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Abstract

On the accuracy of seismic fragilities for actual

linear/nonlinear structural systems: the modified

intensity measure method

by

Matteo Ciano

In Performance-Based Earthquake Engineering (PBEE) the evaluation of structural

e�ciency by fragility analysis is formalized through a methodology with a probabilis-

tic basis. Probabilistic treatment is required since there are the uncertainties of the

seismic event properties (e.g. earthquake intensity), ground motion features and of

the complex structural system response (e.g. nonlinear dynamic behaviour). A multi-

disciplinary knowledge, such as geology, seismology, civil engineering, etc., aims to

apply this methodology based on the performance. The greatest interest for structural

civil engineering is focused to two parameters in PBEE, that are the seismic intensity

measure IM and the system demand parameter D, which re�ect the seismic hazard

and the structural response, respectively.
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Several de�nitions can be provided for the demand parameter and the intensity

measure in order to investigate the di�erent quantities that characterize the structural

response and the seismic input. In general, for both of these de�nitions, the formal-

ization is provided in terms of acceleration, displacement, energy, etc. The fragility

analysis for a structural system is based on these parameters, i.e. D and IM , to

develop the fragility curves. Seismic fragilities quantify the probability that the struc-

tural response of a system overcomes speci�ed limit states for given seismic intensity

measure (IM). The intensity measure is an intermediate variable that connects the

seismic fragility analysis with the structural analysis, and the demand parameter de-

pends intensely on the chosen IM . Speci�c features are required of an ideal IM , it

should be e�cient and su�cient. The e�ciency is inherent to the low dispersion that

should be characterize the demand parameters and IM , while the su�ciency imples

that D evaluated by a seismic ground motion acceleretion with an IM value should

be only dependent on the value of this IM , and not on other seismic groud motion

features (i.e. fault mechanims, magnitude, etc.).

The common method used in PBEE to estimate the seismic fragility curve is based

on scaling the seismic accelerograms with a reference intensity measure IM . This

method is widely applied because it is simple and, together with Monte Carlo sim-

ulation, it overcomes the problem of the limited number of natural recorded ground

motions available for fragility analysis. This method describe a helpful tool for the

structural engineering, but on the contrary it gives limited if any information on the

structural seismic performance when the dependence between the IM and D is weak.

In the probabilist �eld, the IM and D take a meaning of stochastic variables. When

the two variables are not dependent it is a clear violation of the e�ciency condition that

the IM must possess. The dependence between these variables plays a fundamental

role on the accuracy in fragility analysis. In particular, this dependence depedes on

the seismic direction, the intensity measure and the demand parameter considered. For
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the same IM the dependence can vary signi�cantly with di�erent seismic directions,

with which the fragility analysis is developed. The method based on scaled seismic

ground motion acceleration is very useful, this is not questioned, but it needs the use

of e�cient IM for give accurate results.

This thesis presents a general approach to improve the accuracy in fragilities es-

timation when the dependence between the intensity measure IM and the demand

parameter D is weak and the widely used method in Performance-Based Earthquake

Engineering does not give accurate results. This general approach is based on a mod-

i�ed version of the current intensity measure method. In particular, once an IM is

chosen it is mapped in a suitable space where D and the IM are correlated (i.e. are

dependent). The proposed algorithm is based on a linear transformation of samples of

a given IM , which improves the correlation with a set of demand parameters. Fragility

curves are obtained using the transformed IM samples and compared with those esti-

mated with the standard approach. In general, this methodology can be apply for any

classical IM de�nitions. Numerical results for single/multi-degree of freedom systems

case are provided. In particular, for the category of the complex real multi-degree of

freedom system, a numerical model of a structural system of a school in Norcia (Italy),

that was a�ected by the 2016 earthquake sequence, is also considered. Finally, the

e�ectiveness of this general approach is demonstrated for all the case studies consid-

ering linear/nonlinear behaviour by comparing the fragility estimates obtained with a

chosen seismic intensity measure and the its modi�ed version.
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(bottom panel) - linear analysis. . . . . . . . . . . . . . . . . . . . . . . 140

6.50 Computed distances of ns = 500 samples at 3rd storey considering Ddrx

and PGAy: distance from the perfect correlation eiy versus average dis-
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(l)
y )) magenta circles at node #9: l = 1 with

ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2

(right panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



xxviii

6.64 Scatter plots of ns = 500 samples of (Say(T1), Dd
(l)
y ) blue dots, (Say(T1)+
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(l)
y )) magenta circles at 3rd storey: l = 1 with

ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2

(right panel) - nonlinear analysis. . . . . . . . . . . . . . . . . . . . . . . 156

6.88 Scatter plots of ns = 500 samples of (Say(T1), Ddr
(l)
y ) blue dots, (Say(T1)+
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dots, (Z(Say(T1)) + Ēy, Z(Ddy)) green circles (left panel); (Say(T1), Ddy)

red dots, (mSay(T1), Ddy) green circles (right panel) - linear analysis. . . 214

B.113 Scatter plots of ns = 500 samples of (Z(PGAx), Z(Dd
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Dd
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Ēy, Dd
(l)
y ) green circles at node #10: l = 1 with ξl = 1 (left panel); l = 2

with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B.125 Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Dd
(l)
x )) blue dots,

(Z(Sax(T1)) + Ēx, Z(Dd
(l)
x )) magenta circles at node #4: l = 1 with

ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2

(right panel) - nonlinear analysis. . . . . . . . . . . . . . . . . . . . . . . 219

B.126 Scatter plots of ns = 500 samples of (Sax(T1), Dd
(l)
x ) blue dots, (Sax(T1)+
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Chapter 1
Introduction

1.1 General overview of the topic

Earthquakes are natural phenomena that are caused by the movement of tectonic plates

deep below the earth's crust. The energy released during these phenomena spreads

through seismic waves and produces ground movement and accelerations at earth's

surface. The nature of earthquake induces on the civil structures an inertia forces and

dynamic oscillations. For this reason, in seismic regions these natural phenomena pro-

duce many collapses for several class of structures.

The traditional aim of seismic engineering design has been to prevent structural

collapse. After the 1994 Northridge and 1995 Kobe earthquakes [1, 2], the damage

level, economic loss due to downtime and repair cost of the structures were unaccept-

ably high even if those structures were complied with available seismic design protocol

at that era. This has produced, a shift on the main focus for the seismic engineering

towards building performance. For this regard, the awareness gained of the scienti�c

community therefore has introduced the concept of Performance-Based Earthquake

Engineering (PBEE). First-generation PBEE [3] is de�ned as a design framework for

considering the desired system performance at various intensity levels of seismic haz-

1
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ard. The combination of desired performance and hazard levels are used as design

criteria. Subsequently, other documents [4�7] were introduced that are part of this �rst-

generation family, where the element deformation and force acceptability criteria cor-

responding to the performance are speci�ed for di�erent structural and non-structural

elements for linear, nonlinear, static, and dynamic analysis. For both, the demand

and capability of a structural system there is not a probabilistic description with these

criteria. Moreover, the element performance evaluation does not take into account the

global performance. The shortcomings of the �rst-generation procedures incapable to

a probabilistic evaluation of system performance measures, such as monetary losses,

downtime, and causalities, brought to the development of the second-generation PBEE

by Paci�c Earthquake Engineering Research Center (PEER), USA. The base of this

last generation methodology regards to the rigorous estimation in probabilistic �eld

for the di�erent uncertainties in seismic engineering, such as the earthquake intensity,

ground motion characterization, structural response, physical damage, and economic

and human losses.

The PEER methodology is formalized in a probabilist assessment framework in

terms of hazard analysis, structural/nonstructural analysis, damage analysis and loss

analysis. In particular, referring in [8], the outcome of each step is mathematically

characterized by one of four generalized variables: intensity measure IM , structural

demand parameter D (commonly called engineering demand parameter), damage state

D, and decision variable DV . For an example of these variables consider to the peak

ground acceleration (PGA), inter-story drift, structural component damage, and repair

cost, respectively. In general, these variables are expressed in a probabilistic sense as

conditional probabilities of exceedance.

Fragility analysis is formalized to developing the structural/nonstructural and dam-

age analysis for produce the fragility curve. This curve is the conditional failure prob-

ability of a structural system given the seismic event with level intensity ξ = IM .
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Several procedures were proposed in literature to estimate the fragilities. A de�nition,

that it is easy to interpret, is based on the concept of the relative frequency [9]. The

failure probability is the number of the structural performances that exceed the pre�xed

threshold on the total observed number of the seismic events with ξ. The previously

de�nition of failure probability can be applied increasing the ξ value that multiplies a

numbers of scaled ground motion acceleration time series in reference to own IM to

evaluate the structural response observations. In [10] the Federal Emergency Manage-

ment Agency (FEMA), proposes a fragility analysis methodology based on the scaling

phase of the accelerograms with a selected IM . This method is all the more accurate

as the total number of observations increases, and for its easy understanding, it is more

used in the structural civil engineers society being a very practical tool. The use of

Monte Carlo (MC) simulation together the FEMA's method allows to properly prop-

agate uncertainty on structural models and earthquake features. In this context, it is

common practice to distinguish epistemic and aleatory uncertainties [11, 12]. Other

de�nitions are taken into account in PBEE, where a lognormal fragility curve is gener-

ally assumed [13]. This considerably reduces the computational burden since only the

median and log-standard deviation of the fragility curve have to be estimated.

The choice of the intensity measure is another key issue in the implementation of

the PBEE methodologies, as well as for the fragility curves development. First contri-

bution in [14] introduces the notion of �e�ciency� and �su�ciency� of an IM . In this

context, an intensity measure can be e�cient if it produces low dispersion on the struc-

tural parameter investigated. While the su�ciency property has meaning in reference

to the D evaluated by a seismic ground motion acceleration with ξ = IM value, it

should be only dependent of this selected IM , and not on other seismic ground motion

features (e.g. magnitude, source distance, ect.). These criteria describe a guide to

choose an intensity measure for structural fragility assessment.
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1.2 Main contributions

Considering the widespread use of the practical methodology in PBEE, as propose by

FEMA [10], where the fragility analysis is developed scaling the ground motion accel-

eration time series with a reference intensity measure, in this research thesis work the

study of the accuracy in fragility estimation based on this kind of method is developed.

The uncertainties related to the use of intensity measures (IMs) in fragility analysis

is considered. The reason for this, comes from the recent contribution reported in [15].

It is demonstrated that if the dependence between D and IM is weak, the fragility

estimate provides any if limited informations on structural seismic performance. The

weak dependence relating to the used parameters in fragility analysis, i.e. D and IM ,

is a strict consequence of the violation of the e�ciency property required for IM .

Along this line, in this thesis a general approach is proposed to improve the accuracy

in fragility analysis when the dependence between D and IM is weak and the widely

used method in PBEE [10] does not give accurate results. Therefore the purpose is

achieved according to identifying several speci�c objectives, which can be summarized

in the following key points:

1. in-depth study of the theoretical problem of determining accurate results in

fragility analysis;

2. investigation of the dependence betweenD and several IMs for simple or complex

linear/nonlinear structural systems;

3. development of the general methodology based on a modi�ed version of the cur-

rent intensity measure method;

4. demonstrate the validity and e�ciency of the proposed method compared to that

commonly used in fragility analysis.
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1.3 Thesis structure

The thesis is organized with the following structure of the contents.

Chapter 1 presents the general overview of the addressed topic in this work, the

research objectives and main contributions.

Chapter 2 introduces the necessary tools normally used to modeling and quantify

in earthquake engineering. In particular, elements of the probability theory and statis-

tics, the stochastic structural dynamic problem, seismic acceleration ground motion

stochastic process and the Monte Carlo simulation are described.

Chapter 3 focuses attention on the fundamental concepts regard to the fragility anal-

ysis. A complete literature overview on the di�erent approaches for the derivation

of fragility functions and the formulations to approximate/estimate these curves are

provided together the algorithm of the most widespread methodology in PBEE. The

main demand parameters and intensity measures used in earthquake engineering are

reported.

Chapter 4 addresses the accuracy in fragility analysis provided by the intensity mea-

sures and the related issue with the problem de�nition of the fragilities. The proposed

algorithm to de�ne the modi�ed version of an intensity measure is presented. To in-

troduce this methodology, an application example based on simple linear elementary

oscillator is shown.

Chapter 5 reports the fragility analysis improvement for analytical systems with a

single or multiple degree of freedom and linear/nonlinear behaviour. For each of these

dynamic system typologies, �rst the dependence between the selected demand param-
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eter and an intensity measure is studied, second this dependence is improved by the

modi�ed intensity measure approach, and �nally the obtained fragilities by an original

intensity measure and the relative modi�ed version are compared.

Chapter 6 faces the accuracy improvement for real complex multi-degree of free-

dom structural system. The Norcia school building is the selected case study. First of

all, the seismic hazard for the Norcia school site is characterized, second, the depen-

dence between several demand parameters and an intensity measures is investigated

for linear/nonlinear behaviour of the school building model, third, the modi�ed ver-

sions of some selected intensity measures are de�ned by the proposed methodology in

order to improve the dependence with the structural demand parameters, and �nally,

a comparison is carried out for the fragility functions resulting by the original intensity

measures and their modi�ed versions.

Chapter 7 makes a summary of the research activity, the major conclusions drawn

from this study.



Chapter 2
Tools in earthquake engineering

2.1 Introduction

For second-generation approaches in PBEE and, particularly, in the seismic fragility

analysis, an aleatory treatment is necessary. This achievement is obtained by consid-

ering the classical models used in earthquake engineering with a probabilistic view. To

model the physical behaviour of structural systems, i.e. continuous bodies, in classi-

cal mechanics the equations of dynamic equilibrium as a function of precise weights

are used. The behavioral hypothesis of a particular system provides simpler or more

complicated formulations. In this context and for this present research work, the un-

certainties are considered only in reference to the seismic hazard, while the quantities

related to properties of the structural system (the weights) are deterministic, i.e. the

epistemic uncertainties are not considered.

This chapter introduces the main mathematical and physical concepts used in this

thesis for modelling the structural systems behaviour evolution and simulation the seis-

mic ground motion actions in order to quantify and represent, as a stochastic variables,

the structural capacity and seismic request to a system (the demand parameter and

intensity measure).

7
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2.2 Probability theory and statistics

In wide and modern view related to the stochastic structural dynamic and the random-

ness of the earthquake events is required. In this section, the probability and statistical

concepts bases are introduced.

The objective is to provide a strong de�nition and/or a contextualization for main

quantities that will be used in the following chapters of this thesis.

2.2.1 Stochastic variables

The outcomes for most physical problems are numerical values. In a completely general

a�rmation, an aleatory phenomenon can be represented by a random number X (e.g.

demand parameter D or intensity measure IM). Since the value of X depends on the

trial outcome which is represented by a sample point ω belonging to space sample Ω,

X is clearly a function de�ned on Ω. It is possible to write [16]:

X = X(ω) , with ω ∈ Ω (2.1)

where X(ω) is called a random variable, aleatory variable or stochastic variable. Typ-

ically, the argument ω is omitted and it is praxis in science literature to consider for

simplicity X. There are two types of random variables:

� the discrete stochastic variables are capable of taking on only a �nite or countably

in�nite number of distinct values;

� the continuous stochastic variables are capable of taking on any values within

one or several given intervals.

A continuous random variable is necessarily associated with an uncountable sample

space. In general, a stochastic variable may be vectorially valued and it will called

random vector.
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A function of X, i.e. Y = g(X), is also a random variable. The g(·), for a easy

concept, is a function with at most a �nite number of discontinuities, namely Borel

function [16]. A general case of m functions of n random variables can be considered;

let X1, X2, . . . , Xn be stochastic variables, then

Yk = gk(X1, X2, . . . , Xn) with k = 1, 2, . . . ,m ; m ≤ n (2.2)

are also aleatory variables if the gk's are Borel functions.

2.2.2 The probability characterization

If a random variable is discrete, the direct mode to de�ne the probabilities for X to

take discrete values is

PX(x) = Pr(X = x) with x = a1, a2, . . . , an (2.3)

where n may be �nite or in�nite. The (2.3) is also called probability function of the

random variableX and x is the state variable or the range variable ofX. It is possible to

de�ne the probability distribution function or cumulative distribution function (CDF)

of X as

FX(x) = PX(x) = Pr(X ⩽ x) =
∑
xi⩽x

PX(xi) . (2.4)

The (2.4) must satisfy the following

FX(−∞) = 0 and FX(+∞) = 1 . (2.5)

However, the probability function cannot be used to describe a continuous aleatory

variable unlike for the CDF which is suitable. By the derivative of FX(x) is de�ned
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the probability density function (PDF)

fX(x) =
dFX(x)

dx
= lim

∆x→0

FX(x+∆x)− FX(x)

∆x
(2.6)

assuming the existence of this derivative. From the inversion of Eq. (2.5) it is provided

FX(x) =

∫ x

−∞
fX(x

′) dx′ (2.7)

using the condition FX(−∞) = 0, and for upper limit of the integral that goes to +∞,

or simply ∞, provides ∫ ∞

−∞
fX(x) dx = FX(∞) = 1 (2.8)

which is often referred as the normalization condition of a PDF.

The expected value of X is de�ned as

E[X] =

∫ ∞

−∞
xfX(x) dx (2.9)

and it is well de�ned only when
∫∞
−∞ |x|fX(x) dx < ∞. The expected value is also called

as ensemble average, statistical average, the mean and mathematical expectation.

Let X and Y be a two discrete stochastic variables. A physical contextualization

can be provided considering X and Y as D and IM , respectively. The probability for

X = x on the condition that Y = y is given by

PX|Y (x|y) =
PXY (x, y)

PY (y)
(2.10)

that is valid only when PY (y) > 0. The random variable X is said to be independent
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to that Y if PX|Y (x|y) = PX(x) [16]. In the case of continuous random variables

fXY (x, y) dx dy

fY (y) dy
=

fXY (x, y) dx

fY (y)
. (2.11)

The limiting form is the probability for X to be the in�nitesimal interval [x, x + dx]

conditional on Y = y. Therefore, the conditional probability density function is

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fXY (x, y)∫∞
−∞ fXY (x, y) dx

(2.12)

that is again meaningful for fY (y) > 0. The de�nition of independence for two contin-

uous aleatory variables is

fX|Y (x|y) = fX(x) (2.13)

which implies

fXY (x, y) = fX(x)fY (y) . (2.14)

The �rst part of (2.12) can be rewritten to de�ne the joint probability density as

fXY (x, y) = fY (y)fX|Y (x|y) (2.15)

and its integration gives

fX(x) =

∫ ∞

−∞
fXY (x, y) dy =

∫ ∞

−∞
fX|Y (x|y)fY (y) dy (2.16)

which shows as the unconditional probability function may be computed from the

conditional probability density.

The validity of (2.13) through (2.16) is extended to the discrete or mixed continuous-

discrete stochastic variable by admitting the Dirac delta function in the representation

of the various probability densities. The conditional CDF can be obtained from the
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integration of (2.12):

FX|Y (x|y) =
∫ x

−∞ fXY (x
′, y) dx′

fY (y)
(2.17)

manipulation and integration provides

FX(x) =

∫ ∞

−∞
FX|Y (x|y)fY (y) dy . (2.18)

The expected value of X on the condition that Y takes on a value y is given by

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx (2.19)

and it is well de�ned if
∫∞
−∞ xfX|Y (x|y) dx < ∞. The expectation of E[X|Y ] is given

as

E{E[X|Y = y]} =

∫ ∞

−∞

[∫ ∞

−∞
xfX|Y (x|y) dx

]
fY (y) dy = E[X] (2.20)

i.e. the expected value of X.

2.2.3 Moments

A class of expected values is that of the various powers of one or several random

variables. These expected values are the moments. For a single stochastic variable the

E[X] is known as the �rst moment, E[X2] the second moment and E[Xn] the n-th

moment. For two or more random variables the quantity E[XmY n] is called the joint

moment of X and Y of the (m+n)-th order, and E[Xn1
1 Xn2

2 . . . Xnk
k ] the joint moment

of X1, X2, . . . , Xk of the (n1 + n2 + . . .+ nk)-th order.

Let µX = E[X] be the �rst moment of X, i.e. the mean value; the quantity

E[(X − µX)
n] is called the n-th central moment of X, E[(X − µX)

m(Y − µY )
n] the

(m+n)-th joint central moment of X and Y . For the following expression is attributed
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speci�c name

E[(X − µX)
2] = E[X2]− µ2

X = σ2
X (2.21)

it is the variance of X. The square root of the variance, namely σX , is called the

standard deviation of X. For two random variables, it is de�ned as

E[(X − µX)(Y − µY )] = E[XY ]− µXµY = CXY (2.22)

i.e. the covariance of X and Y . The two random variables, X and Y , are said to

be uncorrelated or linear independent if their covariance is zero, i.e. CXY = 0. The

covariance clearly describes when two aleatory variables are uncorrelated, however the

uncorrelated is not su�cient condition for the independence de�nition.

More convenient is to normalize the covariance to de�ne the correlation coe�cient

ρXY =
CXY

σXσY

. (2.23)

The correlation coe�cient has always values between −1 and 1; the random variables

X and Y , for ρXY = 0 are independent, while for ρXY = −1 or ρXY = 1 are dependent

or correlated.

It is a consolidated praxis in the stochastic �eld to work with standardized variables.

The standardization or auto-scaling of the aleatory variable X as

Z(X) =
X − µX

σX

(2.24)

namely the standardized random variable which has the following properties

E[Z] =
E[X − µX ]

σX

= 0 and σ2
Z =

E[(X − µX)
2]

σ2
X

= 1 (2.25)

i.e. Z has zero-mean and unit variance.
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2.2.4 Stochastic processes

A stochastic process is a parameterized family of random variables with the parameter

(or parameters) which is belonging to an indexing set (or sets) [17]. An interpretation

of this de�nition can be done considering the random displacement of an arbitrary sys-

tem. In this context, the interest for the random displacement focus not only one time

but also at other times, i.e. a family of aleatory variables X(t1), X(t2), . . .. The entire

family is {X(t) : t ∈ T}, or simply X(t), where t takes values in the set T . Adding

another dependency parameter, {X(t) : t ∈ T, s ∈ S} or simply X(t, s). In general, t

and s have meaning of time and space coordinates.

A stochastic process is also called time series, typically for time-parametered ran-

dom processes. If the indexing set is �nite, a random process is a random vector; if

the indexing set is countably in�nite, it is a random sequence. Moreover, a stochastic

process can be de�ned discrete or continuous depending upon whether it is a family of

discrete or continuous random variables. In particular, the adjective continuous does

not refer to the continuity of random function with respect to its parameter. Since

the parameter may belong to a countable or an uncountable indexing set, a stochastic

process can be de�ned in one of four broad categories [17]:

� continuously parametered continuous stochastic processes;

� continuously parametered discrete stochastic processes;

� discretely parametered continuous stochastic processes;

� discretely parametered discrete stochastic processes.
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2.3 Bases of stochastic structural dynamic

Concepts regard the dynamic behaviour of civil structures to earthquake excitation are

introduced in this section. The structural dynamics problem is formulated through

an idealization of the real systems with a linear/nonlinear single or multi-degree of

freedom model. For these models, the equilibrium equation of motion under seismic

excitation in stochastic form are introduced. Most of the these notions are extracted

from [18].

2.3.1 Linear single degree of freedom system

The simple structures can be idealized as a concentrated or lumped mass supported by

a massless structure with sti�ness in the lateral direction. The number of independent

displacements required to de�ne the positions of all the masses relative to their origi-

nal position is called the number of degrees of freedom (DOFs) for dynamic analysis.

An idealized one-story structure can be described thought a single degree of freedom

(SDOF) system as shown in Figure 2.1a.

Figure 2.1: Single degree of freedom system to a sample of ground motion ug(t): (a)
idealization scheme; (b) dynamic equilibrium (sample of (2.26)).

The dynamic equilibrium for ground acceleration stochastic process A(t) is gener-

alized as

FI(t) + FD(t) + FS(t) = 0 (2.26)



16 Tools in earthquake engineering

i.e. the sum of inertia force FI(t), damping force FD(t) and sti�ness force FS(t) in

the time. In general context, FS(t) is a function of the displacement or deformation

response process Xsdof (t) of SDOF system

FS(t) = FS(t,Xsdof (t)) (2.27)

and this relation can be speci�ed depending on the system behaviour (e.g. linear).

Figure 2.1b shows the concept of dynamic equilibrium for a sample of inertia force

fI(t), of damping force fD(t) and sti�ness force fS(t).

The damping force is attributable to the phenomenon by which free viration steadily

diminishes in amplitude. The energy of the vibrating system is dissipated by various

mechanisms, and often more than one mechanism may be present at the same time

(i.e. thermal e�ect, internal friction, etc...). Usually, the damping is represented in a

highly idealized manner. The equivalent viscous damping concept is used to describe

the damping forces in classical dynamic

FD(t) = cẊsdof (t) (2.28)

where the constant c is the viscous damping coe�cient (force x time/length) and

Ẋsdof (t) is the velocity response process of SDOF system. The displacement ground

process Ug(t), imposed to the base of an system during an earthquake events, deter-

mines the total displacement process on mass m of SDOF system

X t
sdof (t) = Ug(t) +Xsdof (t) (2.29)

both X t
sdof (t) and Ug(t) refer to the same inertial frame of reference and their positive

directions coincide. One sample of quantities in (2.29) are schematized in Figure 2.1a.

Only the relative motion Xsdof (t) between the mass and the base due to structural

deformation produces sti�ness and damping forces. The FI(t) is related to the total
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acceleration process Ẍ t
sdof (t) and mass by

FI(t) = mẌ t
sdof (t) . (2.30)

Substituting Eqs. (2.27), (2.28) and (2.30) in (2.26) provides

mẌsdof (t) + cẊsdof (t) + Fs(t,Xsdof (t)) = −mA(t) (2.31)

the equation of motion for SDOF system, where the quantity −mA(t) is the external

force process that is evaluated from each samples of ground acceleration a(t) of A(t) and

Ẍsdof (t) is the acceleration response process of SDOF system. The demand parameter

Dsdof for general SDOF system to A(t) can be provide as

Dsdof = max
0⩽t⩽τ

|Xsdof (t)| (2.32)

where τ is the time length of A(t).

If the (2.27) is contextualized for linear SDOF system, i.e. the relation that de-

scribes FS(t) is linear

FS(t) = kXlsdof (t) (2.33)

where k is the lateral sti�ness (force/length), the equation of motion governing the

displacement response process Xlsdof (t) of linear SDOF system to A(t) is written as

mẌlsdof (t) + cẊlsdof (t) + kXlsdof (t) = −mA(t) (2.34)

dividing by m gives

Ẍlsdof (t) + 2ζω0Ẋlsdof (t) + ω2
0Xlsdof (t) = −A(t) (2.35)
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where ω0 =
√

k/m is the natural pulsation and ζ = c/2mω0 is the damping ratio.

Considering a linear SDOF system, Equation (2.32) becomes the response spectra

Sd(T, ζ) = Dlsdof = max
0⩽t⩽τ

|Xlsdof (t)| (2.36)

where T = 2π/
√
k/m and Dlsdof are the period and demand parameter of linear SDOF

system to A(t) for linear elementary oscillator by Eq. (2.35) with changing T value,

respectively. The pseudo-velocity and pseudo-acceleration response spectra are

Sv(T, ζ) = (2π/T )Sd(T, ζ) (2.37)

Sa(T, ζ) = (2π/T )2Sd(T, ζ) . (2.38)

As an example, a sample of the response spectrum, pseudo-velocity and pseudo-

acceleration response spectrum for the El Centro 1940 earthquake are shown in Figure

2.2, assuming ζ = 2%.

The (2.34) and (2.35) are a second order di�erential equations, and their classical

resolution is obtained with the sum of complementary solution Xc
lsdof (t) and particular

solution Xp
lsdof (t), that is, Xlsdof (t) = Xc

lsdof (t)+Xp
lsdof (t). The solution can be provide

by numerical time-stepping methods for integration of di�erential equations, e.g. the

Newmark's method [19].

2.3.2 Nonlinear single degree of freedom system

In earthquake engineering, there is the interest to studying the dynamic response of

inelastic systems because many structures are designed with the expectation that they

will undergo some cracking, yielding, and damage during intense ground shaking caused
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Figure 2.2: Response spectra sample with ζ = 2% for El Centro 1940 ground motion:
(a) response spectrum; (b) pseudo-velocity response spectrum; (c) pseudo-acceleration
response spectrum [18].

by earthquake events.

For example, let consider a structural steel component. When this element under-

goes the cyclic deformations expected during earthquakes, the typical force-deformation

relation is inelastic [20], i.e. nonlinear. This implies that the force�deformation rela-

tion is path dependent, i.e., it depends on whether the deformation is increasing or

decreasing. The sti�ness force is an implicit function of deformation as in Eq. (2.27).
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Figure 2.3: Force-deformation relation for a reinforced concrete element to a cyclic
load [21].

