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Abstract: The observation and the quantification of asymmetry in biological structures are deeply
investigated in geometric morphometrics. Patterns of asymmetry were explored in both living and
fossil species. In living organisms, levels of directional and fluctuating asymmetry are informative
about developmental processes and health status of the individuals. Paleontologists are primarily
interested in asymmetric features introduced by the taphonomic process, as they may significantly
alter the original shape of the biological remains, hampering the interpretation of morphological
features which may have profound evolutionary significance. Here, we provide a new R tool
that produces the numerical quantification of fluctuating and directional asymmetry and charts
asymmetry directly on the specimens under study, allowing the visual inspection of the asymmetry
pattern. We tested this show.asymmetry algorithm, written in the R language, on fossil and living
cranial remains of the genus Homo. show.asymmetry proved successful in discriminating levels of
asymmetry among sexes in Homo sapiens, to tell apart fossil from living Homo skulls, to map effectively
taphonomic distortion directly on the fossil skulls, and to provide evidence that digital restoration
obliterates natural asymmetry to unnaturally low levels.

Keywords: asymmetry; show.asymmetry; fossil; virtual anthropology; geometric morphometrics; Arothron

1. Introduction

Most living organisms present bilateral symmetry, meaning that the left and right sides
of the body represent an almost perfect reflection of one another about the medial plane.
However, perfect symmetry is virtually absent in nature, and minor, localized deviations
from perfect symmetry are common. Asymmetry can thus be defined as a deviation of the
shape from a perfectly mirrored image of the counter-side of a bilateral object. The obser-
vation and quantification of asymmetry patterns in biological structures are keenly studied
by evolutionary and developmental biologists, anthropologists, and paleontologists. There
are three different types of asymmetries in living organisms: (i) fluctuating asymmetry,
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(ii) directional asymmetry, and (iii) antisymmetry. The term fluctuating asymmetry (FA)
applies to small left–right differences produced by developmental noises in the form of
environmental and/or genetic stress [1]. Several studies identified FA as a good proxy for
developmental instability. However, this assertion is still questioned, especially when it
comes to the effect of habitat fragmentation, urbanization, and pollution on FA [2–6]. In
humans, FA is usually linked to childhood diseases and poor genetic quality [7,8]. Dif-
ferent studies report a possible relationship between a mate’s facial attractiveness and
symmetry and usually support the notion that FA is higher in males than in females ([9–12],
but see [13]). However, FA linkage to developmental disorders in our species remains
contentious [14]. As an example, in a study carried out in the early medieval society from
the Mikulčice settlement (Czech Republic), the higher degree of FA in females is deemed
to be linked to the large variety of the female population due to patrilocality, although
environmental effects cannot be ruled out [15].

Directional asymmetry (DA) refers to a skewed distribution of asymmetry when
comparing the left to the right side of the body. DA has been largely observed in both
vertebrates and invertebrates (i.e., the direction of coiling in gastropod shells, the presence
of grossly unequal claws in male fiddler crabs [16]). Major examples of DA in humans
pertain to handiness and brain lateralization, which in turn relates to the functioning of
Broca’s area for speech production [17]. Several investigations of DA in humans focused
on differences occurring between males and females and usually support the notion that
DA is higher in males [18,19]. DA was also used as an indicator of biomechanical loading
in humans [15].

Antisymmetry (AS) is commonly defined as the inversion of the regular pattern of
asymmetry, and it is widespread in both animals and plants [20]. The analysis of traits with
antisymmetry may present a bimodal distribution in the most extreme manifestation, as in
the case of left and right claw size in fiddler crabs. An extreme example of antisymmetry
in humans is the condition known as situs inversus, which refers to the congenital mirrored
position of most of the internal organs [21].

