in par-
ticular migraine (Schwedt et al., 2015) or neurodegenera-
tive diseases (Rodriguez-Raecke et al., 2021), as well as 
other general clinical conditions (Chen et al., 2021; C. Liu 
et al., 2021). No formal rationale seems to arise in favor 

Table 1  Discriminative Power, CNN and control analyses

Note: Precision-Recall AUC measured on the validation sample 
(80/20 split)
Motion = mean Framewise Displacement values per subject per run
Control group: TYP
CNN = Convolutional Neural Network
GLM = Logistic Model
TYP = neurotypicals
SCH = participants with a diagnosis of Schizophrenia
BIP = participants with a diagnosis of Bipolar Disorder
ADHD = participants with a diagnosis of Attention Deficit/Hyperac-
tivity Disorder

Precision-Recall AUC: method SCH BIP ADHD

CNN 91.8% 96.8% 84.6%
GLM integrated data 77.8% 68.5% 78.5%
GLM motion 60.8% 62.7% 65.9%
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a limitation of i-ECO to the psychiatric field alone, as the 
proposed measures it relies upon seem to have a confirmed 
role over a wide array of clinical diagnoses. Therefore, the 
authors would like to invite clinical feedback to the pro-
ject, in order to further enhance i-ECO as a methodology 
and extend its scope of applications.

The authors welcome clinical feedbacks to the project in 
order to further enhance the i-ECO methodology.

Partial overlap schizophrenia and bipolar disorder

Our results supported an interpretation in favor of a global 
difference in fMRI components for the sample of patients 
suffering from either Schizophrenia or Bipolar Disorder in 
comparison to controls. In particular, a higher dominance of 
ECM and ReHo components was appreciable and confirmed 
by the secondary analyses. fALFF resulted less represented 
in the sample of patients suffering from either Schizophrenia 
or Bipolar Disorder in comparison to controls. These find-
ings seem to be supported by recent studies in the field of 
Resting-State fMRI (Duan et al, 2017; C. Zhou et al., 2019a, 
b; Q. Zhou et al., 2017).

The partial overlap of findings between the sample of 
patients suffering from Schizophrenia and Bipolar Disorder 
can be interpreted in light of the clinical account of a conti-
nuity between the two disorders (Möller, 2003; Salagre et al., 
2020). A continuity in the spectrum between Schizophrenia 
and Bipolar Disorder seems to be also supported by previ-
ous remarks of common and shared biomarkers (Yamada 
et al., 2020), from common genetic determinants (Lichten-
stein et al., 2009; Prata et al., 2019) to shared neuroimaging 
features (Ji et al., 2019; Jimenez et al., 2019; Madre et al., 
2020). This difficulty in differentiating between Schizophre-
nia and Bipolar Disorder is similar to the one that emerges in 
clinical practice when considering the diagnosis at a single 
time-point without the help of a longitudinal perspective 
(Rosen et al., 2011).

ADHD specificity and role of precuneus

In contrast to the sample of patients suffering from either 
Schizophrenia or Bipolar Disorder, our results supported 
an interpretation of a local rather than global difference of 
fMRI components for the ADHD sample in comparison to 
neurotypical controls. Our findings suggested a potential 
role for the precuneus, which seems supported by previous 
literature (Castellanos et al., 2008; Christakou et al., 2013). 
Precuneus’ findings might be interpreted in light of its role 
in the default mode network (Cunningham et al., 2017; R. Li 
et al., 2019), and specifically in its suggested involvement in 
the activation/deactivation as part of the default mode net-
work during task (Christakou et al., 2013). The role of precu-
neus in response inhibition seems to be of particular interest 

when considering the clinical presentation of ADHD, as the 
precuneus has been shown to be related to response inhibi-
tion (Albert et al., 2019), emotion regulation and attentional 
deployment (Ferri et al., 2016; B. Li et al., 2020). A role 
for the precuneus in ADHD seems to be supported also by 
reports of normalization in precuneus connectivity at the 
fMRI after methylphenidate or atomoxetine treatment (Kow-
alczyk et al., 2019), along symptomatic amelioration.

Technical contributions

Dimensionality reduction represents one of the pivotal chal-
lenges in fMRI (Pereira et al., 2009), with most commonly 
used approaches – e.g. Principal Components Analysis, 
Autoregression, Linear Embeddings, Autoencoders (Cordes 
& Nandy, 2006; Huang et al., 2018; Mannfolk et al., 2010; 
Pereira et al., 2009) being of difficult interpretation for cli-
nicians and hard to generalize. Research in fMRI has been 
recently characterized by a higher reliance on Neural Net-
works (Suk et al., 2016) and Embeddings (Sidhu, 2019), 
with the most promising results coming from CNN (Meszlé-
nyi et al., 2017; Sarraf et al., 2019; Tahmassebi et al., 2018; 
Zhao et al., 2018), especially in the field of Computational 
Psychiatry (Ariyarathne et al., 2020; El Gazzar et al., 2019; 
Oh et al., 2019; Silva et al., 2021). Convolutional Neural 
Networks design follows biological research and the study 
of the receptive field by the visual cortex (Hubel & Wiesel, 
1959), their first development establishing the groundwork 
for the field of computer vision (Denker et al., 1989; LeCun 
et al., 1989). The present work establishes a direct connec-
tion between computer vision, fMRI data and CNN classi-
fiers, providing a simple interpretation to the reason why 
CNN deep learning algorithms have been highly efficient 
when analyzing fMRI results. When fMRI data is recognized 
as a collection of spatially dispersed temporal components 
(either derived from functional connectivity, graph-network 
theory, or spectral analysis), and interpreted visually, the 
abstractness of a CNN classifier is reduced. Recent develop-
ments in the interpretation of variable importance for CNN 
models (Mijolla et al., 2020; Malmgren-Hansen et al., 2021) 
may shed further light over the contribution of the three 
fMRI components here analyzed, thus enriching the inter-
pretation offered by the authors.

Although motion parameters seemed to have a moderate 
predictive power for psychiatric diagnoses, the overall pre-
cision of classifier models was highest when using an inte-
grated approach to fMRI results. A convolutional network 
approach to classifiers seemed to increase the precision and 
recall in order to classify participants as either neurotypi-
cals or suffering from a mental disorder. These preliminary 
results highlight the importance of motion in fMRI (Bolton 
et al., 2020; Makowski et al., 2019), but also caution authors 

985Brain Imaging and Behavior (2022) 16:977–990



1 3

to consider the information given by established measures in 
the field for the study and evaluation of psychiatric disorders.

Limitations

The sample size in this study was limited and only com-
prised participants in a range of three different psychiatric 
diagnoses: Schizophrenia, Bipolar Disorder, ADHD. Further 
analyses with a multi-class.

approach are warranted before the generalization of its 
results. An evaluation of the discriminative power of this 
method over different diagnoses is warranted before gen-
eralizing its results on the overall general psychiatric field.

Conclusions

In conclusion, this study provides preliminary evidence in 
support of an integrative approach in the analysis and visu-
alization of fMRI results. The usage of macro-level regions, 
although diluting particular signals in specific brain areas, 
seemed to provide a high discriminative power for psychi-
atric disorders. This proof-of-work may serve to investigate 
further developments over more extensive dataset and over 
a different range of psychiatric diagnoses.
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