This behaviour is also manifested for the reinforced concrete elements to cyclic load,

as it shows in Figure 2.3 extracted form the experimental campaign in [21]. A relation

as in Figure 2.3 is described with a hysteretic model, in which the system behaviour

is characterized with a late reactivity to the applied stresses and depending on the

previous deformation state.

Du�ng single degree of freedom system

Du�ng in [22] has introduced a nonlinear equation describing an oscillator with a cubic

nonlinearity. Many physical systems can be approximate with the Du�ng's model since

it has apparent and enigmatic simplicity or because it is a convenient mathematical

model to investigate new solution methods.

The source of the nonlinearity in a mechanical system that results in its dynamic

behaviour being modelled by the Du�ng equation is the sti�ness. Sti�ness is generally

a function of position or deformation (2.27), this means that the Fs(t), and the resulting
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displacement process Xdsdof (t) of Du�ng's oscillator have a nonlinear relationship. If

the system is symmetric, i.e., the sti�ness characteristic is the same when there is

a compression or tension, then the restoring force can be approximated as a series in

Xdsdof (t) in which the exponents of Xdsdof (t) are odd integers. If this series is truncated

after the �rst two terms, then the force�deformation relationship is given by

FS(t) = kXdsdof (t)± kγX3
dsdof (t) (2.39)

where γ is an constant that describe the nonlinear behaviour. For γ = 0 the (2.39) be-

comes (2.33), i.e. linear. If the cubic term in (2.39) is positive (negative), the sti�ness

undergoes a hardening (softening) because it becomes sti�er (softer) as the displace-

ment increases. For a numerical treatment, considering the positive or negative cubic

term is equivalent. By considering positive cubic term (hardening) and substituting

the Eqs. (2.39), (2.28) and (2.30) in (2.26) provides

mẌdsdof (t) + cẊdsdof (t) + k
(
Xdsdof (t) + γX3

dsdof (t)
)
= −mA(t) (2.40)

dividing by m gives

Ẍdsdof (t) + 2ζω0Ẋdsdof (t) + ω2
0

(
Xdsdof (t) + γX3

dsdof (t)
)
= −A(t) (2.41)

i.e. the equation of motion for Du�ng SDOF system to A(t). The (2.40) or (2.41)

di�erential ordinary equation can be solved with the iterative Runge-Kutta method

[23].

Bouc-Wen single degree of freedom system

Commonly model used in seismic structural analysis to describe the hysteretic be-

haviour of systems was introduced by Bouc [24]. Bouc's model has been modi�ed

and improved further to include the time dependent degradation and pinching e�ects
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commonly observed in structures subjected to earthquake induced ground motions.

Because of the analytical simplicity, Bouc's model has been of special interest later

and it was extensively used by Wen [25].

In reference to (2.27), the restoring or sti�ness force in the Bouc-Wen model is

in�uenced also by the velocity response process of SDOF system

FS(t) = FS(t,Xsdof (t), Ẋsdof (t)) (2.42)

i.e. the impulses of external force in�uence the system response. To include the hys-

teretic behaviour along with that linear, Wen in [26] has proposed the following ex-

pression to model the restoring force in (2.42)

FS(t) = k [ηXbwsdof (t) + (1− η)W (t)] (2.43)

where W (t) is auxiliary process which has hysteretic characteristics. Thus the second

part in the (2.43) represents a nonlinear element in parallel with that linear represented

by the �rst part. The quantity η is a weighting constant, it represents the relative

participations of the linear and nonlinear terms. When η = 1 the (2.43) becomes

(2.33), i.e. only a linear behaviour is provided.

To model the hysteretic behaviour through W (t) in(2.43), it was proposed an en-

dochronic law [25]

Ẇ (t) = γẊbwsdof (t)− α|Ẋbwsdof (t)| |W (t)|n−1W (t)− βẊbwsdof (t)|W (t)|n (2.44)

where the four constants γ, α, β and n are a parameters that modify the shape of

hysteretic curve [27].
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Substituting the Eqs. (2.43), (2.28) and (2.30) in (2.26) provides

mẌbwsdof (t) + cẊbwsdof (t) + k [ηXbwsdof (t) + (1− η)W (t)] = −mA(t)

with Eq. (2.44)
(2.45)

dividing by m

Ẍbwsdof (t) + 2ζω0Ẋbwsdof (t) + ω2
0 [ηXbwsdof (t) + (1− η)W (t)] = −A(t)

with Eq. (2.44)
(2.46)

i.e. the equation of motion that governs the response process of Bouc-Wen SDOF

system subjected to A(t). The (2.45) or (2.46) di�erential ordinary equation can be

always solved with the iterative Runge-Kutta method [23].

2.3.3 Linear multi-degree of freedom system

As base to the �nite element (FE) method, which is one of the most important develop-

ments in applied mechanics [28], the concept of equations of motion for multi-degree of

freedom (MDOF) system subject to earthquake excitation are formulated here. Main

aim of this, is to predicting how structures respond to earthquake-induced motion at

the base of the structure. To introduce these notions, a idealized multi-storey frame

with n number of �oors is considered (Figure 2.4). For each �oor, a lumped mass is

taken into account and the whole massless structure provides the sti�ness in the lat-

eral direction. Follows, a simple treatment where a single DOF of system, in horizontal

direction, is considered applied at each storey.

By analogy to dynamic equilibrium for SDOF system in (2.26), for the MDOF is

provided as

FI(t) + FD(t) + FS(t) = 0 (2.47)
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Figure 2.4: Multi-degree of freedom system idealization to a sample of ground motion
ug(t).

where FI(t), FD(t), FS(t) are the inertia, damping and sti�ness (or restoring) vector

force process, respectively.

Let consider a sample of ground motion ug(t) of Ug(t), the total (or absolute)

displacement sample on j-th DOF is

xt
j(t) = ug(t) + xj(t) , j = 1, . . . , n (2.48)

where xj(t) is a sample of relative motion on j-th DOF. Considering the all n-DOF,

the (2.48) can be rewritten as vector relation

xt(t) = ug(t)1+ x(t) (2.49)

where 1 is a unitary vector with order n, i.e. each of its elements is equal to one. The
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(2.49) is a sample of the following

X t(t) = Ug(t)1+X(t) (2.50)

i.e. the total vector displacement process of the n-DOF system to the ground motion

process Ug(t) that determines the vector deformation process X(t) of system. The

FI(t) is related to the total vector accelerations process Ẍ
t
(t) as

FI(t) =MẌ
t
(t) (2.51)

where M is the n x n mass matrix of the system.

For equivalent viscous damping and linear behaviour of system, in reference to the

example of linear SDOF system (Eqs. (2.28) and (2.33)), the FD(t) and FS(t) are

formulated as

FD(t) = CẊ (t) (2.52)

and

FS(t) = KX(t) . (2.53)

In Eq. (2.52), C is the n x n damping matrix and Ẋ (t) is the vector velocity response

process of the system, while in Eq. (2.53), K is the n x n sti�ness matrix of the system.

Substituting Eqs. (2.51), (2.52) and (2.53) in Eq. (2.47) and using Eq. (2.50) gives

MẌ (t) +CẊ (t) +KX(t) = −M1A(t) (2.54)

the equations of motion for linear MDOF system, with linear viscous damping, to the

ground acceleration process A(t). The (2.54) describes a coupled system of n partial

di�erential equations that provide the vector displacement response process X(t) of

the system.

To generalize the result in (2.54), that is contextualized in Figure 2.4, considering a
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linear MDOF system with di�used mass, linear viscous damping and d discrete DOFs,

the equations of motion become

MẌ (t) +CẊ (t) +KX(t) = −MiA(t) (2.55)

where i is the in�uence vector that has unitary (zero) components for the DOFs ac-

tivated (unactivated) by the earthquake excitation. In general, the Eqs. (2.54) and

(2.55) can be solved with the direct integration method (time-stepping methods) that

provides the solution of coupled equations system. This type of resolution, even if it

involves very high computational burdens, allows solving very complex systems with

nonlinear behavior and with nonclassical damping [18].

Modal Analysis

A simpler and computationally advantageous treatment can be faced in the case of

linear MDOF system with classical dumping, such as equivalent viscous dumping (Eq.

(2.52)), and subjected to generic inputs (not just seismic excitement).

Let be Q(t) the vector generalized force process that perturbs the linear MDOF

system with d discrete DOFs and linear viscous damping, the equations of motion as

MẌ (t) +CẊ (t) +KX(t) = Q(t) (2.56)

i.e. a coupled system of partial di�erential equations that describes the X(t) of the

system to generic input Q(t). The (2.56) can be decoupled so as to have the d linearly

independent equations by making a change of coordinates from generalized to modal or

normal. This is therefore possible through the modal analysis, which thus allows easy

resolution of the dynamic equilibrium problem for a MDOF system. Starting from the
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(2.56) in free oscillations and without damping

Mẍ (t) +Kx(t) = 0 (2.57)

where 0 is null vector. It is worth noting that the solution of (2.57) (i.e x(t)) is not

a process since it only depends on the system features which are invariant in a linear

system in free oscillations. Let imagine that this solution is given by a d x 1 vector u

multiplied by a scalar time dependent sinusoidal function

x(t) = u sin(ωt) (2.58)

Substituting Eq. (2.58) and its second derivative in Eq. (2.57) gives the following

homogeneous system (
−ω2M+K

)
u = 0 . (2.59)

The trivial solution is not taken into consideration as it has no engineering signi�cance.

Therefore by imposing the determinant of coe�cient matrix associated with (2.59)

equal to zero, it is provided the classic eigenvalues and eigenvectors problem [29].

Resolution of this problem provides

ω2
r ∈ R+ and ur, with r = 1, . . . , d , (2.60)

the natural pulsations and the respective modal shapes of d-DOF system. Let be U

the modal matrix as

U = [u1 u2 . . . ud] (2.61)

in which r-th column is the r-th eigenvector, i.e. the r-th modal shape ur in (2.60).

The Eq. (2.61) describes a system of linearly independent vectors, therefore it is such

as to have non-zero determinant.
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According to [29], the solution in generalized coordinates of (2.56) can be described

through the modal matrix as

X(t) = UΦ(t) (2.62)

where Φ(t) is vector process of the normalized coordinates. Substituting Eq. (2.62),

its �rst and second derivatives in Eq. (2.56) provides

MU Φ̈(t) +CU Φ̇(t) +KUΦ(t) = Q(t) (2.63)

which it is premultiplied for both members by the transposed modal matrix so as to

obtain

I Φ̈(t) +N Φ̇(t) +ΛΦ(t) = UTQ(t) (2.64)

where I = UTM U, N = UTC U and Λ = UTK U are the identity matrix, spectral

matrix and modal damping matrix. The identity matrix is provided if the modal shapes

are normalized in reference to mass matrix.

Necessary condition for it to be possible to decouple the system in (2.56) is that

the I, N and Λ are diagonal matrices. By de�nition the identity and spectral matrices

have the following representation

I =


1 . . . 0

...
. . .

...

0 . . . 1

 and Λ =


ω2
1 . . . 0

...
. . .

...

0 . . . ω2
d

 (2.65)

i.e. have positive elements along the main diagonal. The diagonal de�nition is not

immediate for N, but it depends as the viscous damping is expressed. Typically, the

problem is solved with a de�nition of modal damping according to Rayleigh [29] or by

choosing a constant damping for each modal form, ζr with r = 1, . . . , d, in order to
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make N diagonal

N =


2ζ1ω1 . . . 0

...
. . .

...

0 . . . 2ζdωd

 . (2.66)

The system in (2.64), with the matrices in (2.65) and (2.66), therefore consists in d

linearly independent di�erential equations in the modal space as

Φ̈r(t) + 2ζrωrΦ̇r(t) + ω2
rΦr(t) = u

T
r Q(t) = q(t), for r = 1, . . . , d . (2.67)

Dynamic problem in (2.56) can be seen as the sum of the response of individual ele-

mentary oscillators

X(t) =
d∑

r=1

urΦr(t) (2.68)

i.e. the superposition of d modal contributions (2.67).

This treatment through the modal analysis is still valid by considering Q(t) =

−MiA(t) in (2.56), modal superposition (Eq. (2.68)) provides the vector response

processX(t) of linear MDOF system excited by the ground motion acceleration process.

2.3.4 Nonlinear multi-degree of freedom system

The response of real structural MDOF systems subjected to a large dynamic inputs, a

clear example of this is the seismic action, is necessarily manifested in a �eld of nonlinear

behaviour. Usually, this nonlinearity considers the large displacements e�ects and/or

the nonlinear material properties. The nonlinear behaviour related to the materials is

manifested when the stress-strain or force-deformation relationship is nonlinear. This

suggests that on the base of the material properties and design assumptions for a

structural system, a speci�c nonlinear analysis typology can be conducted.

For civil structures realized by steel and concrete materials, the design philosophy is
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to determine a limited number of members which require ductility with a clear failure

mechanism. The localized demand for ductility, rather than being received by selected

structural members, can be satis�ed with the introduction into the structural system

of local dissipative elements (rubber base isolators, viscous dampers etc...). In this

view, a real structural MDOF system is considered to have a linear behavior with a

widespread localization of nonlinearity with a predetermined law. The latter, is the

case treated in this thesis work for the development of nonlinear analysis.

Fast Nonlinear Analysis

The Fast Nonlinear Analysis (FNA) [30] describes an computationally advantageous

solution for the development of nonlinear analysis where the localized nonlinearities

are present in the system. The FNA can be developed for both static and dynamic

analysis. Since very structures have a limited number of points or members in which

nonlinear behaviour takes place, in the case of dynamic loads, it is becoming common

practice to consider concentrated damping, base isolation and other energy dissipation

elements.

Extracted from [30], the Figure 2.5 shows idealizations of systems with concentrated

nonlinearity, which if are subjected to a dynamic load such as an earthquake, the

dynamic problem can be solved with the FNA.

Considering a linear discrete d-DOF system with viscous damping and l number

of concentrated nonlinearities, subjected to the vector generalized force process Q(t)

(e.g. seismic action Q(t) = −MiA(t)), the equations of motion through the FNA is

MẌ (t) +CẊ (t) +KX(t) + Fnl(t) = Q(t) (2.69)

where Fnl(t) is the global vector nonlinear force process that encloses the nonlinear

force process for each node where the nonlinearity is located in the system. The Fnl(t)
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Figure 2.5: Idealizations of MDOF systems with concentrated nonlinearity [30].

is computed by iteration at each time instant as

Fnl(t) = B
TF(t) (2.70)

where B is l x d nonlinear deformation matrix, that is not time dependent, and F(t)

is the l order vector nonlinear force process in which the l-th nonlinear force process

can be described by Bouc-Wen hysteretic model in Eqs. (2.43) and (2.44). Actually,

the presence of concentrated nonlinearities is achieved by means of elements which in

any case possess e�ective elasticity, therefore the (2.69) becomes

MẌ (t) +CẊ (t) + (K+Ke) X(t) + Fnl(t) = Q(t) +KeX(t) (2.71)
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where Ke is the d x d e�ective sti�ness matrix that has non null elements in reference

to the nonlinear DOFs. If the vector e�ective external force process and elastic sti�ness

matrix are de�ned as

F̄ (t) = Q(t)− Fnl(t) +KeX(t) (2.72)

and

K̄ = K+Ke , (2.73)

respectively, the (2.71) can be written as:

MẌ (t) +CẊ (t) + K̄ X(t) = F̄ (t) . (2.74)

Solution of the (2.74) is provided by the modal analysis in Subsection 2.3.3, taking care

to replace in (2.63) the sti�ness matrix of the systemK and the vector generalized force

process Q(t) with the Eqs. (2.73) and (2.72), respectively. The result is decoupling of

the equations system, i.e. a d linear independent di�erential equations in the modal

space as following are provided

Φ̈r(t) + 2ζrωrΦ̇r(t) + ω2
rΦr(t) = u

T
r F̄ (t) = f̄(t), for r = 1, . . . , d (2.75)

and the response process is given by the modal superposition in (2.68).

2.4 Seismic acceleration ground motion stochastic pro-

cesses

In this section, a two methodologies for generating samples of acceleration ground mo-

tion stochastic processes are shown. The substantial di�erences for them are related to

the time modulation typology and the calibration procedure. These methods, together
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the Monte Carlo simulation, are used for represent the seismic hazard for a structural

dynamic system.

2.4.1 Spectra-compatible stochastic process

Samples of the spectra-compatible stochastic process are generated with the method-

ology proposed in [31]. The basic hypothesis of this generating method is that a zero-

mean stationary Gaussian random process is fully de�ned by power spectral density

(PSD) function. The algorithm generates quasi-stationary acceleration time histories

a(t), whose response spectrum is consistent with the one proposed by seismic codes

(e.g. Eurocode).

Let ai(t) be the i-th sample of spectra-compatible acceleration process A(t) with one

sided power spectral density function Ga(ω), ω = 2π/T , de�ned by the superposition

of Na harmonics [32]

ai(t) = φ(t)
Na∑
k=1

√
2Ga(ωk)∆ω cos(ωkt+ ϕk,i) (2.76)

where ϕk,i are independent random phases uniformly distributed in the interval [0, 2π).

The modulating function φ(t) is described as

φ(t) =



(
t
t1

)2
t < t1

1 t1 ≤ t ≤ t2

exp[−β (t− t2)] t > t2

with t2 = t1 + Ts (2.77)

where β = 0.3 and Ts is time-observing window (i.e. duration segment).

Assuming a target pseudo-acceleration response spectrum Sa(ω, ζ), iterative algo-
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rithm starts considering the initial PSD G
(0)
a (ω) described as


G

(0)
a (ωk) = 0 , 0 ⩽ ωk ⩽ ωl

∼= 1rad/s

G
(0)
a (ωk) =

4ζ
ωkπ−4ζωk−1

(
Sa(ωk,ζ)

2

ηU (ωk,ζ)
2 −∆ω

∑k−1
h=1 Ga(ωh)

)
, ωk > ωl

(2.78)

where ηU is the peak factor given by the equation

ηU =

√
2 ln

[
2NU

[
1− exp

(
−δU

1.2
√
π ln(2NU)

)]]
(2.79)

with the following approximate parameters

NU =
Ts

2π
ωk (− lnP )−1 , with P = 0.5 (2.80)

P is the not-exceeding probability, and

δU =

1− 1

1− ζ2

(
1− 2

π
arctan

ζ√
1− ζ2

)2
1/2

(2.81)

which determined the input PSD process has a smooth shape and ζ << 1. Then a

sample ai(t) is generated using (2.76) and the associated response spectrum is esti-

mated. If this response spectrum is not consistent with the target Sa(ω, ζ) given by

the seismic code, e.g. it is at least equal to ninety percent of the target spectrum in

the period range of 0 − 2 s, then the PSD at the current iteration step j is corrected

using [33]

Ga
(j+1)(ω) = Ga

(j)(ω)

 Sa(ω, ζ)
2

S̃a
(j)
(ω, ζ)

2

 (2.82)

where S̃a
(j)
(ω, ζ) is the approximate response spectrum at the j-th iteration step. A

representation of S̃a
(j)
(ω, ζ) is given by crossing problem in [33]

S̃a
(j)
(ω, ζ) = ω0

2ηU

√
λ0,U(ω0, ζ) (2.83)
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in which, the peak factor in Eq. (2.79) is evaluated by the parameters:

NU =
Ts

2π

√
λ2,U(ω0, ζ)

λ0,U(ω0, ζ)
(− lnP )−1 , with P = 0.5 (2.84)

and

δU =

√
1− λ1,U(ω0, ζ)

2

λ0,U(ω0, ζ)λ2,U(ω0, ζ)
. (2.85)

Moreover, λh,U(ω0, ζ) with h = 0, 1, 2 are the response spectral moments de�ned as

λh,U(ω0, ζ) =

∫ ∞

0

ωh|H(ω, ω0, ζ)|2Ga(ω) dω (2.86)

where |H(ω, ω0, ζ)|2 =
[
(ω0

2 − ω2)
2
+ 4ζ2ω0

2ω2
]−1

is th energy transfer function.

The iterative procedure stops when the sample response spectrum S̃a
(j)
(ω, ζ) satisfy

the criteria to be consistent with the target, then the associated Ga
(j)(ω) is used in Eq.

(2.76) for generate samples of quasi-stationary spectra-compatible stochastic process.

2.4.2 Non-stationary stochastic process

Features related to seismic events can be fully described by a non-stationary process

by modulating the amplitude and frequency of a stationary process as proposed in [34].

This class of non-stationary processes lends very easily to calibration through seismic

acceleration recordings data.

Let a(t) be a samples of ground motion acceleration time series of the non-stationary

process

A(t) = c(t)Y (ϕ(t)) (2.87)

where Y (t) is a real-valued zero-mean wide sense stationary process with variance

σ2
Y and one sided spectral density GY (f), c(t) and ϕ(t) are amplitude and frequency
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modulating deterministic functions, respectively. In particular, c(t) is a slowly varying

real-valued deterministic function modulating the variance of A(t), while ϕ(t) is a

positive, real valued function that satisfy the conditions ϕ(0) = 0 and ϕ̇(0) > 0 for

t ≥ 0. In this way the process A(t) is derived from Y (t) by modulating its amplitude

and frequency.

It can be demonstrated that the variance of A(t) at time t has the expression [34]

σ2(t) = c2(t)σ2
Y (2.88)

while the time-dependent one-sided spectral density of A(t) can be de�ned as

GA(t, f) = c2(t)GY

(
f

t

ϕ(t)

)
. (2.89)

The modulating function ϕ(t) determines the rate at which the spectral density of A(t)

changes with time. If ϕ(t) = t one obtains

GA(t, f) = c2(t)GY (f) (2.90)

and the process A(t) in (2.87) is a uniformly modulated process.

For the time-dependent one-sided spectral density in Eq. (2.90), it can be assumed

to have a m time intervals where the PSD is constant in the time. According to this,

the one sided spectral G(j)
A (f) in each of these m intervals can be modeled using the

k-modal function

G
(j)
A (f) =

k(j)∑
i=1

d
(j)
i exp

[
−b

(j)
i

(
2πf −Ω

(j)
i

)2]
(2.91)

with j = 1, . . . ,m, where k(j) can be chosen in each interval in order to describe the

numbers of dominant modes in the spectral density function. The parameters d(j)i , b(j)i ,

Ω
(j)
i , j = 1, . . . ,m, i = 1, . . . , k can be calibrated using the average spectral density



2.5 Monte Carlo simulation 37

estimated in each of the m intervals.

Virtual time histories acceleration samples a(t) of the non-stationary process in

(2.87) can be generated using the approximation

A(t) = c(t)

Q∑
q=1

σq [Vq cosωq(t)t+Wq sinωq(t)t] (2.92)

where ωq(t) = ωqϕ(t)/t, while Vq and Wq are uncorrelated random variables with

zero mean and unit variance. It can be demonstrated that the process A(t) in (2.92)

has energy of magnitude c2(t)σ2
q at the time dependent frequencies ωk(t) = 2πfq(t),

q = 1, . . . , Q. It is worth noting that the time variation is discrete and is limited to

the m time intervals which de�ne Equation (2.91) where it was assumed ϕ(t) = t.

Furthermore, Vq and Wq are assumed to be Gaussian.

2.5 Monte Carlo simulation

To solve a several stochastic problems, in applied science and engineering is praxis

to use the Monte Carlo simulation method. In order to provide a generalized math-

ematical de�nition for the MC method considering an generation algorithm based on

an random variable X for de�ne a stochastic problem. Let (Ω,F, P ) be a probability

space de�ned by space sample Ω, a subset of space sample F and a probability measure

P . The X is a Rd-valued, d > 1, stochastic variable with a known PDF that is de�ned

on (Ω,F, P ). Independent samples by the generation algorithm provide the properties

estimation for the stochastic problem.

A solution based on the MC method needs the development of the following steps

[35]:
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1. generate independent samples of the random parameters and functions for de�-

nition of the stochastic problem;

2. solve the resulting deterministic problems from the correspondent generated sam-

ples in previous step;

3. estimate the solution properties of the stochastic problem through a statistical

analysis of the collection of deterministic solutions.

In general, most algorithms for generating samples of random variables, stochas-

tic processes and random �elds use the transformation with and without memory of

aleatory variables with uniformly distributed PDF and Gaussian variables with zero-

mean and unit variance.



Chapter 3
Seismic fragility analysis concept

3.1 Introduction

Main motivation of this work is the improvement of the more widespread method in

PBEE for estimate a structural/nonstructural system performance by developing the

fragilities. In this chapter, the fundamental concepts for the seismic fragility assessment

is collected.

The literature overview focuses the attention on the current methodologies for eval-

uate the fragility curve, in this context, the variables and quantities are examined, and

the correlated issues are discussed.

3.2 Fundamentals

The fragility concept in earthquake engineering �led was introduced in [11, 36�38].

The authors have de�ned the fragility function as a failure frequency for structural and

components on the PGA (IM), where the frequency of occurrence of various levels

of ground motion is de�ned precisely in terms of this intensity measure. The modern

challenge in earthquake engineering is to quantify the seismic risk at speci�ed site and

understand as this in�uences the performance for a structural/nonstructural system.

39
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Figure 3.1: PEER probabilistic framework [8, 39].

Given the non-deterministic nature for the earthquake, this quanti�cation makes sense

only if it is undertaken in the aleatory �eld. In this context, the PEER produces the

second-generation PBEE probabilistic framework [8, 39], which is divided into four

rigorous, consistent and independent stages linked with four intermediate output vari-

ables. These stages include hazard analysis, structural/nonstructural analysis, damage

analysis and loss analysis where the output variables are intensity measure IM , struc-

tural demand parameter D, damage state D and decision variable DV , respectively.

In general, these variables are expressed in a probabilistic sense as conditional proba-

bilities of exceedance, e.g. P (D|IM). The main assumption in PEER's methodology

is that it can be considerate as a discrete Markov process [40] in which the conditional

probabilities between parameters are independent. The conceptual methodology of the

PEER is illustrated in Figure 3.1. The fragility analysis is based on two stages of the

PEER's methodology, i.e. the structural/nonstructural and damage analysis, and its

results are formalized in the fragility function. For the structural seismic engineering,

the fragility curve is described by the mathematical relation which expresses the failure

probability of a structural system given the seismic event with level intensity ξ = IM

[37, 41�43]. Failure is not necessarily the collapse of the structure, and it can be de�ned

on the structural performance for pre�xed threshold on the damage state D. Accord-

ing to this de�nition, failure occurs when the demand exceeds a de�ned limit capacity.
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Once a threshold on D is de�ned as limit state (LS) of the structural performance, the

failure probability is

PLS(ξ) = P (LS|IM = ξ) (3.1)

i.e. the conditional probability that the structural performance enters in the set of LS

given the event with level IM . Other formulation can be described by de�ning the

system demand parameter D and the structural capacity associated with a LS

PD̄(ξ) = P (D ⩾ D̄|IM = ξ) (3.2)

where D̄ is the pre�xed particular value of D. More general de�nition of the failure

probability can be formulated by considering the event {D ∈ I ⊂ R} that de�nes the

damage state D for the structural system

Pf (ξ) = P (D|IM = ξ) = P (D ∈ I ⊂ R|IM = ξ) (3.3)

i.e. the probability that a structural system enters a damage state given the ground

motion with intensity measure ξ.

The fragilities can be derived form the following approaches [44�46]:

� Empirical: fragility is created by �tting a function to the observation recorded

during experimental tests or real evidences [47, 48]. Usually, this kind of fragility

curves are built starting from the observations acquired during post-earthquake

survey, obviously this fragility has lack of generality [49];

� Analytical: fragility is based on the results of numerical models [50, 51]. In this

case particular attention must be placed on the choice of the analysis typology

and how uncertainties are considered in the model;

� Heuristic: fragility is based on expert judgments, a pool of experts guess or judge
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failure probability as a function of environmental excitation. This approach is

useful when empirical observations are very limited [52];

� Hybrid: the above approaches can be combined to build fragility [53, 54], re-

ducing the computational e�ort but controlling the bias.

The post-earthquake survey-based procedures need the most possible reliable damage-

earthquake data set. A number of such procedures, e.g. [55, 56], focus attention for

collected damage data through a post-earthquake survey. The involved quantities re-

gard to material properties, apparent structural de�ciencies and building site location.

These informations can be utilized to arrive at a rating score or index in which the

numerical value usually determines whether the building is safe or unsafe, with respect

to the traditional goal of assuring life safety. An other use of the collected information

is to develop seismic assessment tools in the form of fragility curves [42, 57]. These

empirical-based approaches are speci�c for a particular seismic-tectonic region. Unsat-

isfactory damage estimates are provide when the empirical approaches are applied to

regions other than those for which they were developed. For this reason, they found

limited use for the seismic vulnerability assessment with reference to a di�erent speci�c

seismic area. In general, the seismic vulnerability and risk assessment procedures need

a multiple performance evaluations within consequence-based framework, which may

only be feasible with simulation-based procedures, i.e. analytical approaches.