Studying and understanding asymmetry patterns also hold a prominent role in paleon-
tology. Taphonomic and diagenetic processes (i.e., the postburial deformation of the organic
material) can heavily affect the physical preservation of biological remains and obliterate
their natural symmetry. The majority of fossils thence present damages and missing parts,
as well as severe, plastic deformations due to compressive and shear forces. Incorrect
identification of the nature of taphonomic distortions may misguide the recognition of di-
agnostic features, producing taxonomic and evolutionary misinterpretations [22,23]. More
than DA and FA, which are virtually impossible to determine in the vast majority of fossil
species, paleontologists are interested in quantifying the loss of biological symmetry and in
identifying patterns of compression and distortion on the remains to guide the restoration
of their original shape and the correct interpretation of diagnostic features. In the last
few decades, with the rise of virtual paleontology, several methods of digital restoration
were developed. Mirroring procedures [24–27], retrodeformation (i.e., the restoration
of specimen’s symmetry [28,29]), and target deformation [30] are all examples of digital
manipulation procedures aiming to produce the genuine shape the remains had before
taphonomy impinged on them. Assessing the reliability of these techniques is therefore
crucial for paleontologists and anthropologists interested in virtual restoration.

A number of methodological strategies have been proposed to compute and dis-
criminate between FA, DA, and AS by using geometric morphometrics data [19,31–34].
However, these strategies are generally limited in terms of visual outputs, mostly offering
a 2D visualization, and/or require multiple steps to prepare the data before the asymmetry
analyses can be conducted. The low visual rendering makes these approaches suboptimal
in terms of interpreting the topology and regional variation in the intensity of the patterns
of asymmetry and is of little help when the goal is to produce a sensible virtual restoration
of the features paleontologists are most interested in.
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Herein, we present a new function written in R language, named show.asymmetry,
that allows users to visualize and measure the left–right differences of bilateral biological
objects, while mapping the extent of asymmetry on the object surface and calculating levels
of FA and DA where appropriate. To test show.asymmetry, we applied the tool to (i) visualize
and assess levels of asymmetry in male and female Homo sapiens skulls from contemporary
populations, (ii) identify patterns of asymmetry in human fossil specimens and compare
them to modern humans, and (iii) test the effect of retrodeformation techniques in restoring
the original biological symmetry.

2. Materials and Methods
2.1. show.asymmetry

The show.asymmetry algorithm is a landmark-based procedure embedded in the
Arothron R package [35]. The function works with multiple landmark sets. As the first
step, show.asymmetry splits each configuration in a left (L) and a right (R) half, following
the specified indices for bilateral pairs of landmarks. The two halves are superimposed
to each other via generalized Procrustes analysis (GPA) to exclude the non-shape-related
differences and compute the rotation matrix to mirror, scale, and align the left side onto the
right side or vice versa. By setting the argument scale.sides, the user may decide to apply
the scaling process of the two halves during the Procrustes superimposition (see Table 1 for
the detailed explanation of all arguments). As the default, scaling is not performed. The
amount of shape difference that is not removed through the GPA process between the two
halves is a measure of the shape differences between both sides. Asymmetry is computed
as the square root of the sum of the squared distances between each landmark pair (L and
R) as follows:

asymmetry =

√
n

∑
i=1

(Li − Ri)
2

where L and R are the superimposed left and right landmark configurations and n is the
number of landmarks per side. If the samples differ in terms of dimension (i.e., they belong
to different species or genera, or they greatly vary in size), it may be useful to standardize
the amount of asymmetry to unit size to compare them directly. Thus, in show.asymmetry,
the total amount of asymmetry is divided by the maximum interlandmark distance of the
sample configuration. This correction is triggered by the function’s argument scale.size.
In the case of specimens under analysis falling under discrete groups, show.asymmetry
automatically retrieves the mean shapes for the groups indicated by the user.

The asymmetry pattern is automatically visualized on one half of the object surface by
using meshDist function in ‘Morpho’ R package, [32], with the asymmetry values used as
distance vector. The function also displays the two superimposed surfaces and, eventually,
the local area differences between the two halves by using the algorithm embedded in
the localmeshdiff function (‘Arothron’ R package, [35]). The area difference range for
all the given specimens is rescaled into the 0–1 range to make them comparable. If no
reference surface is provided, show.asymmetry uses the function vcgBallPivoting in ‘Morpho’
to reconstruct both L and R halves for visualization.

show.asymmetry further gives the possibility to perform a principal component analysis
(PCA) on a new set of landmarks obtained by subtracting the mean from the left and
mirrored right (or the other way around) side. The output from the PCA is used to
decompose the total variance in two components describing the percentage of variation
attributed respectively to DA (mean difference between sides) and FA (average differences
around mean of asymmetry) (for details, see [31,36]).

