




Abstract

The recent imaging of the M87 black hole at millimetre wavelengths by the Event Horizon Tele-
scope Collaboration has triggered a renewed interest in numerical models for the accretion of mag-
netized plasma in the regime of general relativistic magnetohydrodynamics (GRMHD). We have
investigated, for the first time by means of non-ideal axisymmetric GRMHD simulations, the mean-
field dynamo process operating in thick accretion disks around black holes, in the fully non-linear
regime. Combined with the differential rotation of the disk, the dynamo process is able to pro-
duce an exponential growth of any initial seed magnetic field up to the values required to explain
the observations,when the instability tends to saturate even in the absence of artificial quenching
effects. Before reaching the final saturation stage we observe a secondary regime of exponential
growing, where the magnetic field increases more slowly due to accretion, which is modifying the
underlying equilibrium. In the stationary state characterized by the saturation of the magnetic field
growth, the dynamo is able to remove the angular momentum and trigger the accretion. Finally,
we show that it is possible to reproduce the main diagnostics present in the literature by starting
from very unfavorable initial configurations, such as a purely toroidal magnetic field with negligible
magnetization. In parallel, we present the contribution to the code Comparison Project that aims
to compare ideal GRMHD solutions for the evolution of a magnetized accretion flow in two distinct
regimes where turbulence is promoted by the magnetorotational instability.
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Chapter 1

Introduction

The baryonic matter of the Universe is found almost entirely in the form of plasma, or ionized
gas where the moving charges interact with each other through the self-generated currents and the
related magnetic fields within a highly conductive material. The energy contained in the plasma
in terms of the magnetic field is usually comparable to the kinetic and/or thermal energy of the
plasma itself, and many violent observed phenomena are attributable to the sudden release of
magnetic energy, for example flares (Moore et al., 2001), coronal mass ejections (Antiochos et al.,
1999) small-scale heating events that maintain the high temperatures of the corona (Heyvaerts
and Priest, 1984; Longcope and Tarr, 2015) produced by magnetic reconnection, gamma-ray bursts
(Kumar and Zhang, 2015; MAGIC-Collaboration, 2019), the huge flares observed in gamma rays
in neutron stars (Thompson and Duncan, 1995; Palmer et al., 2005), the relativistic jets in active
galactic nuclei (AGN) (Asada and Nakamura, 2012; Lister et al., 2016; Walker et al., 2018; Qian
et al., 2018; Nakamura et al., 2018).

Since the Universe may not have formed magnetized, a natural question one needs to answer
is what processes can lead to a weak magnetic field, from zero initial fields. Battery-like mecha-
nisms, where separation of charges induce the presence of electric fields produced by kinetic effects
(Biermann, 1951; Weibel, 1959; Fried, 1959), are needed to create primordial extragalactic fields
(Kronberg, 1994), which may be amplified to higher values by plasma advection, rotation and col-
lapse to values appropriate for stellar magnetism (Mestel, 1999), up to B ∼ 1012 G, the field of a
standard neutron star, a value required to power the surrounding young supernova remnant, when
present, as recognized even before the actual discovery of pulsars (Pacini, 1967). Most of these bat-
teries lead to field strengths much weaker than the observed field. So some way of amplifying the
field is required. This is probably accomplished by the conversion of kinetic energy into magnetic
energy, a process generally referred to as a dynamo. The basic principles of the dynamo can be well
understood by linear theory, however, since all astrophysical dynamos develop in a regime in where
the fields are dynamically important, kinematic theory cannot be considered complete. In recent
years, our understanding of the nonlinear properties of dynamo is greatly improved. This is due
in large part to the use of new high-resolution numerical simulations that produced further steps
forward in the analytical approach.

Magnetic fields of small scale and large scale components are observed in various astrophysical
settings. While the small scale field could always be explained by turbulence and convection that
shreds and concentrates the field into isolated flux bundles, large scale components are more difficult
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Chapter 1. Introduction

to describe comprehensively from a theoretical point of view. The Sun has a large-scale magnetic
field with intensity peaks of ∼ 2 kG that manifests itself in sunspots variable in number over a
period of ∼ 11 year cycle and migrating towards the equator and the poles from the mid latitudes
but it has also a turbulent component in the deeper convection zone (Galloway and Weiss, 1981;
Stenflo, 1988, 1994; Spruit and van Ballegooijen, 1982). Cyclic variations in the magnetic field with
average intensity up to 2 kG are also observed in late-type stars who have outer convection zones
with magnetic fields whose strength tends to increase with their angular velocity (Baliunas et al.,
1995; Johns-Krull et al., 1999).
A system of gas rotating around a central object is extremely frequent in any astrophysical context.
In AGNs, Faraday rotation measure maps (Zavala and Taylor, 2003) and theoretical motivations
suggest that such environments must be magnetized. The near-horizon emission from low-luminosity
active galactic nuclei is produced by synchrotron radiation that peaks from the radio through the far
infrared and it may be produced either in the accretion flow (Narayan et al., 1995), the jet (Falcke
et al., 1993), or both (Yuan et al., 2002). These astrophysical sources have masses in the range
106 − 109M�, reside at centers of our and other galaxies and are the most powerful steady energy
sources known in the universe with their brightness can be up to 100 times greater than brightness of
an ordinary galaxy. In fact, in falling through the steep gravitational potential of supermassive black
hole (BH), roughly 10% of the accreted rest-mass energy may be converted into radiation. Thus
accretion is a process that can be considerably more efficient than many other commonly invoked
mechanism in astrophysics (e.g. nuclear fusion). To explain the high accretion rates required to
justify emissions from these high-energy sources, some physical mechanism is required to transport
angular momentum outwards. In this context, magnetic fields are the key to explain how disks can
get rid of their angular momentum through the magnetorotational instability (MRI) (Balbus and
Hawley, 1991, 1998). The presence of large-scale magnetic fields is also required to explain how
Poynting-dominated relativistic jets may be launched due to rotational energy extraction inside the
ergosphere (Blandford and Znajek, 1977; McKinney and Gammie, 2004), though even the rotation
of the disk itself is known to be able to drive centrifugally driven polar outflows (Blandford and
Payne, 1982). We observe that, while disks around protostars are formed in already magnetized
environments, in AGNs the magnetic field may either be dragged in from large radii or it may be
regenerated locally by dynamo action.
In a wider context, large scale magnetic field can be seen inside galaxies and clusters of galaxies.
In galaxies, the existence of magnetic fields is mainly proven by radio observations of synchrotron
emission. The latter also depends on the numerical density of electrons and therefore it is usually
assumed that the energy density of the particles and the field are at the equipartition. In spiral
galaxies with this assumption it is derived that the mean equipartition strength of the magnetic
field varies in range 4−15 µG (Beck, 2004). Polarized radiation maps also show that these fields are
ordered over several kpc (Laing, 1981). Structures of this type can be described in dynamo models
by modes of different azimuthal and vertical symmetry (Ruzmaikin et al., 1988). Ordered magnetic
fields with intensities similar to those observed in spirals are detected in irregular galaxies while
there is little evidence on the nature of magnetizing matter in elliptical galaxies. Finally, there is
evidence, again coming mainly from radio observations, of magnetic fields of ∼ (0.1 − 10) µG in
clusters of galaxies (Allen et al., 2001; Taylor et al., 2001; Feretti, 2002), the largest bound system
in the Universe. Faraday rotation studies indicate they have coherence scale in the range 5 − 10
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kpc (Taylor and Perley, 1993; Enßlin and Vogt, 2003; Vogt and Enßlin, 2003). These fields, if they
are not maintained by some mechanism, will evolve following the decay of MHD turbulence that
we can estimate to occur in an Alfvén time ∼ 108 yr, much less than the age of the cluster. Also in
these context is therefore possible for a dynamo mechanism to come into action.

In most cases an amplification of the magnetic fields may occur also by instabilities capable of
converting kinetic energy into magnetic energy. Under certain conditions, within the ideal magne-
tohydrodynamical regime (MHD), both Kelvin–Helmoltz and Rayleigh–Taylor instabilities are able
to provide such effect, and these have been studied also in the relativistic environment of Pulsar
Wind Nebulae (Bucciantini et al., 2004; Bucciantini and Del Zanna, 2006). A very efficient and
ideal process is the MRI mentioned above that provide a local mechanism, efficient for a wide range
of magnetic field strength, which leads to a growth on dynamical time-scales of linear perturbations
and naturally develops MHD turbulence. The only necessary condition for its onset is the presence
of a differentially rotating fluid threaded by a weak magnetic field. In the context of the accretion
disk MRI has been studied by both analytical and numerical studies, both through local shearing
box simulations and global models; while the former consider a small slice of plasma, the latter
evolve the system in its entirety. Both approaches are useful because they allow to obtain local
information on the growth and saturation of instability and global effects such as interaction with
other phenomena. About the latter, we can mention the work Bugli et al. (2018), where the interac-
tion between MRI and the fluid, nonaxisymmetric Papaloizou-Pringle instability (PPI) (Papaloizou
and Pringle, 1984) has been investigated. Three-dimensional general relativistic magnetohydrody-
namics (GRMHD) simulations show that in a magnetized torus around a Schwarzschild black hole,
PPI large-scale modes are suppressed by the development of MRI, which is then to be considered
the main driver for accretion on to supermassive black.

However, in typical astrophysical plasmas, the amplification of the magnetic field is a non-ideal
process due to the non-linear coupling of small-scale velocity and magnetic field fluctuations, possi-
bly caused by the MRI. The result of this correlation leads to the creation of an electromotive force
capable of amplifying magnetic fields. This process is known as mean-field dynamo (Moffatt, 1978;
Krause and Raedler, 1980; Cowling, 1981; Roberts and Soward, 1992; Brandenburg and Subrama-
nian, 2005) and has been applied to a large number of astrophysical contexts, from the Sun to explain
the 11 year cycle (Parker, 1955), to cosmological fields (Kulsrud et al., 1997). Anticipating some de-
tails that will be discussed later, in axisymmetric and differentially rotating systems, the combined
action of turbulent coupling and differential rotation supports the amplification of magnetic fields
according to the mechanism known as α − Ω dynamo. As far as compact objects are concerned,
this dynamo may be responsible for the amplification of fields up to B ∼ 1014−15 G in magnetars
during the proto-neutron star phase. If the initial rotation period is less than 1ms, the field can
be amplified either by differential rotation, magnetic instabilities, and the dynamo effects described
above (Duncan and Thompson, 1992; Bonanno et al., 2003; Burrows et al., 2007; Obergaulinger
et al., 2014; Guilet and Müller, 2015; Mösta et al., 2015; Raynaud et al., 2020; Reboul-Salze et al.,
2020). The intense magnetic fields that form can be so strong to cause quadrupolar deformations
in the star, that in some cases are able to radiate gravitational waves (Dall’Osso et al., 2009; Pili
et al., 2017) and guide relativistic outflows capable of powering gamma-ray bursts (Usov, 1992;
Bucciantini et al., 2009; Metzger et al., 2011; Bucciantini et al., 2012; Pili et al., 2016). Certainly
amplification and supplying of the magnetic field plays a key role in the accretion around the black

3



Chapter 1. Introduction

holes of AGNs. From a theoretical point of view it is believed that disks are threaded by magnetic
fields allowing MRI to operate, leading to a redistribution of angular momentum and to MHD turbu-
lence. MRI works for both ordered and disordered fields, though this mechanism alone is inefficient
in compensating the turbulent decay if the initial fields are too weak or too incoherent (Bhat et al.,
2017). In these cases a genuine dynamo process would be actually needed to amplify the initial
fields to higher values. Amplification of magnetic fields due to a mean-field dynamo and/or MRI is
also important in other scenarios of high-energy astrophysics, like neutron star mergers (Rezzolla
et al., 2011; Giacomazzo et al., 2015)) and tidal disruption events (Sądowski et al., 2016; Bonnerot
et al., 2017).

Currently, GRMHD simulations of MRI-induced accretion on to rotating black holes are being
receiving considerable attention due to the success of the Event Horizon Telescope (EHT) collabora-
tion, capable of imaging the emission and the shadow around the event horizon of a black hole for the
very first time (EHT-Collaboration, 2019c). The comparison between data and numerical models
has allowed to infer the main physical quantities of the compact object (EHT-Collaboration, 2019e).
The observed source has been the nucleus of the elliptical galaxy M87, but research is ongoing for
the main target Sgr A∗, the compact radio source located at the centre of our Milky Way. The
most recent study on polarized emission of M87* (EHT-Collaboration, 2021b) has made it possible
to obtain more precise estimates of the quantities of interest as well as to direct attention to an
accretion model characterized by a high magnetization that creates a highly turbulent environment,
so a turbulent dynamo mechanism can fit perfectly into this context.

The aim of this thesis work is to provide an alternative numerical accretion modelling to the
ideal one in which the initial magnetic field has a well-defined poloidal structure and an intensity
not exactly negligible. The α − Ω dynamo allows us to investigate the possibility of producing
poloidal field necessary for the development of MRI and the launch of jets even starting from the
most unfavorable condition, that is an initial toroidal field with extremely lower magnetization than
those used in ideal GRMHD simulations. The numerical tool we chose is the ECHO code (Del Zanna
et al., 2007) updated from its original version to include non-ideal effects such as resistivity and
a mean-field dynamo mechanism (Bucciantini and Del Zanna, 2013). The first study is due to
Bugli et al. (2014) that characterized the exponential growth of the magnetic field under the action
of the α − Ω dynamo in accretion disks with the hypothesis of kinematic regime, i.e. evolving
only Maxwell’s equations. In Tomei et al. (2020) we generalize Bugli’s work by investigating the
completely self-consistent and non-linear regime (dynamic regime) during the accretion phase. The
linear growth of the fields cannot reasonably continue for an arbitrarily long time, and it is expected
to be quenched naturally by the feedback on the disk. Our goal is to see how the transition to the
non-linear phase occurs, to investigate the interplay with MRI, and the effect of accretion on the
dynamo process itself, for a given disk model and a variety of dynamo parameters. Once the
saturation was characterized, we studied more rigorously the possibility of reproducing with our
model the physical quantities of observational interest by making a precise comparison with the
recent literature (Tomei et al., 2021).