Before computational resources were available for the development of analytic fragility

curves by means of heavy simulations, heuristic approaches were found very useful and

used. The Applied Technology Council (ATC) had relied on expert opinion with limited

observed data from the 1971 San Fernando earthquake [52], it is one of the �rst ap-

plications of fragility modeling to civil infrastructure subjected to earthquake demand.

The reliability of the fragilities in [52] which were identi�ed in terms of damage state

probability matrices, anyway it is questionable in that the fragilities are subjective and
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the associated degree of structures conservation is unknown. Based on a loss estimation

methodology [58], the building capacity is represented by a nonlinear static pushover

curve, roof displacement against base shear, and building response to an input scenario

earthquake (considering the local site conditions) is determined with the capacity spec-

trum method [59]. The building response is then entered into the associated built-in

fragility curves de�ned at the thresholds of four discrete damage states (slight, moder-

ate, extensive, and complete), de�ned separately for the structural system and for drift

and acceleration sensitive non-structural components, to perform the loss estimation

given the occupancy class of the building [60]. However, the more signi�cant issue for

these fragilities development way is that does not provide uncertainty propagation.

Recent trends in the fragility estimations are related to use analytical simulations.

The relation between structural response and earthquake ground motion intensity (i.e.

D and IM), which is the base for deriving the fragility curves, is established through

analytical simulations. It is also taken into account the earthquake characterization,

structural damage, performance limits, etc. Singhal and Kiremidjian [61] had devel-

oped fragility curves for low-, mid-, and high-rise reinforced concrete frames (RCFs)

that were designed using seismic provisions. The uncertainty in structural capacity

and demand was taken into account through Monte Carlo simulations. Stochastically

generated frame models randomly were paired with simulated ground motion records

in the nonlinear time history analysis. Comparing these fragilities with those in [52], it

was revealed that the heuristic fragility functions were rather unrealistic in that they

neglect probabilities of severe damage or collapse under a large earthquake such as

the 1994 Northridge earthquake. Later, Singhal and Kiremidjian [62] had presented

a Bayesian method for updating the fragility curves that they had earlier developed

for low-rise RCFs to estimating con�dence bounds on those fragilities, by using the

observed building damage data from the 1994 Northridge earthquake. This had shown

di�erences between the curves estimated before and after the update.
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Shinozuka et al. [42] had developed both empirical and analytical fragility curves

for bridges. The empirical fragility curves utilize the observed bridge damage data from

the 1995 Kobe earthquake. In contrast, the analytical fragility curves utilize such data

that were simulated from the nonlinear time history analysis of stochastically generated

models of two typical bridges in Memphis, TN, taking into account the uncertainty in

structural material properties.

Porter et al. [63] had proposed an assembly-based vulnerability framework to as-

sessing the seismic vulnerability of buildings on a building-speci�c basis. The proposed

approach di�ers from the above analytical procedures in that "a vulnerability function"

that relates the seismic losses to the seismic intensity was developed for a particular

building and the damage to individual assemblies was determined for this purpose.

The seismic losses were assessed using stripe analyses. The structural response to each

scaled ground motion was entered into assembly fragility curves, and the associated

damage to each structural and non-structural element in the building and to its con-

tents was determined as outlined in the study. The total damage was then expressed

in terms of the sum of repair and loss-of-use costs as a fraction of replacement cost.

After performing a regression analysis on the generated data, the seismic vulnerabil-

ity function was obtained for a particular building. The application of the proposed

framework to a steel moment frame building had revealed that substantial uncertainty

exists in the vulnerability function derived for the building.

A probabilistic framework for seismic design and assessment of structures in a de-

mand and capacity format, addressing the uncertainties in hazard, structural, dam-

age, and loss analyses was developed by Cornell et al. [64]. The structural demand

was assessed using a suite of ground motions and the median structural demand was

represented by a log-linear function of seismic intensity. The structural demand was
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assumed to be distributed lognormally about the median with constant logarithmic

standard deviation. In the same year the concept of the vector-valued Probabilistic

Seismic Hazard Analysis was introduced in [65]. This methodology aims a site-speci�c

joint hazard evaluation of two or more ground motion IMs.

Kafali and Grigoriu in [66] had introduced the concepts of the fragility surface

which in the seismic ground motion intensity is characterized by site seismic activity

matrix, i.e. the relative frequency of the earthquakes with various moment magni-

tude and source to site distance. Analytical fragility surfaces were shown for struc-

tural/nonstructural system considering di�erent limit states. In later the authors in

[67] had compared this methodology with those classically used.

Nielson et al. [50] had obtained an analytical fragilities for di�erent class of typi-

cal bridges in USA. It was adopted a 3-dimensional analytical models and a suite of

synthetic ground motions to developing the nonlinear time history analysis. Multiple

bridge components were considered in the fragility analyses, namely the columns, �xed

bearings, expansion bearings, and abutments. The contributions of these components

were accounted for by developing joint probability models of their seismic demands.

Within this contribution, the authors had shown that these fragility curves can be used

in determining the potential losses resulting from earthquakes, retro�tting prioritiza-

tions, and post-earthquake inspection decisions.

A new analytical approach for the derivation of fragility curves for masonry build-

ings was proposed in [51]. The authors in this contribution had shown a methodology

based on nonlinear stochastic analyses of building prototypes. The MC simulation

were used to generate mechanical parameters and nonlinear analyses were performed.

In particular, nonlinear static (pushover) analyses were used to de�ne the probability

distributions of each damage state while a nonlinear dynamic analyses allow to deter-
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mine the probability density function of the displacement demand corresponding to

di�erent levels of ground motion.

In the last decade, the issue related to the accuracy in fragility analysis begun

to interest in the earthquake engineering community [68]. In last paper the authors

had proposed a two-stage approach to generate improved fragility functions using �eld

measurement and experimental data, i.e. a hybrid method. The Bayesian updating

approach was employed to further update the derived fragilities using hybrid simulation

results.

The in�uence of the number of analysis on the accuracy of the analytical fragility

curves obtained by linear regression and maximum likelihood estimates have been stud-

ied in [69]. Di�erent statistical measures were used to estimate the quality of fragility

functions derived by considering varying numbers of ground motions. Within this con-

tribution the authors had demonstrated that the least-squares method for deriving

fragility functions converges much faster than the maximum likelihood and sum-of-

squares approaches.

Grigoriu [15] has opened a very interested discussion in the scienti�c community

related to the accuracy in fragility functions. Simple systems subjected to a synthetic

ground motion acceleration process were considered to demonstrate that the depen-

dence between the demand parameter and intensity measure plays a fundamental role

in fragility estimation. The author with this contribution has greatly in�uenced this

thesis work.

Currently, several authors try to �nd the best IM for build fragility functions. The

optimal intensity measure for a concrete dams is selected over a set of seventy IM

de�nitions [70]. The selection procedure is based in terms of e�ciency, practicality,

pro�ciency, su�ciency, and hazard compatibility. This work is the �rst to apply the

PBEE concepts for buildings in the particular case of dams.
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Bojórquez et al. [71] introduce a new de�nition of intensity measure. According

to the authors, this new IM is able to increase the e�ciency in the prediction of

nonlinear behaviour and higher modes e�ects of structures subjected to earthquake

ground motions with di�erent characteristics. This IM de�nition is based on multiple

ordinates of pseudo-acceleration response spectrum.

The use of more promising IMs for analytical fragilities developed in the 3-d re-

inforced concrete bridge models case is discussed in [72]. Main goal it is statically

compare fragility curves for multiple con�gurations of a typical class of Italian bridges,

when using di�erent IMs. Belief of the authors is that the adequacy of a certain

IM is assessed in terms of direct correlation with measures of structural response (i.e.

demand parameters).

Nguyen et al. [73] investigate the correlation between seismic responses of nuclear

power plants components and di�erent IM de�nitions to identify the best IMs for

correlate the damage of nuclear power plant structures. A series of Pearson's correlation

coe�cients are calculated to recognize the correlation for develop analytical fragility

curves. It is demonstrated that the classical IMs reported in literature are not the

best choices to archive the structural performance with the fragilities.

Sevieri et al. [74] focus particular attention on the issue concerning the uncertainties

for the empirical fragilities development referring to the dams. The record-to-record

variability of ground motions is considered with a set of selected events. Main focus of

the authors is the quanti�cation of the e�ect of the epistemic uncertainties related to

the variability of the material mechanical parameters on the seismic fragility analysis

of dams.

However at the present, in PBEE for each of these di�erent approaches (i.e. empir-

ical, analytical, etc...) the problem concerning the dependence between the structural

demand and the seismic input characterizations, represented by D and IM , respec-

tively, has not been completely resolved and, in many scienti�c works, it is not even
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considered.

Particular attention in this thesis falls on the analytical fragility curves develop-

ment. Anyway, all the previous approaches (e.g. analytical) can be used to develop

the PEER's methodology (Figure 3.1) allowing the consideration of the inherent un-

certainties. In reference to Kennedy et al. ([11, 12]), the uncertainties are distinct into

epistemic and aleatory. The epistemic uncertainties are related to parameters that

characterize the model (e.g. parameters of constitutive model), these uncertainties

re�ect incomplete knowledge regarding the distributions and parameters used in the

fragility assessment. While those in second group, the aleatory uncertainties, regard

to the random nature of the considered seismic event, i.e. independent ground motion

acceleration history time series with same statistical features. Epistemic uncertainties

are of particular attention [75, 76], however this work only focuses on those aleatory.

The reason of this, is to concerted the research on fragility analysis accuracy related

to IM .

3.3 Fragility function evaluations

The failure probability can be approximated as a lognormal distribution function [42,

77, 78]. The structural capacity is assumed to be lognormally distributed with median

Am and lognormal standard deviation β. It follows that, the (3.3) can be approximate

as the Cumulative Distribution Function (CDF)

P̃f (ξ) = Φ

(
ln ξ − lnAm

β

)
(3.4)
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where Φ(·) is the standard normal CDF. This fragility model assumption is used to the

de�ne the likelihood function

L(Am, β) =
N∏
k=1

[P̃f (ξk)]
xk [1− P̃f (ξk)]

1−xk (3.5)

in which a set of N samples input-output (ξk, xk), k = 1, . . . , N , are considered, xk = 1

or 0 depending whether or not there is failure to a seismic event with level ξk. The

parameters in the lognormal fragility approximation P̃f (ξ) (3.4), i.e. Am and β, are

estimated by maximizing the (3.5) [42]

(Âm, β̂) = argmax
Am,β

[L(Am, β)] , (3.6)

or equivalently, by minimizing the negative log-likelihood [79]

(Âm, β̂) = arg min
Am,β

[− lnminL(Am, β)] . (3.7)

The formulation in (3.7) is generally preferred since it is computationally advantageous.

The failure probability in (3.4) does not require the scaling of the accelerograms until

failure and, agreeing with maximum likelihood estimation [80], the measure of D is

assumed binary (i.e. 1 if failure, 0 otherwise).

In general context, an other way to describe the fragilities is to use the relative

frequency de�nition [9]. This de�nition, in the PBEE is contextualized to de�ne the

failure probability as the number of the system structural performances that exceed

the pre�xed threshold on the damage state (i.e. speci�ed LS) on the total number of

the seismic events with ξ that occur. According to last de�nition, the (3.3) can be

estimate as

P̂f (ξk) =
ns∑
i=1

1(dk,i ∈ I)/ns (3.8)

where 1(·) is the indicator function, ns the number of seismic events with intensity
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measure ξk and dk,i, i = 1, . . . , ns, are samples of the system demand parameter at the

level ξk. For ns → ∞, the fragility curve estimate by (3.8) converges to (3.3). The

pragmatic formulation of P̂f (ξk) is common di�used [67, 81�83], and it is actual pro-

posed in the FEMA's methodology framework [10]. In this methodology, the fragility

function is built by scaling samples of ground motion acceleration time series in refer-

ence to a IM , in order to have the intensity level IM = ξk. Samples of the demand

parameters are computed and for each level ξk the fragility is estimated by (3.8). This

method is widely applied because it is simple and, together with Monte Carlo sim-

ulation, it overcomes the problem of the limited number of natural recorded ground

motions available for fragility analysis.

In order to improve the structural performance estimates (e.g. fragilities) several

methods were proposed in the literature to consider two parameters IMs, also known

as vector-valued IMs [84�86]. This method is used for develop empirical fragility

functions [87, 88], and it is based on the logistic regression [89]. However, Baker in

[90] has also used this methodology for estimate analytical fragility. Once a collapse

class C ∈ [0, 1] is de�ned, which it has the same binary concept in (3.5) (i.e. C = 1

if structural performance exceeds the LS or otherwise C = 0), the fragility can be

estimated performing regression analysis [91]

P̂f (ξk, x2) = P (C|{IM = ξ = x1, x2}) =
exp(β̂0 + β̂1x2)

1 + exp(β̂0 + β̂1x2)
(3.9)

where β̂0 and β̂1 are coe�cients, which are estimated by logistic regression on C,

and the predictor variable x2, on a data set of ns seismic record with di�erent level

ξk, k = 1, . . . , N . The (3.9) describes conditional probability to have collapse given

the vector-valued {IM = ξ = x1, x2}, where the predictor x2 is assumed as a di�erent

intensity measure to that x1 or it is as a other helpful parameter to improve information

on the structural performance. In particular, β̂0 and β̂1 need to be evaluated for each
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ξk, and the expected value of (3.9) for each of this level ξk

E[P (C|{ξk, x2})] = P (C|ξk) = P̂f (ξk) (3.10)

gives the fragility estimated with (3.8).

It is worth noting that, considering the (3.10), P̂f (ξk, x2) improves the information

on structural performance, and if it is compared to the probability evaluated by single

IM (3.8), it provides accurate results, otherwise the logistic regression on P̂f (ξk), with

x2, does not improve the information.

3.4 Demand parameters

Seismic demands represent the requirements imposed by ground motions on relevant

structural performance parameters. The localized demands depend on many local and

global response characteristics of structures. Typically, the structural damage is related

to the maximum deformations or accelerations, but also by the amount of dissipated

energy due to cyclic loading can be an damage indicator [92, 93]. However, in this work

only the displacement or acceleration-based demand parameters are considered. The

demand parameters Ds are evaluated for each degree of freedom of structural system

model. In particular, the single degree of freedom system and complex multi-degree

of freedom system are used as structural models. For both of them, the linear and

nonlinear behaviour are considered.

Let X(t) be the response vector-valued process of an arbitrary MDOF structural

system and Xsdof (t) be the response process of a SDOF arbitrary oscillator to the same
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ground acceleration A(t). The demand parameter for MDOF and SDOF system are

D = max
0⩽t⩽τ

|h(X(t))| (3.11)

and Equation (2.32), respectively, where τ is the time length of A(t), while h(·) is a

function mapping the response X(t) into the demand parameter of interest, such as:

� the maximum absolute displacement Dd;

� the maximum absolute acceleration Da;

� the maximum absolute inter-story displacement (i.e. drift) Ddr.

In particular, considering a linear behaviour for the SDOF system (see Subsection

2.3.1), the Equation (2.36) provides the demand parameter de�nition of linear simple

system.

3.5 Intensity measures

The seismic intensity measures (IMs) depict the seismic hazard for an earthquake,

and as a consequence, the structural response analysis is conditioned on the chosen

IM in a seismic risk assessment framework. As previously instructed [14], the desired

IM should be su�cient and e�cient, and have a hazard curve that is relatively easy

to compute, "hazard computability" [94]. In search of these optimum features, the

authors have proposed several IMs.

Two groups of IMs are usually used to de�ne the seismic fragilities:

1. functional of samples of seismic ground acceleration process A(t), such as PGA;
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2. functional of �ltered version of samples of A(t), e.g. single/multiple ordinates

of pseudo-acceleration response spectrum Sa(T ) for di�erent structural system

periods T [95, 96].

In particular, the IMs in the second group, that are widely used to de�ne the fragilities,

depend on the D on which the analysis is based [97�100].

The more general categorization that can be done for IMs, is to distinguish the

those scalar from vector-value intensity measures [98]. The scalar IMs are divided

into two de�nitions: non-structure speci�c IMs calculated directly from the ground-

motion time histories; structure-speci�c IMs calculated directly from the response

spectra, where the spectral ordinates can be at the �rst or other structural system

period, at a period range and multiple periods. The major de�nitions of these kind of

intensity measures reported in literature are shown in Table 3.1 and Table 3.2, where

notions and references are indicated. The trend in the past was to use the PGA as an

IM , such as in [37], while recently the use of the IM computed on the system response

(Table 3.2) is widely di�used [98] for the fragilities development (e.g. using (3.4) or

(3.8)). Di�erent versions of the scalar intensity measures in Table 3.1 and Table 3.2

are used in this work:

IM1 = PGA (3.12)

IM2 = Sa(T1, ζ1) (3.13)

IM3 = Sa(T3, ζ3) (3.14)

IM4 = Ih (3.15)

IM5 = S∗(T1, ζ1, c, γ) (3.16)
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Table 3.1: Non-structure speci�c intensity measures.

Notion Name and reference Relation

A
c
c
e
le
r
a
ti
o
n
r
e
la
te
d

PGA Peak ground acceleration

PGA = max0⩽t⩽τ |A(t)|
A(t) =ground motion acceleration pro-
cess
τ =time lenght of A(t)

IA
Arias intensity
[101]

IA = π
2g

∫ τ

0
A2(t) dt

CAV
Cumulative absolute veloc-
ity
[102]

CAV =
∫ τ

0
|A(t)| dt

Ia
Compound acc. related IM
[103]

Ia = PGA t
1/3
d

td = t2 − t1
t1 = t(5% IA)
t2 = t(95% IA)

Ic
Characteristic intensity
[104]

Ic = (arms)
3/2

√
td

arms =
√

1
td

∫ t2
t1

A2(t) dt

V
e
lo
c
it
y
r
e
la
te
d

PGV Peak ground velocity PGV = max0⩽t⩽τ |Vg(t)|
Vg(t) =ground motion velocity process

IF
Fajfar intensity
[105] IF = PGV t

1/4
d

CAD
Cumulative absolute dis-
placement
[106]

CAD =
∫ τ

0
|Vg(t)| dt

Iv
Compound vel. related IM
[103] Iv = PGV 2/3 t

1/3
d

IV
Incremental velocity
[107]

SED Speci�c energy density SED =
∫ τ

0
V 2
g (t) dt

D
is
p
la
c
e
m
e
n
t
r
e
la
te
d

PGD Peak ground displacement PGD = max0⩽t⩽τ |Ug(t)|
Ug(t) =ground motion process

Id

Compound disp. related
IM
[103]

Id = PGD t
1/3
d

ID
Incremental displacement
[107]
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Table 3.2: Structure speci�c intensity measures.

Notion Name and reference Relation

S
p
e
c
tr
a
l

Sa(Ti, ζi)
Pseudo-acceleration
response spectrum ordinate

Equation (2.38)
for selected i-th structural period Ti

and associated damping ratio ζi, i =
1, . . . ,MDOF

EIr
Relative input energy
[108]

EIr = −
∫ τ

0
A(t) Ẋr(t) dt

Ẋr(t) = relative velocity series process
of linear SDOF

EIa
Absolute input energy
[108]

EIa =
∫ τ

0
Vg(t) Ẍa(t) dt

Ẍa(t) = absolute acceleration series
process of linear SDOF

In
te
g
r
a
l

ASI
Acceleration spectrum in-
tensity

ASI =
∫ 0.5

0.1
Sa(T, ζ) dT

see Eq. (2.38)

Ih
Housner intensity
[109]

Ih =
∫ 2.5

0.1
Sv(T, ζ) dT

see Eq. (2.37)

VEIr
S

Relative input equivalent
velocity spectrum VEIr

S =
∫ 3.0

0.1

√
2EIr dT

VEIa
S

Absolute input equivalent
velocity spectrum VEIa

S =
∫ 3.0

0.1

√
2EIa dT

MASI Modi�ed ASI MASI =
∫ 1.5Ti

0.2Ti
Sa(T, ζ) dT

MIh Modi�ed Ih MIh =
∫ 1.5Ti

0.2Ti
Sv(T, ζ) dT

MVEIr
S Modi�ed VEIr

S MVEIr
S =

∫ 1.5Ti

0.2Ti

√
2EIr dT

MVEIa
S Modi�ed VEIa

S MVEIa
S =

∫ 1.5Ti

0.2Ti

√
2EIa dT

M
u
lt
i-
p
a
r
a
m
e
te
r
s

S∗ Cordova IM
[110]

S∗(T1, ζ1, c, γ) =

Sa(T1, ζ1)
(

Sa(cT1,ζ1)
Sa(T1,ζ1)

)γ
c = 2, γ = 0.5

S̄a(T
∗)

Geometric mean of Sa(T )
ordinates
[111]

S̄a(T
∗) =

(
∏n

i=1 Sa(Ti, ζi))
1/n

n =modal shapes of interest

SN1

Period elongation related
IM
[112]

SN1 = Sa(T1, ζ1)
γ Sa(cT1, ζ1)

1−γ

c = 1.5, γ = 0.5

SN2

Second period elongation
related IM
[112]

SN2 = Sa(T1, ζ1)
γ Sa(T2, ζ2)

1−γ

γ = 0.75
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Table 3.3: Vector-valued intensity measures.

Notion Reference Relation

{Sa(T1, ζ1), RT1,Tn} [84]
see Eq. (2.38)
RT1,Tn = Sa(Tn,ζn)

Sa(T1,ζ1)

for n-th period Tn and associated ζn

{Sa(T1, ζ1), ε} [113]

ε = lnSa(T1,ζ1)−[lnSa(T1,ζ1)]µ
[lnSa(T1,ζ1)]σ

[lnSa(T1, ζ1)]µ = mean of lnSa(T1, ζ1)
[lnSa(T1, ζ1)]σ = standard deviation
of lnSa(T1, ζ1)

{Sa(T1, ζ1),m} [113] m = moment magnitude

{Sa(T1, ζ1), RT1,Tn , ε} [87]

{PGA,m} [86]

where T1 and T3 are the MDOF system �rst and third structural natural periods,

respectively, with associated damping ratios ζ1 and ζ3; Ih is the Housner intensity, de-

�ned as the integral of the pseudo-velocity spectrum with damping ratio ζ in the range

T = 0.1 − 2.5 s [109]; S∗(T1, ζ1, c, γ) is the multi-parameter scalar intensity measure

reported in [110] with c = 2 and γ = 0.5.

The use of vector-valued IMs in PBEE is also widespread. Several authors has

proposed a second variable x2, that it is used together a �rst scalar IM , (i.e. {IM =

ξ = x1, x2}) to estimate the fragility function as in Equation (3.9). Baker and Cornell

[87] have developed fragilities performing the regression analysis with a third predictor

variable x3, which has the same meaning of x2 in (3.9), in order to consider a three

vector-valued IM (i.e. {IM = ξ = x1, x2, x3}). Table 3.3 reports the vector-valued

IMs de�nitions with notions and literature references.

The scalar intensity measure de�nitions in Table 3.1 and Table 3.2 were introduced

in literature by focusing attention on the e�ciency and su�ciency conditions. For

example, it was demonstrated that the Eq. (3.13) is an IM more e�cient that in Eq.
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(3.12) [114]. Nevertheless, though the (3.13) for tall and long-period structural systems

as well as buildings subjected to near-source seismic events is a valid IM , it is shown

in [14, 115] that Sa(T1) can be ine�cient and insu�cient. This is due because Sa(T1)

does not take into account the higher mode shape contributions and period lengthening

owing to structural nonlinearity. For this reason, it was proposed several IMs as an

adjustments of Sa(T1) (e.g. Eq. (3.16)) [14, 110�112, 116]. These proposals are not

only describe an e�cient IMs for all damage levels of a pre�xed structure, but also

taken into account the IM computability through a ground motion hazard analysis

without the need of any new attenuation relationships. In literature many spectrum-

based IMs (Table 3.2) were investigated and, generally, the velocity related IMs in

Table 3.1 show a better correlation with the deformation demands [117�120].

As opposed to a scalar IM , a vector-valued one is a vector of more than one IM

(see Table 3.3), which commonly comprises of two or three parameters. A good predic-

tor for ordinary ground motions was shown by the vector-valued IM based on Sa(T1)

and spectral values at other structural periods [87, 121, 122].

3.6 Monte Carlo algorithm for fragilities

A contextualization of the MC method in earthquake engineering �eld can be formal-

ized, as also recommended by FEMA [10], through an algorithm which include the

previously declared steps in Section 2.5. Considering an arbitrary structural system,

the fragility analysis is developed as:

1. selection of a �nite set of intensity measure {ξk}, k = 1, . . . , N ;

2. generation of ns independent samples ai(t), i = 1, . . . , ns, of acceleration ground

motion process A(t) using a speci�c method (e.g. one in Section 2.4);

3. for each of the values {ξk} scale the ns acceleration records, ai(t), in order to
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have the intensity level IM = ξk, ξk > 0;

4. given a pre�xed limit state value, samples of the demand parameter dk,i, k =

1, . . . , N and i = 1, . . . , ns, are computed through the formalization of dynamic

problem;

5. for each of the values {ξk} estimate fragility as in Equation (3.8).

The �ve-steps algorithm based on scaling seismic accelorograms by a reference IM

provide the uncertainty propagation related to the earthquake randomness. Use of MC

provides the overcome the limited number of natural recorded ground motion available

for fragility analysis.



Chapter 4
The role of intensity measures on

the accuracy of seismic fragilities

4.1 Introduction

Seismic fragilities are the probability that structural response of a system overcomes

speci�ed limit values for given seismic intensity measures. In this chapter, issue related

to the accuracy of the fragility curves is addressed. Representation of the problem

with a mathematical formulation is discussed, and main quantities, in reference to the

aleatory treatment, that in�uence the accuracy in fragility analysis is shown.

Novel contribution in this work which is a general approach for the improvement

of fragilities accuracy is presented.

4.2 Overview on issue

Consider a unitary mass elementary linear oscillator to spectra-compatible stochastic

process (see Subsection 2.4.1), the dynamic equilibrium is provided by Equation (2.35)

and the system demand parameter Dlsdof can be considered by Equation (2.36).

Figure 4.1 shows scatter plots of ns = 500 samples of Dlsdof , for ω0 = 2π and

59
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Figure 4.1: Scatter plots of ns = 500 samples for linear SDOF system with ω0 = 2π
and ζ = 5%: (PGA,Dlsdof ) (left panel); (Sa(T0)/(2π/T1)

2, Dlsdof ) (right panel).

ζ = 5% as system properties, versus selected IMs. In each panels, on right bottom,

the correlation coe�cient ρ (Eq. (2.23)) between the random variables which are on

the considered panel plot axes is reported. The most used intensity measure de�nitions

in PBEE are taken into account, i.e. PGA and a single ordinate of Sa(T ) (Eqs (3.12)

and (3.13)) on the left and right panel of Figure 4.1, respectively. In particular, for

the contextualization of (3.13) in reference to the linear SDOF case, the �rst period T1

in (3.13) coincides with the natural period T0 = 2π/ω0 of the system. The conceptual

example for linear SDOF that is illustrated in Figure 4.1 demonstrates as the PGA and

the ordinate of Sa(T ) at T0 are independent and strong dependent with Dlsdof since

the correlation coe�cient is zero and one, respectively, and this, as shown below, will

determines no accuracy or accuracy in fragility analysis, respectively. De�nitively, this

very simple example gives the achievement in which the PGA produces high dispersion

on the demand parameter, i.e. (3.12) is not a e�cient IM .

It is widely known in literature that the PGA and single ordinate of Sa(T ) pro-

vide poor and best information on the seismic performance for linear SDOF system [67].
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Nevertheless, in reference to the fragilities de�ned as functions of single/multiple

ordinates of the pseudo-acceleration response spectrum Sa(T ) in PBEE, it is a crit-

ical assumption to think that Sa(T ) captures su�cient information on the seismic

ground acceleration process such that the demand parameters of nonlinear, complex,

real, MDOF structures correlate satisfactory with single/multiple ordinates of Sa(T ).

The author in [15] has investigated the validity of this assumption for simple lin-

ear/nonlinear structures. In particular, it has been declared that:

� �rst, the demand parameterD for Bouc-Wen single degree of freedom (Subsection

2.3.2), i.e. hysteretic model widely used to describe the nonlinear characteristics

for structural systems, and ordinates of Sa(T ) are weakly dependent.