The function retrieves the asymmetry vectors, the local area differences vector, the
surfaces with levels of asymmetry mapped on a color scale, the PCA results, the asym-
metric component of shape variance, and the percentage of DA and FA (see Table 2 for a
detailed explanation).
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Table 1. Explanation of the arguments of show.asymmetry.

Argument Name Explanation

set A single matrix k × m or a k × m × n array, where k is the number of points,
m is the number of dimensions, and n is the sample size.

x character: the species/specimens to be analyzed; names specified in the x
argument must be included and coincide with the dimnames of the array.

pairs A two-column data frame containing the indices (row numbers) of the
bilateral landmarks.

scale.size logical: if TRUE, the asymmetry will be corrected with the maximum
interlandmark distance.

uniform.range logical: if TRUE, the color range for the asymmetry visualization will be
uniform among all specimens analyzed.

scale.sides logical: if TRUE, the left and the right side will be scaled during the
Procrustes superimposition process.

scale.ranges logical: if TRUE, the vector of asymmetry values will be scaled from 0 to 1.
PCA logical: if TRUE, a Principal Component Analysis is performed.
pcx numeric: first PC axis to be visualized.
pcy numeric: second PC axis to be visualized.

ref.sur
Reference surfaces to be used for the visualization; if ref.sur is NULL, the
surfaces will be automatically reconstructed starting from the landmarks by
using the vcgBallPivoting algorithm from Morpho R package (Schlager, 2017).

.from numeric: minimum distance for the asymmetry to be colorized.

.to numeric: maximum distance for the asymmetry to be colorized.
plot logical: if TRUE, visualize result for asymmetry as 3D plot.
pal.dist logical: if TRUE, the mesh area differences are displayed in a second 3D plot.

pal.areas logical: if TRUE, the names of the species and/or the number of the node are
displayed in the 3D plot.

Table 2. show.asymmetry value illustration.

Value Explanation

asym Vector of asymmetry values.
area.differences Vector of area differences values.
asymmetry.surfaces List of objects of mesh3d colorized according to the asymmetry values.

area.diff.surfaces List of objects of mesh3d colorized according to the area differences
values.

PCA List object containing the mean shape, PC scores, PCs, and the variance
table according to the output from Morpho::procSym.

asymmetric.component The percentage of shape variance explained by asymmetry.
DA The percentage of directional asymmetry.
FA The percentage of the fluctuating asymmetry.

2.2. Case Studies

We applied and tested show.asymmetry on different case studies. First, we applied the
function to a collection of sexed modern human crania. We compared levels of asymmetry
in two different groups, male (N = 10) and female (N = 10), to observe if asymmetry
patterns differ among sexes. We also computed a PCA on the asymmetric component as
described in Section 2.1.

The second case study pertains to two fossil Homo skulls we studied to look at the
patterns of taphonomic distortion. The two specimens refer to Homo heidelbergensis from
Petralona and the Homo neanderthalensis from Saccopastore 1. The Neanderthal specimen
shows extensive asymmetry in the parietotemporal region next to the slight clockwise
rotation of the facial complex with respect to the neurocranium [29] (Figure 1).
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Figure 1. Fossil specimens for show.asymmetry case studies. (a) Petralona, (b) Saccopastore 1, and (c) Steinheim skulls.