At the same time we participated with our ECHO code in the Code Comparison project (Porth
and EHT-Collaboration (2019), Olivares et al. in prep.) with the aim to provide support to the
EHT collaboration for the creation of ideal GRMHD libraries that allow us to make a comparison
with the observations. Some standard accretion problems are studied by different codes in order to
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Chapter 1. Introduction

test which techniques are the most effective. The convergence on the results obtained represents a
point of reference and synthesis in the vast world of numerical simulations of accretion disks and
can allow the development of more accurate models such as the case of the mean-field dynamo.

The thesis work is organized as follows: in Chapter 2 we present the relevant aspect of the
theory of the accretion disks around black holes including the mean-field dynamo mechanism. Then
we introduce the GRMHD formalism and the disk models used in our simulations in Chapter 3
while Chapter 4 describes the structure of the code ECHO. In Chapter 5 we discuss the results
of the ideal simulations of the first part of the Code Comparison Project. We also present some
preliminary results obtained relating to the second part. In Chapter 6 we present and discuss the
first global results of the mean-field dynamo GRMHD simulations in accretion disks. Finally, we
present conclusions and future developments in Chapter 7.
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Chapter 2

Some aspects of the theory of the thick
accretion disks

The study of the complexity that characterizes the accretion disks around black requires both
theoretical models and simulations. Following the review of Abramowicz and Fragile (2013) we can
schematize that three generic types of physical processes occur in black hole accretion disks:

• dynamic processes (gravity, pressure and rotation forces) that develop on a time scale of
tdyn ∼ 1/Ωdisk where Ωdisk is a typical value of the angular velocity;

• thermal processes with a characteristic time-scale tth ∼ c2
s/νΩ2

disk where cs the sound speed
and ν is the kinematic viscosity;

• viscous processes with a characteristic time-scale tvis ∼ R2
disk/ν where Rdiskis the radial dis-

tance from the black hole.

Typically, one accepts that tdyn � tth � tvis and it is therefore reasonable to consider only the
dynamic structure of the disk as a first approximation. Depending on the importance of each of
the components that contribute to the dynamic structure, we can classify discs into the following
classes:

• Thin Disk: they are fully supported by the Keplerian rotation and the contribution due to the
pressure is negligible. The geometric structure and the kinematics are greatly influenced by the
dynamics: the vertical height is much smaller than the radial extension and the rotation speed
is highly supersonic. The low radial velocity implies that advection is an inefficient energy
transport mechanism and accretion rate is small, Ṁ ∼ 10−1ṀEdd, with ṀEdd = 10LEdd/c

2

Eddington rate where LEdd is the Eddington luminosity, that is the maximum value of an
accreting source’s luminosity beyond which the outgoing radiation pressure is strong enough
to counteract the gravitational force. We specify that here, in the definition of Eddington rate
ṀEdd, we are assuming that the accretion disk has a nominal radiative efficiency of 10%.

• Thick Disk: in these disks the radial pressure gradients are no longer negligible they contribute
significantly to the disk support and therefore the vertical size of the disk increases signifi-
cantly. Mass accretion can be very high, Ṁ � ṀEdd although they are radiatively inefficient
due to the lack of an efficient radiative cooling mechanism.
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2.1. One-dimensional equilibrium models and radiation

• Advection Dominated Accretion Flow (ADAF): geometrically thick accretion flows (for this
reason often included in the literature in the generic category of "thick disks"), characterized
by a large pressure and a low rotation speed so that the accretion is similar to a Bondi
accretion. Energy transport is dominated by advection and radiative cooling is negligible so
that efficiency is very low. Mass accretion rate is very low, Ṁ � ṀEdd

The accretion of EHT targets, SgrA* and M87*, occurs at very low Eddington rate, respectively
Ṁ/ṀEdd . 10−6 (Marrone et al., 2007) and Ṁ/ṀEdd . 10−5 (Kuo et al., 2014), and therefore
they can be modeled as ADAF disks. The renewed interest in these sources, due to the recent
observations of EHT, has pushed the community of numerical codes to study ever more refined
ADAF modeling. In this chapter we make an overview of some general aspects concerning the
accretion theory including in particular the Advection Dominated Accretion Flow theory (more
details in the reviews of Narayan and McClintock (2008); Yuan and Narayan (2014)), while in
Chapters 5 and 6 we show some of our numerical simulations of two configurations belonging to
this regime.

2.1 One-dimensional equilibrium models and radiation

2.1.1 The self-similar solutions

ADAFs were formally introduced in the Newtonian limit by Narayan and Yi (1994, 1995a,b) followed
by Chen et al. (1995); Abramowicz et al. (1995). In order to describe the key properites of ADAFs
consider first a generic steady axisymmetric non-magnetized accretion flow in the Newtonian limit
and get the fundamental equations of conservation of mass, radial momentum, angular momentum
and energy following the works of Pringle (1981) and Yuan and Narayan (2014).

In a cylindrical coordinate system (R, z, φ) centered on the black hole of mass M , we consider
a annulus of the disk located at a distance of R, having thickness ∆R, mid-plane density ρ and
surface density Σ =

∫ z
z0
ρdz. The mass contained in the ring is dM = 2πR∆RΣ and its angular

momentum is dL = 2πR∆RΣR2Ω, where Ω(R) is the angular velocity. The rate of change of the
mass of the annulus is equal to the net flow of matter into it from neighboring annuli

∂M

∂t
=

dM(R)− dM(R+ ∆R)

∆t
. (2.1)

We can rewrite the expression as

∂

∂t
(2πR∆RΣ) = (vR2πRΣ)R − (vR2πRΣ)R+∆R, (2.2)

where vR = ∆R/∆t is the radial velocity. Then taking the limit for ∆R→ 0 by it becomes

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0. (2.3)

From Eq.(2.3) we get the conservation of the mass in a steady axisymmetric flow taking ∂/∂t = 0,

∂

∂R
(RΣvR) = 0. (2.4)
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2.1. One-dimensional equilibrium models and radiation

Similarly conservation of angular momentum for the annulus yield the equation

∂

∂t
(2πR3∆RΣΩ) = (2πR3∆RΣΩ)R − (2πR3∆RΣΩ)R+∆R + ∆G, (2.5)

with G momentum of the viscous force which can be written as G = 2πRνΣR(∂Ω/∂R)R where
νΣR(∂Ω/∂R) is the viscous force per unit of length. The kinematic viscosity coefficient ν is usually
parameterized with the Shakura and Sunyaev (1973) prescription:

ν = αsscsH, (2.6)

where the dimensionless parameter αss is the Shakura-Sunyaev parameter and H is the vertical
scale height. Taking the limit ∆R → 0 in Eq. (2.5), we get the conservation law of the angular
momentum for a steady flow

vR
∂

∂R
(ΩR2) =

1

RΣ

∂

∂R

(
R3Σν

∂Ω

∂R

)
. (2.7)

Conservation law of radial momentum can be easily obtained in a reference frame co-rotating with
the plasma. In a steady flow we get

vR
∂

∂R
vR = Ω2R− Ω2

kR−
1

ρ

∂(ρc2
s)

∂R
, (2.8)

where the contributions on the right side are due respectively to the centrifugal force, the Keplerian
gravitational potential (ΩK is the Keplerian angular velocity) and the pressure gradient. In the last
term we considered the expression of the isothermal of the sound speed, cs =

√
p/ρ.

Finally, conservation energy reads

ρT

(
∂s

∂t
+ vR

∂s

∂R

)
= q+ − q−, (2.9)

where s is the specific entropy, T is the temperature and q+ and q− are the rates of energy gain
and loss per unit volume respectively. In particular q+ represents the energy per unit of time and
volume dissipated due to the viscous effects and it is given by

q+ =
G

2πRH

∂G

∂Ω
= R2νρ

(
∂Ω

∂R

)2

, (2.10)

where the vertical scale height can be expressed as H = Σ/ρ. The rate of energy losses q− is the
cooling rate per unit volume. It is usually customary to define a parameter f that indicates the
fraction of advected energy: it is written as f = (q+ − q−)/q+. Obviously, the quantity 1 − f

represents the fraction of radiated energy. Again, in the stationary case Eq. (2.9) reads

ρTvR
∂s

∂R
= R2νρ

(
∂Ω

∂R

)2

− q− ≡ fq+. (2.11)

Eqs.(2.4),(2.7),(2.8),(2.11) are general and can be referred to all accretion models. Note, however,
that Eq. (2.4) implies the mass accretion rate, defined as Ṁ = 4πRΣvR, is independent of radius.
While this may be a reasonable approximation for a thin disk wind, a more general discussion
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2.1. One-dimensional equilibrium models and radiation

must include the possibility that the system produces outflows, causing the mass accretion rate
to decrease with decreasing radius. Therefore, assuming a power-law variation for simplicity, it is
useful to generalize equation as

Ṁ = ṀBH

(
R

RS

)so
, (2.12)

where RS = 2GM/c2 is the Schwarzschild radius of the black hole, ṀBH = Ṁ(RS) is the mass
accretion rate evaluated at R = RS and so < 1 is a measure of the strength of the outflow (Blandford
and Begelman, 1999).

The ADAF regime is defined when radiative cooling can be neglected as opposed to heat
advection, f → 1 and the accretion flow is underluminous ṀBH � ṀEdd or equivalently η ≡
L/(ṀBHc

2)� 0.1, where η is the radiative efficiency and L is the luminosity. The first self-similar
solutions are obtained by Narayan and Yi (1994) for arbitrary viscosity parameter αss and adiabatic
index γa and assuming so = 0. A more recent version of the self-similar solution including outflows
(so 6= 0) and magnetic field is due to Yuan et al. (2012):

vR ≈ −1.1× 10−10 αss r
−1/2 cm−1 s−1, (2.13)

Ω ≈ 2.9× 104m−1r−3/2 s−1, (2.14)

c2
s ≈ 1.4× 1020 r−1 cm2 s−2, (2.15)

ne ≈ 6.3× 1019 α−1/2
ss ṁBH r

−3/2+s cm−3, (2.16)

B ≈ 6.5× 108 (1 + β)−1/2 αssm
−1/2 ṁ

1/2
BH r

−5/4+s/2 G, (2.17)

p ≈ 1.7× 1016 α−1
ss m

−1 ṁBH r
−5/2+s g cm−1 s−2 (2.18)

where m = M/M�, ṁ = Ṁ/ṀEdd, r = R/RS . Again with ṁBH we have indicated ṁ evaluated
at R = RS .

The self-similar solutions reveal the key properties of ADAFs that are:

• The accretion rate and the luminosity are lower than the typical values of thin disks.

• The sound speed is comparable to the Keplerian velocity, cs ∼ vK , which means that the
temperature of the plasma is nearly virial, T ∼ (1012/R) K, consistently with the fact that
there is no cooling.

• Due to the high pressure the vertical height of the disc becomes comparable to the radius,
H ∼ R.

• The strong radial pressure support causes the angular velocity to become sub-Keplerian,
Ω < ΩK .

9



2.1. One-dimensional equilibrium models and radiation

• The radial velocity is high and consequently the accretion is very fast, only a few free-fall
times.

• The high radial velocity in a geometrically thick disk causes the density to be low for the
accretion rate to be sub-Eddington.

• The accreting gas in an ADAF has a positive Bernoulli parameter, defined as the sum of the
kinetic energy, potential energy and enthalpy (Narayan and Yi, 1994). Since the parameter is
conserved in an adiabatic flow, then, if it is positive, it is possible to imagine that the gas can
somehow flow adiabatically outwards and reach infinity with a positive net energy. Therefore,
winds, jets and other outflows may originate in ADAFs.

• Since the gas is heated but non efficiently cools, the entropy increases with the decreasing of
the radius. ADAFs can therefore transport energy via convection.

The regime described by these properties is sometimes referred to as a RIAF (radiatively inefficient
accretion flow), however, in this discussion, we adopt the term ADAF.

The ADAF disk is a pressure dominated gas where the temperature can approach 1012 K at
small radii from the black hole. For such a hot accreting gas not to radiate effectively it is customary
to allow the ions and electron to have different temperatures (Narayan and Yi, 1995b). In fact the
gravitational energy is mainly transferred to ions that radiate ineffectively. This energy could be
exchanged with electrons through Coulomb interactions but in a very hot and low-density plasma
these interactions are slow. The ions therefore have an almost virial temperature while the electrons
are much colder. Typical ADAF temperatures scaling for protons and electrons are

Ti ∼ 1012K, Te ∼ min(Ti, 109−11K) (2.19)

Obviously it is crucial to know the precise form of the electron and proton distributions in order to
be able to compare the theoretical spectra with those observed. Mahadevan and Quataert (1997)
studied the energy distributions of the two species in ADAFs for normal mass accretion rates. They
showed that electrons can efficiently exchange energy both by Coulomb collisions and by absorption
and emission of synchrotron photons and therefore can thermalize; the electron energy distribution
may thus be Maxwellian for the bulk of the electrons, but power-law for a small population of
electrons at higher energies. Coulomb collisions are far too inefficient to thermalize the ions, so ions
retain whatever energy distribution they acquire through viscous dissipation and heating. Early
work on two-temperature ADAFs assumed that viscous heating acts primarily on the ions. We
can define a parameter δ that denotes the fraction of the viscously energy that directly heats
electrons: Narayan and Yi (1995b) took δ = 0 while Esin et al. (1997) assumed δ = me/mi ∼ 10−3.
However, the existence of neither a two-temperature plasma, nor a radiatively inefficient accretion
flow requires such a small value of δ. By modeling astrophysical observations of Sgr A∗ and other
brighter sources, some constraints have been obtained on its value. Actually we can say that δ is
probably in the range 0.1-0.5. The work of Sharma et al. (2007) showed that δ ∼ (Te/Ti)

1/2/3. At
large radii, where the plasma can be considered one-temperature, the formula gives δ ∼ 0.3, while
in the inner region, where the plasma is two-temperature, it gives δ ∼ 0.01 − 0.1. Taking these
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2.1. One-dimensional equilibrium models and radiation

properties into account, the energy equation (2.11) can be replaced by two coupled equations

ρv
dei
dR
− qp,c = (1− δ)q+ − qie, (2.20)

ρv
dee
dR
− qe,c = δq+ + qie − q−, (2.21)

where ei, ee are the internal energies of ions and electrons per unit mass of the gas; qi,c, qe,c are the
compression works done per unit volume; qie is the rate of transfer of thermal energy from ions to
electrons via Coulomb collisions.