This is of signi�cant concern since the Bouc�Wen SDOF system is a simplistic

model for realistic structures, large values of the D and the intensity measure

IM as a single ordinate of Sa(T ) are nearly independent, and large values of D

are associated with excessive damage or even structural collapse;

� second, demand parameter D for linear MDOF system with two or more modes

and multiple ordinates of Sa(T ) are weakly dependent.

Since vector-valued IMs constitute an improvement over their scalar-valued ver-

sions, they do not address the fundamental weakness of this class of IMs, i.e.,

the fact that responses of complex, nonlinear structures and responses of selected

SDOF linear oscillators to seismic ground accelerations can di�er signi�cantly

and, generally, are weakly dependent. This suggests that the uncertainty in the

responses of realistic structures cannot be reduced to an acceptable level by con-

ditioning on multiple ordinates of Sa(T ).

In summary, the contribution in [15] suggests that the fragility functions based on the

de�nitions of single/multiple ordinates of Sa(T ) have a large uncertainties which limit

their usefulness. Despite this aspect, this IM in scalar/vector-valued version is still
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widely used for the fragility analysis of real structures with nonlinear behaviour.

In all cases, in general, the substantial and unstated assumption is that it is possible

to accurately predict the response of complex nonlinear structural systems using the

results of linear SDOF systems (e.g. Sa(T )) or the speci�c characteristic of the input

ground motion acceleration (e.g. PGA). This aspect questions the goodness with

which all the procedures reported in the literature for develop the fragility analysis

based on the de�nition of an IM , such as the one in Section 3.6, can have reliable

results for the study of real and complex systems seismic performance.

Scienti�c debate on the current use of common IMs (Section 3.5) in PBEE is still

open. Then it is legitimate to think how to try to improve the accuracy in fragility

estimates using these IMs, given that despite the limits they have, they are still used.

For this reason, if it wants to evaluate useful information on seismic structural perfor-

mance of a system, to focus attention on the accuracy in fragility analysis with the use

of current IMs, it is very crucial to consider these issues.

The main questions in this topic concerning:

� Is the fragility curve accurate or not?

� How is possible to quantify the accuracy level?

� Can this curve be improved?

The author in [15] has answered the �rst two questions. In particular, the dependence

between the demand parameter D and intensity measure IM provides the understand-

ing on the accuracy, and di�erent statistical tools was proposed to measure this depen-

dence, which includes correlation coe�cients, copula models and multivariate extreme

value theory. The Grigoriu's scienti�c contribution is based on the Bouc-Wen SDOF

and a linear two-DOF system.
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One of main focus of this thesis is precisely to provide an answer to the third ques-

tion in all cases. Since the �ndings in [15] concern to simpli�ed cases, in this present

research work the answers for �rst two questions are also given into the case of lin-

ear/nonlinear real complex MDOF systems.

4.3 Problem de�nition

On the �nding in [15], a discussion on the issue related to the accuracy in the fragility

analysis is open into the scienti�c seismic engineering community. Starting from the

concept of the failure probability expressed by Equation (3.3), the fragility can be also

de�ned as

Pf (ξ) = E[1(D ∈ I ⊂ R|IM = ξ)] =

∫
I

fD|IM (x|ξ) dx (4.1)

i.e. the probability that a structural system enters a damage state given a ground mo-

tion with scalar/vector-valued intensity measure ξ. The quantities 1(·) and fD|IM(·|ξ)

indicate the indicator function and the probability density function of the conditional

variable D|(IM = ξ) (demand parameter given the intensity measure), respectively.

The fragility in (4.1) is usually estimated from the structural response to scaled seismic

time histories, a(t) of the stochastic process A(t) [123], and its accuracy depends on

the scaling procedure, the sample size and the IMs properties.

To be useful, IMs need to be e�cient, i.e., structural demand parameters D on IM

have small variances, and su�cient, i.e., the fD|IM(·|ξ) is completely de�ned for given

IM [14, 100]. For e�cient IMs, the distribution of the conditional variables D|IM

can be estimated from relatively small sets of structural responses. For su�cient IMs,

the conditional random variables D|(seismic hazard) and D|IM have similar distribu-

tions so that probability plots of structural damage versus IMs, i.e., fragilities, are

meaningful.
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When D and IM are strongly dependent, the random variable D|IM has small

variance, i.e. fD|IM(·|ξ) is concentrated about its mean value. On the contrary, when

D and IM are weakly dependent the random variable D|IM has large variance. In the

limit, fD|IM(·|ξ) becomes a δ-function or D and D|IM have the same PDF (see Sub-

section 2.2.2) when D and D|IM are perfectly correlated or independent, respectively.

In the latter case, the fragility in (4.1) does not depend on ξ i.e.

Pf (ξ) = E[1(D ∈ I ⊂ R)] =
∫
I

fD (x) dx (4.2)

which gives no information on the structural performance for an earthquake with given

intensity measure IM = ξ.

As a clear example for the dependence between D and IM in�uences the results in

fragility analysis, and consequently its accuracy for giving informations on the seismic

performance, is shown in Figure 4.2. The fragility curves in this �gure refer to the

simpli�ed case of linear SDOF system with ω0 = 2π and ζ = 5% to spectra-compatible

stochastic process A(t). These results are obtained using the MC algorithm in Section

3.6 for the ns = 500 samples of A(t) and limit state D̄lsdof = 35 cm. In particular, the

dotted red line are developed considering as IM the (3.12), while the continuous blue

curve for the ordinate of Sa(T ) at T0.

The considered variables dependence are the same shown at the scatter plots in

Figure 4.1. Concerning the Figure 4.2, when the Dlsdof and PGA are independent

(left panel of Figure 4.1), the fragility (IM1 = PGA) for de�ntion does not depend on

the IM as in Equation (4.2), so no any performance information for linear SDOF is

provided; since Dlsdof and Sa(T0) are strongly dependent (right panel of Figure 4.1),

perfectly correlated (ρ = 1), the fragility curve for IM2 = Sa(T0) is the δ-function, and

it gives the best performance information for linear SDOF.
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Figure 4.2: Fragilities against intensity level ξ considering di�erent de�nitions of IMs
for linear SDOF system with ω0 = 2π and ζ = 5%, limit state D̄lsdof = 35 cm.

The very simple example in Figure 4.1 demonstrates the role of the IM on the

accuracy in fragility analysis. A chosen IM de�nition in�uences the accuracy of the

fragility analysis result, i.e. the ability that the fragility curve based on this IM

provides valid information of seimic performance for a structual system. Within this

context, especially if Eq. (3.3) is estimated by Eq. (3.8), as it is in the commonly used

method [10], it is crucial to quantify the dependence between the demand parameter D

and various IM de�nitions to implicitly determine whether or not fragilities, de�ned

as function of the commonly used IMs, can provide useful information for PBEE of

actual complex MDOF linear and nonlinear structural systems. The commonly used

method assumption that can accurately predict the seismic performance of complex

nonlinear structural systems using IMs based on the features of the seismic input

or the response results of linear SDOF systems, it loses credibility after the reasons

previously introduced.

Nevertheless, in PBEE the most widespread intensity measure, i.e. PGA and ordi-
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nates of Sa(T ), are still used [124�126] considering the limits they determine in fragility

analysis.

4.4 The modi�ed intensity measure

The improvement of the dependence for the stochastic variables demand parameter D

and intensity measure IM , which determines a variance reduction on conditional vari-

able D|IM , it is the set objective which translates into a re�nement of the information

provided by the fragility function.

In the current section, general and advantageous approach to improve the accuracy

in fragilities estimation when the dependence between IM and D is weak and the

widely used method in PBEE [10] does not give accurate results is introduced. The

proposed approach is based on a linear transformation of samples of a given inten-

sity measure, which improves the correlation with a set of demand parameters. This

transformation provides the de�nition of the modi�ed version of the current inten-

sity measure approach. In particular, once classical IM (Section 3.5) is chosen it is

mapped in a suitable space where D and the IM are correlated. The novel proposed

methodology is formulated to be can apply for linear/nonlinear structural system.

The general method can be applied to all IMs used in PBEE in order to construct

fragilities that promise more accurate information than those obtained from unmodi-

�ed IMs.

Let D(j,l) be the j-th system demand parameter (e.g. maximum displacement) with

j = 1, . . . ,m, l = 1, . . . , k, where m is the number of demand parameters of interest for

arbitrary linear/nonlinear structural system at l number of intensity level. For each l

corresponds a level coe�cient ξl. Since the dependence between D(j,l), j = 1, . . . ,m

and l = 1, . . . , k, and IM is a measure to quantify the accuracy in the estimation
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of the (4.1), when this dependence is weak a not accurate results are provided by

fragility analysis. To overcome this issue it is proposed to replace samples of a chosen

standard intensity measure IM with a suitable linear transformation that modi�es the

dependence with the selected demand parameters samples.

In particular, the following steps are developed:

1. for each ns samples, a
(l)
i (t), i = 1, . . . , ns, of the random process A(l)(t) the

corresponding IM and D(j,l) are evaluated, i.e. imi and d
(j,l)
i , i = 1, . . . , ns;

2. for each of these samples, the z-scores z(d
(j,l)
i ) and z(imi), i = 1, . . . , ns, of the

standardized random variables

Z(D(j,l)) =
D(j,l) − E[D(j,l)]

σD(j,l)

, j = 1, . . . ,m , l = 1, . . . , k (4.3)

Z(IM) =
IM − E[IM ]

σIM

(4.4)

are computed as in (2.24), respectively;

3. for each pair of samples z(d(j,l)i ) and z(imi), it is possible to evaluate the distance

from perfect correlation

e
(j,l)
i = z(d

(j,l)
i )− z(imi) , i = 1, . . . , ns , j = 1, . . . ,m , l = 1, . . . , k ; (4.5)

4. the average distance of the j demand parameters on l is estimated

ēi =
1

km

k∑
l=1

m∑
j=1

e
(j,l)
i , i = 1, . . . , ns ; (4.6)

5. the linear transformation

mimi = [z(imi) + ēi]σIM + E[IM ] , i = 1, . . . , ns (4.7)
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gives samples that can be considered the realizations of a new intensity measure,

called, modi�ed intensity measure mIM .

In particular, it is noted that, there has never been any discussion of a dependence on l

for the intensity measure, i.e. IM (l). Regardless of system behaviour for any l used to

scale A(l)(t), the dependence between D(j,l) and IM (l) is the same that of D(j,l) and IM .

Depending on the behaviour of the structural system, in the previous �ve-steps

methodology, the following aspects can be taken into account

� linear behaviour: the dependence between D and IM is the same at each

intensity level which is scaled the input as in Section 3.6. For this reason, the

linear behaviour allows a simpli�ed treatment in which the unscaled stochastic

process input A(l)(t) is considered, i.e. l = 1, which is equivalent to consider an

unitary level coe�cient (ξl = 1) that corresponds to unscaled A(t). In this case,

refer to A(l)(t) or A(t) is the same. Consequently, the same consideration is also

valid for the corresponding values of D;

� nonlinear behaviour: the dependence between D and IM changes for di�er-

ent intensity level considered. Since the nonlinearity is manifested directly on

the demand parameters, the quantity in Equation (4.3) is de�ned for di�erent

level of interest, i.e. l > 1, in which the process input A(l)(t) is scaled (ξlA(t)).

The procedure to determine the modi�ed intensity measuremIM , for a nonlinear

system, needs to be de�ned on di�erent intensity levels.

For greater clarity, it is worth noting that, �rst, if the random variables de�ned in

Equations (4.3) and (4.4) are linearly dependent, the correlation coe�cient is equal to

one and the scatter plots of pairs of samples z(d(j,l)i ) and z(imi) describe straight line.
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Second, the samples obtained with Equation (4.6) can be considered as realizations

of a vector Ē.

Third, for a structural system with linear (nonlinear) behaviour, it needs to consider

l = 1 (l > 1).

Fourth, the m = 1 can be considered for SDOF system case, or if for a MDOF

system the interest falls on one demand parameter.

Fifth, for m = 1 and l = 1 (i.e. one demand parameter and one intensity level), the

correlation estimated from the ns samples of D and mIM is exactly one. When m > 1

and l > 1, m = 1 and l > 1 or m > 1 and l = 1, it is not possible to have perfect

correlation, but anyway the correlation between D(j,l) and mIM is signi�cantly higher

than the one estimated from samples of D(j,l) and IM .

It follows that, for linear/nonlinear structural system, the mIM samples obtained

with Equation (4.7), considering the �ve-steps procedure above, can be used to scale

the ground acceleration records to build fragility curves by the MC algorithm in Section

3.6 that give more accurate information on the structural system performance when

compared with the standard intensity measures.

E�ectiveness of the mIM de�nition can be preliminary demonstrated by taking up

the simpler case previously introduced in Section 4.2, i.e. the linear SDOF system with

ω0 = 2π and ζ = 5% to ns = 500 samples of the spectra-compatible stochastic process.

In particular, unsatisfactory results are provided through the fragility analysis with the

use of PGA (Eq. (3.12)). Then the modi�ed version of the IM1 = PGA is provided

by the �ve-steps novel approach, i.e. mIM1 = mPGA, in order to: �rst, improve the

dependence between Dlsdof and PGA; second, determine the accuracy increment for

the estimation of (4.1) considering the mPGA. Since the system has one DOF and is

linear, the �ve-steps approach is developed by setting m = 1 and l = 1.
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The initial correlation between Dlsdof and PGA is zero (see left panel of Figure

4.1). Then, samples of Dlsdof and PGA are �rst transformed into their standardized

versions using Equations (4.3) and (4.4), respectively, and the distance from perfect

correlation is evaluated by Equation (4.5). In this particular case, since m = 1 and

l = 1, the ns samples provided by (4.5) coincide with those provided with (4.6), and

then they can be directly collected in the variable Ē that is used to correct the samples

of Z(PGA). The last step is to evaluate samples of the modi�ed intensity measure

mPGA using Equation (4.7).

Left panel of Figure 4.3 reports the scatter plots and the correlation coe�cients

ρ before and after the correction in the standardized space, i.e. (Z(IM1), Z(Dlsdof )),

and (Z(IM1) + Ē, Z(Dlsdof )), respectively. The right panel shows the scatter plots of

the same samples (before and after the correction) linearly transformed back into their

original space by Eq. (4.7), i.e. (IM1, Dlsdof ), and (mIM1, Dlsdof ), respectively. In

general, this �gure refer to the scatter plots in red dots (green circles) for before (after)
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Figure 4.3: Scatter plots of ns = 500 samples for linear SDOF system with ω0 = 2π
and ζ = 5%: (Z(PGA), Z(Dlsdof )) red dots, (Z(PGA) + Ē, Z(Dlsdof )) green circles
(left panel); (PGA,Dlsdof ) red dots, (mPGA,Dlsdof ) green circles (right panel).
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the correction. The dashed black line is the geometric place that describes the best

correlation and it is completely matched with the green circles, i.e. scatter plots after

the correction.

The development of the fragility curve using the MC algorithm (Section 3.6) by

considering as intensity measure the mIM1 = mPGA for the linear SDOF system,

with ω0 = 2π and ζ = 5%, to ns = 500 samples of spectra-compatible stochastic pro-

cess A(t) and assuming D̄lsdof = 35 cm is reported in Figure 4.4. In particular, this

�gure describes a comparison between the fragility function before the correction of the

correlation in dotted red line for IM1 (same results in Figure 4.2) and after the cor-

rection in dash-dotted green line by using mIM1. It is worth noting that the fragility

curve obtained with the modi�ed intensity measures (dash-dotted green line) is steeper

than that estimated using the original intensity measure (dotted red line). This is con-

sistent with that discussed in Section 4.3 about a random variable D|IM . It follows

that, the matched unitary correlation coe�cient (Figure 4.3) provided by mIM deter-

mines that the curve for IM1 becomes as δ-function with the use ofmIM1 in Figure 4.4.

The Figures 4.3 and 4.4 demonstrate for a simpli�ed linear SDOF system case

the ability of the proposed procedure to improve the correlation between the selected

demand parameter and intensity measure. This will result into an improved accuracy

in the fragility curve.

Another aspect that should not be overlooked is that the modi�ed intensity measure

methodology does not substantially change the probability density function of the

original intensity measure. About this concept, Figure 4.5 shows the PDF estimation

of IM1 = PGA and mIM1 = mPGA in the left and right panel, respectively. In each

panels, on the right top, the �rst four statistical moments estimated of the probability

distribution is provided. The �rst two statistical moments are the same.

In the following chapters, usefulness of the modi�ed intensity measure approach for
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Figure 4.4: Fragilities against intensity level ξ considering the intensity measure PGA
and its modi�ed version mPGA for linear SDOF system with ω0 = 2π and ζ = 5%,
limit state D̄lsdof = 35 cm.
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Figure 4.5: Estimated PDF for ns = 500 samples of PGA (left panel) and mPGA
(right panel) computed with m = k = 1.

other cases regarding the nonlinearity behaviour and complexity for MDOF systems

will be shown.



Chapter 5
Fragility analysis accuracy

improvement for analytical systems

5.1 Introduction

Aim of this chapter is to demonstrate the validity and e�ectiveness of the modi�ed

intensity measure approach in Section 4.4 to improve the results accuracy provided by

fragility analysis. To introducing this general methodology, preliminary results were

provided for the linear single degree of freedom system to spectra-compatible stochastic

process in Subsection 2.4.1 .

The formulation of the novel approach is applied herein to some analytical systems,

which are again subjected to samples of spectra-compatible stochastic process. In par-

ticular, nonlinear elementary oscillators and linear/nonlinear multi-degree of freedom

systems are considered. The use of this arti�cial acceleration ground motion typology

is common used in PBBE for the structural design, e.g. [127�129]. For this reason, in

the absence of natural records to describe the seismic hazard, the spectra-compatible

accelerations can be a valid alternative. Most widespread intensity measure de�nitions

usually used in PBEE are taken into account for making a comparison on fragility

analysis results obtained with the them classical and modi�ed version.

73
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5.2 Du�ng oscillator

Consider a unitary mass elementary Du�ng oscillator to spectra-compatible stochas-

tic process, the dynamic equilibrium is provided by Equation (2.41) and the system

demand parameter Ddsdof can be provided by

Ddsdof = max
0⩽t⩽τ

|Xdsdof (t)| (5.1)

where τ is the time length of spectra-compatible stochastic process A(t).

Figure 5.1 and 5.2 show scatter plots of ns = 500 samples of D(l)
dsdof , for ω0 = 2π,

ζ = 5% and γ = 3 as system properties (in Eq. (2.41)), and the widespread IMs in

PBEE, i.e. PGA and Sa(T0) (single ordinate of Sa(T )), respectively. In these �gures,

for each panels, the correlation coe�cient ρ is reported on the right bottom, while

on the top, the number of level intensity l and corresponding level coe�cient ξl are

shown. From left to right panels, the random variable demand parameter in Equation

(5.1) is computed with increasing level intensity of the stochastic process input, i.e.

A(l)(t) = ξlA(t). Since the system has nonlinear behaviour, in particular, the kind of

cubic (Eq. (2.41)), the samples values of demand parameter at pre�xed intensity level

D
(l)
dsdof change for di�erent l. To consider the IM rather ξlIM does not change the

dependence versus D
(l)
dsdof . The �rst panels from left correspond to unscaled process

A(t) (ξl = 1).

Results in Figure 5.1 con�rm that the Equation (3.12) is inadequate intensity mea-

sure also for a nonlinear simple SDOF system, and it seems that the dependence

between D
(l)
dsdof and PGA is invariant with the considered level intensity.

Scatter plots in Figure 5.2 refer to the contextualization of (3.13) for the SDOF case,

the �rst period T1 in (3.13) coincides with the natural period T0 = 2π/ω0 of the system.

These results shown that the Sa(T0) is weak dependent with the demand parameter of
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Figure 5.1: Scatter plots of ns = 500 samples of (PGA,D
(l)
dsdof ) for Du�ng SDOF

system with ω0 = 2π, ζ = 5% and γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with
ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).

0.4 0.5 0.6 0.7

10

11

12

13

14

15

16

17

18

19

0.4 0.5 0.6 0.7

16

18

20

22

24

26

0.4 0.5 0.6 0.7

20

25

30

35

Figure 5.2: Scatter plots of ns = 500 samples of (Sa(T0), D
(l)
dsdof ) for Du�ng SDOF

system with ω0 = 2π, ζ = 5% and γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with
ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Du�ng system. Increasing ξl, the dispersion of Sa(T0) on D
(l)
dsdof is also increasing, and

these demonstrate as Sa(T0) is not e�cient IM for Du�ng oscillator. Similar results

were obtained in [15] considering stationary Gaussian band limited white noise as input

process for Du�ng system.

5.2.1 Dependence improvement

The procedure described in Section 4.4 is applied to improving dependence for Du�ng

oscillator. In particular, for this case the methodology is adopted with j = m = 1 and

k = 3, l = 1, 2, 3. Since the system has one DOF, subscript j is omitted.

Initial correlation between D
(l)
dsdof and PGA or Sa(T0) (Figure 5.1 or 5.2) can be

improved using the modi�ed intensity measure approach. Samples of the demand

parameters and the two IMs are �rst transformed into their standardized versions

using Equations (4.3) and (4.4) and the distance from perfect correlation is evaluated

by Equation (4.5). The next step is to evaluate the ns average distances using Eq.

(4.6) and collecting them in the vector Ē which is used to correct the standardized

samples of PGA or Sa(T0), i.e. Z(PGA) or Z(Sa(T0)). Then, samples of the modi�ed

intensity measure mIM are computed by Equation (4.7).

Figure 5.3 and 5.4 show the obtained results for the intensity measure IM1 = PGA

and IM2 = Sa(T0), respectively. In these �gures, the scatter plots and the correlation

coe�cients before and after the correction in standardized space, i.e. (Z(IMq), Z(D
(l)
dsdof ))

and (Z(IMq) + Ē, Z(D
(l)
dsdof )), q = 1, 2, respectively, are reported. From left to right

panels, ξl increases.

For the same samples, Figure 5.5 and 5.6 report the scatter plots before and after

the correction linearly transformed back into the original space representation by Eq.

(4.7), i.e. (IMq, D
(l)
dsdof ) and (mIMq, D

(l)
dsdof ), q = 1, 2, respectively. Once again the

intensity level increases from the left to right panels.

In general, the results regard PGA (see Figure 5.3 and 5.5) are marked with red
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Figure 5.3: Scatter plots of ns = 500 samples of (Z(PGA), Z(D
(l)
dsdof )) red dots,

(Z(PGA)+Ē, Z(D
(l)
dsdof )) green circles for Du�ng SDOF system with ω0 = 2π, ζ = 5%

and γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with
ξl = 2 (right panel).
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Figure 5.4: Scatter plots of ns = 500 samples of (Z(Sa(T0)), Z(D
(l)
dsdof )) blue dots,

(Z(Sa(T0)) + Ē, Z(D
(l)
dsdof )) magenta circles for Du�ng SDOF system with ω0 = 2π,

ζ = 5% and γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);
l = 3 with ξl = 2 (right panel).
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Figure 5.5: Scatter plots of ns = 500 samples of (PGA,D
(l)
dsdof ) red dots,

(mPGA,D
(l)
dsdof ) green circles for Du�ng SDOF system with ω0 = 2π, ζ = 5% and

γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with
ξl = 2 (right panel).
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Figure 5.6: Scatter plots of ns = 500 samples of (Sa(T0), D
(l)
dsdof ) blue dots,

(mSa(T0), D
(l)
dsdof ) magenta circles for Du�ng SDOF system with ω0 = 2π, ζ = 5%

and γ = 3: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with
ξl = 2 (right panel).
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dots and green circle, before and after the correlation improvement, while the those for

Sa(T0) are blue dots and magenta circles (before and after, Figure 5.4 and 5.6).

The results obtained for PGA and Sa(T0) demonstrate the ability ofmIM algorithm

to improve the correlation between Du�ng demand parameter and intensity measures

for di�erent values of l. Satisfactory dependence are provided, in all cases after the

de�nition of mIMq, q = 1, 2, the correlation coe�cient tends to be unitary for each l,

in particular, ρ ≥ 0.96.

The slight decrease in correlation between Z(D
(l)
dsdof ) and Z(Sa(T0)) + Ē or D(l)

dsdof

and mSa(T0), left panel of Figure 5.4 or 5.6, represents an acceptable compromise in

that this correlation for l = 1 is sold to improve the one at higher intensity levels, i.e.

l = 2, 3 (center and right panels of Figure 5.4 and 5.6). This aspect is attributable to

the de�nition of Ē (Eq. (4.6)). However a reasonable sacri�ce, ρ changes from 0.98 to

0.97, considering the bene�ts that are produced in terms of dependence for the higher

intensity levels.

Figure 5.7 and 5.8 show the PDFs, an estimation by normalized histogram, and

the �rst four statical moments form samples of the original intensity measures IMq,

q = 1, 2 (left panels) and their modi�ed versions mIMq (right panels). In particular,

Figure 5.7 shows the results for IM1 = PGA, while Figure 5.8 refers to IM2 = Sa(T0).

It is interesting to note that the linear transformation of the obtained intensity measure

samples for Du�ng oscillator case does not signi�cantly change the intensity measures

�rst four statistical moments (see Figure 5.8). In Figure 5.7, the mean and variance of

the probability density function of PGA and mPGA are the same.

5.2.2 Fragility analysis

The algorithm in Section 3.6 is used to develop fragility analysis for the Du�ng system.

In particular, fragilities obtained considering standard IMs are compared with those
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Figure 5.7: Estimated PDF for ns = 500 samples of PGA (left panel) and mPGA
(right panel) computed with m = 1 and k = 3.
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Figure 5.8: Estimated PDF for ns = 500 samples of Sa(T0) (left panel) and mSa(T0)
(right panel) computed with m = 1 and k = 3.
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Figure 5.9: Fragilities against intensity level ξ for di�erent de�nitions of IMs and its
modi�ed version mIMs for Du�ng SDOF system with ω0 = 2π, ζ = 5%, γ = 3 and
limit state D̄dsdof = 35 cm.

evaluate by its mIMs. It is shown that, the dependence improvement for Du�ng

oscillator by the modi�ed intensity measure de�nition, i.e. previous Subsection 5.2.1 ,

determines a better estimation of the fragility function.

In Figure 5.9 the fragility curves for Du�ng oscillator, with ω0 = 2π, ζ = 5% and

γ = 3, to ns = 500 samples of spectra-compatible stochastic process and pre�xed LS

value D̄dsdof = 35 cm are shown. The dotted red line regards to PGA and that in

dash-dotted green to mPGA, while continuous blue line refers to Sa(T0) and the that

dashed magenta to its modi�ed version mSa(T0). For both cases, the transition from

IMq, q = 1, 2, to mIMq produce an improvement on accuracy in fragility analysis.

The conditional variables D
(l)
dsdof |mIMq, l = 1, 2, 3 and q = 1, 2, have less variance if

compared those of D(l)
dsdof |IMq. Graphically it can be seen that the curves referring to

mIMq have a greater slope than IMq.
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5.3 Bouc-Wen oscillator

The dynamic equilibrium for unitary mass Bouc-Wen SDOF system to spectra-compatible

stochastic process A(t) is described in Equation (2.46), and the demand parameter can

be given as

Dbwsdof = max
0⩽t⩽τ

|Xbwsdof (t)| (5.2)

i.e. the maximum absolute of displacement vector, where τ is the time length of A(t).

Scatter plots of ns = 500 samples of D(l)
bwsdof , using ω0 = 2π, ζ = 5% and η = 0.9 in

Eq. (2.46) and γ = 3, α = 0.5, β = 5 and n = 1 in Eq. (2.44), and di�erent IMs (Eqs.

(3.12)-(3.13)) are reported in Figures 5.10 - 5.11. In each panels of these �gures, the

information about the dependence between D
(l)
bwsdof and IM , i.e. ρ on right bottom, is

reported, and in the top, it is shown the number of level intensity l and corresponding

level coe�cient ξl. From left to right panels, the random variable demand parameter

in Equation (5.2) is computed with increasing level intensity of the stochastic process

input, i.e. A(l)(t) = ξlA(t). Samples values of demand parameter at pre�xed intensity

level, i.e. D
(l)
bwsdof , change for di�erent l. The �rst panels from left correspond to

unscaled process A(t) (ξl = 1).

Figure 5.10 and 5.11 refer to Eq. (3.12) and Eq. (3.13), with T1 that coincides with

the natural period T0 = 2π/ω0, respectively.

Even if it is considered a low contribution of the hysteretic process W (t) in the

dynamic equilibrium, i.e. η = 0.9 in Eq. (2.46) (for η = 1 the system in fully linear),

both PGA and Sa(T0) determine high dispersion on D
(l)
bwsdof , l = 1, 2, 3.