Petralona represents a well-preserved Homo heidelbergensis skull discovered by Malkot-
sis and colleagues in 1959 in a cave site near the Petralona village (Thessaloniki, Greece).
The cranium lacks the right zygomatic arch. The mastoid processes are broken. The upper
portion of the sphenoid bone is missing. A wide opening intervenes in between the cranial
and nasal cavities and the maxillary sinuses [37]. As highlighted by Rightmire [38], there
are slight deformations of the vault. Although the frontal bone is undeformed, the right
parietal bulges more than its left counterpart, and the right temporal squama is displaced
laterally. The palate is rotated about the sagittal plane of the braincase, indicating some
twisting of the facial skeleton towards its right side.

Saccopastore 1 was discovered in 1929 in the aggradational succession of the Aniene
River Valley (Rome, Italy). The cranium is almost complete, although it lacks both zygo-
matic arches and the left orbital region is damaged. Some additional and severe damages
were due to its accidental discovery in a gravel pit during construction works. The most
extensive damage occurred to the browridge region, which is missing. The neurocranium
also presents two pick stroke marks. For the application of show.asymmetry, the two holes
were closed digitally, while the browridge could not be restored.

The last case study regards the application of show.asymmetry to evaluate the effect
of retrodeformation on asymmetry. To avoid biases due to the inclusion of deformed
specimens in morphometric analysis, or misinterpretation of morphological traits, pa-
leontologists have applied the so-called retodeformation protocol to artificially restore
symmetry in digital models [23,26,29,39]. This symmetrization procedure is powerful and
effective, yet it cannot discriminate between taphonomic distortion and natural asymmetry.
We decided to test show.asymmetry on a highly deformed specimen before and after the
retrodeformation procedure to see if the retrodeformed specimen shows a lower than
expected level of asymmetry (as judged by comparison to living Homo sapiens specimens)
and whether show.asymmetry captures this essential feature of the retrodeformation pro-
cess. We used the Steinheim skull case-study presented in [40] (this volume). Steinheim
cranium was found in 1933 in a gravel pit 70 km north of Steinheim an der Murr (Baden-
Württemberg, Germany) and, despite a longstanding debate, is commonly attributed to
Homo heidelbergensis, or otherwise linked to the Neanderthal lineage [41,42].

2.3. Data Preparation

We acquired 50 anatomical landmarks on each modern human skull specimen on the
entire cranial surface (e.g., facial complex, neurocranium, and cranial base). We placed
500 equidistant surface semilandmarks on the left side only of a reference sample. We slid
the semilandmark on the entire sample of 20 specimens following the protocol included in
‘Morpho’ [32]. Then, we mirrored the slid configurations to the other side and projected
them on the surfaces after a GPA step rotating semilandmark configuration accordingly to
the set of bilateral landmarks.
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Concerning fossil specimens, we manually sampled bilateral landmarks on Petralona
and Saccopastore by using Amira software (version 5.4.5 [43]) (see Supplementary Materials
for the full detailed description of landmarks). We created decimated patches by cutting half
of the skull, and then we removed the damaged parts on each surface (i.e., the browridge
region from Saccopastore 1). For each patch, we retrieved the coordinates of the vertices
and used them as semilandmarks. As we needed bilateral points, we symmetrized the
semilandmarks on the opposite side and slid them along the surface by using manually
placed landmarks as a reference. The manipulation of landmarks and semilandmarks was
performed by using the R Cran software (version 4.0.5).

For the Steinheim case study, we used both the original and the retrodeformed patches
from the study presented in [40] (this volume).

3. Results

The comparison between the two modern samples highlighted that male individuals
show 40% more asymmetry on average. Such enhanced asymmetry is especially evident in
the temporoparietal area, the occipital region, and the maxillary bone (Figure 2a). Student’s
t-test on asymmetry vectors for male and female mean shapes indicates these differences
are significant (t = −9.7703, p values < 0.001). The asymmetric component is 2.7% of total
shape variance. This component is primarily made up of FA, which accounts for 93.6% of
it, meaning FA represents 2.53% (93.6 times 2.7) of the total shape variance.