2.1.2 Global models and emissivity function

The self-similar solution presented above allows to understand the main properties of an ADAF
but, being scale-free, it is not appropriate near the inner or outer boundary of the flow. Therefore,
one must use global solutions especially for calculating the radiation spectrum, since most of the
radiation comes from the inner region. A global model is obtained by solving the equations presented
in 2.1.1 numerically. The main parameters of global models are:

• BH mass, M ;

• accretion rate, ṀBH ;

• viscosity parameter, αss;

• beta plasma β = pgas/pmag

• adiabatic index, γa;

• viscous heating parameter, δ;

• advection parameter, f ;

• the wind parameter so;

Actually, most of these parameters are constrained: M is usually known through observations, δ is
discussed in 2.1.1, αss, β, so are obtained from numerical simulations, while f can be obtained self-
consistently (Narayan and Yi, 1995b; Esin et al., 1997; Yuan et al., 2003); ṀBH is a free parameter
which can however be fitted to observations of luminosity or spectrum of a source. The numerical
solution allows to obtain the radial distribution of the quantities v, Ω, cs, ρ, Tp, Te, pgas, pmag.
These global solutions agree with the self-similar solutions away from the boundaries, confirming
their validity (Narayan et al., 1997; Chen et al., 1997).

The fully general relativistic version of the global problem has been solved by many authors:
the first attempts are due to Abramowicz et al. (1996), but the first satisfactory solutions are found
in subsequent works by Abramowicz et al. (1997); Beloborodov et al. (1997); Gammie and Popham
(1998). The results show agreement with the Newtonian approximation for R > 10Rs, while the
effects of the Kerr metric are significant in the inner region.

Global models allow us to reproduce the spectrum of the sources. In a gas as hot as that of ADAF
disks, the dominant radiative processes are synchrotron emission and bremsstrahlung, modified by

11



2.1. One-dimensional equilibrium models and radiation

Comptonization. In order to explain the observed spectra Narayan (1996) first proposed a model
based on the transition from thin disk to ADAF that occurs starting from a certain transition radius,
Rtr: in the outer part is the thin disk, while for R < Rtr the thin disk is truncated and the region
is occupied by an ADAF. The transition radius depends on ṁBH with the thin disk truncated at
Rtr ∼ 103−104RS when ṁBH < 10−3. In general, the spectrum of a source is produced by the black
body contribution of the outer thin disk and by the comptonized synchrotron and bremsstrahlung
contributions of the ADAF in the inner region. In addition, the presence of a jet with non-thermal
electrons can enhance radio and infrared emission and smooth the inverse Compton bumps.

A useful expression for the emissivity produced by ultrarelativistic thermal electrons emitting
synchrotron radiation was provided by Leung et al. (2011). Let us consider a population of eletctrons
described by a phase space distribution function f = dnedΓdΩp, where Γ is the Lorentz factor and
dΩp is the solid angle element in the moments space. The total emissivity per unit of frequency of
this distribution can be defined as

jν =

∫
d3pfην , (2.22)

where
ην =

dE
dνdtdΩp

(2.23)

is the emissivity per unit of frequency for a single electron. The function distribution relative to a
population of thermal electrons is given by

f =
ne

4πΘe

Γ(Γ2 − 1)1/2

K2(1/Θe)
exp

(
− Γ

Θe

)
, (2.24)

where Θe = KTe/(mec
2) and K2 is a modified Bessel function of the second kind. In the ultrarela-

tivistic regime, Γ� 1 and Θe � 1, we can use the approximation K2(1/Θe) ' 2Θ2
e and Eq. (2.24)

becomes

f ' neΓ
2

8πΘ3
e

exp

(
− Γ

Θe

)
. (2.25)

The integral is evaluated using a standard approximation

∫
dΩpην '

√
3e3B sin θ

mec2
F

(
ν

νcr

)
, (2.26)

where
νcr = (3/2)νc sin θΓ2, (2.27)

νc is the electron cyclotron frequency eB/(2πmec) and the synchrotron function is defined as

F (x) = x

∫ ∞

x
dtK5/3(t), (2.28)

with the following asymptotic limits

F (x) =





22/3Γ(2/3)x1/3 +O(x) for x� 1,
(
πx
2

)1/2
exp (−x)(1 +O(x−1)) for x� 1.

(2.29)
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2.2. Disk dynamics from numerical simulations

In Eqs.(2.28)-(2.29) we put x = ν/νs where the threshold frequency νs is defined as

νs = (2/9)νcΘ
2
e sin θ. (2.30)

In simulations of Chapters 5 and 6 we study the high-frequency limit (ν � νs) of the thermal
synchrotron emissivity. In this regime the integrand of (2.22) is proportional to exp(−Γ/Θe − ν/νcr),
where now νcr ∼ Γ2, so the peak emission is from electrons with Γ ∼ [νΘe/(νc sin θ)]1/3. The
emissivity per unit frequency results

jν ' ne
√

2πe2νs
6Θ2

ec
X exp

(
−X1/3

)
. (2.31)

where X = ν/νs. The emission obtained by integrating Eq. (2.31) over the volume also allow to
get a feeling for the predictive power of variability in a turbulent regime.

2.2 Disk dynamics from numerical simulations

Self-similar solutions and global models permit to capture the physics underlying the ADAF ac-
cretion problem. For greater realism, numerical magnetohydrodynamic simulations are the only
way since they allow to understand the three-dimensional structure of accretion flow and the fun-
damental role played by the magnetic field. Among these we distinguish between local simulations
(shearing box), where a small area of the disk is considered, and global simulations that allow a
more complete description of the accretion.

Here we describe one of the most studied phenomena through local simulations, namely mag-
netorotational instability. At the level of global simulations we focus on the description of the
ADAF accretion in the two best-known regimes: SANE (Standard And Normal Evolution) and
MAD (Magnetically Arrested Disk).

2.2.1 Magnetorotational instability

A key process of the accretion disks that must be studied through numerical simulations because
of its non-linearity is undoubtedly the magnetorotational instability (MRI). It is a fundamental
mechanism that allows the transport of angular momentum and can acts also as an effective dynamo.
It was first studied by Chandrasekhar (1960) in plasma physics but rediscovered in the context of
accretion disks by Balbus and Hawley (1991, 1998).

This ideal instability arises due to the action of a magnetic field in a system subject to differ-
ential rotation and can lead to large scale mixing and turbulence very quickly (tMRI ∝ 1/Ω). The
conditions necessary for MRI to develop are:

• weak poloidal magnetic field;

• disk with differential rotation and angular momentum increasing outwards.

To understand how MRI works, we can think of a mechanical analogy. Let us consider two fluid
elements connected by a spring in a differential rotation system such as the one shown in the Figure
2.1. In this model, the force produced by the magnetic field is schematized by the elastic force.
Intuitively the spring force is a stabilizing force but if differential rotation is present then it can lead
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2.2. Disk dynamics from numerical simulations

Figure 2.1: Mechanical analogy showing the growth of MRI due to differential rotation.

to instability. To see it, suppose that the two particles are in a configuration like the one shown
at the time "a" of the Figure 2.1. Differential rotation increases the displacement between the
two particles because the inner particle rotates faster than the outer one. Therefore, the magnetic
tension increases and the inner particle is slowed down while the outer one accelerates. By slowing
down, the inner particle loses angular momentum and is forced to orbit at smaller radii, while the
outer particle moves outward (times "b" and "c"). This mechanism does not stop until the particles
are completely separated. However, it is important to point out that the magnetic field must not
be excessively strong otherwise the particles can only oscillate around their initial positions.

From the simulations of MRI, we can estimate the viscosity parameter αss and observe that there
is a discrepancy between the numerical results and the observations. The outbursts of the Soft X-
ray Transients and the dwarf novae accretion disks suggest, e.g., a value of the viscosity parameter
of αss ∼ 0.1 − 0.4 (Dubus et al., 2001; Schreiber et al., 2003, 2004), while numerical shearing-box
simulations of MRI give lower values αss ∼ 0.01 − 0.1 (Davis et al., 2010; Guan and Gammie,
2011; Simon et al., 2012; Hawley et al., 2013). The main limitations of these simulations concern
the impossibility of generating large-scale magnetic structures, both due to limited computational
resources and the limitations imposed by boundaries conditions (King et al., 2007). More recently,
some studies have tried to investigate possible mechanisms capable of producing a higher viscosity
parameter. Among them, Held and Latter (2018) showed that convection can effectively transport
angular momentum outward in disks and its interaction with the MRI, which is capable of being a
source of convection, could lead to an increase of an order of magnitude in the value of the viscosity
parameter (Held and Latter, 2021).

2.2.2 Global simulations: Standard And Normal Evolution and Magnetically
Arrested Disks

The first global MHD simulations in which the black hole was modeled via a pseudo-Newtonian
potential showed similar results to those of the shearing box simulations in terms of MRI-driven tur-
bulence development. Recently, simulations are carried out by general relativistic MHD (GRMHD)
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codes that provide a better description of phenomena near the black hole. We discuss now the most
important features of the problem resulting from the simulations.

Since we focus on the targets of EHT, SgrA∗ and M87∗, where the accretion rate is very sub
Eddington and the radiative cooling timescale becomes longer than the accretion timescale, purely
non-radiative GRMHD simulations ignoring cooling can be used to model the data. We specify
that radiative cooling is certainly negligible for SgrA∗ (Dibi et al., 2012), while it is probably not
for M87∗ (Chael et al., 2019).

The general morphology of thick disks derived from simulations is separated into the components
shown in Figure 2.2:

• the disk, which contains the bound matter;

• the evacuated funnel extending from the polar caps of the black hole;

• jet sheath, which is the remaining outflowing matter.

The blue line in Figure 2.2 demarcate the bound/unbound transition defined via the Bernoulli
criterion for which the relativistic hydrodynamic parameter is defined as Be = −hut − 1 (Novikov
and Thorne, 1973) but here the geometric parameter, Be = −ut − 1, has been adopted so as to
have ut < −1 in the unbound region characterized by having Be > 0. The red contour demarcates
the funnel boundary, σ = 1, where σ = B2/(ρc2) is the magnetization, and the green contour
the equipartition β = 1 , which is close to the bound/unbound line along the disk boundary. In
McKinney and Gammie (2004) a disk corona was also introduced for the material with 1 < β < 3;
however, as this choice is arbitrary, there is no compelling reason to label the corona as a separate
entity in the ADAF scenario. Between the evacuated funnel demarcated by the funnel wall (red)
and the bound disk material (blue), there is a strip of outflowing material often also referred to as
the jet sheath: this flow emerges as plasma from the disk and it is driven against the centrifugal
barrier by magnetic and thermal pressure.

In ADAF accretion a key role is played by horizon penetrating magnetic flux ΦBH normalized
by the accretion rate Ṁ , φ = ΦBH/

√
Ṁ . Tchekhovskoy et al. (2012) showed that a maximum for

the magnetic flux, φmax exists depending only mildly on black hole spin, but somewhat on the disk
scale height, with taller disks being able to hold more magnetic flux. This parameter defines the
two accretion regimes:

• if φ < φmax the regime is known as SANE acronym that stands for standard and normal
evolution (Narayan et al., 2012; Sądowski et al., 2013);

• if φ ∼ φmax the regime is kwown as MAD acronym that stands for magnetically arrested disk
(Bisnovatyi-Kogan and Ruzmaikin, 1976; Narayan et al., 2003)).

In the first, magnetic fields are present but are not very intense and are largely absorbed by the black
hole. In the second mode of accretion the magnetic field is much more intense and the black hole is
not able to absorb everything that is transported over great distances. For this reason, a bottleneck
is created in the disk due to which the magnetic field accumulates and generates a pressure high
enough to significantly dampen the accretion rate, even managing to stop it temporarily.

One of the first quantitative comparisons between MAD and SANE was made by Sądowski et al.
(2013). The authors consider a initial torus of gas threaded either by multiple and counterorientated,
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Figure 2.2: Views of the radiatively inefficient turbulent black hole accretion problem against the
Kerr–Schild coordinates obtained from a simulation with BHAC (Porth et al., 2017). The black hole horizon
is the black disk and the ergosphere is shown as a black contour. Left: logarithmic rest-frame density and
rendering of the magnetic field structure using line-integral convolution, showing the ordered field in the fun-
nel region and turbulence in the disk. Center: the logarithm of the magnetization. The magnetized funnel
is demarcated by σ = 1, (red lines), the disk is indicated by β = 1 (green lines), and the geometric Bernoulli
criterion (ut = −1) is given by the blue solid line in the region outside of the funnel. Right: schematic of
the main components. Figure of Porth and EHT-Collaboration (2019).

or single poloidal magnetic field loops for SANE and MAD models, respectively. The upper panel
of Left Figure 2.3 shows the mass accretion rate Ṁ and the bottom panel shows the evolution
of the magnetic flux φB where the solid and dotted lines correspond to MAD and SANE models,
respectively. While there is no clear difference between MAD and SANE in terms of mass accretion
rate, we can see how in the MAD runs the magnetic flux at the horizon always remains around
a value that corresponds to the maximum allowed and is higher than SANE runs. An important
feature of the ADAF concerns the development of powerful jets according to the Blandford Znajek
model (Blandford and Znajek, 1977) which predicts that the magnetic field lines threading a black
hole can extract its the rotational energy. Right Figure 2.3 shows the radial profile of efficiency of
the accretion flow (red lines), i.e. the energy that flows out to infinity normalized by the net mass
accretion rate, and the contributions of jet and wind. We see that SANE run has an efficiency of
a few per cent whereas the MAD run has a much larger efficiency greater than 50 per cent. Due
to the greater magnetic flux, the jets observed in the MAD models are therefore considerably more
powerful than those of the SANE disks.