Also for Bouc-Wen oscillator to spectra-compatible stochastic process, it is shown

that (3.12) is an inappropriate IM (Figure 5.10); results which are also not encouraging

are provided considering IM2 = Sa(T0) (Figure 5.11).
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Figure 5.10: Scatter plots of ns = 500 samples of (PGA,D
(l)
bwsdof ) for Bouc-Wen

SDOF system with ω0 = 2π, ζ = 5%, η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1
with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right
panel).
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Figure 5.11: Scatter plots of ns = 500 samples of (Sa(T0), D
(l)
bwsdof ) for Bouc-Wen

SDOF system with ω0 = 2π, ζ = 5%, η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1
with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right
panel).
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5.3.1 Dependence improvement

To improve dependence between the demand parameter for Bouc-Wen oscillator and

IMq, q = 1, 2, the algorithm to de�ne the modi�ed intensity measure (Section 4.4) is

used considering j = m = 1 (one DOF). The subscript j is omitted, and k = 3, i.e.

l = 1, 2, 3.

The initial correlation (dependence) between D
(l)
bwsdof and PGA or Sa(T0) (Figure

5.10 or 5.11) can be improved using the modi�ed intensity measure approach. Samples

of the demand parameters and the two IMs are �rst transformed into their standard-

ized versions using Equations (4.3) and (4.4) and the distance from perfect correlation

is evaluated by Equation (4.5). The ns average distances using Eq. (4.6) are collected

in the vector Ē which is used to correct the standardized samples of PGA or Sa(T0),

i.e. z(PGA) or z(Sa(T0)). Then, samples of the modi�ed intensity measure mIM are

computed by Equation (4.7).

Figure 5.12 and 5.13 regard to IM1 = PGA and IM2 = Sa(T0), respectively. In

these �gures, the scatter plots and ρ before and after the correction in standardized

space, i.e. (Z(IMq), Z(D
(l)
bwsdof )) and (Z(IMq) + Ē, Z(D

(l)
bwsdof )), q = 1, 2, respectively,

are shown. From left to right panels, ξl increases.

In Figure 5.14 and 5.15 are reported, for the same samples in Figures 5.12 and 5.13,

the scatter plots before and after the correction in the original space representation,

i.e. (IMq, D
(l)
bwsdof ) and (mIMq, D

(l)
bwsdof ), q = 1, 2, respectively.

The results obtained by PGA (see Figure 5.3 and 5.5) are marked with red dots

and green circle, before and after the correlation improvement. For Sa(T0), the blue

dots and magenta circles indicate results before and after the correction (Figure 5.13

and 5.15).

The results regard to mPGA and mSa(T0), for di�erent l, show the e�ectiveness of
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Figure 5.12: Scatter plots of ns = 500 samples of (Z(PGA), Z(D
(l)
bwsdof )) red dots,

(Z(PGA) + Ē, Z(D
(l)
bwsdof )) green circles for Bouc-Wen SDOF system with ω0 = 2π,

ζ = 5%, η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1 with ξl = 1 (left panel); l = 2
with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 5.13: Scatter plots of ns = 500 samples of (Z(Sa(T0)), Z(D
(l)
bwsdof )) blue dots,

(Z(Sa(T0))+Ē, Z(D
(l)
bwsdof )) magenta circles for Bouc-Wen SDOF system with ω0 = 2π,

ζ = 5%, η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1 with ξl = 1 (left panel); l = 2
with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 5.14: Scatter plots of ns = 500 samples of (PGA,D
(l)
bwsdof ) red dots,

(mPGA,D
(l)
bwsdof ) green circles for Bouc-Wen SDOF system with ω0 = 2π, ζ = 5%,

η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1 with ξl = 1 (left panel); l = 2 with
ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 5.15: Scatter plots of ns = 500 samples of (Sa(T0), D
(l)
bwsdof ) blue dots,

(mSa(T0), D
(l)
bwsdof ) magenta circles for Bouc-Wen SDOF system with ω0 = 2π, ζ = 5%,

η = 0.9, γ = 3, α = 0.5, β = 5 and n = 1: l = 1 with ξl = 1 (left panel); l = 2 with
ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 5.16: Estimated PDF for ns = 500 samples of PGA (left panel) and mPGA
(right panel) computed with m = 1 and k = 3.

the modi�ed intensity measure approach to improve the correlation between Bouc-Wen

demand parameter and intensity measures. After the de�nition of mIMq, q = 1, 2, the

correlation coe�cient is practically unitary for each considered l.

For Bouc-Wen SDOF system, again, the linear transformation which are based the

samples of mIM (Eq. (4.7)) does not change substantially the probability density

function estimation of intensity measure. Figure 5.16 and 5.17 report the comparison

for PDFs and the �rst four statical moments estimations between before, IMq, q = 1, 2

(left panels), and after the dependence improvement, mIMq (right panels). Figure 5.16

refers to PGA and mPGA, while Figure 5.17 to Sa(T0) and mSa(T0). In particular,

both the mean and variance of the PDF of IMq and mIMq, q = 1, 2, are the same.

5.3.2 Fragility analysis

Results of the fragility analysis, i.e. fragilities obtained from procedure in Section 3.6

considering original IMs and its mIMs, about the Bouc-Wen oscillator are shown
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Figure 5.17: Estimated PDF for ns = 500 samples of Sa(T0) (left panel) and mSa(T0)
(right panel) computed with m = 1 and k = 3.
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Figure 5.18: Fragilities against intensity level ξ for di�erent de�nitions of IMs and its
modi�ed version mIMs for Bouc-Wen SDOF system with ω0 = 2π, ζ = 5%, η = 0.9,
γ = 3, α = 0.5, β = 5, n = 1 and limit state D̄bwsdof = 35 cm.
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in this subsection. The dependence improvement for D(l)
bwsdof , l = 1, 2, 3, and mIMq,

q = 1, 2, (Subsection 5.3.1) will be determine an accuracy improvement in fragility

estimates too.

Figure 5.18 shows fragility functions for Bouc-Wen SDOF system to ns = 500 sam-

ples of spectra-compatible stochastic process for ω0 = 2π, ζ = 5%, η = 0.9, γ = 3,

α = 0.5, β = 5, n = 1 and limit state D̄bwsdof = 35 cm. In this �gure, the dotted red,

dash-dotted green, continuous blue and dashed magenta curve refer to PGA, mPGA,

Sa(T0) andmSa(T0), respectively. From IMq, q = 1, 2, tomIMq, the produced fragility

functions describe a more accurate results for the fragility analysis.

5.4 Three-storey plane frame

As example of a MDOF structural system, consider a three-storey plane frame with

transverse elements. The numerical model is developed with standard beam elements

to obtain the reinforced concrete frame. Constraints are applied on numerical model

in order to have only a DOF at each storey in horizontal direction, i.e. three degree of

freedom.

Both, linear and nonlinear dynamic analysis are performed to obtain the structural

response process X(t) to spectra-compatible stochastic process A(t). Standard trans-

verse elements are used for the bracing system in the linear analyses, while nonlinear

link elements are used to model the dissipative transverses by using the model in [25].

In this last case, the FNA (see in Subsection 2.3.4) is used to evaluate e�ciently the

response since the model has a limited number of nonlinear elements, only given by

the bracing system at each storey.

Table 5.1 and Figure 5.19 report the three mode shapes and modal parameters
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Table 5.1: FE model modal parameters of three-storey plane frame.

Modal shape Period Frequency Pulsation

# [s] [Hz] [rad/s]
1 0.352 2.844 17.871
2 0.126 7.953 49.971
3 0.087 11.462 72.017

of the FE model. Samples of X(t) are computed by linear/nonlinear time domain

Mode #1 Mode #2 Mode #3

Figure 5.19: FE model mode shapes of three-storey plane frame.

numerical dynamic structural analysis assuming proportional damping ratio ζ = 5% in

order to de�ne

D
(j)
d = max

0⩽t⩽τ
|h(j)(X(t))| , j = 1, . . . ,m (5.3)

i.e. the maximum absolute displacement at the j-th storey. Where τ is the time

length of A(t) and h(j)(·) is a function that mapping the response X(t) to the j-th

demand parameter of interest. Since the system has three DOFs, the Equation (5.3)

is applied for m = 3. For nonlinear dynamic analysis, the (5.3) is used to de�ne,

considering di�erent input level intensity number l and corresponding level coe�cient

ξl, i.e. A(l)(t) = ξlA(t), the demand parameter at each storey D
(j,l)
d to investigate the

dependence with IMs at pre�xed l. Dependence between system demand parameters
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Figure 5.20: Scatter plots of ns = 500 samples for three-storey plane frame:
(PGA,D

(1)
d ) (left panel); (Sa(T1), D

(1)
d ) (right panel) - linear analysis.
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Figure 5.21: Scatter plots of ns = 500 samples for three-storey plane frame:
(PGA,D

(2)
d ) (left panel); (Sa(T1), D

(2)
d ) (right panel) - linear analysis.
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Figure 5.22: Scatter plots of ns = 500 samples for three-storey plane frame:
(PGA,D

(3)
d ) (left panel); (Sa(T1), D

(3)
d ) (right panel) - linear analysis.
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and IMs for linear analysis and di�erent l does not change. Then, in the last case

the D
(j)
d is only computed for unmultiplied input, i.e. A(t) = A(l=1)(t), the apex l is

omitted.

For each samples of A(t), the PGA and the pseudo-acceleration response spec-

tra Sa(T, ζ), with ζ = 5%, are computed to study the dispersion on D
(j)
d or D

(j,l)
d ,

j, l = 1, 2, 3. Then, the intensity measures in Equation (3.12) and (3.13) are considered

to investigate the dependence.

Figures 5.20 - 5.22 show scatter plots of ns = 500 samples of the demand param-

eters D
(j)
d , j = 1, 2, 3, and the selected IMs for linear dynamic analysis. The left

panels regard to IM1, while the those on right to IM2. Concerning these results, the

PGA produces high dispersion on D
(j)
d , j = 1, 2, 3, i.e. for linear simple MDOF system

the Eq. (3.12) is not e�cient intensity measure. Contrarily, the dependence between

Sa(T1) and D
(j)
d , j = 1, 2, 3, is strong since the correlation coe�cient ρ is practically

one (right panel of Figures 5.20 - 5.22).

For nonlinear analysis, scatter plots of ns = 500 samples of the demand parameters

D
(j,l)
d , j, l = 1, 2, 3, and IMq, q = 1, 2, are developed and shown in Figures 5.23 - 5.28

. In each panel of these �gures, on the top l and corresponding ξl value are reported,

while on right bottom, it is shown ρ. From left to right panels, the level intensity of

input, A(l)(t), increasing. Figures 5.23 - 5.25 and Figures 5.26 - 5.28 refer to PGA

and Sa(T1), respectively. In general, the nonlinear behaviour assumption for MDOF

system, i.e. presence of concentrated nonlinearities, changes completely the obtained

correlation between the demand parameters and IMs in the linear case. Correlation

decreases for the increasing value of l and ξl.

Although it would seem that IM1 = PGA decreases dispersion on D
(j,l)
d , j, l =

1, 2, 3, if it is compared with the results by linear dynamic analysis, anyway the pro-
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Figure 5.23: Scatter plots of ns = 500 samples for three-storey plane frame
(PGA,D

(1,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 5.24: Scatter plots of ns = 500 samples for three-storey plane frame
(PGA,D

(2,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 5.25: Scatter plots of ns = 500 samples for three-storey plane frame
(PGA,D

(3,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 5.26: Scatter plots of ns = 500 samples for three-storey plane frame
(Sa(T1), D

(1,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.

1 1.2 1.4 1.6

2.5

3

3.5

4

4.5

5

5.5

1 1.2 1.4 1.6

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 1.2 1.4 1.6

6

7

8

9

10

11

12

13

Figure 5.27: Scatter plots of ns = 500 samples for three-storey plane frame
(Sa(T1), D

(2,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 5.28: Scatter plots of ns = 500 samples for three-storey plane frame
(Sa(T1), D

(3,l)
d ): l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5 (center panel);

l = 3 with ξl = 2 (right panel) - nonlinear analysis.



5.4 Three-storey plane frame 95

vided dependence is weak (Figures 5.23 - 5.25). In any case, the stochastic variables

D
(j,l)
d |Sa(T1), j, l = 1, 2, 3, have large variance (see Figures 5.26 - 5.28), and this aspect

suggests that IM2 = Sa(T1) is not a e�cient intensity measure for simple nonlinear

MDOF structural system.

5.4.1 Dependence improvement

The modi�ed intensity measure strategy is applied to decrease the dispersion of the

selected IMs on the demand parameters of the linear/nonlinear MDOF structural

system. Two di�erent behaviours for the three-storey plane frame and the selected

intensity measures are taken into account for the application of �ve-steps algorithm,

described in Section 4.4, considering the following:

� linear behaviour, the methodology is applied considering as demand parameter

D
(j)
d , for j = 1, . . . ,m with m = 3, and the intensity measure in Equation (3.12);

� nonlinear behaviour, the methodology is applied considering as demand param-

eter D
(j,l)
d , for j = 1, . . . ,m and l = 1, . . . , k with m, k = 3, and the intensity

measures in Equations (3.12) and (3.13).

In both cases, the dependence between the demand parameters and the selected IMs

are improved using the modi�ed intensity measure approach.

Since the (3.13) is an e�cient intensity measure for linear analysis (right panel of

Figures 5.20 - 5.22), the dependence (correlation) improvement is not necessary.

Samples of the demand parameters and the considered IMs are �rst transformed

into their standardized versions using Equations (4.3) and (4.4) and the distance from

perfect correlation is evaluated by Equation (4.5). The ns average distances using Eq.

(4.6) are collected in the vector Ē which is used to correct the standardized samples of

PGA or Sa(T1), i.e. z(PGA) or z(Sa(T1)), in order to compute samples of the modi�ed

intensity measure mPGA or mSa(T1), respectively, by Equation (4.7).
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Figure 5.29: Scatter plots of ns = 500 samples for three-storey plane frame:
(Z(PGA), Z(D

(1)
d )) red dots, (Z(PGA) + Ē, Z(D

(1)
d )) green circles (left panel);

(PGA,D
(1)
d ) red dots, (mPGA,D

(1)
d ) green circles (right panel) - linear analysis.
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Figure 5.30: Scatter plots of ns = 500 samples for three-storey plane frame:
(Z(PGA), Z(D

(2)
d )) red dots, (Z(PGA) + Ē, Z(D

(2)
d )) green circles (left panel);

(PGA,D
(2)
d ) red dots, (mPGA,D

(2)
d ) green circles (right panel) - linear analysis.
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Figure 5.31: Scatter plots of ns = 500 samples for three-storey plane frame:
(Z(PGA), Z(D

(3)
d )) red dots, (Z(PGA) + Ē, Z(D

(3)
d )) green circles (left panel);

(PGA,D
(3)
d ) red dots, (mPGA,D

(3)
d ) green circles (right panel) - linear analysis.
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Figure 5.32: Estimated PDF for ns = 500 samples of PGA (left panel) and mPGA
(right panel) computed with m = 3 and k = 1.

Firstly, the obtained results for the linear behaviour are shown. Figures 5.29 - 5.31

report scatter plots of ns = 500 samples resulting from the demand parameters D(j)
d ,

j = 1, 2, 3, and PGA for linear dynamic analysis. Left panels refer to the standardized

space in which the random variables dispersion are represented, while the those on

the right regard to normal space. In general, for each panel the changes in color

from red ((Z(PGA), Z(D
(j)
d )) or (PGA,D

(j)
d )) to green ((Z(PGA) + Ē, Z(D

(j)
d )) or

(mPGA,D
(j)
d )) describe the correlation improvement in order to produce low variance

for the conditional stochastic variables.

Figure 5.32 shows the normalized histogram (estimated PDF) and the �rst four

statical moments from samples of the original intensity measures IM1 = PGA (left

panel) and its modi�ed version mIM1 = mPGA (right panel). Comparing the two

probability distribution estimates, it is not shown signi�cantly change.

The results are now shown by considering the system response process assuming
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Figure 5.33: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(PGA), Z(D

(1,l)
d )) red dots, (Z(PGA)+ Ē, Z(D

(1,l)
d )) green circles: l = 1 with ξl = 1

(left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.34: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(PGA), Z(D

(2,l)
d )) red dots, (Z(PGA)+ Ē, Z(D

(2,l)
d )) green circles: l = 1 with ξl = 1

(left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.35: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(PGA), Z(D

(3,l)
d )) red dots, (Z(PGA)+ Ē, Z(D

(3,l)
d )) green circles: l = 1 with ξl = 1

(left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.36: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(Sa(T1)), Z(D

(1,l)
d )) blue dots, (Z(Sa(T1)) + Ē, Z(D

(1,l)
d )) magenta circles: l = 1

with ξl = 1 (left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear
analysis.

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

Figure 5.37: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(Sa(T1)), Z(D

(2,l)
d )) blue dots, (Z(Sa(T1)) + Ē, Z(D

(2,l)
d )) magenta circles: l = 1

with ξl = 1 (left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear
analysis.
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Figure 5.38: Scatter plots of ns = 500 samples for three-storey plane frame,
(Z(Sa(T1)), Z(D

(3,l)
d )) blue dots, (Z(Sa(T1)) + Ē, Z(D

(3,l)
d )) magenta circles: l = 1

with ξl = 1 (left); l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear
analysis.
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Figure 5.39: Scatter plots of ns = 500 samples for three-storey plane frame,
(PGA,D

(1,l)
d ) red dots, (mPGA,D

(1,l)
d ) green circles: l = 1 with ξl = 1 (left); l = 2

with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.40: Scatter plots of ns = 500 samples for three-storey plane frame,
(PGA,D

(2,l)
d ) red dots, (mPGA,D

(2,l)
d ) green circles: l = 1 with ξl = 1 (left); l = 2

with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.41: Scatter plots of ns = 500 samples for three-storey plane frame,
(PGA,D

(3,l)
d ) red dots, (mPGA,D

(3,l)
d ) green circles: l = 1 with ξl = 1 (left); l = 2

with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.42: Scatter plots of ns = 500 samples for three-storey plane frame,
(Sa(T1), D

(1,l)
d ) blue dots, (mSa(T1), D

(1,l)
d ) magenta circles: l = 1 with ξl = 1 (left);

l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.43: Scatter plots of ns = 500 samples for three-storey plane frame,
(Sa(T1), D

(2,l)
d ) blue dots, (mSa(T1), D

(2,l)
d ) magenta circles: l = 1 with ξl = 1 (left);

l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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Figure 5.44: Scatter plots of ns = 500 samples for three-storey plane frame,
(Sa(T1), D

(3,l)
d ) blue dots, (mSa(T1), D

(3,l)
d ) magenta circles: l = 1 with ξl = 1 (left);

l = 2 with ξl = 1.5 (center); l = 3 with ξl = 2 (right) - nonlinear analysis.
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nonlinear behaviour. Scatter plots of ns = 500 samples in standardized representation

regard to IM1 = PGA and IM2 = Sa(T1) are reported in Figures 5.33 - 5.35 and

Figures 5.36 - 5.38 , respectively. The dispersion of (Z(IMq), Z(D
(j,l)
d )) and (Z(IMq)+

Ē, Z(D
(j,l)
d )), q = 1, 2 and j, l = 1, . . . , 3, are shown. While, the results back into

the normal space representation, i.e. (IMq, D
(j,l)
d ) and (mIMq, D

(j,l)
d ), q = 1, 2 and

j, l = 1, . . . , 3, are shown in Figures 5.39 - 5.44 . In particular, Figures 5.39 - 5.41 and

Figures 5.42 - 5.44 regard to PGA and Sa(T1), respectively.

Generalizing, for each of these �gures (Figures 5.33 - 5.44), from left to right panels

the level intensity of input process, i.e. l and associated ξl, increases.

For this case, the modi�ed intensity measure approach is used for IMq, q = 1, 2,

and m, k = 3 and, it shows good results since ρ tends to be unitary in standardized

and normal space after the correction in correlation, see green and magenta circles in

Figures 5.33 - 5.44 .

Figure 5.45 and 5.46 report the probability density function estimates and the

associated �rst four statical moments before (left panels), i.e IMq, q = 1, 2, and after

the correlation improvement (right panels), mIMq, q = 1, 2. In particular, Figure 5.33

refers to PGA and its modi�ed version mPGA, instead Figure 5.46 to Sa(T1) and

mSa(T1). It is possible to see how the modi�ed intensity measure PDFs not change

substantially in reference to the those of original IMs.

5.4.2 Fragility analysis

In this present subsection, the fragility analysis results obtained using the procedure

in Section 3.6 with original and modi�ed intensity measures for the case of the three-

storey plane frame with both linear and nonlinear behaviour are presented.

Previous de�nitions of mIMq, q = 1, 2, (Subsection 5.4.1) allow to decrease the

dispersion on the system demand parameters (e�cient IMs), and consequently the
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Figure 5.45: Estimated PDF for ns = 500 samples of PGA (left panel) and mPGA
(right panel) computed with m = 3 and k = 3.
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(right panel) computed with m = 3 and k = 3.
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Figure 5.47: Fragilities against intensity level ξ for di�erent de�nitions of IMs and its
modi�ed version mIMs for three-storey plane frame assuming limit state D̄(j)

d = 3 cm,
j = 1, . . . , 3, and considering: #1 storey (left); #2 storey (center); #3 storey (right) -
linear analysis.

development of more accurate fragilities respect to those obtained by original intensity

measures are evaluated. This aspect is clear considering the less variance which have

the conditional random variables demand parameter given mIMs for linear/nonlinear

system behaviour. Figure 5.47 reports fragility curves by ns = 500 samples of spectra-

compatible stochastic process A(t) considering the demand parameter at #1 storey

D
(1)
d (left panel), at #2 storey D

(2)
d (center) and at #3 storey D

(3)
d (right), for linear

analysis. Limit states for each storey D̄
(j)
d = 3 cm, j = 1, . . . , 3, are considered. Dotted

red, dash-dotted green and continuous blue curve regards to PGA, mPGA and Sa(T1),

respectively.

Fragility function for modi�ed version of Sa(T1) is not developed since the original

one, i.e. Eq. (3.13), does not require the dependence improvement. Instead this aspect

it is necessary for the fragility analysis for nonlinear behaviour of system.

Figures 5.48 - 5.50 show results for the fragility analysis obtained by considering
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Figure 5.48: Fragilities against intensity level ξ for di�erent de�nitions of IMs and
its modi�ed version mIMs for three-storey plane frame at #1 storey assuming limit
state D̄

(1)
d = 3 cm - nonlinear analysis.
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Figure 5.49: Fragilities against intensity level ξ for di�erent de�nitions of IMs and
its modi�ed version mIMs for three-storey plane frame at #2 storey assuming limit
state D̄

(2)
d = 3 cm - nonlinear analysis.
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Figure 5.50: Fragilities against intensity level ξ for di�erent de�nitions of IMs and
its modi�ed version mIMs for three-storey plane frame at #3 storey assuming limit
state D̄

(3)
d = 3 cm - nonlinear analysis.
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the nonlinear system behaviour with ns = 500 samples of A(t) which are scaled with

IMq and mIMq, q = 1, 2, (see Section 3.6). In particular, Figure 5.48 , 5.49 and 5.50

refer to #1 storey D
(1)
d , #2 storey D

(2)
d and #3 storey D

(3)
d , respectively. Morever,

the dotted red, dash-dotted green, continuous blue and dashed magenta line regard to

PGA, mPGA, Sa(T1) and mSa(T1), respectively.

In any case, for both linear and nonlinear analysis, the evaluated fragilities with

mIMq provide best information on the seismic performance of the system. This is

clear if they are compared with those obtained by IMq, q = 1, 2. The improvement in

dependence (correlation) produces a lower aleatory uncertainties in fragility analysis

and this suggests that the modi�ed intensity measure approach determine e�cient

IMs.



Chapter 6
Fragility analysis accuracy

improvement for complex real

systems

6.1 Introduction

The present chapter represents one of the main contributions for this thesis work in

which the fragility analysis is developed for an complex real multi-degree of freedom

structural system. A severely damaged school struck by the 2016 earthquake in Um-

bria, Italy is selected. This structure is equipped with a continuous monitoring system

and its structural model consists in a linear/nonlinear dynamic system with a large

number of degrees of freedom. Fragility analysis improvement is provided by the ap-

proach of the modi�ed intensity measure introduced in Section 4.4 . It is demonstrated

the e�ectiveness of this novel methodology for complex real system.

Several intensity measure de�nitions usually used in PBEE are investigated and

the in�uence of them to produce fragility function are shown. For some of them, the

developed fragilities are compared with those obtained from their modi�ed intensity

107
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measure versions.

Samples of spectra-compatible stochastic process in Subsection 2.4.1, inherent with

the local seismic hazard of the building school site, are taken into account as inputs for

the FE Model. Moreover, experimental data provided by the continuously monitoring

system are used to calibrate a non-stationary stochastic process (see Subsection 2.4.2)

able to produce samples of ground motion acceleration time series.

6.2 The school in Norcia, Italy

The Norcia building school dates back to the early 1960s, its structural system is a

reinforced concrete 3D frame with a bracing system made of axial nonlinear dampers

and it is founded on inverse beams. Particulars of the structure geometry is reported

in Figures 6.1 - 6.2 , in which the dimensions are expressed in meters. The building

has a rectangular footprint, 59.8m x 12.8m (Figure 6.1 ). The total height is about

16.1m. In particular, the elevated structure consists of four �oors, three raised storey,

the underground basement and a garret (Figure 6.2 ).

Since 2011 through a seismic adjustment intervention the bracing dissipative system

have been installed. This last, it consists by dissipative Buckling-Restrained Axial

Dampers (BRADs) which are installed with metal plates connected on the reinforced

concrete frame system. The installation concerns a number of 24 dissipative elements

on the ground �oor and 16 on the �rst and second �oors. In particular, a total of

32 and 24 dissipative elements work in x and y direction, i.e. long and short side,

respectively (Figure 6.1).

The building as a whole has good elevation regularity. However, in plan it is possible

to identify only one symmetry axis in the transverse direction, i.e. y-direction (see

Figure 6.1 ). This aspect determines a clear di�erence in resistance capacity in the two

main directions when the structural system is subjected by horizontal actions, e.g. the
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earthquake.

Figure 6.1: Building plan view.

Figure 6.2: Building cross sections.

The motivation of choice this building is two fold. First, the school is continu-

ously monitored by the Italian National Seismic Observatory using a number of ac-

celerometers: one tri-axial accelerometer on the ground and 10 uni-axial and bi-axial

accelerometers on the three upper building �oors for a total of 18 synchronized time

history measurements of the structural response and seismic input. Figure 6.3 shows

the building continuously monitoring system scheme.

Second, the structure was severely damaged on the external cladding and on the

non-structural internal walls by the 2016 seismic sequence, while the main resiting

structure experiences a good behavior with irrelevant damage because it was equipped
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Figure 6.3: Building continuously monitoring system scheme.

with the dissipative bracing system.

This school represents a reference for a series of benchmarks studies in Italy because

of the signi�cant amount of available data before, during, and after the major seismic

tremor.

6.2.1 Seismic acceleration ground motion stochastic processes

Norcia is situated in an area with high seismicity, the 2016 earthquake demonstrates the

hazard to which this geographical area is exposed. Fragility analysis requires accelero-

grams consistent with the geological properties of a site on which a civil construction

stands in order to determine the expected seismic performance.

To represent the local seismic hazard for the site of Norcia building two kind of

ground acceleration stochastic processes are taken into account to developing the nu-

merical analysis. More speci�cally, these two types of inputs are reported below.
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Spectra-compatible stochastic process

Arti�cial spectrum-compatible accelerograms are normally used to describe the local

seismic hazard [130�134]. This practice is widespread, especially when adequately rep-

resentative natural accelerograms are not available. However, the compatibility spec-

trum does not have any physical sense, but only has a normative reference character,

e.g. Eurocode (EC8).

In reference to the current Italian technical construction regulations (NTC 2018),

seismicity is mapped as a grid on the Italian area, where for each of its node, the

informations are provided to evaluate the pseudo-acceleration response spectrum Sa(T ).

Then, the Sa(T ) is the reference for design and veri�cation for civil structures.

Consider the procedure in Subsection 2.4.1 , the spectra-compatible stochastic pro-

cess A(t) are calibrated in order that its acceleration time series samples are consistent

with the technical regulations about the Norcia school site. Figure 6.4 reports one of

the ns = 500 samples of the A(t), i.e. a(t), computed by Equation (2.76) considering

a total length of 60 s. In the modulation function, Eq. (2.77) , t1 and Ts have been set

as 6 and 10 seconds.

The pseudo-acceleration response spectrum Sa(T ) (see Eq. (2.38)) by the accelero-

metric time history, i.e. a(t) in Figure 6.4 , is shown in Figure 6.5 considering the

damping ratio ζ = 5%.