Symmetry 2021, 13, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 2. Visualization of the degree of asymmetry obtained with show.asymmetry. (a) Comparison between the mean 
shape of female and male modern humans (upper row and bottom row, respectively). The range of asymmetry goes from 
the minimum to the maximum value of asymmetry between the two samples. (b) Comparison between the mean shape 
of female and male modern humans (upper row left and right, respectively) and Petralona and Saccopastore 1 (lower row, 
left and right respectively). The range of asymmetry is scaled between samples. 

When modern humans are compared to Petralona and Saccopastore 1, their degree 
of asymmetry appears diminutive (Figure 2b). Petralona shows a marked pattern of 
asymmetry in the temporoparietal area, while the facial complex appears to be more 
symmetric than the cranial vault. Saccopastore 1 presents a directional pattern of 
asymmetry with a peak corresponding to the zygomatic and lateral maxillary areas, due 
to the bad status of preservation of the left side of the splanchnocranium. Both patterns 
agree well with what has been reported in the literature regarding these specimens [29,37]. 

Overall, Steinheim is the most asymmetric specimen (Figures 3 and 4). As expected 
by the descriptions provided in [44], the skull shows extensive deformations on the 
splanchnocranium, whereas shape was less affected in its rearmost part. However, in 
keeping with our hypotheses, after the retrodeformation process, the level of asymmetry 
is close to zero. Lastly, the modern human crania show a minor level of asymmetry when 
contrasted with the asymmetry level measured in fossil specimens. (Figures 3 and 4). 

Figure 2. Visualization of the degree of asymmetry obtained with show.asymmetry. (a) Comparison between the mean shape
of female and male modern humans (upper row and bottom row, respectively). The range of asymmetry goes from the
minimum to the maximum value of asymmetry between the two samples. (b) Comparison between the mean shape of
female and male modern humans (upper row left and right, respectively) and Petralona and Saccopastore 1 (lower row, left
and right respectively). The range of asymmetry is scaled between samples.

When modern humans are compared to Petralona and Saccopastore 1, their degree of
asymmetry appears diminutive (Figure 2b). Petralona shows a marked pattern of asymme-
try in the temporoparietal area, while the facial complex appears to be more symmetric
than the cranial vault. Saccopastore 1 presents a directional pattern of asymmetry with a
peak corresponding to the zygomatic and lateral maxillary areas, due to the bad status of
preservation of the left side of the splanchnocranium. Both patterns agree well with what
has been reported in the literature regarding these specimens [29,37].
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Overall, Steinheim is the most asymmetric specimen (Figures 3 and 4). As expected by
the descriptions provided in [44], the skull shows extensive deformations on the splanch-
nocranium, whereas shape was less affected in its rearmost part. However, in keeping with
our hypotheses, after the retrodeformation process, the level of asymmetry is close to zero.
Lastly, the modern human crania show a minor level of asymmetry when contrasted with
the asymmetry level measured in fossil specimens. (Figures 3 and 4).
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Figure 3. Graphical results produced by show.asymmetry. The first column shows the asymmetry
pattern in terms of vertex distances between the two superimposed halves (the shared scale is shown
on the left). The second column shows the superimposition of the two halves (in this case, the left
side is the cyan surfaces, while black wireframe corresponds to the superimposed right side). The
third column represents the local area differences between the left and the right side; the scale goes
from blue to red (meaning expansion and contraction, respectively), and it is not shared. From top to
bottom: mean shape of female individuals, mean shape of male individuals, Petralona, Saccopastore
1, Steinheim before retrodeformation, Steinheim after retrodeformation.
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Figure 4. Boxplot of the comparison of asymmetry values for the analyzed samples. From left to right:
Homo sapiens female mean shape, Homo sapiens male mean shape, Petralona, Saccopastore 1, and
Steinheim (before and after the retrodeformation procedure). The color gradient for the asymmetry
displayed in the crania is shown.

The time requested to run all the four case studies was 3.95 s and in particular:
Petralona 0.93 s, Saccopastore 0.81 s, Homo sapiens 1.40 s, Steinheim 0.81 s. Speed tests
were run with a laptop Intel Core-i7 10875H (2.30 GHz and 32 GB RAM).