To build an emission model it is necessary to provide the electronic temperature (Te) which is
not evolved in the simulations. We said that we expect that the electrons and protons in plasma
around the black hole are thermally decoupled. To account for the unresolved electron physics in
GRMHD simulations, detailed calculations of electron temperatures have been presented by some
authors (Ressler et al., 2015; Sądowski et al., 2017). It is found that thermal conductivity does
not have a significant effect on the electron temperatures. The most significant effect on electron
temperatures is imposed by a model of plasma heating resulting in a proton to electron temperature
ratio depending on the local plasma magnetization. This physics can be schematized by the formula
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Figure 2.3: Left: temporal evolution of the accretion rate into the BH (top) and magnetic flux at the BH
horizon (bottom) for SANE (dotted lines) and MAD (solid lines) models with different BH spins. Right:
radial profiles of the energy flux for SANE (top) and MAD (bottom) models. Figures of Sądowski et al.
(2013).

(Mościbrodzka et al., 2016):
Ti
Te

= Rhigh
β2

1 + β2
+

1

1 + β2
, (2.32)

where Rhigh is a free parameter which corresponds to the ratio, Ti/Te, in the high beta regions of
the disk and it is chosen based on model fitting to the observational broadband Spectral Energy
Distribution data. In contrast, in the highly magnetized regions of the jet, beta is small and
Ti/Te ∼ 1. The electron temperature Te is obtained from the equation (2.32) once the proton
temperature Tp has been computed from the simulations. In particular there are several advanced
temperature models for the SANE models, while the temperatures of the MAD disks are much more
uncertain.

GRMHD simulations also allow to obtain information on variability as explained in Porth and
EHT-Collaboration (2019). Indeed, it is known that in Sgr A∗, episodic flares are detected in X-ray
and nearinfrared (NIR) on a roughly daily basis and a low-level continuous variability is present in
NIR and radio. While the nature of the strong coincident X-ray and IR flares is most likely associated
with discrete events of particle heating or acceleration, weaker IR flares could also be caused by
lensed thermal plasma in the turbulent accretion flow, and flares in the submillimeter band can be
attributed solely to turbulent fluctuations in the accretion flow. On short timescales (below the
characteristic timescales τ ∼ 4 hr in IR and τ ∼ 8 hr in submillimeter), the continuous variability
is well described by a red-noise spectrum with power-law slope of ∼ 2. For low-luminosity AGN,
it is found that the submillimeter characteristic timescale is consistent with a linear dependence
on the black hole mass as would be expected for optically thin emission in radiatively inefficient
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general relativistic models. Hence, in M87, the variability with its characteristic timescale of -
45+61
−24 days can be obtained by scaling the Sgr A* result. More recently, the M87 data processed

by the EHT collaboration indicate intrinsic variability of compact structure on a timescale of days
confirming the previous results. To obtain detailed information on the timing scale of the variability,
a rigorous general relativistic radiative transfer calculation (GRRT) would be required that allows
the reconstruction of the photon trajectory in a curved space-time. In Chapter 5 an approximate
optically thin light curve is calculated as a volume integral of the emissivity defined by Eq. (2.31)
and a study is carried out to confirm that the variability is described by a power-law slope of ∼ 2.

2.3 First Event Horizon Telescope results

The goodness of a model is certainly measured by a comparison with observations. The models that
predict dynamical and radiative properties of hot, magnetized, thick accretion disks are matched
with observational data by:

• fitting the synthetic broadband (radio-X-ray) spectral energy distribution to the fluxes ob-
served at various bands;

• modeling radio images at millimeter and radio wavelengths.

Recently, a big step forward in modeling techniques has been made thanks to observations of the
EHT which has mapped the central compact radio source M87∗ (M ∼ 6.2 ·109 M�, D ∼ 16.9 Mpc)
at a wavelength of 1.3 mm (230 GHz) allowing to reconstruct the event-horizon-scale images of
the supermassive black hole. Here we show the main observational results obtained by EHT and
what they implied in the GRMHD modeling of thick accretion disks. The EHT is a Very Long
Baseline Interferometery (VLBI) experiment that directly measures the visibilities, i.e. the Fourier
components, of the radio brightness distribution on the sky. The EHT array that collected the first
data in 2017 is made by eight stations placed in six geographic locations. As the Earth rotates,
each telescope pair in the network samples many spatial frequencies creating a virtual telescope
that spans nearly the full diameter of the Earth. Image reconstruction from EHT data using the
radio interferometry approach took about two years and in April 2019 the images of M87* (Figure
2.4) were presented in a series of papers, EHT-Collaboration (2019a,b,c,d,e,f). The compact source
shows a central dark hole with a bright ring arising at ∼ 5r because of strong gravitational lensing.
The observed peak brightness temperature is Tb,pk ∼ 6 · 109 K which is consistent with past VLBI
measurements at 230 GHz and the total flux density in the image is in the range 0.2− 1.2 Jy. We
can infer orders of magnitude of the quantities of interest by assuming ne ∼ np, Ti = 3Te, β ∼ 1:

ne ∼ 2.9 · 104 cm−3, (2.33)

B ∼ 4.9 G, (2.34)

Te ∼ 6.25 · 1010 K, (2.35)

ṁ ∼ 2.0 · 10−5. (2.36)

18



2.3. First Event Horizon Telescope results

Figure 2.4: First EHT image of M87* from observations on April 2017.

A model can be made by assuming that M87 contains a turbulent, magnetized accretion flow
surrounding a Kerr black hole. Several different codes evolved matching initial conditions using the
equations of ideal GRMHD to generate a simulation Library. All simulations were initialized with a
weakly magnetized torus of plasma orbiting in the equatorial plane of the black hole and driven to
a turbulent state by the MRI. The two key physical parameters were the black hole spin a and the
normalized magnetic flux φ, that discriminates the SANE regime from MAD. The next step was
the creation of a large Image Library of synthetic images using the general relativistic ray-tracing.
In this phase, other free parameters were added: the observer inclination i and the orientation of
the observer through the position angle PA and the parameter Rhigh of Eq. (2.32).
The main results obtained can be summarized as follows:

• the observed image is consistent with expectations for the shadow of a Kerr black hole as
predicted by the theory of the general relativity;

• if the black hole spin axis is aligned with the large-scale jet, then the asymmetry implies that
the black hole spin is pointing away from Earth;

• models in the simulation library of non-spinning black holes are not consistent with the ob-
servations as they do not produce sufficiently powerful jets.

A further step forward in understanding the phenomenon of accretion was certainly made with
the study of the polarized image presented in 2021 in two papers EHT-Collaboration (2021a,b).
The polarimetric image obtained by processing the 2017 data shows a characteristic azimuthal
pattern with a region of higher polarization in the southwestern part of the ring, where the linear
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polarization fraction is . 10%. As it is known that synchrotron radiation should have a polarization
of 70%, it is thought that the polarization structure of M87* can be significantly influenced by two
factors:

• turbulent magnetic fields;

• internal Faraday rotation.

Faraday rotation is the phenomenon of the rotation of the polarization plane depending on the
intensity of the magnetic field along the direction of propagation of the light beam. This process can
lead to some degree of depolarization depending on the scale on which it develops. It is reasonable to
assume that there is an external Faraday rotation due to the accretion bulk which does not produce
any depolarization. On the other hand, the possible presence of an internal Faraday rotation, i.e.
localized in the emission region, would lead to a significant decrease in the observed polarization
fraction. It can be shown that, given ne, Te and B from (2.33)-(2.35), the optical depth τρV to
Faraday rotation at ∼ 5r results τρV ' 5.2 > 2π, indicating that Faraday rotation internal to the
emission region is an important effect and could thus explain the depolarization observed in M87*.
The constraint on τρV , combined with the two constraints coming from the observations from 2017
on the optical depth (τ < 1) and on the observed flux (0.2 < Fν < 1.2 Jy), allows to obtain a much
more precise estimate of the physical quantities of interest:

1010 . Te . 1.2 · 1010 K, (2.37)

1 . B . 30 G, (2.38)

104 . ne . 107 cm−3. (2.39)

The importance of the last two papers of the EHT collaboration is also due to the almost definitive
confirmation that the accretion in thick disks develops preferably following the physics of the MAD
regime rather than that of the SANE. Indeed, the magnetic field in the MAD models is very strong
and is capable of not being advected with the flux. This fact allows the formation of an intense
poloidal component which generates an azimuthal polarization pattern. Conversely, in SANE disks
the magnetic field, being weaker, follows the accretion flow and the resulting polarization pattern
tends to have a dominant radial component. The analysis that led to this interpretation involved
the comparison between observations and several images from the simulation library carried out
by varying the parameters listed above. By crossing the constraints imposed by the polarization
pattern with the jet power, only 15 MAD models with a 6= 0 and no SANE survive the selection.

2.4 Mean-field dynamo in accretion disks

The simulations employed by the EHT community and for the code comparison tests all rely on
initial magnetic fields with pressure which is one hundredth of the kinetic pressure. This value
corresponds to a subdominant field, but it is not far from the value needed to reproduce both the
dynamics needed to launch the polar jets and the non-thermal synchrotron emission. A more natural
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scenario would be the one in which a very low initial field is evolved and amplified by some kind of
dynamo process, so to reach self-consistently the correct threshold for MRI to induce accretion and
to reproduce the correct dynamical and emission properties.

The first relativistic models for mean-field dynamo effects in thick disks around Kerr black holes
were proposed more than two decades ago (Khanna and Camenzind, 1996; Brandenburg, 1996)
whereas the first implementation within a full GRMHD scheme (even including radiation) is due
to Sądowski et al. (2015), where the dynamo action in accretion discs was parametrized using the
results of local shearing box simulations of MRI, leading to the addition of both poloidal and toroidal
magnetic field components. Interestingly, the 2D axisymmetric simulations with the mentioned
dynamo recipes were able to produce the same kind of fields obtained in 3D simulations without
artificial terms, where the turbulent dynamo is fully operative. The first rigorous treatment of the
dynamo effects within (resistive) GRMHD was presented by Bucciantini and Del Zanna (2013) later
applied to the physics of accretion discs by Bugli et al. (2014) where the evolution of magnetic fields
was studied by in axisymmetry and in the kinematic regime, that is by solving Maxwell equations
alone not considering the feedback on the disk’s plasma.

Here, we briefly introduce the classical theory of mean-field dynamo starting from the limit of
the laminar approach to show the need to assume the presence of turbulence. Generalization in the
context of GRMHD is described in Chapter 3, while Chapter 6 shows the first numerical studies of
the GRMHD dynamo in accretion disks in dynamic regime.

2.4.1 Limits of the laminar dynamo theory

The operational definition given by Moffatt (1978) states that a velocity field of a fluid is acting
as a dynamo if it is able to maintain a finite magnetic energy density for t → ∞. However, there
are a number of theorems that exclude the possibility of dynamo action in a series of particular
symmetries. Among these the most famous is certainly Cowling’s anti-dynamo theorem (Cowling,
1976) elegantly illustrated by Boyd and Sanderson (2003). Using a simple argument he showed
that no axisymmetric magnetic field can be maintained stationary through the dynamo action of
axisymmetric currents. In the case that he considered both the flow and the field lines are in a
meridional plane through the axis of symmetry. In any such plane the field lines must be closed
curves enclosing at least one neutral line as shown in Figure 2.5. Let us consider the Ohm’s law for
a resistive plasma and integrate it around this line (from now we use units G = c = 1 and make use
of the Lorentz-Heaviside notation for the electromagnetic quantities). We get

η

∮
J · dl =

∮
E · dl+

∮
(U ×B) · dl

=

∫
(∇×E) · dS = −

∫
∂B

∂t
· dS = 0

, (2.40)

where η is the resistivity, J is the current density, U is the velocity of the plasma and E and B are
the electric and magnetic fields. The integral of the convection term vanishes on account of the fact
that B = 0 along the neutral line and the final integral vanishes because of the stationarity. But
(2.40) implies that Jφ = 0 which is clearly incompatible with Ampere’s law and the contradiction
proves the theorem. The physical interpretation of the theorem is that while the convection term can
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Figure 2.5: Geometry of field lines in Cowling’s theorem (Boyd and Sanderson, 2003).

transport the field lines in the meridional plane it cannot create new field lines to replace those that
diffuse through the plasma and disappear at the neutral point. The proof of Cowling’s theorem can
be extended to include an azimuthal component of the magnetic field. In this case (U ×B) ·dl = 0

on the neutral line since B and dl are parallel. The conclusion is that although a system such
as an accretion disk around a black hole (but also a star or planet) may have a dominant axially
symmetric dipole field at its surface, the magnetic field within the body must be considerably more
complicated if it is to be maintained by dynamo action. In the most general terms, as shown in the
next paragraph, differential rotation and turbulent convection are required.