The set of the ns = 500 samples of A(t) is de�ned as the spectra-compatible ac-

celerograms since the mean spectrum estimated by them, black line in Figure 6.6 ,

is at least equal to ninety percent of the NTC 2018 standard reference in the pe-

riod range of 0 − 2 s. In Figure 6.6 the blue and magenta line regard to the NTC

2018 pseudo-acceleration response spectrum for the Norcia school site and its ninety

percent spectrum, respectively. The result in Figure 6.6 validates the concept of the
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Figure 6.4: One sample of the spectra-compatible stochastic process consistent with
the Norcia school site.
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Figure 6.5: Pseudo-acceleration response spectrum by the accelerometric time history
in Figure 6.4 , assuming ζ = 5%.

spectra-compatibility for the ns = 500 acceleration ground motion time series of A(t).

Then, these accelerometric samples can be used to perform dynamic analysis describing

seismic hazard for the site under consideration (i.e. Norcia school) inherent with the

regulations.



6.2 The school in Norcia, Italy 113

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Mean spectrum

NTC 2018

90% of NTC 2018

Figure 6.6: Pseudo-acceleration response spectra for ζ = 5%: mean spectrum of
ns = 500 samples of the spectra-compatible stochastic process; NTC 2018 reference for
Norcia school site; 90% of NTC 2018 reference for Norcia school site.

Non-stationary stochastic process

A consolidated practice in seismic engineering, when experimental records of earth-

quakes in a speci�c site are available, is to use analytical models calibrated by experi-

mental data for the simulation of arti�cial accelerograms [34, 135�137]. This guarantees

to represent the speci�c characteristics of the local seismic activity.

The strong event recorded in Norcia on October 30th, 2016 by the continuous mon-

itoring system of the school building, i.e. Figure 6.3 , is used to calibrate the stochastic

non-stationary process A(t). Both, the two horizontal component of the triaxial ac-

celerometer at the base of the Norcia school (Figure 6.3), i.e. the AC01 -1 and AC01 -2

channels, are taken into account in order to de�ne the non-stationary stochastic process

in x-direction and y-direction, Ax(t) and Ay(t), respectively. The procedure in Sub-

section 2.4.2 is used to calibrate Ax(t) and Ay(t) to de�ne A(t) = {Ax(t);Ay(t)}, i.e.

A(t) is stochastic process with independent components, that acts in x and y global
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Figure 6.7: Event recorded in Norcia on October 30th, 2016 by the continuous mon-
itoring system of the school building (Figure 6.3): x component by AC01 -1 channel
(left panel); y component by AC01 -2 channel (right panel).
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Figure 6.8: Local variance of x component in left of Figure 6.7 (left panel) and of y
component in right of Figure 6.7 (right panel).
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Figure 6.9: Evolutionary spectral density of x component in left of Figure 6.7 (left
panel) and of y component in right of Figure 6.7 (right panel).

direction.

Figure 6.7 reports the two horizontal components of the reference experimental

seismic event recorded in Norcia on October 30th, 2016 by the continuous monitoring

system (Figure 6.3). In this �gure, the left panel regard to the x component by AC01 -1

channel used to calibrated the Ax(t) process, while in the right panel, the y component

by AC01 -2 channel is shown and, than it is used to calibrated the Ay(t) process. The

calibration procedure is developed by considering the local variance of the x and y com-

ponent in the left and right of the Figure 6.8, respectively. The estimated spectrogram

of x and y component, i.e. evolutionary spectral density for these two components, in

Figure 6.9 demonstrate a variation of the frequency content with time.

The assumed evolutionary spectral density model for Ax(t) and Ay(t) is shown in

left and right of Figure 6.10 .

Arti�cial acceleration time series samples of Ax(t) and Ay(t) are generated by Equa-

tion (2.92) in order to describe the statistical variability of the strong event of Norcia
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Figure 6.10: Evolutionary spectral density model for Ax(t) (left) and Ay(t) (right).

on October 30th, 2016. Figure 6.11 reports one of the ns = 500 samples of the Ax(t)

and Ay(t), i.e. ax(t) and ay(t), on the left and right, respectively.
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Figure 6.11: One sample of the simulated non-stationary stochastic process: ax(t) of
Ax(t) (left); ay(t) of Ay(t) (right).

The A(t) = {Ax(t);Ay(t)} process is able to represent the local seismic hazard

about the Norcia school site, therefore thus, it is can be used to develop dynamic
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analysis in order to study the probabilistic response of this building.

6.2.2 Numerical model and dynamic analysis

Standard beam elements are used to model the reinforced concrete frame and the

foundation grid (Figure 6.12). The bracing system is used in both x and y directions.

Linear and nonlinear dynamic analyses are performed to obtain estimates of the struc-

tural response to virtual samples of the ground acceleration processes in Subsection

6.2.1. In particular, samples of the A(t) process in Subsection 6.2.1 are used to develop

unidirectional analysis according to the scheme in Figure 6.13. While, the A(t) in

Subsection 6.2.1 is used for bidirectional analysis according to Figure 6.14.

Figure 6.12: 3D numerical FE model of Norcia school building.

Standard truss elements are used for the bracing system in the linear analyses, while

nonlinear link elements are used to model the dissipative BRADs, which are described

by using the model in [25]. Since the model has a limited number of nonlinear elements,

only given by the bracing system, the Fast Nonlinear Analysis (see Subsection 2.3.4)

is e�ciently used for the response evaluation. Figure 6.15 and Table 6.1 report �ve
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signi�cant mode shapes, natural periods and participant masses of the obtained FE

model.

Figure 6.13: Unidirectional earthquake application and selected nodes.

Figure 6.14: Bidirectional earthquake application and selected nodes.

A more speci�c representation of Equation (3.11), can be used to evaluate the
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Table 6.1: FE model modal parameters of Norcia school building.

Modal shape Period Participant mass

# [s] x y z
1 0.348 0.571 0.001 5.6e-7
2 0.289 0.065 0.074 3.0e-5
3 0.267 0.004 0.607 6.0e-5
4 0.119 0.091 3e-5 1.6e-8
8 0.09 1.8e-4 0.099 2.0e-6

Figure 6.15: FE model mode shapes of Norcia school building.
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Figure 6.16: Plan displacement response time histories u(t) = {ux(t);uy(t)} at nodes
#1, #2, and #3 for earthquake directions x, α = 0◦, (top panels) and y, α = 90◦,
(bottom panels).

system demand parameters as

D(j) = max
0⩽t⩽τ

|h(j)(X(t))| , j = 1, . . . ,m (6.1)

where τ is the time length of the ground acceleration stochastic process, m is the total

number of demand parameters of interest and h(j)(·) is a function that mapping the

response X(t) into the j-th demand parameter of interest to de�ne:

� the maximum absolute displacement random vector Dd = {D(1)
d , . . . , D

(m)
d };

� the maximum absolute acceleration random vector Da = {D(1)
a , . . . , D

(m)
a };

� the drift random vector Ddr = {D(1)
dr , . . . , D

(m)
dr }.

For nonlinear dynamic analysis, considering di�erent input level intensity number

l and the corresponding level coe�cient ξl, i.e. scaling the input stochastic pro-

cess by ξl, the Eq. (6.1) can used to de�ne the demand parameter random vector
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D
(l)
r = {D(1)

r , . . . , D
(m)
r }, r = d, a, dr, to investigate the dependence with IMs at pre-

�xed l. In the case of apex l omission, it means that the ground acceleration stochastic

process is not scaled (l = ξl = 1). This is always found for linear analysis results, but

for those nonlinear too.

The demand parameters for the school structural system are estimated according

to unidirectional dynamic analysis as follows:

1. ns = 500 spectra-compatible samples a(t) of the process A(t) in Subsection 6.2.1

are applied in x or y-direction, i.e. α = 0◦ or α = 90◦, (Figure 6.13);

2. linear and nonlinear time domain numerical dynamic structural analyses are used

to obtain response samples x(t) of X(t) assuming proportional damping ratio

ζ = 5%;

3. displacement, Dd, and acceleration, Da, are estimated using Equation (6.1) with

m = 3 (Figure 6.13).

Figure 6.16 reports the plan displacements u(t) = {ux(t);uy(t)} time histories of

nodes #1, #2 and #3 for the same spectra-compatible acceleration sample in the build-

ing x-direction, α = 0◦, (top panels) and y-direction, α = 90◦ (bottom panels)(Figure

6.13). As expected from the results in Figure 6.15 and Table 6.1, modes #1 and #3

play the main role in the response of the selected nodes. Furthermore, it is clear that

the structural centers of mass and sti�ness are aligned in the building x-direction, while

they are eccentric in the y-direction.

In a conceptually similar way, the demand parameters for the school structural

system are estimated by bidirectional dynamic analysis as:

1. ns = 500 virtual acceleration samples ax(t) and ay(t) of the process A(t) =

{Ax(t);Ay(t)} in Subsection 6.2.1 are applied in x and y-direction (Figure 6.14);
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2. linear and nonlinear time domain numerical dynamic structural analyses are used

to obtain response samples x(t) of X(t) assuming proportional damping ratio

ζ = 5%;

3. displacement, Dd, and acceleration, Da, are estimated using Equation (6.1) with

m = 12 (Figure 6.14); drift, Ddr, is estimated using Equation (6.1) with m = 3,

where its components refer to the drift at each �oor in elevation considering the

same earthquake application scheme in Figure 6.14.

6.3 Dependence between demand parameters and in-

tensity measures

In this Section, scatter plots and relative correlation coe�cients ρ are used to give

information on the dependence between demand parameters D and the IMs de�ned

in Equations (3.12)-(3.16). Consider the spectra-compatible samples a(t) of the pro-

cess A(t) (Subsection 6.2.1), for each of these the PGA is computed together with

the pseudo-acceleration response spectra Sa(T, ζ), ζ = 5% and Ih, to obtain sam-

ples of the random variables PGA, Sa(T1, ζ1), Sa(T3, ζ3), Ih and S∗(T1, ζ1, C, α), with

ζ1 = ζ3 = 5%. The ordinates of Sa(T, ζ) are selected at �rst structural system period

T1, i.e. Eq. (3.13), since the �st modal shape plays a fundamental role in the structural

response. This is a practice in seismic engineering, such as in [74, 95, 96]. However the

third modal shape contributes greatly (Table 6.1), therefore ordinates of Sa(T, ζ) are

selected also at third period T3 (Eq. (3.14)).

Figures 6.17 - 6.24 show scatter plots of ns = 500 samples of the demand parameter

D and the selected IMs at node #2 in Figure 6.13 for linear and nonlinear analyses.

The x-axis reports the intensity measures IM1, IM2, IM3, IM4 and IM5 from the left
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Figure 6.17: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #2 - linear analy-
sis.
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Figure 6.18: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #2 - linear anal-
ysis.
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Figure 6.19: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #2 - linear analy-
sis.
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Figure 6.20: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #2 - linear anal-
ysis.
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Figure 6.21: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #2 - nonlinear analy-
sis.
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Figure 6.22: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #2 - nonlinear anal-
ysis.
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Figure 6.23: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #2 - nonlinear analy-
sis.
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Figure 6.24: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #2 - nonlinear anal-
ysis.
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panel to the right, respectively. The y-axis reports the demand parameters Ddx, Ddy,

Dax, Day, i.e. maximum displacement in the x, y direction and peak acceleration in x,

y direction (Figure 6.13). The estimated correlation coe�cient, ρ, between the demand

parameter D and intensity measure IMi, i = 1, . . . , 5 is also reported in each panel.

Same typology results for node #1 and #3 (Figure 6.13), are shown in Figures A.1 -

A.8 and Figures A.9 - A.16 in Appendix A, respectively.

In a conceptually similar way, by considering the non-stationary process A(t) =

{Ax(t);Ay(t)} in Subsection 6.2.1, from the samples an(t) of An(t), n = x, y, the PGA

and Sa(T, ζ), ζ = 5%, and Ih are computed. The purpose is to evaluate samples of the

stochastic variables PGAn, San(T1, ζ1), San(T3, ζ3), Ihn and S∗
n(T1, C, α), n = x, y and

ζ1 = ζ3 = 5%.

Scatter plots of ns = 500 samples of D and the selected IMs at node #9 in Figure

6.14 (same location of #2 in Figure 6.13) for linear and nonlinear analysis are shown

in Figures 6.25 - 6.32. In the x-axis, the intensity measures IM1n, IM2n, IM3n, IM4n

and IM5n, n = x, y, are reported from left to right panels. While, the y-axis reports

the demand parameters Ddx, Ddy, Dax, and Day in x and y direction (Figure 6.14). In

each panel, the correlation coe�cient between D and IMin, i = 1, . . . , 5 and n = x, y,

are reported in right bottom. The results for other nodes (Figure 6.14) are reported

in Figures B.1 - B.88 in Appendix B. While, Figures B.89 - B.100 report results about

the demand parameter Ddr at each �oor in elevation for both x- and y-direction.

The scatter plots in these �gures con�rm that IM1 = PGA/IM1n = PGAn, n =

x, y, commonly used in the past in PBEE, contains very little information about the

ground motion and it is weakly dependent with the structural response in all cases (e.g.

left panel of Figures 6.17 - 6.24/Figures 6.25 - 6.32). Furthermore, the IMs based on

single/multiple ordinates of the pseudo-acceleration spectrum Sa(T ) are generally weak

predictors of the seismic performance of MDOF linear and nonlinear structures.
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Figure 6.25: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #9 - linear analysis.
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Figure 6.26: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #9 - linear analysis.
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Figure 6.27: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #9 - linear analysis.
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Figure 6.28: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #9 - linear analysis.
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Figure 6.29: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #9 - nonlinear analysis.
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Figure 6.30: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #9 - nonlinear analysis.
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Figure 6.31: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #9 - nonlinear analysis.
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Figure 6.32: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #9 - nonlinear analysis.
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Indeed, it is clear, when considering the second panel from the left of Figures 6.17

- 6.20/Figures 6.25 - 6.28 (linear analysis), that the spectral acceleration at the �rst

structural natural period, IM2 = Sa(T1)/IM2n = San(T1), n = x, y, can be both

strongly and weakly correlated with the demand parameter depending on the selected

response, i.e. x-, y- displacements or accelerations, and earthquake direction. Sim-

ilar �ndings can be observed in the system response at di�erent node locations (see

Appendix A and B). This means that the �rst mode spectral acceleration, can be an

inaccurate index even for linear structures. The 2nd panels from the left of Figures

6.21 - 6.24 and Figures 6.29 - 6.32 show a similar trend so that Sa(T1) can be inaccurate

for nonlinear MDOF, con�rming what was already reported in [113].

The middle panel of Figures 6.18 and 6.20 (similarly for Figures 6.26 and 6.28)

show that the spectral acceleration at the third structural natural period, IM3 = Sa(T3)

(IM3y = Say(T3)), can be informative of the ground motion since the selected responses

seem to be dependent on this IM for the linear structural model. This result is strictly

related to the system modal properties described in Table 6.1 . Figures 6.22 and 6.24

(Figures 6.30 and 6.32) also con�rm for nonlinear analysis this achievement since the

nonlinearity elements (BRADs) are installed more in the x direction. This causes less

nonlinearity in the y direction to be activated.

Similar trends are observed for IM4 and IM5 (IM4n and IM5n, n = x, y) in second

and �rst panel from right of Figures 6.17 - 6.24 (Figures 6.25 - 6.32). In general,

the demand parameter D selected in these scatter plots has poor dependence on the

Housner intensity, Eq. (3.15), sometimes comparable with the dependence obtained by

considering IM1 (IM1n, n = x, y) as intensity measure. The scatter plots with IM5

(IM5n, n = x, y) closely follow the trends of the corresponding IM2 (IM2n, n = x, y).

This was expected because Equation (3.16) is a function of Equation (3.13) [110]. The

correlation coe�cients estimated by D and IM5 (IM5n, n = x, y) are generally lower

than those obtained with IM2 (IM2n, n = x, y).
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In addition, it would seem that the use of non-stationary accelerograms, rather the

spectra-compatible, give better results in terms of dependence between D and IM ,

i.e. highest value of ρ (e.g. Figures 6.17 - 6.24 and Figures 6.25 - 6.32). This aspect

encourages the use of non-stationary accelerograms to develop the fragility analysis for

Norcia school building in the following. In any case, for both the results of dynamic

analysis by non-stationary and spectra-compatible accelerograms, it shows evident as

the earthquake direction in�uences the dependence between D and the di�erent IMs.

Finally, the results in Figures 6.17 - 6.32 (as in Appendix A and B) are consistent

with the �ndings in [15]. First, for nonlinear analysis, the dependence between demand

parameters and IMs decreases with the earthquake intensity. Second, when a mode j

is dominant for the selected demand parameter, then the dependence between D and

the spectral acceleration at the corresponding natural period Sa(Tj) is stronger than

dependence between D and other spectral acceleration Sa(Ti), for i ̸= j.

6.4 Dependence improvement

As discussed extensively in this research work, an improvement in dependence be-

tween the structural demand parameter D and the intensity measure IM results in

an accuracy of the fragility analysis by providing a much better estimation for the

structural system seismic performance. A tool that requires onerous calculation such

as the construction of fragility curves must ultimately be able to produce strong and

reliable results. Following this concept the modi�ed intensity measure algorithm in

Section 4.4 is applied to increasing the dependence between D and selected IMs for

linear/nonlinear MDOF real complex structural system, such as the Norcia school.

The modi�ed intensity measure methodology is applied assuming for the school
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model:

� linear behaviour, demand parameter Ddn = {Dd
(1)
n , . . . , Dd

(12)
n } and Ddrn =

{Ddr
(1)
n , Ddr

(2)
n , Ddr

(3)
n }, n = x, y, computed by Eq. (6.1) with m = 12 and m = 3,

respectively;

� nonlinear behaviour, demand parameterDd
(l)
n = {Dd

(1,l)
n , . . . , Dd

(12,l)
n } andDdr

(l)
n =

{Ddr
(1,l)
n , Ddr

(2,l)
n , Ddr

(3,l)
n }, n = x, y and l = 1, 2, 3 (ξl = 1, 1.5, 2), computed by

Eq. (6.1) with m = 12 and m = 3, respectively.

The Equations (3.12) and (3.13) are selected as intensity measures being normally

the most used in PBEE. Since the previous dependence study, i.e. Section 6.3, shows

the high variability of the correlation between D and several IMs, and particularly the

inadequacy of PGA and Sa(T1) to be an e�cient IMs, the modi�ed intensity measure

approach can be a e�ectiveness way to solve the weak dependence problem for the

linear/nonlinear MDOF complex structural system.

Let consider the following way to proceed. First, samples of the demand parameter

and the selected IM are transformed into standardized versions by Equations (4.3)

and (4.4), respectively. Second, the distance from perfect correlation is evaluated using

Equation (4.5). Third, the ns average distances are evaluated by Eq. (4.6) and are

collected in the vector Ē. Fourth, samples of Ē are used to correct the standardized

samples of the selected IM , i.e. z(im), in order to compute samples of the modi�ed

intensity measure mIM by Equation (4.7).

6.4.1 Linear behaviour

Figures 6.33 and 6.34 report the obtained results by linear analysis for the intensity

measures IM1n = PGAn and the maximum absolute displacement Ddn, n = x, y,

at node #9 (Figure 6.14), i.e. Ddn = Dd
(j)
n , j = 9 and n = x, y. In particular

the left panels show the scatter plots and the correlation coe�cients before and after
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Figure 6.33: Scatter plots of ns = 500 samples at node #9: (Z(PGAx), Z(Ddx))
red dots, (Z(PGAx) + Ēx, Z(Ddx)) green circles (left panel); (PGAx, Ddx) red dots,
(mPGAx, Ddx) green circles (right panel) - linear analysis.
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Figure 6.34: Scatter plots of ns = 500 samples at node #9: (Z(PGAy), Z(Ddy))
red dots, (Z(PGAy) + Ēy, Z(Ddy)) green circles (left panel); (PGAy, Ddy) red dots,
(mPGAy, Ddy) green circles (right panel) - linear analysis.

(red and green) the correction in the standardized space, i.e. (Z(IM1n), Z(Ddn)) and

(Z(IM1n) + Ēn, Z(Ddn)), n = x, y, respectively. While, the right panels report the

scatter plots (before and after the correction) linearly transformed back into their

original space representation by Equation (4.7), i.e. (IM1n, Ddn) and (mIM1n, Ddn),

n = x, y, respectively.

Analogous results for the other demand parameters, Ddn = Dd
(j)
n , j = 4, 7, 10

and n = x, y, are shown in Figures B.101 - B.106. Considering for node #9 the

computed ns = 500 samples of the distance from the perfect correlation (Eq. (4.5)),



132 Fragility analysis accuracy improvement for complex real systems

-3

-2

-1

0

1

2

50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

Figure 6.35: Computed distances of ns = 500 samples at node #9 considering Ddx

and PGAx: distance from the perfect correlation eix versus average distance ēix, i =
1, . . . , ns (top panel); di�erence eix− ēix, i = 1, . . . , ns (bottom panel) - linear analysis.
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Figure 6.36: Computed distances of ns = 500 samples at node #9 considering Ddy

and PGAy: distance from the perfect correlation eiy versus average distance ēiy, i =
1, . . . , ns (top panel); di�erence eiy − ēiy, i = 1, . . . , ns (bottom panel) - linear analysis.
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Figure 6.37: Scatter plots of ns = 500 samples at node #9: (Z(Sax(T1)), Z(Ddx))
red dots, (Z(Sax(T1)) + Ēx, Z(Ddx)) green circles (left panel); (Sax(T1), Ddx) red dots,
(mSax(T1), Ddx) green circles (right panel) - linear analysis.
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Figure 6.38: Scatter plots of ns = 500 samples at node #9: (Z(Say(T1)), Z(Ddy))
red dots, (Z(Say(T1)) + Ēy, Z(Ddy)) green circles (left panel); (Say(T1), Ddy) red dots,
(mSay(T1), Ddy) green circles (right panel) - linear analysis.

ein = z(ddin)− z(im1in), versus the average distance (Eq. (4.6)), ēin with m = 12 and

k = 1 (l = ξl = 1, linear analysis), i = 1, . . . , ns and n = x, y, in top panels of Figures

6.35 and 6.36 . The red dots, ēin, match with good approximation to the continuous

black line, ein. The bottom panels report the di�erence ein − ēin, i = 1, . . . , ns and

n = x, y, in yellow. The results in Figures 6.35 and 6.36 refer to n = x and n = y.

The errors, i.e. ein − ēin di�erences on the ns samples for n = x, y, experience a low

level and this produces higher correlation after the correction in Figures 6.33 and 6.34

(green circles).
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Linear analysis results in Figures 6.37 and 6.38 refer to IM2n = San(T1) and same

samples of Ddn = Dd
(j)
n , j = 9 (node #9 in Figure 6.14) and n = x, y. In these �gures,

on the left panels, scatter plots and the correlation coe�cients before and after (blue

and magenta) the correction in the standardized space, i.e. (Z(IM2n), Z(Ddn)) and

(Z(IM2n) + Ēn, Z(Ddn)), n = x, y, respectively, are reported. On the right panels, the

scatter plots of (IM2n, Ddn), blue dots (before correction), and (mIM2n, Ddn), magenta

circles (after correction), n = x, y, are shown in the original space, respectively. Figures

B.107 - B.112 report the obtained results for other demand parameters of interest.

It is worth noting that, after the correlation correction mSax(T1) (Z(Sax(T1))+ Ēx)

determines less correlation with Ddx (Z(Ddx)) at node #9 (Figure 6.37). This is

attributable to the fact that the best correlation that existed at the beginning of the

correction by Sax(T1) (Z(Sax(T1))) is minimally yielded to improve that on the other

considered nodes, e.g. Figure B.107. While, the mSay(T1) (Z(Say(T1)) + Ēy) always

shows a marked improvement of the correlation with the demand parameters as in

Figure 6.38.

The computed ns = 500 samples of the distance from the perfect correlation ein =

z(ddin)− z(im2in) versus the average distance ēin (Eq. (4.6) with m = 12 and k = 1),

i = 1, . . . , ns and n = x, y, for node #9 by linear analysis are shown in the top panels

of Figures 6.39 and 6.40 . For these panels, the blue dots and the continuous black

line refer to ēin and ein, n = x, y, respectively. The bottom panels regard to ein − ēin

di�erences on the ns samples for n = x, y.

Focusing attention on Figure 6.39, the blue dots do not match very well the re-

sults provided by the continuous black line since the better previous correlation by

Z(Sax(T1)) is yielded for the improving on the other demand parameters of interest as

introduced above. For Figure 6.40, there is a good correspondence between ēiy and eiy.
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Figure 6.39: Computed distances of ns = 500 samples at node #9 considering Ddx

and Sax(T1): distance from the perfect correlation eix versus average distance ēix,
i = 1, . . . , ns (top panel); di�erence eix − ēix, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.40: Computed distances of ns = 500 samples at node #9 considering Ddy

and Say(T1): distance from the perfect correlation eiy versus average distance ēiy,
i = 1, . . . , ns (top panel); di�erence eiy − ēiy, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.41: Estimated PDF for ns = 500 samples of PGAx (left panel) and mPGAx

(right panel) computed with m = 12 and k = 1.
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Figure 6.42: Estimated PDF for ns = 500 samples of PGAy (left panel) and mPGAy

(right panel) computed with m = 12 and k = 1.

In the Figures 6.41 - 6.44 a comparison is carried out between the PDFs and �rst

four statical moments estimated of the original intensity measures IMqn, q = 1, 2 and

n = x, y, (left panels) and their modi�ed versions mIMqn (right panels). In particular,

Figures 6.41 and 6.42 refer to PGAx/mPGAx and PGAy/mPGAy, respectively, while

Figures 6.43 and 6.44 to Sax(T1)/mSax(T1) and Say(T1)/mSay(T1), respectively. The

linear transformation of which is based the modi�ed intensity measure de�nition does

not substantially change the original probability density function of an IM .



6.4 Dependence improvement 137

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

Figure 6.43: Estimated PDF for ns = 500 samples of Sax(T1) (left panel) and
mSax(T1) (right panel) computed with m = 12 and k = 1.
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Figure 6.44: Estimated PDF for ns = 500 samples of Say(T1) (left panel) and
mSay(T1) (right panel) computed with m = 12 and k = 1.

All previous obtained results refer to the modi�ed intensity measure approach in

which the demand parameters of interest (Figure 6.14) are twelve, i.e. m = 12. Similar

results are now shown for the seismic drifts Ddrn = {Ddr
(1)
n , Ddr

(2)
n , Ddr

(3)
n } (m = 3)

with n = x, y again considering a linear behavior of the system. Scatter plots of

ns = 500 samples of selected intensity measures IMqn and the maximum absolute

inter-storey displacement Ddrn, n = x, y, at 3rd storey, i.e. Ddrn = Ddr
(j)
n , j = 3 and

n = x, y, are shown in Figures 6.45 - 6.48 . The left panels refer to the standardized

space representation of the random variables in the plots, while on the right to normal
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Figure 6.45: Scatter plots of ns = 500 samples at 3rd storey: (Z(PGAx), Z(Ddrx))
red dots, (Z(PGAx) + Ēx, Z(Ddrx)) green circles (left panel); (PGAx, Ddrx) red dots,
(mPGAx, Ddrx) green circles (right panel) - linear analysis.
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Figure 6.46: Scatter plots of ns = 500 samples at 3rd storey: (Z(PGAy), Z(Ddry))
red dots, (Z(PGAy) + Ēy, Z(Ddry)) green circles (left panel); (PGAy, Ddry) red dots,
(mPGAy, Ddry) green circles (right panel) - linear analysis.
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Figure 6.47: Scatter plots of ns = 500 samples at 3rd storey: (Z(Sax(T1)), Z(Ddrx))
blue dots, (Z(Sax(T1))+ Ēx, Z(Ddrx)) magenta circles (left panel); (Sax(T1), Ddrx) blue
dots, (mSax(T1), Ddrx) magenta circles (right panel) - linear analysis.
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Figure 6.48: Scatter plots of ns = 500 samples at 3rd storey: (Z(Say(T1)), Z(Ddry))
blue dots, (Z(Say(T1))+ Ēy, Z(Ddry)) magenta circles (left panel); (Say(T1), Ddry) blue
dots, (mSay(T1), Ddry) magenta circles (right panel) - linear analysis.

space. In general, the change in color (red to green or blue to magenta) describes the

situation before and after the correlation (dependence) correction. Results for the �rst

and second storey are reported in Figures B.137 - B.142 and Figures B.139 - B.144,

respectively.