4. Discussion

There are several strategies available to evaluate asymmetry from landmark-based
datasets [31,34]. Despite the presence of different methods, none of these offer a fully
integrated tool to calculate and especially to map asymmetry from and to mesh-based
models. Furthermore, the new function show.asymmetry is able to evaluate asymmetry in
both multiple datasets (array) and single specimens (matrix), returning colored meshes
showing the pattern of asymmetry in two different ways: the 3D map of Euclidean distances
and the 3D map of local variations of area.

For example, in the R package ‘geomorph’ [45], the function bilat.asymmetry provides a
3D scatterplot of the distortion of landmarks or the 3D colorless meshes warped according
to the detected pattern of asymmetry. Furthermore, landmark clouds can be useful or
easy to read when dealing with a small number of points or with relatively simple 3D
structures. However, when using complex 3D geometries (such as crania) and/or large
numbers of landmarks, other graphical outputs, such as heatmaps, are a more welcome
option [34]. Nonetheless, even built-in functions such as bilat.symmetry require multiple
steps to be performed by the users in order to be implemented. Specifically, the two sets of
coordinates defining the two sides are mirror images, and hence they must be reflected for
landmark alignment (multiplication of the raw data matrix by −1 is required). On the same
page, the approach described by Neubauer et al. [34] requires performing the singular
value decomposition (SVD) of the raw data matrix of asymmetric vectors rather than
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performing a standard PCA of the mean-centered data. These steps must be performed
before testing for the presence of any asymmetry pattern, increasing the chances of misuse
and lengthening the time to perform the entire set of analyses.

When dealing with fossil specimens, it must be considered that taphonomic pro-
cesses may sensibly alter the original shape of fossil remains. Whereas cracks and missing
parts are undisputable accidents of the preservation process, the compressive and shear
stresses acting upon the remains over prolonged periods of time may bring about plastic
deformations that could be misinterpreted as ‘natural’. This, in turn, may have important
consequences on the correct recognition of the phylogenetic position and taxonomy of
the remains [22,23]. For instance, the ‘roofed’ appearance of the neurocranium in the
Steinheim skull was interpreted as evidence of its plesiomorphic condition [46] but may
be better indicative of taphonomic alteration [40] (Buzi et al., this volume). A similar mis-
interpretation might have complicated the interpretation of Ceprano Homo heidelbergensis
calvarium [47]. Digital restorations help in driving the restoration of the original shapes
yet obliterate true object symmetry (sensu [31]) and are uninformative as to where and to
what extent asymmetry applies in the first place. The algorithm of show.symmetry provides
exactly this piece of information and therefore helps to understand the processes behind
the taphonomic distortions and their total amount. As demonstrated in the first case study,
male Homo sapiens skulls are on average more asymmetric than female skulls. Whereas
this result does not generalize and was not thought to provide an answer to a complicated
question as to whether females, as compared to males, really tend to have a lower level of
cranial asymmetry [15], it stills shows that show.asymmety retrieves even small differences
between closely knit individuals. Similarly, show.asymmetry confirms that retrodeformation
procedures actually reduce cranial symmetry below the natural level, even applied to a
highly deformed skull such as Steinheim. Importantly, the tool successfully estimates
and maps levels and direction of asymmetric deformations directly on the fossil remains,
which may provide critical information when the recognition of the processes behind the
deformation and the proper fossil restoration are at the stake.

5. Conclusions

show.asymmetry estimates and charts patterns of asymmetry on three-dimensional
digital models. It straightaway performs a correction for size variation within the sam-
ple, decomposes asymmetry into its directional and fluctuating components, and maps
asymmetry on the three-dimensional surface, allowing users to grasp immediate visual
information on the intensity, topology, and direction of departures from perfect symmetry.
Through the three different case studies presented here, we showed the functioning of
show.asymmetry algorithm with different datasets, from recent human individuals to human
fossil specimens.

Supplementary Materials: The show.asymmetry function, code, and raw data to reproduce the case
studies presented here are available at https://www.mdpi.com/article/10.3390/sym13091644/s1.
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