2.4.2 Turbulent mean-field dynamo theory

Let us consider a classical plasma in a flat space-time. We assume a velocity field U and a magnetic
field B that have a large-scale average component and a small-scale variable component:

U = U0 + u, (2.41)

B = B0 + b, (2.42)

where u and b are the stochastic fluctuations with zero time average on an intermediate scale. The
classical induction equation is defined by

∂B

∂t
+ ∇× (U ×B) = η∇2B. (2.43)

Substituting the expressions (2.41) and (2.42) in the equation (2.43) we get

∂

∂t
(B0 + b) = ∇× [(U0 + u)× (B0 + b)] + η∇2(B0 + b). (2.44)

The induction equation (2.44) may be separated into its mean and fluctuating parts:

∂B0

∂t
= ∇× (U0 ×B0) + ∇× E + η∇2B0, (2.45)

22



2.4. Mean-field dynamo in accretion disks

∂b

∂t
= ∇× (U0 × b) +∇× (u×B0) + ∇× G + η∇2b (2.46)

where
E = 〈u× b〉, (2.47)

G = u× b− 〈u× b〉 (2.48)

The contribution of fluctuations to the large-scale evolution of the magnetic field is clearly un-
derstood: a macroscopic electromotive force E which can greatly influence the magnetic field is
induced. In order to build a theory of mean field dynamo it is necessary to express E in terms
of known quantities and statistical properties of the fluctuations. The term ∇ × (u ×B0) in Eq.
(2.46) acts as a source term generating the fluctuating field b. If we suppose that b = 0 at some
initial instant t = 0 then the linearity of Eq. (2.46) guarantees that the fields b and B0 are linearly
related. It follows that the fields E and B0 are likewise linearly related, and since the spatial scale
of B0 is by assumption large we may reasonably anticipate that this relationship may be developed
as a rapidly convergent series of the form

Ei = αijB0j + βijk
∂B0j

∂xk
+ γijkl

∂2B0j

∂xk∂xl
+ ... (2.49)

where the coefficients αij , βijk, ... depends on U0, u and η. We specify that terms involving time
derivatives ∂B0/∂t, ∂2B0/∂t

2 may also appear in the expression for E . Such terms may however
always be replaced by terms involving only space derivatives by means of Eq. (2.45).
Let us first consider the zero-order term

E(0)
i = αijB0j . (2.50)

The tensor αij can be decoupled in its symmetric and antisymmetric part as αij = α
(s)
ij − εijkak,

where ak = −1/2εlmkαlm and εijk is the Levi-Civita antisymmetric symbol. If we insert this
expression for αij into Eq. (2.49) we obtain

E(0)
i = α

(s)
ij B0j + (a×B0)i (2.51)

The effect of the antisymmetric component a is to introduce a correction to the mean flow velocity
U0 and lead to an effective velocity U0 +a. However, this contribution can usually be neglected in
the situations of interest for us. The role of the symmetric component α(s)

ij can be understood if we
assume u to be isotropic and homogeneous. In this case also αij is isotropic, hence we can set

αij = αδij , (2.52)

a = 0, (2.53)
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where the scalar parameter α derives from the statistical properties of the velocity fluctuations.
Inserting Eq. (2.52) into Eq. (2.50) we obtain

E(0) = αB0, (2.54)

which inserted into Ohm’s equation E = −U×B+ηJ leads to a contribution to the current density
equal to

J (0) =
1

η
E(0) =

α

η
B0. (2.55)

This expression reveals the existence of an electric current parallel to the mean magnetic field, which
is in strong contrast with the usual situation where the induction current (U×B)/η is perpendicular
to the magnetic field. This phenomenon, known in the literature as α-effect, is at the core of the
mean-field dynamo theory.
Let us now consider the first-order term in Eq. (2.49):

E(1)
i = βijk

∂B0j

∂xk
. (2.56)

Assuming that velocity u is isotropic, the tensor βijk is also isotropic (see also Rincon (2019) for
further information) and we can write

E(1) = −β∇×B0 = −βJ0. (2.57)

The contribution in the induction equation for the mean magnetic field is

∇× E(1) = β∇2B0. (2.58)

It is evident from a comparison with Eq. (2.45) that the effect of the induced electromotive force E(1)

is to enhance the effective value of the magnetic resistivity with η → η̃ = η + β. This phenomenon
describes the turbulent resistivity: magnetic field lines with opposite polarities are entangled by
turbulent motions, which leads to their diffusion and consequently to a decrease of the mean field.
The final form of the induction equation with the inclusion of the two effects reads

∂B0

∂t
= ∇× (U0 ×B0) + ∇× E + η∇2B0, (2.59)

where
E = αB0 − β∇×B0. (2.60)

Eq. (2.59) can be also reformulated in terms of an effective large scale electric field E0 as

∂B0

∂t
= −∇×E0 (2.61)

where
E0 = −U0 ×B0 + η̃J0 − αB0, (2.62)

with J0 = ∇ ×B0. Eq. (2.62) is a generalization of resistive Ohm’s law that includes mean-field
dynamo effects.
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To better understand how the dynamo cycle works also in an axisymmetric configuration of an
accretion disk, it can be useful to rewrite the induction equation decomposing the fields into their
poloidal and toroidal components,

U = Up +UT , (2.63)

B = Bp +BT , (2.64)

where for convenience the subscript 0 that characterizes the macroscopic quantities has been abol-
ished. In a cylindrical coordinate system (R, z, φ) let us consider

UT = RΩ(R, z)iφ, (2.65)

BT = B(R, z)iφ, (2.66)

BP = ∇×A(R, z)iφ, (2.67)

where Ω(R, z) is the angular velocity of the plasma and A = A(R, z)iφ is the vector potential.
Substituting these expressions in Eq. (2.45) we obtain

∂A

∂t
+

1

R
(UP ·∇)RA = αB + η̃

(
∇2 − 1

R2

)
A, (2.68)

∂B

∂t
+R(UP ·∇)

(
B

R

)
= R(BP ·∇)Ω + [∇× (αBP )] · iφ + η̃

(
∇2 − 1

R2

)
B, (2.69)

where we use the vectorial relations

∇2A = iφ

(
∇2 − 1

R2

)
A, (2.70)

UP × (∇×A) = − 1

R
(UP ·∇)RA. (2.71)

The first term to the first member of the Eqs. (2.68) and (2.69) is the Euler derivative of the
components of the field, while the second term represents their advection with the flow. On the
right side of Eq. (2.69), the first term shows how an angular velocity shear along a line of force
of BP can produce a toroidal field. This process is known as Ω-effect and it is a fundamental
phenomenon in the systems where differential rotation is present. The first term of Eq. (2.68) and
the second term of Eq. (2.69), on the other hand, are source terms of toroidal and poloidal fields
respectively related to the α-effect. Usually the rotation term is dominant with respect to the alpha
effect term, for which Eq. (2.69) becomes

∂B

∂t
+R(UP ·∇)

(
B

R

)
= R(BP ·∇)Ω + η̃

(
∇2 − 1

R2

)
B. (2.72)

The two Eqs. (2.68) and (2.72) describe a mechanism that provides a way to close a dynamo cycle
by generating poloidal magnetic fields starting from a toroidal field. In fact, such a field would
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lead, according to Eq. (2.55), to a toroidal current, which consequently would generate a poloidal
magnetic component. The latter then allows the amplification of the toroidal field through the Ω-
effect, i.e. in presence of differential rotation. In such a system, called α−Ω dynamo, it is possible
to have a steady amplification of magnetic field. The individual efficiency of the Ω-effect and the
α-effect in generating magnetic field against dissipation can be estimated a priori by their relative
Reynolds dynamo numbers. These parameters (widely used in the literature) are defined in a disk
as (Brandenburg and Subramanian, 2005)

CΩ = R

∣∣∣∣
dΩ

dR

∣∣∣∣
H2

η
∼ ∆ΩH2

η
, (2.73)

Cα = H

∣∣∣∣
α

η

∣∣∣∣, (2.74)

where H is the scale height of the disk. We can observe from Eq. (2.54) that α has the dimension
of a velocity and therefore can be interpreted as a characteristic velocity of turbulent motions that
we denote by vα. On the other hand, we can identify the term η/H with the dissipation velocity
of the magnetic field denoted by vη. The meaning of the dynamo numbers is therefore clearer if we
express them in terms of velocity ratios

CΩ =
vΩ

vη
, (2.75)

Cα =
vα
vη

(2.76)

where vΩ ∼ HΩ is a typical rotational velocity. We observe that by setting α = 0 in Eq. (2.68),
the laminar dynamo limit is recovered and the effects of Cowling’s theorem can be seen: the term
source in the equation is reduced to an exclusively dissipative contribution which leads to a decay
of the poloidal field not allowing the maintenance of a stable configuration of the magnetic field.

Here we have presented a classic discussion of the mean-field dynamo theory. In the next
Chapter, we show how it is possible to generalize Eq. (2.62) in GRMHD to study this phenomenon
in the context of accretion disks around black holes. The main advantage of this approach is to be
able to model turbulence effects by adjusting the two arbitrary free parameters η and α. We specify
that in the absence of explicit dynamo terms, an amplification process is expected to naturally
take place due to the MRI: both local shearing box simulations (Brandenburg et al., 1995; Ziegler
and Rüdiger, 2001; Davis et al., 2010) and global models (Hawley et al., 2011, 2013) studied the
saturation of the MRI in order to characterize the α coefficients; further studies have also considered
the effect of the anisotropic nature of the MHD turbulence (Gressel and Pessah, 2015; Dhang et al.,
2020), i.e. without the two hypotheses (2.52) and (2.57). However, the introduction of explicit
dynamo terms allows for regulating the growth of selected field components in different spatial
regions of the source, while MRI is more limited by the initial magnetic configuration.
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Chapter 3

General relativistic
magnetohydrodynamics

This chapter presents the (ideal and non ideal) General Relativistic Magnetohydrodynamics GRMHD
equations that are solved by the ECHO code (Del Zanna et al., 2007). Initially, a brief description
of the equations is made using the covariant approach, to then move on to the formulation in the
so-called 3 + 1 formalism characterized by a separation between the spatial and temporal coordi-
nates. This second approach, in addition to being more easily interpretable, is more advantageous
from a numerical point of view because it allows to develop conservative schemes that are more
robust than non-conservative ones.

3.1 Covariant approach

We begin with a brief presentation of the GRMHD equations in the covariant formalism considering
an ideal fluid interacting with an electromagnetic field. The equations of relativistic hydrodynamics
are:

∇µ(ρuµ) = 0, (3.1)

∇µTµν = 0, (3.2)

where ∇µ represents the covariant derivative. Eq. (3.1) is the well-known law of conservation
of rest-mass, where ρ is the rest-mass density measured in the comoving reference with the fluid
moving with the four-speed uµ. Eq. (3.2) is the conservation law of the four-momentum, where the
energy-momentum tensor Tµν can be splitted into two contributes, one due to matter and one to
the electromagnetic field:

Tµν = Tµνm + Tµνem , (3.3)

with
Tµνm = ρhuµuν + pgµν (3.4)

and
Tµνem = Fµλ F

νλ − 1

4

(
F λκFλκ

)
gµν , (3.5)
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where h = 1 + ε + p/ρ is the specific enthalpy, ε is the specific internal energy, p is the thermal
pressure, gµν is the metric tensor and Fµν is the antisymmetric tensor of the electromagnetic field.
The metric follows the signature (−,+,+,+) and Lorentz-Heaviside notation is adopted (c = 1 and√

4π → 1). Maxwell’s equations can be written as

∇µFµν = −Iν , (3.6)

∇µF ∗µν = 0, (3.7)

where Iµ is the four-vector of the density current, F ∗µν = 1/2εµνλκFλκ is the dual of the electromag-
netic field tensor and εµνλκ = (−g)−1/2[µνλκ] is the Levi-Civita space-time tensor where g = detgµν
and [µνλκ] is the completely antisymmetric Levi-Civita symbol with convention [0123]=+1.

In a perfect conductor, ideal Ohm’s law is obtained by imposing the cancellation of the comoving
electric field

Fµνuν = 0. (3.8)

This means that the charges in the plasma can move freely in order to effectively shield any locally
electric fields. We note that this condition makes Eq. (3.6) redundant and the density current Iµ

becomes a derived quantity as in classical MHD.
To close the GRMHD system of equations it is necessary to specify the equation of state p =

p(ρ, ε). In our simulations the equation of state of perfect gas is assumed

p(ρ, ε) = (γ̂ − 1)ρε, (3.9)

which, using the previous definition of specific enthalpy, can be expressed as

h = 1 +
γ̂

γ̂ − 1

p

ρ
, (3.10)

where γ̂ is the adiabatic index.
Finally, if the considered fluid is ideal (absence of shocks or other sources of dissipation), the

law of conservation of total energy is equivalent to the adiabatic equation

∇µ(ρsuµ) = 0, (3.11)

with s proportional to the specific entropy, and for an ideal gas we have

s =
p

ργ̂
. (3.12)

3.2 3+1 formalism

It is known that the laws of large-scale physics suggest a distinction between spatial and temporal
coordinates. 3+1 formalism is an approach to the theory of general relativity and Einstein’s equa-
tions based on the division of four-dimensional space-time into three-dimensional hyper-surfaces.
It was born in the 1920s and has become a fundamental tool since the 1970s, a period in which
numerical relativity began to spread. Today, most of the numerical codes that solve Einstein’s
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equations are based on the 3+1 formalism, including the ECHO code. More information can be
found in Rezzolla and Zanotti (2013) and references therein.