The top panels of Figures 6.49 - 6.52 show the computed ns = 500 samples of the

distance from the perfect correlation ein = z(ddrin)−z(imqin), q = 1, 2, and the average

distance ēin by Eq. (4.6) (with m = 3 and k = 1), i = 1, . . . , ns and n = x, y, for the

third storey. In the bottom, the quantities ein − ēin, i = 1, . . . , ns and n = x, y, are

reported in yellow. In Figures 6.49 and 6.50 (Figures 6.51 and 6.52), the red (blue) dots

are the distances from the perfect correlation computed by the samples of Z(PGAn)

(Z(San(T1))), n = x, y, and the continuous black line, the respective average distances.

These �gures describe satisfactory results for the two considered intensity measures.

The comparison of the probability densities and �rst four moments estimated for

the original intensity measures PGAn and their modi�ed versions mPGAn, n = x, y,

are shown in Figures 6.53 and 6.54. The PDFs of San(T1) and mSan(T1), n = x, y, are

reported in Figures 6.55 and 6.56.
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Figure 6.49: Computed distances of ns = 500 samples at 3rd storey considering
Ddrx and PGAx: distance from the perfect correlation eix versus average distance ēix,
i = 1, . . . , ns (top panel); di�erence eix − ēix, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.50: Computed distances of ns = 500 samples at 3rd storey considering
Ddrx and PGAy: distance from the perfect correlation eiy versus average distance ēiy,
i = 1, . . . , ns (top panel); di�erence eiy − ēiy, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.51: Computed distances of ns = 500 samples at 3rd storey considering
Ddrx and Sax(T1): distance from the perfect correlation eix versus average distance
ēix, i = 1, . . . , ns (top panel); di�erence eix − ēix, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.52: Computed distances of ns = 500 samples at 3rd storey considering
Ddrx and Say(T1): distance from the perfect correlation eiy versus average distance ēiy,
i = 1, . . . , ns (top panel); di�erence eiy − ēiy, i = 1, . . . , ns (bottom panel) - linear
analysis.
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Figure 6.53: Estimated PDF for ns = 500 samples of PGAx (left panel) and mPGAx

(right panel) computed with m = 3 and k = 1.
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Figure 6.54: Estimated PDF for ns = 500 samples of PGAy (left panel) and mPGAy

(right panel) computed with m = 3 and k = 1.

It is worth noting that, the modi�ed intensity measures, mIMqn, q = 1, 2 and

n = x, y, evaluate on three demand parameters of interest, i.e. m = 3, (right panels of

Figures 6.53 - 6.56) tend to have a much similar PDFs to that of the original intensity

measures IMqn (left on Figures 6.53 - 6.56 or Figures 6.41 - 6.44), rather than those

obtained from twelve demand parameters (m = 12). This aspect is inherent in the

de�nition of mIM (Eq. (4.7)).
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Figure 6.55: Estimated PDF for ns = 500 samples of Sax(T1) (left panel) and
mSax(T1) (right panel) computed with m = 3 and k = 1.
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Figure 6.56: Estimated PDF for ns = 500 samples of Say(T1) (left panel) and
mSay(T1) (right panel) computed with m = 3 and k = 1.

6.4.2 Nonlinear behaviour

The nonlinear behaviour for the school building model are considered in this subsec-

tion. Scatter plots of ns = 500 samples (before and after the correlation improvement)

for IMqn, q = 1, 2, and the maximum absolute displacement for di�erent level inten-

sity input Dd
(l)
n , l = 1, 2, 3 (ξl = 1, 1.5, 2) and n = x, y, at node #9 (Figure 6.14), i.e.

Dd
(l)
n = Dd

(j,l)
n with j = 9, are shown in Figures 6.57 - 6.64. In these �gures, from left

to right panel the level intensity of input process, i.e. l and associated ξl, increases

(ξlA(t)). In particular, Figures 6.57 and 6.59 (Figures 6.61 and 6.63) show the disper-
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Figure 6.57: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Dd
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Dd
(l)
x )) green circles at node #9: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 6.58: Scatter plots of ns = 500 samples of (PGAx, Dd
(l)
x ) red dots, (PGAx +

Ēx, Dd
(l)
x ) green circles at node #9: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel).

sion of (Z(PGAn), Z(Dd
(l)
n )) ((Z(San(T1)), Z(Dd

(l)
n ))) and (Z(PGAn) + Ēn, Z(Dd

(l)
n ))

((Z(San(T1)) + Ēn, Z(Dd
(l)
n ))), while back into the normal space representation the

Figures 6.58 and 6.60 (Figures 6.62 and 6.64) report the dispersion of (PGAn, Dd
(l)
n )

((San(T1), Dd
(l)
n )) and (mPGAn, Dd

(l)
n ) ((mSan(T1), Dd

(l)
n )), l = 1, . . . , 3 and n = x, y.

The changes in color from red to green (blue to magenta) refer to the dispersion before

and after the dependence improvement. In reference to the situation before the cor-

relation correction, i.e. red or blue dots, the dispersion increases with increasing the

intensity level ξl.
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Figure 6.59: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Dd
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Dd
(l)
y )) green circles at node #9: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 6.60: Scatter plots of ns = 500 samples of (PGAy, Dd
(l)
y ) red dots, (PGAy +

Ēy, Dd
(l)
y ) green circles at node #9: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel).
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Figure 6.61: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Dd
(l)
x )) blue dots,

(Z(Sax(T1))+ Ēx, Z(Dd
(l)
x )) magenta circles at node #9: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 6.62: Scatter plots of ns = 500 samples of (Sax(T1), Dd
(l)
x ) blue dots, (Sax(T1)+

Ēx, Dd
(l)
x ) magenta circles at node #9: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel).

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

Figure 6.63: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Dd
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Dd
(l)
y )) magenta circles at node #9: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel).
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Figure 6.64: Scatter plots of ns = 500 samples of (Say(T1), Dd
(l)
y ) blue dots, (Say(T1)+

Ēy, Dd
(l)
y ) magenta circles at node #9: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel).
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Similar results are obtained by considering other demand parameters of interest at

di�erent level intensity, i.e. Dd
(l)
n = Dd

(j,l)
n , j = 4, 7, 10, l = 1, 2, 3 and n = x, y, they

are reported in Figures B.113 - B.136.

On the top panels of Figures 6.65 - 6.76, it is possible to see the computed ns = 500

samples of the distances e
(l)
in = z(dd

(l)
in ) − z(imqin), q = 1, 2 and l = 1, 2, 3, and the

average distance ēin by Equation (4.6) considering m = 12 and k = 3, i = 1, . . . , ns

and n = x, y, for the node #9. The red (blue) dots are the average distances, ēin, and

the black line, the distances from perfect correlation computed by considering sample

of Z(Dd
(l)
n ) and Z(PGAn) (Z(San(T1))), l = 1, 2, 3 and n = x, y. The bottom panels

show the quantities e(l)in − ēin.

In general, after the correction, the correlation coe�cient ρ at the �rst panels from

left of Figures 6.57 - 6.64 (i.e. l = ξl = 1) results lower that those in second and third

panels. This is due to the fact that the correlation at l = 1 is sacri�ced to improve

the lower one at higher intensity levels (l = 2, 3). This aspect is further marked in the

Figures 6.66 - 6.67, 6.69 - 6.70, 6.72 - 6.73, and 6.75 - 6.76, where the red or blue dots

match satisfactory with the continuous black line.

Figures 6.77 and 6.78 report the probability density function and �rst four statical

moments estimated of the original intensity measure PGAn, n = x, y, (left panels) and

of their modi�ed versions mPGAn (right panels). In a respective way, the Figures 6.79

and 6.80 refer to San(T1) and mSan(T1), n = x, y, (left and right panels).
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Figure 6.65: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 1, and PGAx: distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.66: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 1.5, and PGAx: distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1.5 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.67: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 2, and PGAx: distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.68: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 1, and PGAy: distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.69: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 1.5, and PGAy: distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1.5 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.70: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 2, and PGAy: distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.71: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 1, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.

-1

-0.5

0

0.5

1

50 100 150 200 250 300 350 400 450 500

-0.4

-0.2

0

0.2

0.4

Figure 6.72: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 1.5, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1.5 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.73: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
x ,

l = 2, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.74: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 1, and Say(T1): distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.75: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 1.5, and Say(T1): distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1.5 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.76: Computed distances of ns = 500 samples at node #9 considering Dd
(l)
y ,

l = 2, and Say(T1): distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.77: Estimated PDF for ns = 500 samples of PGAx (left panel) and mPGAx

(right panel) computed with m = 12 and k = 3.
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Figure 6.78: Estimated PDF for ns = 500 samples of PGAy (left panel) and mPGAy

(right panel) computed with m = 12 and k = 3.
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Figure 6.79: Estimated PDF for ns = 500 samples of Sax(T1) (left panel) and
mSax(T1) (right panel) computed with m = 12 and k = 3.
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Figure 6.80: Estimated PDF for ns = 500 samples of Say(T1) (left panel) and
mSay(T1) (right panel) computed with m = 12 and k = 3.
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Figure 6.81: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Ddr
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Ddr
(l)
x )) green circles at 3rd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 6.82: Scatter plots of ns = 500 samples of (PGAx, Ddr
(l)
x ) red dots, (PGAx +

Ēx, Ddr
(l)
x ) green circles at 3rd storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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The seismic drifts for the three storey and di�erent intensity level Ddr
(l)
n = {Ddr

(1,l)
n ,

Ddr
(2,l)
n , Ddr

(3,l)
n } (m = 3), l = 1, 2, 3 and n = x, y, in following are considered as the

demand parameters in the modi�ed intensity measures approach. As an example of

the methodology results, Figures 6.81 - 6.88 show the scatter plots of ns = 500 samples

of the drift at 3rd storey for di�erent level ξl, i.e. Ddr
(l)
n = Ddr

(3,l)
n , l = 1, 2, 3, and

IM1n = PGAn or IM2n = San(T1), n = x, y. The Figures 6.81, 6.83, 6.85 and 6.87

report the plots in the standardized space (Equations (4.4) and (4.3), with m = k = 3),

while Figures 6.82, 6.84, 6.86 and 6.88 in normal representation. Results regard the

other storey, the �rst Ddr
(l)
n = Ddr

(1,l)
n and the second Ddr

(l)
n = Ddr

(2,l)
n , l = 1, 2, 3, are

shown in Figures B.145 - B.160.

Computed ns = 500 samples by Equation (4.5) with m = k = 3, i.e. e
(l)
in =

z(ddr
(l)
in ) − z(imqin), q = 1, 2, n = x, y and l = 1, 2, 3, and Equation (4.6), ēin for the

third storey seismic drift, are reported on the top panels of Figures 6.89 - 6.100. In

these panels the average distances in red dots are computed from samples of Z(PGAn),

n = x, y, instead the those in blue by samples of Z(San(T1)). The black lines are e
(l)
in ,

i = 1, . . . , ns and l = 1, 2, 3. For each �gure, in the bottom panel, the di�erence e(l)in−ēin

on the ns samples are shown.

The comparison of the PDFs and �rst four statical moments estimated for the sam-

ples of PGAn, n = x, y, and of the computed modi�ed intensity measures mPGAn

with m = k = 3 are reported in Figures 6.101 and 6.102, left and right panels, respec-

tively. Instead, the left panels of Figures 6.103 and 6.104 refer to the intensity measures

San(T1) and the right panels refer to their modi�ed versions mSan(T1). Once again,

it is possible to see as the probability density function of an IM is not substantially

di�erent with its modi�ed versionmIM obtain by the proposed approach in Section 4.4.
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Figure 6.83: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Ddr
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Ddr
(l)
y )) green circles at 3rd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 6.84: Scatter plots of ns = 500 samples of (PGAy, Ddr
(l)
y ) red dots, (PGAy +

Ēy, Ddr
(l)
y ) green circles at 3rd storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 6.85: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Ddr
(l)
x )) blue dots,

(Z(Sax(T1)) + Ēx, Z(Ddr
(l)
x )) magenta circles at 3rd storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure 6.86: Scatter plots of ns = 500 samples of (Sax(T1), Ddr
(l)
x ) blue dots,

(Sax(T1) + Ēx, Ddr
(l)
x ) magenta circles at 3rd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 6.87: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Ddr
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Ddr
(l)
y )) magenta circles at 3rd storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure 6.88: Scatter plots of ns = 500 samples of (Say(T1), Ddr
(l)
y ) blue dots,

(Say(T1) + Ēy, Ddr
(l)
y ) magenta circles at 3rd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure 6.89: Computed distances of ns = 500 samples at 3rd storey consideringDdr
(l)
x ,

l = 1, and PGAx: distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.90: Computed distances of ns = 500 samples at 3rd storey considering
Ddr

(l)
x , l = 1.5, and PGAx: distance from the perfect correlation ei

(l)
x versus average

distance ēix, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1.5 and

i = 1, . . . , ns (bottom panel) - nonlinear analysis.
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Figure 6.91: Computed distances of ns = 500 samples at 3rd storey consideringDdr
(l)
x ,

l = 2, and PGAx: distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.92: Computed distances of ns = 500 samples at node #9 considering Ddr
(l)
y ,

l = 1, and PGAy: distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.93: Computed distances of ns = 500 samples at 3rd storey considering
Ddr

(l)
y , l = 1.5, and PGAy: distance from the perfect correlation ei

(l)
y versus average

distance ēiy, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1.5 and

i = 1, . . . , ns (bottom panel) - nonlinear analysis.
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Figure 6.94: Computed distances of ns = 500 samples at node #9 considering Ddr
(l)
y ,

l = 2, and PGAy: distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.95: Computed distances of ns = 500 samples at 3rd storey consideringDdr
(l)
x ,

l = 1, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.96: Computed distances of ns = 500 samples at node #9 considering Ddr
(l)
x ,

l = 1.5, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 1.5 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.97: Computed distances of ns = 500 samples at node #9 considering Ddr
(l)
x ,

l = 2, and Sax(T1): distance from the perfect correlation ei
(l)
x versus average distance

ēix, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
x − ēix, l = 2 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.98: Computed distances of ns = 500 samples at 3rd storey consideringDdr
(l)
y ,

l = 1, and Say(T1): distance from the perfect correlation ei
(l)
y versus average distance

ēiy, l = 1 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1 and i = 1, . . . , ns

(bottom panel) - nonlinear analysis.
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Figure 6.99: Computed distances of ns = 500 samples at 3rd storey considering
Ddr

(l)
y , l = 1.5, and Say(T1): distance from the perfect correlation ei

(l)
y versus average

distance ēiy, l = 1.5 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 1.5 and

i = 1, . . . , ns (bottom panel) - nonlinear analysis.
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Figure 6.100: Computed distances of ns = 500 samples at 3rd storey considering
Ddr

(l)
y , l = 2, and Say(T1): distance from the perfect correlation ei

(l)
y versus average

distance ēiy, l = 2 and i = 1, . . . , ns (top panel); di�erence ei
(l)
y − ēiy, l = 2 and

i = 1, . . . , ns (bottom panel) - nonlinear analysis.
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Figure 6.101: Estimated PDF for ns = 500 samples of PGAx (left panel) andmPGAx

(right panel) computed with m = 3 and k = 3.
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Figure 6.102: Estimated PDF for ns = 500 samples of PGAy (left panel) andmPGAy

(right panel) computed with m = 3 and k = 3.
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Figure 6.103: Estimated PDF for ns = 500 samples of Sax(T1) (left panel) and
mSax(T1) (right panel) computed with m = 3 and k = 3.
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Figure 6.104: Estimated PDF for ns = 500 samples of Say(T1) (left panel) and
mSay(T1) (right panel) computed with m = 3 and k = 3.

6.5 Fragility analysis

This chapter is concluded with the results regarding the fragility analysis develop-

ment for the model of Norcia school building. The obtained fragilities, considering

linear/nonlinear model behaviour, are estimated for the chosen demand parameters

and intensity measures. For same selected intensity measures, see Section 6.4, the

modi�ed version of them is de�ned by the introduced novel approach in Section 4.4. In

following, it will be shown that the fragility analysis performed by using these modi�ed

intensity measures provide access to more accurate seismic performance informations

for real complex linear/nonlinear MDOF structural system rather the those obtained

by their original version (classical intensity measures).

Considering the Monte Carlo algorithm in Section 3.6, in a similar way the fragility

curves are estimated thought the steps below:

1. selection of a �nite set of intensity measure {ξk}, k = 1, . . . , N ;

2. consider the ns = 500 independent samples axi(t) and ayi(t), i = 1, . . . , ns, of

the non-stationary acceleration ground motion process A(t) = {Ax(t);Ay(t)} in
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Figure 6.105: Fragilities against intensity level ξ for di�erent de�nitions of IMs at
node #1: demand parameter Ddx and limit state D̄dx = 1 cm (left panel); demand
parameter Ddy and limit state D̄dy = 1 cm (right panel) - linear analysis.

Subsection 6.2.1;

3. for each of the values {ξk} scale the ns acceleration records, axi(t) and ayi(t), in

order to have the intensity level IMn = ξk, ξk > 0 and n = x, y;

4. given a pre�xed limit state value, samples of the demand parameter dnk,i, k =

1, . . . , N , i = 1, . . . , ns and n = x, y, are computed for the Norcia school model

with linear or nonlinear behaviour;

5. for each of the values {ξk} estimate fragility as in Equation (3.8).

As an example of the high variability for the fragilities by di�erent IMs, Figures

6.105 - 6.108 show the obtained curves with the intensity measures in Equations (3.12)

- (3.16). These IMs are computed for both the components of A(t) with ns = 500

samples, i.e. IMqn, q = 1, . . . , 5 and n = x, y. The previous �ve-steps algorithm with

the linear behaviour for FE model (Figure 6.12) is considered. In each of these �gures,

i.e. Figures 6.105 - 6.108, the left panels report the demand parameters in x-direction,
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Figure 6.106: Fragilities against intensity level ξ for di�erent de�nitions of IMs
at node #1: demand parameter Dax and limit state D̄ax = 1 g (left panel); demand
parameter Day and limit state D̄ay = 1 g (right panel) - linear analysis.

while the right panels those in y-direction, for the displacement or acceleration Drn,

r = d or r = a and n = x, y. In particular, Figure 6.105 (Figure 6.107) shows

the fragilities for the di�erent IMs at the node #1 (#9), see Figure 6.14 , for the

displacement Ddn, n = x, y, and the pre�xed limit state D̄dn = 1 cm (D̄dn = 2 cm).

In Figure 6.106 (Figure 6.108) the curves are again shown for the node #1 (#9), but

considering the acceleration Dan, n = x, y, and limit state D̄an = 1 g. It is di�cult to

determine which is the best intensity measure just by considering the obtained curves

in these �gures. The high variability of the fragilities depends on the selected demand

parameter D, the considered direction, i.e. x or y, and essentially it is summarized in

the considered IM to develop the fragility analysis. The dependence study in Section

6.3 helps to understand what is the best candidate IM to provide useful informations

on seismic performance.

Considering the Figures 6.25 and 6.26, the 2nd and 3rd panel from left, it is clear as

the blue curve in left panel of Figure 6.107 and the black one in the right panel of same

�gure, are the best fragilities for Ddx and Ddy, at the node #9, respectively. This is due
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Figure 6.107: Fragilities against intensity level ξ for di�erent de�nitions of IMs at
node #9: demand parameter Ddx and limit state D̄dx = 2 cm (left panel); demand
parameter Ddy and limit state D̄dy = 2 cm (right panel) - linear analysis.
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Figure 6.108: Fragilities against intensity level ξ for di�erent de�nitions of IMs
at node #9: demand parameter Dax and limit state D̄ax = 1 g (left panel); demand
parameter Day and limit state D̄ay = 1 g (right panel) - linear analysis.
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to the strong dependence between Ddx and IM2x = Sax(T1) (ρ = 0.99), and between

Ddy and IM3y = Say(T3) (ρ = 0.95), respectively. However, for the same node, but

for the acceleration Dax and Day, the blue and black curves in left and right panel of

Figure 6.108, respectively, are always the best fragilities. The correlation coe�cient

is diminished to 0.80 in 2nd panel form left of Figure 6.27, and to 0.93 in the middle

panel of Figure 6.28 .

Same considerations can be made for Ddn, n = x, y, at node #1 (Figure 6.14) and

the fragilities in Figure 6.105 to seeing the dependence with all the IMqn, q = 1, . . . , 5

and n = x, y, in Figures B.1 and B.2. While, for the Dax, the red curve on left panel of

Figure 6.106 should be selected since the dependence between Dax and IM1x = PGAx

is the highest, i.e. ρ = 0.54 in Figure B.3 . For the right panel of Figure 6.106, the

fragility in black line continues to be best choice for the demand parameter Day (see

Figure B.4).

The previous introductory examples show the di�culty to choose the best classical

intensity measure appropriate for all the demand parameter of interest in the fragility

analysis in order to access the truthful seismic performance for a complex MDOF

structural system, such as the Norcia school. Improving the dependence between a

demand parameters and selected IM can be a strategy as in Section 6.4 . In this way,

the modi�ed intensity measures are de�ned by considering the proposed approach in

Section 4.4 .

In following, results of the fragility analysis by selected original IMs and the their

modi�ed version mIMs (IMqn and mIMqn, q = 1, 2 and n = x, y) for di�erent m

number of demand parameters of interest for the Norcia model with linear/nonlinear

behaviour are shown.

Figure 6.109 shows a comparison between the obtained fragilities by the IMqn and

IMqn, q = 1, 2, ns = 500 samples, by performing linear analysis for the Ddn and

pre�xed limit value D̄dn = 2 cm at node #9, where n = x and n = y for left and
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Figure 6.109: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #9: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - linear analysis.

right panel, respectively. The dotted red and continuous blue lines refer to PGAn and

San(T1), n = x, y, and they are the same continuous red and blue lines of the Figure

6.107, respectively. While the those dash-dotted green and dashed magenta lines re-

gard to modi�ed versions mPGAn and mSan(T1), n = x, y, which are computed with

m = 12 demands parameters of interest and k = 1 number of intensity level (l = ξl = 1,

linear analysis). Best seismic performance informations are provided by the curves

associated to mIMqn, see the improvement correlation in Figures 6.33 - 6.34 and 6.37 -

6.38. In reality, paying attention on the results in left panel of Figure 6.109, the curve

by Sax(T1) describes more accurate information compared to that by mSax(T1) since

the IM2x provides a correlation coe�cient slightly larger that by mIM2x in Figure

6.37. This aspect was discussed in Section 6.3, where substantially the correlation on

this node, i.e. #9, is sold to improve that on the remaining ones of interest. Same

results typology of Figure 6.109 are show in Figure 6.110 and 6.111 by considering

D̄dn = 2.4 cm and D̄dn = 1 cm, n = x, y, respectively. Figures B.161 - B.169 report the

fragility analysis for some investigated nodes.
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Figure 6.110: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #9: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - linear analysis.
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Figure 6.111: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #9: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - linear analysis.
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Figure 6.112: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #9: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - nonlinear analysis.

Figures 6.112, 6.113 and 6.114 report the developed curves through nonlinear anal-

ysis (ns = 500) for the displacement Ddn, n = x, y, at #9, D̄dn are 2 cm, 2.4 cm and

1 cm, respectively. In these �gure, a comparison between the fragilities by the original

intensity measures IMqn, q = 1, 2 and n = x, y, and the modi�ed version mIMqn

(m = 12 and k = 3), i.e. Figures 6.77 - 6.80, are shown. Best choice between these

curves falls on those related to mIMs, the dash-dotted green and dashed magenta line,

since the stochastic variables Ddn|mPGAn and Ddn|mSan(T1) have a small variance.

In particular, seeing Figures 6.57 - 6.64, the correlation coe�cients for the di�erent

level intensity ξl computed by mIMqn, q = 1, 2 and n = x, y, are greater (equal in

some circumstances) with those obtained by IMqn. The nonlinear fragility analysis

results for some demand parameters of interest are reported in Figures B.170 - B.178.

Considering as demand parameters of the interest, the seismic drifts on the three

storey in elevation (m = 3), Figures 6.115 and 6.116 report the fragilities estimated
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Figure 6.113: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #9: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - nonlinear analysis.
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Figure 6.114: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #9: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - nonlinear analysis.
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Figure 6.115: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 3rd storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - linear analysis.
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Figure 6.116: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 3rd storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - linear analysis.
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by scaling the ns = 500 accelerograms of A(t), i.e. an(t), n = x, y, by IMqn and

mIMqn for the drift Ddrn at 3rd storey, linear analysis. Left panels refer to n = x and

those on right to n = y. Limit state for Figures 6.115 and 6.116 are D̄drn = 2 cm and

D̄drn = 1.5 cm, n = x, y, respectively. The dotted red and continuous blue lines refer

to PGAn and San(T1), instead the those dash-dotted green and dashed magenta lines

regard to modi�ed versions mPGAn and mSan(T1), n = x, y, (Figures 6.53 - 6.54 and

6.55 - 6.56). The curves computed by mIMqn provide best information on the seismic

performance since the random variables Ddrn|mIMqn, n = x, y, have small variance

(see Figures 6.45 - 6.48). Fragilities for the drift at 1st and 2nd storey are reported in

Figures B.179 - B.182.

Nonlinear results for same demand parameters, i.e. the drifts at three storey, are

developed, and in Figures 6.117 and 6.118 are show those refer to the 3rd storey.

In these �gures, the drift Ddrn, n = x, y, is considered on the left and right panel,

respectively. The pre�xed limit value in Figures 6.117 and 6.118 are D̄drn = 2 cm and

D̄drn = 1.5 cm, n = x, y. The dotted red and continuous blue curves regard to mPGAn

and mSan(T1), instead the dash-dotted green and dashed magenta ones to PGAn and

San(T1). Considering the dependence improvement in Figures 6.81 - 6.88, it is clear as

the fragilities related tomPGAn andmSan(T1), i.e. in Figures 6.117 and 6.118, provide

the best information on the seismic performance. Further results are show for the �rst

and second storey in Figures B.183 - B.186, and the same previous considerations can

be made.
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Figure 6.117: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 3rd storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - nonlinear analysis.
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Figure 6.118: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 3rd storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - nonlinear analysis.
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Chapter 7
Conclusion

In Performance-Based Earthquake Engineering (PBEE) the seismic fragilities are com-

monly estimated by the classical approach based on scaling the seismic accelerograms

with a reference intensity measure. A strong dependence is required between the de-

mand parameter of the structural system, on which the fragility analysis is based, and

the intensity measure used for scaling, in order to have accurate fragility curves. It

was demonstrated that this approach provides limited if any information on the seis-

mic performance of the structural system for weak dependence between the demand

parameter and intensity measure.

The presented work in this thesis proposes a general approach to improve the accu-

racy in fragilities estimation when the dependence between the intensity measure IM

and the structural demand parameter D is weak and the widely used method in PBEE

does not give accurate results. In particular, samples of any chosen IM are linearly

transformed in order to improve the correlation with a set of selected demand parame-

ters. The new samples can be considered as realizations of a modi�ed intensity measure

mIM and used to scale the ground acceleration records to build fragility curve that

give more accurate information on the structural system performance when compared

with that by original IM . This method can be apply for all the intensity measure

de�nitions reported in literature. The probability density function of the modi�ed
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intensity measure is not di�er substantially with that of the original.

In order to achieve these proposes, the research work is developed by six chapters.

The Chapter 1 reports a general overview on the seismic performance assessment for

civil structures, the origin of Performance-Based Earthquake Engineering, and the

main contributions of this thesis and the pursued strategy which is summarized in four

fundamental points.

In the Chapter 2, the tools used in earthquake engineering to modelling and quan-

tify are described. These last are necessary to apply a probabilistic treatment for

the seismic performance assessment since the randomness features of the earthquake

events. In particular, the probability theory and statistics, the stochastic structural

dynamic, seismic acceleration ground motion stochastic processes and the Monte Carlo

simulation are brief introduced.

The Chapter 3 reports a literature overview on the fundamental concepts regard to

the seismic fragility analysis for the structural systems. In particular, the several con-

tributions in this topic by scienti�c community are reported together to the di�erent

approaches for the derivation of the fragilities and the formulations for the approxi-

mation and estimation of these curves. Also an overview on the structural demand

parameters and the intensity measures commonly used in seismic fragility analysis are

reported. It is shown the Federal Emergency Management Agency (FEMA) algorithm

based on the Monte Carlo for the development of the seismic fragility functions.

The Chapter 4 deals the arguments with major interest in this thesis that are

focused on the role of the seismic intensity measure in fragility analysis accuracy. The

issue and the problem de�nition of the fragility functions are discussed and the novel

approach of this thesis, the modi�ed intensity measure method, is presented. It is

demonstrated, as reported in literature, that the peak ground acceleration PGA and

the pseudo-acceleration response spectrum Sa(T ) are an ine�cient and an e�cient

intensity measure, respectively, for a linear single degree of freedom structural system.