The four-dimensional space-time is foliated in time-like, non intersecting hyper-surfaces Σt,
defined as the iso-surfaces of a time scalar function t. We denote as

nµ = −α∇µt, (3.13)

with α constant known as lapse function. We also impose the condition

nµn
µ = −1. (3.14)

We note that the minus sign in the (3.13) is chosen so that the vector nµ is directed towards the
future. It is clear from the definition that the four-vector nµ can be interpreted as the four-velocity
of an observer known as Eulerian observer. The worldlines of the Eulerian observer are orthogonal
to the hyper-surfaces. Any vector V µ (or tensor) can be decomposed into its temporal and spatial
components, applying operators −nµnν and gµν +nµnν respectively. The spatial projection operator
applied to the metric tensor gµν allows also to obtain the spatial metric γµν induced on Σt by the
four-dimensional metric:

γµν = gµν + nµnν (3.15)

We can now introduce a coordinate system (xα) = (t, xi) which adapts to the foliation Σt. Then it
is possible to express the line element in the so-called ADM form (Arnowitt et al., 1962):

gµνdx
µdxν = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt), (3.16)

where βµ is referred to as shift vector, which is an arbitrarily spatial vector. In this coordinate
system the components of the unit vector are

nµ = (−α, 0i) (3.17)

nµ = (1/α,−βi/α) (3.18)

and any purely spatial vector (or tensor) V µ will necessary have a vanishing contravariant time
component, i.e. V t = 0, while the covariant time component will be given by Vt = gµtV

µ = βiV
i,

and will in general be different from zero. Also the gradient of the unit vector can be decomposed
in time and space components

∇µnν = −Kµν − nµaν , (3.19)

where Kµν is the extrinsic curvature of the metric (a symmetric spatial tensor), and aν is the
acceleration of the Eulerian observer (also a spatial vector). It is then possible to demonstrate that

aν = nµ∇µnν . (3.20)

We can now decompose all the quantities in the GRMHD equations into their time and space
components

uµ = Γnµ + Γvµ, (3.21)
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Tµν = Wµν + Sµnν + nµSν + Enµnν , (3.22)

Fµν = nµEν − Eµnν + εµνλκBλnκ, (3.23)

F ∗µν = nµBν −Bµnν − εµνλκEλnκ, (3.24)

Iµ = qnµ + Jµ, (3.25)

where all the newly introduced vectors and tensors are purely spatial and correspond to the usual
observables measurable in the 3-dimensional space by the Eulerian obeserver. In fact vµ is the fluid
velocity with Lorentz factor Γ, so that

vi =
ui

Γ
+
βi

α
, (3.26)

Γ = αut = (1− v2)−1/2, (3.27)

with v2 = vivi and where we used the normalization condition uµuµ = −1. The decomposition of
the stress energy tensor instead provides: the momentum density,

Si = ρhΓ2vi + εijkEjBk, (3.28)

where the 3D Levi-Civita tensorial density is given by εµνλ = εµνλκnκ ≡ εijk, so that εijk =

γ−1/2[ijk] and εijk = γ1/2[ijk] with the completely antisymmetric Levi-Civita symbol [ijk] with
convention [123] = +1; the spatial stress tensor of the plasma

W ij = ρhΓ2vivj + pγij + 1
2(E2 +B2)γij − EiEj −BiBi, (3.29)

and the energy density
E = ρhΓ2 − p+ 1

2(E2 +B2). (3.30)

The electric and magnetic field spatial vectors are defined as Eµ = nνF
µν and Bµ = nνF

∗µν , so
their components are given by

Ei = αF ti, (3.31)

Bi = αF ∗ti. (3.32)

The electric charge density is denoted with q and the spatial conduction current with Jµ, both
measured in the frame of the Eulerian observer. By applying the usual covariant derivation rules
and splitting the time and space components of Eq. (3.1), Eq. (3.2), Eq. (3.6), Eq. (3.7) we obtain
the GRMHD equations in the following form

(−g)−1/2∂µ[(−g)1/2ρuµ] = 0, (3.33)
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(−g)−1/2∂µ[(−g)1/2Tµi ] = 1
2T

µν∂igµν , (3.34)

(−g)−1/2∂µ[(−g)1/2Tµνnν ] = Tµν∇µnν , (3.35)

(−g)−1/2∂µ[(−g)1/2F ∗µi] = 0, (3.36)

(−g)−1/2∂µ[(−g)1/2Fµi] = qβi/α− J i, (3.37)

(−g)−1/2∂µ[(−g)1/2Fµt] = −q/α, (3.38)

(−g)−1/2∂µ[(−g)1/2F ∗µt] = 0. (3.39)

We can decompose the source terms on the right-hand sides of Eq. (3.34) and Eq. (3.35) as

1
2T

µν∂jgµν = 1
2W

ik∂jγik + α−1Si∂jβ
i − E∂j lnα, (3.40)

Tµν∇µnν = −KijW
ij + Sj∂j lnα. (3.41)

The extrinsic curvature in Eq. (3.41) can be provided in terms of the covariant derivatives of the
shift vector components. In the case of a stationary metric we get

αKijW
ij = 1

2W
ijβk∂kγij +W i

j∂iβ
j (3.42)

The final form of the GRMHD equations in terms of purely 3D spatial quantities is obtained using
all the previous decompositions. It reads:

∂t(γ
1/2D) + ∂k[γ

1/2(αvk − βk)D] = 0, (3.43)

∂t(γ
1/2Sj) + ∂i[γ

1/2(αW i
j − βiSj)] = γ1/2[1

2αW
ik∂jγik + Si∂jβ

j − E∂iα], (3.44)

∂t(γ
1/2E) + ∂i[γ

1/2(αSi − βiE)] = γ1/2(1
2W

ijβk∂kγij +W i
j∂iβ

j − Si∂iα), (3.45)

∂t(γ
1/2Ei)− γ1/2 εijk∂j(αBk − εklmβlEm) = −γ1/2(αJ i − qβi) (3.46)

∂t(γ
1/2Bi) + γ1/2 εijk∂j(αEk + εklmβ

lBm) = 0, (3.47)

γ−1/2∂i(γ
1/2Ei) = q, (3.48)
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γ−1/2∂i(γ
1/2Bi) = 0, (3.49)

where γ = det{γij} is the determinant of the spatial metric, related to the four dimensional one by
(−g)1/2 = αγ1/2.
Eq. (3.43) describes the continuity equation for D = ρΓ, i.e. the mass density measured by the
Eulerian observer; Eq. (3.44) is the momentum equation, containing the divergence of the stress
tensor Wij and its last term with the lapse function gradient reduces to the usual gravitational
force in the Newtonian limit; Eq. (3.45) is the energy equation (note that the total energy density
is E + D); finally, Eqs. (3.46) and (3.47) are the general relativistic extension of the induction
equation and Ampere’s law respectively while Eqs. (3.38) and (3.39) are the two constraints on the
electromagnetic field.

3.2.1 The dynamo closure in GRMHD

Eqs. (3.43)-(3.47) are valid regardless of the particular form of Ohm’s law, that is, how the conduc-
tive medium reacts to the presence of an electric field. To obtain a generalized Ohm’s law it is first
convenient to decompose the quantities related to the frame comoving with the fluid within the 3
+ 1 Eulerian split of time and space, namely

eµ = Γ[Eivi]n
µ + Γ(Eµ + εµνλvνBλ), (3.50)

bµ = Γ[Bivi]n
µ + Γ(Bµ − εµνλvνEλ), (3.51)

jµ = (q − q0Γ)nµ + Jµ − q0Γvµ, (3.52)

where q0 = Γ(q − J ivi). Bucciantini and Del Zanna (2013) describe the three possible choices for
Ohm’s law:

• Ideal GRMHD.
In an ideal conductor the electric field in the moving reference system must be zero, that is
eµ = 0. Taking the spatial projection, we get

Ei + εijkvjBk = 0, (3.53)

which is the well-known usual ideal MHD assumption.

• Resistive GRMHD.
If a finite conductivity is present, the comoving electric field is assumed to be proportional to
the conduction current, eµ = ηjµ where η is the reistivity measured in the comoving system.
Taking the spatial projection, we get

Γ(Eivi) = η(q − q0Γ), (3.54)
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which may be used to express q0 in the spatial component. The result is

Γ[Ei + εijkvjBk − (Ejvj)v
i] = η(J i − qvi) (3.55)

• Resistive GRMHD + dynamo.
The natural extension of the mean-field dynamo equation (2.62) with the inclusion of the
alpha effect can be obtained by imposing that the electric field in the fluid reference system
is given by

eµ = ηjµ + ξbµ, (3.56)

where we put ξ = −α to avoid misunderstandings with the lapse function. This expression
was first introduced by Bucciantini and Del Zanna (2013) and it is the first example in the
literature of an attempt to include mean-field dynamo processes in the context of GRMHD.
The time projection is now

Γ(Eivi) = η(q − q0Γ) + ξΓ(Bivi), (3.57)

which, again used to express q0 in the spatial component, provides

Γ[Ei + εijkvjBk − (Ejvj)v
i] = η(J i − qvi) + ξΓ[Bi − εijkvjEk − (Bjvj)v

i] (3.58)

In relativistic MHD only in the ideal case it is possible to neglect the displacement current. In the
relativistic non-ideal regime, on the other hand, the electric field must be evolved using Eq. (3.46).
Ohm’s law provides an expression for the density current, while the constraint on the charge is given
by Eq. (3.48). In the more general case of resistive GRMHD dynamo, the electric field evolution
equation is given by:

γ−1/2∂t(γ
1/2Ei)− εijk∂j(αBk − εklmβlEm) + (αvi − βi)q =

− αΓ/η[Ei + εijkvjBk − (Ejvj)v
i] + αξΓ/η[Bi − εijkvjEk − (Bjvj)v

i)]
(3.59)

3.3 Classical and relativistic MHD limits

We illustrate first the weak gravity limit and a flat Minkowski metric can be assumed. Now α = 1,
β = 0 e γij is the 3× 3 identity tensor. Eqs. (3.43) - (3.49) become:

∂tD + ∂i(Dv
i) = 0, (3.60)

∂tSi + ∂jW
j
i = 0, (3.61)

∂tE + ∂iS
i = 0, (3.62)
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∂tE
i − εijk∂jBk + viQ = −Γ/η[Ei + εijkvjBk − (Ejvj)v

i]+

ξΓ/η[Bi − εijkvjEk − (Bjvj)v
i],

(3.63)

∂tB
i + εijk∂jEk = 0, (3.64)

∂iE
i = q, (3.65)

∂iB
i = 0, (3.66)

It can be seen that the source terms related to the curvature of the metric have disappeared.
The limit of classic MHD can instead be obtained by requiring Γ → 1, p � ρ, ρ � ρε, E � B e
B2 � ρ. The equation of mass and momentum become

∂tρ+ ∂i(ρv
i) = 0, (3.67)

∂t(ρv
i) + ∂j(ρv

ivj + pγij + 1
2B

2γij −BiBj) = 0. (3.68)

To obtain the energy equation it is necessary to subtract the continuity Eq. (3.60) to Eq. (3.62)
and consider the approximation

ρhΓ2 − ρΓ = ρΓ(hΓ− 1) ' 1/2ρv2 + γ̂/(γ̂ − 1)p, (3.69)

con Γ ' 1 + 1/2 v2. We get

∂t(1/2ρv
2 + p/(γ̂ − 1) +B2/2) + ∂i[vi(1/2ρv

2 + γ̂p/(γ̂ − 1)) + εijkEjBk] = 0. (3.70)

Dynamo Ohm’s law is obtained by applying the limit MHD to Eq. (3.58). We get

Ei + εijkvjBk = ηJ i + ξBi, (3.71)

which replaced in Eq. (3.64) allows to obtain the induction equation

∂tB
i + ∂j(v

jBi − viBj) = η∇2Bi − ξJ i − εijk[(∂jη)Jk + (∂jξ)Bk]. (3.72)

3.4 GRMHD disks

We now present in more detail an analytical stationary solution for the GRMHD equations (3.43) -
(3.49) which describe the models used in our simulations. After showing the characteristics of Kerr’s
space-time we describe two important analytical and axisymmetric solutions for a non-magnetized
torus in such a gravitational field. Finally, we show the first numerical results of kinematic dynamo
in thick disks.
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3.4.1 Kerr spacetime

Let us consider a rotating black hole of mass M and angular momentum per unit of mass a = J/M

and adopt the Boyer-Lindquist coordinates (t; r; θ; φ). The line element is expressed as

ds2 = gttdt2 + 2gtφdtdφ+ grrdr2 + gθθdθ2 + gφφdφ2, (3.73)

where the coefficients are given by

gtt = −
(

1− 2Mr

%2

)
, (3.74)

gtφ = −2Mar sin2 θ

%2
, (3.75)

grr =
%2

∆
, (3.76)

gθθ = %2, (3.77)

gφφ = $2, (3.78)

with the following definitions
∆ = r2 − 2Mr + a2, (3.79)

%2 = r2 + a2 cos2 θ, (3.80)

Σ2 = (r2 + a2)2 − a2∆ sin2 θ, (3.81)

$ =
Σ

%
sin θ. (3.82)

In these equations it is important not to confuse the geometric factor % with the mass density ρ.
Considering the 3+1 decomposition and comparing Eq. (3.73) with Eq. (3.16) we can represent the
corresponding 3D spatial metric tensor γij as a diagonal matrix with coefficients

γrr =
%2

∆
, γθθ = %2, γφφ = $2 (3.83)

while the shift vector and the lapse function are respectively given by

β =

(
0, 0,−2Mar

Σ2

)
, α =

%

Σ
∆1/2. (3.84)

This solution of the Einstein field equations due to Kerr (1963) shows that the metric retains the
stationary and axisymmetric character of the mass distribution that generates it, i.e. a rotating
black hole with constant mass and spin. When a = 0, the limit of the stationary and spherically
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symmetric Schwarzschild metric of a non-rotating black hole is obtained

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (3.85)

The Kerr metric is singular when % = 0 and ∆ = 0. The first condition gives rise to the so-
called naked singularity, a physically unacceptable solution because it would imply the possibility
of observing an infinite density. From the second relation we obtain

r± = M ± (M2 − a2)1/2. (3.86)

It is understood that, in order for an event horizon capable of hiding the naked singularity to be
present, one must necessarily have a2 ≤M2 implying the existence of an upper limit for the angular
momentum per unit of mass, a = M ; in this case the black hole is called maximally rotating. The
event horizon radius ranges between M and 2M depending on the value of a and it is given by the
greater of the two roots of Eq. (3.86),

rh = M + (M2 − a2)1/2 (3.87)

Let us now consider an external stationary observer orbiting around the black hole with angular
velocity

Ω =
uφ

ut
. (3.88)

Developing the condition uµuµ = −1 and using Eq. (3.88) we obtain

(ut)2(gtt + 2Ωgtφ + Ω2gφφ) = −1, (3.89)

which implies
gtt + 2Ωgtφ + Ω2gtφ < 0, (3.90)

i.e. the value of the observer’s angular velocity is in range [Ω−,Ω+] where

Ω± = ω ±
(
ω2 − gtt

gφφ

)1/2

(3.91)

and where we defined ω = −gtφ/gφφ. In those regions where gtt < 0 the observer’s angular velocity
can be zero (since Ω− < 0), but where gtt > 0 there will be a minimum value Ω− > 0 below which
Ω cannot drop. The observer that in other circumstances would be at rest will be dragged by the
rotating spacetime. Such a region is referred to as the ergosphere. It is limited by the surfaces
where the coefficient gtt is zero, i.e. at a distance from the black hole given by

rerg = M + (M2 − a2 cos2 θ)1/2. (3.92)

The importance of this region (schematized in Figure (3.1)), external to the event horizon (i.e.
rh < rerg), is related to one of the best known processes by which it is possible to extract energy
from a rotating black hole, namely the Blandford-Znajek mechanism (Blandford and Znajek, 1977).
In fact, although the process was initially conceived as a mechanism that extracts energy directly
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Figure 3.1: The ergosphere of a Kerr black hole is the region between the static limit (the flattened outer
surface defined by Eq. (3.92)) and the event horizon defined by Eq. (3.87) (Shapiro and Teukolsky, 1986).

from the black hole, recently it has been shown that only the magnetic field lines threading the
ergosphere of the black hole rotate due to the frame dragging effect, whether or not they cross the
horizon (Komissarov, 2004, 2005). These twisted magnetic fields carry the energy of the relativistic
jet, which seems to come from the ergosphere.

From a numerical point of view it is problematic to deal with the singularity located at the
black hole event horizon due to numerical artifacts that could arise from the inner radial boundary.
For this reason we adopt in our simulations the so-called Kerr-Schild coordinates (KS) that allow
one to remove the unphysical singularity and place the domain’s inner boundary beyond it. This
formulation is described in the Appendix A.

3.4.2 Two analytical solutions

The simplest analytic model of a black hole accretion disk is the Polish doughnut, in which self-
gravity, the contribution due to viscous forces, the radiative effects are neglected and the support
against gravity is provided only by thermal pressure.
Let us consider a perfect non-magnetized fluid that orbits around a Kerr black hole along the
positive azimuth direction with the four-velocity uµ = (ut, 0, 0, uφ). The stress-energy tensor is

Tµν = ωuµuν + pgµν (3.93)

where ω = ρh is the fluid enthalphy density. We define the specific angular momentum as

l = −uφ
ut
. (3.94)

This is the most natural and reasonable choice because it satisfies the properties of being a constant
of motion and besides generating a simple stability criterion (Kozlowski et al., 1978). From the
definitions (3.88) and (3.94) it follows that

l = −gtφ + gφφΩ

gtt + gtφΩ
, (3.95)

Ω = − gtφ + gttl

gφφ + gtφl
. (3.96)
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Let’s briefly summarize the steps that allow us to derive the fundamental equation that determines
the equilibrium. First Eq. (3.2) is contracted with the projection operator hµν = δµν + uµuν . Using
the assumptions of stationarity and symmetry we obtain

ωuµ∇νuµ +∇νp = 0. (3.97)

Combining Eqs. (3.95), (3.96), (3.97) and the normalization uµuµ = −1 we obtain

∇i(ln |ut|)−
Ω

1− lΩ∇il +
∇ip
ω

= 0, (3.98)

where

|ut| =
√
L
A , (3.99)

where
L = g2

tφ − gttgφφ (3.100)

is the relativistic generalization of the distance from the black hole rotational axis and

A = gφφ + 2lgtφ + l2gtt. (3.101)

The algebraic steps leading to Eq. (3.98) are described in detail for a magnetized disk in the appendix
of Komissarov (2006). It is sufficient to set bµ = 0 to obtain the equations of the hydrodynamic
equilibrium we have considered here.
The assumption of a barotropic equation of state now allows us to rewrite Eq. (3.98) as

d

(
ln |ut|+

∫ p

0

dp
ω

)
=

Ω

1− Ωl
dl. (3.102)

This equation implies that Ω = Ω(l): the surfaces with constant l and Ω coincide and are called
von Zeipel’s cylinders (Kozlowski et al., 1978). By integrating Eq. (3.102) we get

ln |ut|+
∫ p

0

dp
ω
−
∫ l

0

Ω

1− Ωl
dl = K. (3.103)

The integration constant K is easily obtained by imposing the conditions p = 0, ut = uint , l = lin

on the internal radius of the disk rin on the equatorial plane (θ = π/2). We get

K = ln |uint | −
∫ lin

0

Ω

1− Ωl
dl (3.104)

Substituting the value of the constant in the Eq. (3.103) we get

ln |ut| − ln |uint | −
∫ l

lin

Ω

1− Ωl
dl +

∫ p

0

dp
ω

= 0. (3.105)

It is convenient at this point to introduce the potential W defined as

W = ln |ut|+
∫ l∞

l

Ω

1− Ωl
dl, (3.106)
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where l∞ is the value of the angular momentum evaluated at r → ∞, such that u∞t = −1 and
W∞ = 0. This potential in the Newtonian limit is reduced to the sum of the centrifugal and
gravitational contributions. We can now rewrite Eq. (3.105) as

W −Win +

∫ p

0

dp
ω

= 0. (3.107)

We now give the explicit solutions satisfying two von Zeipel’s relations.

• The first solution we consider is
l = const. (3.108)

This solution was introduced by introduced by Abramowicz et al. (1978) and it is important
for two physical reasons: first, because such configurations are stable to axisymmetric pertur-
bations; second, the region near the inner edge is well approximated by (3.108). The potential
is given by

W =
1

2
ln

∣∣∣∣
L
A

∣∣∣∣, (3.109)

• The second important solution is

l/(1− Ωl) ≡ l∗ = const. (3.110)

On the contrary, the solution (3.110), used for the first time by Fishbone and Moncrief (1976),
does not have strong physical motivations but it is widely used in recent literature. Now, the
potential is given by

W = ln |A∗|+ l∗Ω. (3.111)

where
A∗ ≡ ut = (gtt + 2Ωgtφ + gφφΩ2)−1/2, (3.112)

is called the redshift factor.

Assigned l or l∗, the potential W is defined in each point of space and matter fills every closed
equipotential surface, i.e. the surfaces whereW < 0 (see Figure 3.2). To understand how the values
of the angular momentum of the disks are assigned, we first refer to the Figure 3.3 which shows the
radial distribution of the specific angular momentum defined by

lk =
r2 − 2ar1/2 + a2

r3/2 − 2r1/2 + a
. (3.113)

and the horizontal line corresponding to a constant value of specific angular momentum, l0. Fur-
thermore, the values of lk at the radii of the marginally bound and marginally stable orbits (rmb
and rms) are indicated with lmb and lms respectively. In particular, if lms < l0 < lmb, it is possible
to define two geometric points called cusp (located at radius rin) and center (located at radius rc)
which respectively represent the innermost and outermost point where the constant angular mo-
mentum l0 takes the Keplerian value. The disk models considered in the simulations of Chapters 5
and 6 are initialized according to the procedure illustrated in Del Zanna et al. (2007).

• We assign the black hole parameters that define the metric: the mass M and angular momen-
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Figure 3.2: Equipotential surfaces for a disk orbiting around a Schwarzschild black hole (Abramowicz et al.,
1978).

Figure 3.3: Location of disk’s center and its cusp (Abramowicz et al., 1978).
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tum per unit of mass a.

• We assign the cusp rin and the center of the disk rc.

• We evaluate l0 = lk(rc) and we put l = l0 for Abramowicz’s disks and l∗ = l0/(1−Ω(l0)l0) for
Fishbone and Moncrief’s.

• The potential W can be defined in each point of space.

• By adopting a polytropic EoS, p = K1ω
γ̂ , the potential become

W −Win +
γ̂

γ̂ − 1

p

ω
= 0, (3.114)

or equivalently
h = hin exp(W −Win) (3.115)

The constant K1 is obtained by assigning the central enthalpy density wc and deriving the
central pressure pc from Eq. (3.114).

• We can compute enthalpy density as

ω = ωc

(
Win −W
Win −Wc

)1/γ̂−1

, (3.116)

while pressure is defined immediately from the EoS. Mass density is obtained from

ρ = ω − γ̂

γ̂ − 1
p. (3.117)

3.5 Kinematic α− Ω dynamo in axisymmetric thick disks

In this section we briefly show the results of the first application of the GRMHD equations with
dynamo closure to thick disks. The simulations, described in detail in Bugli et al. (2014), are re-
stricted to the kinematic regime in which the fluid quantities are kept fixed, i.e. the back-reaction
of the evolution of the e.m. fields on them is neglected.
The initial model is an axisymmetric magnetized thick torus, similar to the first solution described
in paragraph 3.4.2 but also including magnetic pressure as a contribution to equilibrium (see Komis-
sarov (2006) for more details). The disk orbits around a Kerr black hole of massM and spin a = 0.99

and its inner edge and center are located at rin = 3M and rc = 5M respectively. Configurations
with both toroidal and poloidal initial magnetic fields are studied, while the resistivity and dynamo
profiles are initialized as

η(r, θ) = ηmaxSη(r, θ), ξ(r, θ) = ξmaxSξ(r, θ) (3.118)

where
Sη(r, θ) =

√
ρ−√ρmin√

ρmax −√ρmin
, Sξ(r, θ) =

ρ cos θ

(ρ cos θ)max
, (3.119)

with ρmin is the density minimum reached in the atmosphere and ηmax and ξmax are free parameters
that allow us to adjust the intensity of the alpha effect and the dissipation of the magnetic field. The
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Figure 3.4: Exponential growth of the maximum values of BT and BP (Left) and butterfly diagrams
(Right) of Model 1 in Bugli et al. (2014).

authors have built several models that differ by the values of η and ξ. In all cases, the magnetic field
evolves rapidly towards an eigenstate of the system characterized by a dynamo wave propagating
away from the equatorial plane (ξ > 0) or towards the equatorial plane (ξ < 0). This migration was
characterized for each run by a butterfly diagram considering the value of the toroidal field along
the trajectories of its maxima at different times. Besides this drifting, the amplitude of both the
toroidal and poloidal components, defined as

BT =
√
BφBφ, BP =

√
BrBr +BθBθ, (3.120)

grows exponentially over time.
Here we report the results that refer to the Model 1 which presents an initial toroidal field and

the resistivity and dynamo parameters are ηmax = 10−3 and ξmax = 10−3. Figure 3.4 (Left) shows
the time evolution with exponential growth of the maximum values of the toroidal an poloidal
components of the magnetic field. The dynamo mode patterns are shown in Figure 3.5: after an
initial transient, all three components present an oscillatory pattern that drifts from the equatorial
plane towards higher latitudes. The periodicity and length-scale of the eigenmodes selected by the
system are quantified by the butterfly diagram (Figure 3.4 Right) obtained by plotting the value
of BT as a function of a parameter s with respect to which two almost vertical half-lines starting
from a point on the equatorial plane are parameterized. The migration of the toroidal field from
the equatorial plane towards higher latitudes is evident.

The work of this paper which characterized the GRMHD mean-dynamo in thick disks represents
the starting point for a generalization to the dynamic regime in which the effects of Lorentz force
on the charged particles that constitute the plasma can no longer be neglected. In Chapter 6 we
show some advances in the study of α− Ω dynamo in disks, also focusing on the main diagnostics
of accretion.
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Figure 3.5: Cartesian maps of the magnetic field components after 11 central disk periods of Model 1 in
Bugli et al. (2014).
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Chapter 4

The ECHO code

In this chapter we describe the numerical methods and algorithms used to perform our disk accretion
simulations. We used the ECHO code (Eulerian Conservative High Order scheme) (Del Zanna and
Bucciantini, 2002; Del Zanna et al., 2003, 2007) specifically developed to treat magnetohydrodynam-
ics problems in a generic metric even in the presence of discontinuities. After a brief introduction
to the original scheme used to solve the ideal GRMHD equations, we describe the changes made to
adapt the code to include non-ideal effects such as resistivity and mean-field dynamo (Bucciantini
and Del Zanna, 2013) and also chiral anomaly (Del Zanna and Bucciantini, 2018).

4.1 ECHO’s original version

The first version of the code allowed the integration of ideal GRMHD equations. Consider first
Eqs. (3.43) - (3.47), postponing the discussion of the constraints on the electric and magnetic fields
(3.48) and (3.49). Assuming a stationary metric and expanding the covariant derivation operators,
it is possible to rewrite them as (Del Zanna et al., 2007):

∂

∂t
U +

∂

∂xi
F i = S (4.1)

, where U , F i and S are defined as

U = γ1/2




D

Sj

E
Ej

Bj




i = 1, ..., d, (4.2)

F i = γ1/2




D(αvi − βi)
αW j

i − βjSi
αSi − Eβi

[jik](−γ−1/2αBk + [klm]βlEm)

[jik](γ−1/2αEk + [klm]βlBm)



, (4.3)
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S = γ1/2




0
1
2αW

ik∂jγik + Si∂jβ
i − E∂jα

1
2W

ikβj∂jγik +W j
i ∂jβ

i − Sj∂jα
qβj − αJ j

0



. (4.4)

Eq. (4.1) is a set of hyperbolic partial differential equations where the elements of the vector U are
referred to as the conservative variables, since their time evolution is controlled by a conservation
law with fluxes F and source terms S. We note that for convenience in the relativistic numerical
simulations of the most recent version of ECHO, instead of energy E , the quantity τ , defined as
τ = E −D, is evolved.