In preliminary, e�ectiveness of the modi�ed intensity measure methodology in fragility
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analysis is provided for this simple linear oscillator.

The Chapter 5 reports the fragility analysis accuracy improvement for linear/nonlinear

single or multiple degree of freedom analytical structural system. The Du�ng oscil-

lator, Bouc-Wen oscillator and a three-storey plane frame (with linear/nonlinear be-

haviour) are taken in to account. The dependence study between the system demand

parameter, maximum absolute displacement, and the commonly intensity measures

used in PBEE, i.e. PGA and the ordinate of Sa(T ) at �rst or fundamental system pe-

riod, is developed. It is concluded that the PGA and the pseudo-acceleration response

spectrum at fundamental system period Sa(T0) are an ine�cient intensity measures for

Du�ng and Bouc-Wen oscillators both. Also the peak ground acceleration is an ine�-

cient intensity measure for the three-storey plane frame for both linear and nonlinear

behaviour. The pseudo-acceleration response spectrum at �rst period Sa(T1) produces

low and high dispersion on the system demand parameter for linear and nonlinear be-

haviour, respectively. This intensity measure is e�cient and ine�cient, respectively.

For each of these analytical systems the e�ectiveness of the modi�ed intensity measure

approach is demonstrated.

In the Chapter 6, the fragility analysis accuracy improvement is provided for real

complex multi-degree of freedom structural system. The model of the school in Nor-

cia, Italy is selected as the major case study for this research work. This structural

model consists in a linear/nonlinear dynamic system with a large number of degrees

of freedom. First of all, the seismic hazard of the site is characterized by two typol-

ogy of seismic acceleration ground motion stochastic processes, and after it is shown,

the dependence study for the selected demand parameters and some seismic intensity

measures reported in literature. The maximum absolute displacement and accelera-

tion at several nodes of the model, which are the interest for the fragility analysis, are

considered as the demand parameters in the dependence understanding. High vari-

ability of these dependence is achieved for the real complex system. This variability

depends also on the seismic direction of the analysis. It is concluded that the PGA



178 Conclusion

and Sa(T1) are ine�cient intensity measures for a real complex multi-degree of freedom

structural system with linear/nonlinear behaviour. The e�ectiveness of the modi�ed

intensity measure approach is demonstrated by considering the commonly IM de�-

nitions used in PBEE and the maximum absolute displacement/inter-storey drift for

several nodes/storey of interest for the seismic performance. Moreover, the samples

of distance from the perfect correlation, between a selected demand parameter and an

intensity measure, is compared versus the average distances. The samples of average

distance is used to de�ne the modi�ed intensity measure for an original IM . These

kinds of comparison show encouraging results since the average distances match with

a good approximation to the samples of distance from the perfect correlation.

In general, for all the case studies in this thesis the dependence between a D and

the mIM version results improved, and consequentially, the obtained fragility curve

have higher accuracy to access the structural seismic performance. According to the

e�ciency requirement, the modi�ed intensity measure de�nition decreases the disper-

sion on a system demand parameter. For these reasons, the proposed approach that is

a modi�ed version of the current intensity measure method can be a valid methodology

for seismic structural performance assessment.



Appendix A
Supplementary results of

unidirectional dynamic analysis

This appendix contains further results obtained from the unidirectional dynamic analy-

sis according to Figure 6.13. The spectra-compatible samples of the process in Subsec-

tion 6.2.1 are used to develop the linear/nonlinear analysis. Dependence study between

the demand parameters and the selected intensity measures are reported.
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Figure A.1: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #1 - linear analy-
sis.
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Figure A.2: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #1 - linear anal-
ysis.
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Figure A.3: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #1 - linear analy-
sis.
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Figure A.4: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #1 - linear anal-
ysis.



181

0.4 0.5 0.6

1

1.2

1.4

1.6

1.8

2

1 1.2 1.4

1

1.2

1.4

1.6

1.8

2

1 1.2 1.4

1

1.2

1.4

1.6

1.8

2

17 18 19 20

1

1.2

1.4

1.6

1.8

2

0.8 1 1.2

1

1.2

1.4

1.6

1.8

2

Figure A.5: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #1 - nonlinear analy-
sis.
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Figure A.6: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #1 - nonlinear anal-
ysis.
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Figure A.7: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #1 - nonlinear analy-
sis.
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Figure A.8: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #1 - nonlinear anal-
ysis.
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Figure A.9: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #3 - linear analy-
sis.
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Figure A.10: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #3 - linear anal-
ysis.
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Figure A.11: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #3 - linear analy-
sis.
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Figure A.12: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #3 - linear anal-
ysis.
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Figure A.13: Scatter plots of ns = 500 samples of (PGA,Ddx), (Sa(T1), Ddx),
(Sa(T3), Ddx), (Ih, Ddx) and (S∗(T1, C, α), Ddx), α = 0◦, at node #3 - nonlinear analy-
sis.
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Figure A.14: Scatter plots of ns = 500 samples of (PGA,Ddy), (Sa(T1), Ddy),
(Sa(T3), Ddy), (Ih, Ddy) and (S∗(T1, C, α), Ddy), α = 90◦, at node #3 - nonlinear anal-
ysis.
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Figure A.15: Scatter plots of ns = 500 samples of (PGA,Dax), (Sa(T1), Dax),
(Sa(T3), Dax), (Ih, Dax) and (S∗(T1, C, α), Dax), α = 0◦, at node #3 - nonlinear analy-
sis.
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Figure A.16: Scatter plots of ns = 500 samples of (PGA,Day), (Sa(T1), Day),
(Sa(T3), Day), (Ih, Day) and (S∗(T1, C, α), Day), α = 90◦, at node #3 - nonlinear anal-
ysis.
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Appendix B
Supplementary results of

bidirectional dynamic analysis

This appendix contains further results obtained from the bidirectional dynamic analysis

according to Figure 6.14. The non-stationary samples of the process in Subsection

6.2.1 are used to develop the linear/nonlinear analysis. Dependence study between the

demand parameters and the selected intensity measures, the correlation improvement

by procedure in Section 4.4 and all the results of the fragility analysis are reported.
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Figure B.1: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #1 - linear analysis.
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Figure B.2: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #1 - linear analysis.
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Figure B.3: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #1 - linear analysis.
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Figure B.4: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #1 - linear analysis.
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Figure B.5: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #1 - nonlinear analysis.
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Figure B.6: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #1 - nonlinear analysis.
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Figure B.7: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #1 - nonlinear analysis.
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Figure B.8: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #1 - nonlinear analysis.
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Figure B.9: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #2 - linear analysis.
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Figure B.10: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #2 - linear analysis.
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Figure B.11: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #2 - linear analysis.
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Figure B.12: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #2 - linear analysis.
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Figure B.13: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #2 - nonlinear analysis.
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Figure B.14: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #2 - nonlinear analysis.
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Figure B.15: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #2 - nonlinear analysis.
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Figure B.16: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #2 - nonlinear analysis.
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Figure B.17: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #3 - linear analysis.
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Figure B.18: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #3 - linear analysis.
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Figure B.19: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #3 - linear analysis.
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Figure B.20: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #3 - linear analysis.
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Figure B.21: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #3 - nonlinear analysis.
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Figure B.22: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #3 - nonlinear analysis.
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Figure B.23: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #3 - nonlinear analysis.
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Figure B.24: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #3 - nonlinear analysis.
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Figure B.25: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #4 - linear analysis.
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Figure B.26: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #4 - linear analysis.
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Figure B.27: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #4 - linear analysis.
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Figure B.28: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #4 - linear analysis.
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Figure B.29: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #4 - nonlinear analysis.
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Figure B.30: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #4 - nonlinear analysis.
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Figure B.31: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #4 - nonlinear analysis.
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Figure B.32: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #4 - nonlinear analysis.
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Figure B.33: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #5 - linear analysis.
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Figure B.34: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #5 - linear analysis.
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Figure B.35: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #5 - linear analysis.
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Figure B.36: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #5 - linear analysis.
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Figure B.37: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #5 - nonlinear analysis.
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Figure B.38: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #5 - nonlinear analysis.
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Figure B.39: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #5 - nonlinear analysis.
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Figure B.40: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #5 - nonlinear analysis.
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Figure B.41: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #6 - linear analysis.
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Figure B.42: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #6 - linear analysis.
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Figure B.43: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #6 - linear analysis.
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Figure B.44: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #6 - linear analysis.
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Figure B.45: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #6 - nonlinear analysis.
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Figure B.46: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #6 - nonlinear analysis.
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Figure B.47: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #6 - nonlinear analysis.
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Figure B.48: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #6 - nonlinear analysis.
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Figure B.49: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #7 - linear analysis.
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Figure B.50: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #7 - linear analysis.
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Figure B.51: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #7 - linear analysis.
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Figure B.52: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #7 - linear analysis.
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Figure B.53: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #7 - nonlinear analysis.
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Figure B.54: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #7 - nonlinear analysis.
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Figure B.55: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #7 - nonlinear analysis.
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Figure B.56: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #7 - nonlinear analysis.
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Figure B.57: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #8 - linear analysis.
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Figure B.58: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #8 - linear analysis.
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Figure B.59: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #8 - linear analysis.
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Figure B.60: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #8 - linear analysis.
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Figure B.61: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #8 - nonlinear analysis.
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Figure B.62: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #8 - nonlinear analysis.
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Figure B.63: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #8 - nonlinear analysis.
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Figure B.64: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #8 - nonlinear analysis.
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Figure B.65: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #10 - linear analysis.
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Figure B.66: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #10 - linear analysis.
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Figure B.67: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #10 - linear analysis.

0.4 0.6 0.8 1

0

1

2

3

0 0.5 1

0

1

2

3

0 1 2

0

1

2

3

0 5 10 15

0

1

2

3

0 0.2 0.4 0.6

0

1

2

3

Figure B.68: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #10 - linear analysis.
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Figure B.69: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #10 - nonlinear analysis.

0.4 0.6 0.8 1

0

1

2

3

4

0 0.5 1

0

1

2

3

4

0 1 2

0

1

2

3

4

0 5 10 15

0

1

2

3

4

0 0.2 0.4 0.6

0

1

2

3

4

Figure B.70: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #10 - nonlinear analysis.
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Figure B.71: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #10 - nonlinear analysis.
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Figure B.72: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #10 - nonlinear analysis.
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Figure B.73: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #11 - linear analysis.

0.4 0.6 0.8 1

0

1

2

3

4

0 0.5 1

0

1

2

3

4

0 1 2

0

1

2

3

4

0 5 10 15

0

1

2

3

4

0 0.2 0.4 0.6

0

1

2

3

4

Figure B.74: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #11 - linear analysis.
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Figure B.75: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #11 - linear analysis.
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Figure B.76: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #11 - linear analysis.
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Figure B.77: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #11 - nonlinear analysis.
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Figure B.78: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #11 - nonlinear analysis.
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Figure B.79: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #11 - nonlinear analysis.
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Figure B.80: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #11 - nonlinear analysis.
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Figure B.81: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #12 - linear analysis.
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Figure B.82: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #12 - linear analysis.
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Figure B.83: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #12 - linear analysis.
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Figure B.84: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #12 - linear analysis.
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Figure B.85: Scatter plots of ns = 500 samples of (PGAx, Ddx), (Sax(T1), Ddx),
(Sax(T3), Ddx), (Ihx, Ddx) and (S∗

x(T1, C, α), Ddx) at node #12 - nonlinear analysis.
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Figure B.86: Scatter plots of ns = 500 samples of (PGAy, Dd), (Say(T1), Ddy),
(Say(T3), Ddy), (Ihy, Ddy) and (S∗

y(T1, C, α), Ddy) at node #12 - nonlinear analysis.
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Figure B.87: Scatter plots of ns = 500 samples of (PGAx, Dax), (Sax(T1), Dax),
(Sax(T3), Dax), (Ihx, Dax) and (S∗

x(T1, C, α), Dax) at node #12 - nonlinear analysis.
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Figure B.88: Scatter plots of ns = 500 samples of (PGAy, Day), (Say(T1), Day),
(Say(T3), Day), (Ihy, Day) and (S∗

y(T1, C, α), Day) at node #12 - nonlinear analysis.
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Figure B.89: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #1 storey - linear analysis.

0.4 0.6 0.8 1

0

0.5

1

1.5

0 0.5 1

0

0.5

1

1.5

0 1 2

0

0.5

1

1.5

0 5 10 15

0

0.5

1

1.5

0 0.2 0.4 0.6

0

0.5

1

1.5

Figure B.90: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #1 storey - linear analysis.
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Figure B.91: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #2 storey - linear analysis.
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Figure B.92: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #2 storey - linear analysis.
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Figure B.93: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #3 storey - linear analysis.
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Figure B.94: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #3 storey - linear analysis.
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Figure B.95: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #1 storey - nonlinear analysis.
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Figure B.96: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #1 storey - nonlinear analysis.
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Figure B.97: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #2 storey - nonlinear analysis.
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Figure B.98: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #2 storey - nonlinear analysis.
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Figure B.99: Scatter plots of ns = 500 samples of (PGAx, Ddrx), (Sax(T1), Ddrx),
(Sax(T3), Ddrx), (Ihx, Ddrx) and (S∗

x(T1, C, α), Ddrx) at #3 storey - nonlinear analysis.
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Figure B.100: Scatter plots of ns = 500 samples of (PGAy, Ddry), (Say(T1), Ddry),
(Say(T3), Ddry), (Ihy, Ddry) and (S∗

y(T1, C, α), Ddry) at #3 storey - nonlinear analysis.
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Figure B.101: Scatter plots of ns = 500 samples at node #4: (Z(PGAx), Z(Ddx))
red dots, (Z(PGAx) + Ēx, Z(Ddx)) green circles (left panel); (PGAx, Ddx) red dots,
(mPGAx, Ddx) green circles (right panel) - linear analysis.
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Figure B.102: Scatter plots of ns = 500 samples at node #4: (Z(PGAy), Z(Ddy))
red dots, (Z(PGAy) + Ēy, Z(Ddy)) green circles (left panel); (PGAy, Ddy) red dots,
(mPGAy, Ddy) green circles (right panel) - linear analysis.
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Figure B.103: Scatter plots of ns = 500 samples at node #7: (Z(PGAx), Z(Ddx))
red dots, (Z(PGAx) + Ēx, Z(Ddx)) green circles (left panel); (PGAx, Ddx) red dots,
(mPGAx, Ddx) green circles (right panel) - linear analysis.
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Figure B.104: Scatter plots of ns = 500 samples at node #7: (Z(PGAy), Z(Ddy))
red dots, (Z(PGAy) + Ēy, Z(Ddy)) green circles (left panel); (PGAy, Ddy) red dots,
(mPGAy, Ddy) green circles (right panel) - linear analysis.
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Figure B.105: Scatter plots of ns = 500 samples at node #10: (Z(PGAx), Z(Ddx))
red dots, (Z(PGAx) + Ēx, Z(Ddx)) green circles (left panel); (PGAx, Ddx) red dots,
(mPGAx, Ddx) green circles (right panel) - linear analysis.
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Figure B.106: Scatter plots of ns = 500 samples at node #10: (Z(PGAy), Z(Ddy))
red dots, (Z(PGAy) + Ēy, Z(Ddy)) green circles (left panel); (PGAy, Ddy) red dots,
(mPGAy, Ddy) green circles (right panel) - linear analysis.
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Figure B.107: Scatter plots of ns = 500 samples at node #4: (Z(Sax(T1)), Z(Ddx))
red dots, (Z(Sax(T1)) + Ēx, Z(Ddx)) green circles (left panel); (Sax(T1), Ddx) red dots,
(mSax(T1), Ddx) green circles (right panel) - linear analysis.
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Figure B.108: Scatter plots of ns = 500 samples at node #4: (Z(Say(T1)), Z(Ddy))
red dots, (Z(Say(T1)) + Ēy, Z(Ddy)) green circles (left panel); (Say(T1), Ddy) red dots,
(mSay(T1), Ddy) green circles (right panel) - linear analysis.

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

Figure B.109: Scatter plots of ns = 500 samples at node #7: (Z(Sax(T1)), Z(Ddx))
red dots, (Z(Sax(T1)) + Ēx, Z(Ddx)) green circles (left panel); (Sax(T1), Ddx) red dots,
(mSax(T1), Ddx) green circles (right panel) - linear analysis.
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Figure B.110: Scatter plots of ns = 500 samples at node #7: (Z(Say(T1)), Z(Ddy))
red dots, (Z(Say(T1)) + Ēy, Z(Ddy)) green circles (left panel); (Say(T1), Ddy) red dots,
(mSay(T1), Ddy) green circles (right panel) - linear analysis.
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Figure B.111: Scatter plots of ns = 500 samples at node #10: (Z(Sax(T1)), Z(Ddx))
red dots, (Z(Sax(T1)) + Ēx, Z(Ddx)) green circles (left panel); (Sax(T1), Ddx) red dots,
(mSax(T1), Ddx) green circles (right panel) - linear analysis.
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Figure B.112: Scatter plots of ns = 500 samples at node #10: (Z(Say(T1)), Z(Ddy))
red dots, (Z(Say(T1)) + Ēy, Z(Ddy)) green circles (left panel); (Say(T1), Ddy) red dots,
(mSay(T1), Ddy) green circles (right panel) - linear analysis.
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Figure B.113: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Dd
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Dd
(l)
x )) green circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.

0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

Figure B.114: Scatter plots of ns = 500 samples of (PGAx, Dd
(l)
x ) red dots, (PGAx+

Ēx, Dd
(l)
x ) green circles at node #4: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.115: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Dd
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Dd
(l)
y )) green circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.116: Scatter plots of ns = 500 samples of (PGAy, Dd
(l)
y ) red dots, (PGAy+

Ēy, Dd
(l)
y ) green circles at node #4: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.117: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Dd
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Dd
(l)
x )) green circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.118: Scatter plots of ns = 500 samples of (PGAx, Dd
(l)
x ) red dots, (PGAx+

Ēx, Dd
(l)
x ) green circles at node #7: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.119: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Dd
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Dd
(l)
y )) green circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.120: Scatter plots of ns = 500 samples of (PGAy, Dd
(l)
y ) red dots, (PGAy+

Ēy, Dd
(l)
y ) green circles at node #7: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.121: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Dd
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Dd
(l)
x )) green circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.122: Scatter plots of ns = 500 samples of (PGAx, Dd
(l)
x ) red dots, (PGAx+

Ēx, Dd
(l)
x ) green circles at node #10: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.123: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Dd
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Dd
(l)
y )) green circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.124: Scatter plots of ns = 500 samples of (PGAy, Dd
(l)
y ) red dots, (PGAy+

Ēy, Dd
(l)
y ) green circles at node #10: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.125: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Dd
(l)
x )) blue dots,

(Z(Sax(T1))+ Ēx, Z(Dd
(l)
x )) magenta circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.126: Scatter plots of ns = 500 samples of (Sax(T1), Dd
(l)
x ) blue dots,

(Sax(T1) + Ēx, Dd
(l)
x ) magenta circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.127: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Dd
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Dd
(l)
y )) magenta circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.128: Scatter plots of ns = 500 samples of (Say(T1), Dd
(l)
y ) blue dots,

(Say(T1) + Ēy, Dd
(l)
y ) magenta circles at node #4: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.129: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Dd
(l)
x )) blue dots,

(Z(Sax(T1))+ Ēx, Z(Dd
(l)
x )) magenta circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.130: Scatter plots of ns = 500 samples of (Sax(T1), Dd
(l)
x ) blue dots,

(Sax(T1) + Ēx, Dd
(l)
x ) magenta circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.131: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Dd
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Dd
(l)
y )) magenta circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.132: Scatter plots of ns = 500 samples of (Say(T1), Dd
(l)
y ) blue dots,

(Say(T1) + Ēy, Dd
(l)
y ) magenta circles at node #7: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.133: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Dd
(l)
x )) blue dots,

(Z(Sax(T1))+Ēx, Z(Dd
(l)
x )) magenta circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.134: Scatter plots of ns = 500 samples of (Sax(T1), Dd
(l)
x ) blue dots,

(Sax(T1) + Ēx, Dd
(l)
x ) magenta circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.135: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Dd
(l)
y )) blue dots,

(Z(Say(T1))+Ēy, Z(Dd
(l)
y )) magenta circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.136: Scatter plots of ns = 500 samples of (Say(T1), Dd
(l)
y ) blue dots,

(Say(T1) + Ēy, Dd
(l)
y ) magenta circles at node #10: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.137: Scatter plots of ns = 500 samples at 1st storey: (Z(PGAx), Z(Ddrx))
red dots, (Z(PGAx) + Ēx, Z(Ddrx)) green circles (left panel); (PGAx, Ddrx) red dots,
(mPGAx, Ddrx) green circles (right panel) - linear analysis.
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Figure B.138: Scatter plots of ns = 500 samples at 1st storey: (Z(PGAy), Z(Ddry))
red dots, (Z(PGAy) + Ēy, Z(Ddry)) green circles (left panel); (PGAy, Ddry) red dots,
(mPGAy, Ddry) green circles (right panel) - linear analysis.
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Figure B.139: Scatter plots of ns = 500 samples at 2nd storey: (Z(PGAx), Z(Ddrx))
red dots, (Z(PGAx) + Ēx, Z(Ddrx)) green circles (left panel); (PGAx, Ddrx) red dots,
(mPGAx, Ddrx) green circles (right panel) - linear analysis.
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Figure B.140: Scatter plots of ns = 500 samples at 2nd storey: (Z(PGAy), Z(Ddry))
red dots, (Z(PGAy) + Ēy, Z(Ddry)) green circles (left panel); (PGAy, Ddry) red dots,
(mPGAy, Ddry) green circles (right panel) - linear analysis.
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Figure B.141: Scatter plots of ns = 500 samples at 1st storey: (Z(Sax(T1)), Z(Ddrx))
blue dots, (Z(Sax(T1))+ Ēx, Z(Ddrx)) magenta circles (left panel); (Sax(T1), Ddrx) blue
dots, (mSax(T1), Ddrx) magenta circles (right panel) - linear analysis.
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Figure B.142: Scatter plots of ns = 500 samples at 1st storey: (Z(Say(T1)), Z(Ddry))
blue dots, (Z(Say(T1))+ Ēy, Z(Ddry)) magenta circles (left panel); (Say(T1), Ddry) blue
dots, (mSay(T1), Ddry) magenta circles (right panel) - linear analysis.
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Figure B.143: Scatter plots of ns = 500 samples at 2nd storey: (Z(Sax(T1)), Z(Ddrx))
blue dots, (Z(Sax(T1))+ Ēx, Z(Ddrx)) magenta circles (left panel); (Sax(T1), Ddrx) blue
dots, (mSax(T1), Ddrx) magenta circles (right panel) - linear analysis.
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Figure B.144: Scatter plots of ns = 500 samples at 2nd storey: (Z(Say(T1)), Z(Ddry))
blue dots, (Z(Say(T1))+ Ēy, Z(Ddry)) magenta circles (left panel); (Say(T1), Ddry) blue
dots, (mSay(T1), Ddry) magenta circles (right panel) - linear analysis.
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Figure B.145: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Ddr
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Ddr
(l)
x )) green circles at 1st storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.146: Scatter plots of ns = 500 samples of (PGAx, Ddr
(l)
x ) red dots, (PGAx+

Ēx, Ddr
(l)
x ) green circles at 1st storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.147: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Ddr
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Ddr
(l)
y )) green circles at 1st storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.148: Scatter plots of ns = 500 samples of (PGAy, Ddr
(l)
y ) red dots, (PGAy+

Ēy, Ddr
(l)
y ) green circles at 1st storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.



227

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

-2 0 2 4

-2

-1

0

1

2

3

4

Figure B.149: Scatter plots of ns = 500 samples of (Z(PGAx), Z(Ddr
(l)
x )) red dots,

(Z(PGAx) + Ēx, Z(Ddr
(l)
x )) green circles at 2nd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.150: Scatter plots of ns = 500 samples of (PGAx, Ddr
(l)
x ) red dots, (PGAx+

Ēx, Ddr
(l)
x ) green circles at 2nd storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.151: Scatter plots of ns = 500 samples of (Z(PGAy), Z(Ddr
(l)
y )) red dots,

(Z(PGAy) + Ēy, Z(Ddr
(l)
y )) green circles at 2nd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.152: Scatter plots of ns = 500 samples of (PGAy, Ddr
(l)
y ) red dots, (PGAy+

Ēy, Ddr
(l)
y ) green circles at 2nd storey: l = 1 with ξl = 1 (left panel); l = 2 with ξl = 1.5

(center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.153: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Ddr
(l)
x )) blue dots,

(Z(Sax(T1)) + Ēx, Z(Ddr
(l)
x )) magenta circles at 1st storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure B.154: Scatter plots of ns = 500 samples of (Sax(T1), Ddr
(l)
x ) blue dots,

(Sax(T1) + Ēx, Ddr
(l)
x ) magenta circles at 1st storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.155: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Ddr
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Ddr
(l)
y )) magenta circles at 1st storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure B.156: Scatter plots of ns = 500 samples of (Say(T1), Ddr
(l)
y ) blue dots,

(Say(T1) + Ēy, Ddr
(l)
y ) magenta circles at 1st storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.157: Scatter plots of ns = 500 samples of (Z(Sax(T1)), Z(Ddr
(l)
x )) blue dots,

(Z(Sax(T1)) + Ēx, Z(Ddr
(l)
x )) magenta circles at 2nd storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure B.158: Scatter plots of ns = 500 samples of (Sax(T1), Ddr
(l)
x ) blue dots,

(Sax(T1) + Ēx, Ddr
(l)
x ) magenta circles at 2nd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.159: Scatter plots of ns = 500 samples of (Z(Say(T1)), Z(Ddr
(l)
y )) blue dots,

(Z(Say(T1)) + Ēy, Z(Ddr
(l)
y )) magenta circles at 2nd storey: l = 1 with ξl = 1 (left

panel); l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear
analysis.
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Figure B.160: Scatter plots of ns = 500 samples of (Say(T1), Ddr
(l)
y ) blue dots,

(Say(T1) + Ēy, Ddr
(l)
y ) magenta circles at 2nd storey: l = 1 with ξl = 1 (left panel);

l = 2 with ξl = 1.5 (center panel); l = 3 with ξl = 2 (right panel) - nonlinear analysis.
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Figure B.161: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #4: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - linear analysis.
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Figure B.162: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #4: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - linear analysis.
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Figure B.163: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #4: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - linear analysis.
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Figure B.164: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #7: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - linear analysis.
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Figure B.165: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #7: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - linear analysis.
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Figure B.166: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #7: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - linear analysis.
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Figure B.167: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #10: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - linear analysis.
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Figure B.168: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #10: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - linear analysis.



235

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure B.169: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.41 - 6.44) at node #10: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - linear analysis.
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Figure B.170: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #4: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - nonlinear analysis.
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Figure B.171: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #4: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - nonlinear analysis.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure B.172: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #4: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - nonlinear analysis.
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Figure B.173: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #7: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - nonlinear analysis.
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Figure B.174: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #7: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - nonlinear analysis.
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Figure B.175: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #7: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - nonlinear analysis.
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Figure B.176: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #10: demand parameter
Ddx and limit state D̄dx = 1 cm (left panel); demand parameter Ddy and limit state
D̄dy = 1 cm (right panel) - nonlinear analysis.
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Figure B.177: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #10: demand parameter
Ddx and limit state D̄dx = 2 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2 cm (right panel) - nonlinear analysis.
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Figure B.178: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.77 - 6.80) at node #10: demand parameter
Ddx and limit state D̄dx = 2.4 cm (left panel); demand parameter Ddy and limit state
D̄dy = 2.4 cm (right panel) - nonlinear analysis.
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Figure B.179: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 1st storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - linear analysis.
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Figure B.180: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 1st storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - linear analysis.
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Figure B.181: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 2nd storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - linear analysis.
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Figure B.182: Fragilities against intensity level ξ for selected de�nitions of IMs
and their modi�ed versions mIMs (Figures 6.53 - 6.56) at node 2nd storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - linear analysis.
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Figure B.183: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 1st storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - nonlinear analysis.
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Figure B.184: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 1st storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - nonlinear analysis.
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Figure B.185: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 2nd storey: demand
parameter Ddrx and limit state D̄drx = 1.5 cm (left panel); demand parameter Ddry

and limit state D̄dry = 1.5 cm (right panel) - nonlinear analysis.
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Figure B.186: Fragilities against intensity level ξ for selected de�nitions of IMs and
their modi�ed versions mIMs (Figures 6.101 - 6.104) at node 2nd storey: demand
parameter Ddrx and limit state D̄drx = 2 cm (left panel); demand parameter Ddry and
limit state D̄dry = 2 cm (right panel) - nonlinear analysis.
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