The starting point is to discretize Eq. (4.1). Let us consider, for the sake of simplicity, the
unidimensional case, d = 1 and divide the domain defined by the interval [a, b] in N cells Ii =

[xi−1/2, xi+1/2]. Let us assume that the intervals have equal length ∆x = (b − a)/N and are each
centered at the grid point

xi = a+ (i− 1/2)∆x; i = 1, ..., N. (4.5)

Calling r the spatial accuracy order, the point value of a generic quantity g(x) at a given time t
is gi = g(xi) + O((∆x)r) and its interface values are gi±1/2 = g(xi±1/2) + O((∆x)r). We are now
looking for a spatial discretization of Eq. (4.1) on this grid. For the moment we neglect the source
terms, since they will not need to be discretized but they are computed at the cell centers xi. The
discretization scheme implemented in ECHO is a so-called finite difference one. To calculate spatial
derivatives of a flux we expand it into a Taylor series

∂F
∂t

(xi) =
F̂i+1/2 − F̂i−1/2

∆x
+O((∆x)2), (4.6)

and express Eq. (4.1) as
∂U i
∂t

= −
F̂ i+1/2 − F̂ i−1/2

∆x
, (4.7)

where F̂ i±1/2 represents an approximation of the primitive of physical flux function F(x) at the
right (left) interface of the i-th cell. This means that the cell averages of F must coincide with
the point value F i of the flux F(x), to the given accuracy. This simple discretization provides a
scheme of 2nd order accuracy. To achieve higher orders it is necessary to consider further terms
in the expansion in Eq. (4.6). Once the quantities are known, it is possible to perform the time
integration as described in Eq. (4.7), but it is clear from Eq. (4.3) that to compute the fluxes it is
necessary to calculate the so-called primitive variables

P = {ρ, vj , p, Ej , Bj}, (4.8)

where ρ, v and p are respectively the rest mass density, the velocity, and the pressure of the fluid,
while E and B are the usual electric and magnetic fields. Since the code evolves the conservative
variables U , one has first to invert the relation between U and P by using Eqs.(3.28) - (3.30). The
interface value of the primitive variables can be retrieved by means of polynomial interpolation
during the reconstruction phase of the algorithm. As a consequence there will be in general two
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different states at both sides of each cell interface (as the fluid equations allow for discontinuous
solutions) and at the lowest order we can identify them with PL

i+1/2 = P i and PR
i+1/2 = P i+1.

To achieve a higher accuracy it is necessary to compute the left and right states using stencils of
grid points centered respectively at xi and xi+1. In this way the interface values are computed
with high order accuracy in the sufficiently smooth regions of the computational domain, while in
the presence of strong gradients the algorithm has to limit the interpolation to 1st order to ensure
stability and avoid spurious oscillations. The ECHO code, in the original implementation, allows
for a large number of different reconstruction schemes to be used, such as

• 2nd order like-TVD reconstructions (Total Variation Diminishing);

• 3nd order CENO (Convex Essentially Non-Oscillatory, Liu and Osher (1998));

• 3nd order PPM (Piece-wise Parabolic Method, Colella and Woodward (1984));

• 5nd order MP5 (Monotonicity Preserving, Suresh and Huynh (1997).

The discontinuities at the cell interfaces define a set of local Riemann problems. To better describe
the structure of this problem, let us consider Eq. (4.1) rewritten as

∂U
∂t

+
∂F
∂U

∂U
∂x

= 0 (4.9)

which is a hyperbolic system of n PDEs (where n coincides with the number of conservative variables)
whose solution requires the computation of n real and distinct eigenvalues of the Jacobian ∂F/∂U
(which in general depends on both the primitive and conservative variables). The eigenvalues are
referred to as the characteristic velocities of the system, as they represent the speeds at which
the information is transported by the fluid fluxes through the characteristic waves of the system,
i.e. the eigenvectors. Although there are algorithms that provide a numerically exact solution to
this problem, their computational cost makes them unsuitable for the GRMHD context. A far
more appropriate and affordable choice is the approximate Riemann solver HLL (Harten et al.,
1983) implemented in ECHO, since it only calculates the fastest and slowest characteristic velocity
(respectively a+ and a−). It is still necessary though to ensure that the information propagates in
the correct direction, a property that makes a scheme to be called upwind. The application of the
HLL solver finally provides with the value of the flux at the cell interface (Londrillo and Del Zanna,
2004)

FHLL =
a+FL + a−FR − a+a−(UR − UL)

a+ + a−
(4.10)

Finally we are ready to perform the time-integration of the conservative quantities, for instance
with a 3rd order explicit Runge-Kutta scheme

U (1) = Un + ∆tL[Un], (4.11)

U (2) = 3
4U

n + 1
4U

(1) + 1
4∆tL[U (1)], (4.12)

Un+1 = 1
3U

n + 2
3U

(2) + 2
3∆tL[U (2)], (4.13)

46



4.2. Upwind Constrained Transport

where the n index denotes the time step iteration, U (1) and U (2) are intermediate states, and L[U ]

is the member on the right-hand side of Eq. (4.7) plus the source term S.

4.2 Upwind Constrained Transport

Contrary to the other variables evolved in time, the magnetic field B has also to fulfill at all times
the constraint given by Eq. (3.49), which formally could be regarded as an initial condition: the
structure of the induction equation guarantees the analytical null divergence ofB. From a numerical
perspective this is in general not true, since for upwind schemes the derivations in different directions
are no longer commutable, so that spurious magnetic monopoles can appear during the computation.
To properly deal with this problem the Upwind Constrained Transport scheme (UCT, presented by
Londrillo and Del Zanna (2004)) was implemented in ECHO. For this method it is convenient to
introduce the quantities

Bi = γ1/2Bi, (4.14)

Ei = αEi + εijkβ
jBk, (4.15)

to rewrite Eq. (3.47) and Eq. (3.49) as

∂tBi + [ijk]∂jEk = 0, (4.16)

∂iBi = 0. (4.17)

We now integrate over the cell Ii,j,k with center at the point Pi,j,k = (xi, yj , zk), apply Stoke’s
theorem and assume for simplicity a 2nd order accuracy, obtaining for the component Bx

dBx
dt

= −∆yEz
∆y

+
∆zEy
∆z

, (4.18)

where Bx is evaluated at the middle of the interface between cell Ii,j,k and Ii+1,j,k (i.e. point
Pi+1/2,j,k), while Ez and Ey are evaluated respectively at Pi+1/2,j+1/2,k and Pi+1/2,j,k+1/2. The
operator ∆x centered at Pi,j,k is defined by

[∆xf ]i,j,k = fi+1/2,j,k − fi−1/2,j,k. (4.19)

Extending this calculation to the remaining two components of the magnetic field defined by Eq.
(4.14) and considering the time derivative of the spatially discretized solenoidal constraint, we obtain

d
dt

(
∆xBx
∆x

+
∆yBy
∆y

+
∆zBz
∆z

)
= 0, (4.20)

which guarantees Eq. (4.17) to be algebraically satisfied for all times, assuming that the magnetic
field at the initial time is divergence free. For this reason the quantities evolved in time with the
CT method (Constrained Transport) are the staggered components

[Bx]i+1/2,j,k, [By]i,j+1/2,k, [Bz]i,j,k+1/2, (4.21)
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which represent the point values of the components of the magnetic field evaluated respectively at
Pi+1/2,j,k, Pi,j+1/2,k, Pi,j,k+1/2, i.e. the centers of the interfaces orthogonal to the corresponding
magnetic field component.

It can be shown (Londrillo and Del Zanna, 2004) that the staggered components have the
important property of being continuous along the normal to the interface on which they are defined.
Hence, the left and right states coincide and need not to be reconstructed as the other variables
for the fluxes calculation. The obvious drawback is that when the values of the magnetic field
components are required at the cell center Pi,j,k (for instance, when the data are written into an
output file) they can be retrieved only by an interpolation step.

4.3 IMEX schemes for the treatment of the non-ideal terms

The introduction of resistive and dynamo terms in the GRMHD equations entails the need to
modify the original algorithm. In fact, if we consider the evolution time scale of the terms of Eq.
(3.59) we observe that non-ideal contributions evolve inversely to resistivity η. For this reason it is
possible that in areas of high (low) conductivity the evolution times of these so called stiff terms
are considerably large (small) compared to the advection times and the evolutionary times of the
sources. This fact can represent a problem for the stability of the code: it is known that a necessary
condition for stability is the so-called Courant-Friedrichs-Lewy (CFL) which is based on the idea
that the propagation velocity of any perturbation must always be smaller than the numerical velocity
defined as λN = ∆x/∆t, where ∆x and ∆t are the spatial and temporal discretizations. Basically,
satisfying the CFL condition does not allow a physical signal to propagate for more than a fraction
of the numerical grid during a single time step. However, the presence of stiff terms results in
a significant reduction in the maximum time interval necessary to ensure stability, significantly
increasing the calculation times.

In order to integrate a system of stiff differential equations using time steps that guarantee
both stability and reasonable computation times, the explicit third-order Runge-Kutta algorithm
has been replaced with an IMplicit-Explicit (IMEX) Runge-Kutta (Palenzuela et al., 2009; Pareschi
and Russo, 2005). We now illustrate the main features of the algorithm introduced in ECHO for
the first time in the works of Bucciantini and Del Zanna (2013); Bugli et al. (2014). Let us consider
the system (4.1) and separate the variables U into two subsets {X ,Y} = U , where X represents
variables whose evolution is governed by a stiff differential equation and Y stands for all other
variables. We get

∂tY = QY(X ,Y), (4.22)

∂tX = QX (X ,Y) +RX (X ,Y), (4.23)

where the operators QY e QX include both the spatial derivatives with respect to Y and X and
the non stiff source terms; the operator RX contains the stiff source terms which regulate X . In
the most general case of a resistive plasma with mean-field dynamo action, a comparison with Eq.
(3.59) provides the following form for the latter operator

RiX = −γ1/2αΓ{Ei + εijkvjBk − (Ejvj)v
i − ξ[Bi − εijkvjEk − (Bjvj)v

i)]}/η. (4.24)
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Each intermediate step of the IMEX Runge-Kutta method can now be divided in two parts:

1 First the explicit intermediate values are obtained at each sub-step. They are

Y(i)
? = Yn + ∆t

i−1∑

j=1

ãijQY [U (j)], (4.25)

X (i)
? = X n + ∆t

i−1∑

j=1

ãijQX [U (j)] + ∆t

i−1∑

j=1

aijRX [U (j)], (4.26)

where the index (i) is referred to the substep of the scheme, while the index n indicates the
step of the time discretization. It is essential that the summation extends up to the index i−1

so as to avoid the appearance of implicit terms in this passage. The matrices with coefficients
ãij e aij have dimensions NIMEX × NIMEX where NIMEX is a number that refers to the
specific accuracy of the scheme and the number of intermediate steps.

2 Then we perform the implicit integration. The non-stiff variables can be regarded as com-
pletely evolved (as far as the intermediate step is concerned)

Y(i) = Y(i)
? , (4.27)

while the stiff variables have to be integrated further

X (i) = X (i)
? + aii∆tRX (X (i),Y(i)

? ) (4.28)

After computing in each intermediate step i the two vectors {X (i),Y(i)} the final value of the
conservative variable U at the time t+ ∆t is given by

Un+1 = Un + ∆t

NIMEX∑

i=1

w̃iQ(U (i)) + ∆t

NIMEX∑

i=1

wiRX (U (i)), (4.29)

where w̃i e wi constant coefficients that along with the matrices aij and ãij completely define the
specific numerical scheme.

There are a large number of possible IMEX schemes in the literature, which differ in the number
of intermediate steps, and their spatial and temporal order of accuracy. In the case of ECHO we
implemented three different IMEX schemes of SSP type (Strong Stability Preserving), classified
with the notation SSPk(s, σ, p), where k indicates the order of the scheme SSP, s is the number of
number of implicit steps, σ is the number of explicit steps and p is the order of the IMEX scheme.
Usually the so-called Butcher tables (Butcher, 2016) are used to describe these schemes. They are
defined as

ci aij

(wi)
T
,

c̃i ãij

(w̃i)
T
, (4.30)

where the apex T indicate the transposed matrix and the coefficients ci and c̃i are given by

ci =

i∑

j=1

aij , c̃i =

i−1∑

j=1

ãij . (4.31)
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It can be demonstrated that these assumptions for the coefficients ci and c̃i are necessary to en-
sure consistency of the scheme. Here are the schemes used in ECHO (Pareschi and Russo, 2005)
SSP2(2,2,2)

• implicit part
µ µ 0

1− µ 1− 2µ µ

1/2 1/2

(4.32)

• explicit part
0 0 0

1 1 0

1/2 1/2

(4.33)

SSP3(3,3,2)

• implicit part
µ µ 0 0

1− µ 1− 2µ µ 0

1/2 1/2− µ 0 µ

1/6 1/6 2/3

(4.34)

• explicit part
0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

(4.35)

SSP3(4,3,3)

• implicit part
α α 0 0 0

0 −α α 0 0

1 0 1− α α 0

1/2 δ ζ 1/2− δ − ζ − α α

0 1/6 1/6 2/3

(4.36)

• explicit part
0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

(4.37)
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with

µ = 1− 1/
√

2

α = 0.24169426078821

δ = 0.06042356519705

ζ = 0.12915286960590

(4.38)

4.4 Evolution of the electric field in the IMEX schemes

In this section we show how IMEX schemes are implemented in ECHO and how the inversion of the
relation (4.28) takes place, that is the most delicate aspect of the implicit step. From the inversion,
an explicit expression for the electric field as a function of the velocity and known quantities can
be derived as shown in Bucciantini and Del Zanna (2013)1. Here we choose to write it in the form

A0E
i = η̃Ei? +A1(E?kũ

k)ũi +A2ε
ilmũlE?m

+A3B
i +A4(Bkũ

k)ũi +A5ε
ilmũlBm,

(4.39)

where all coefficients are function of the Lorentz factor Γ (hence of the velocity) alone. See the
Appendix B for a derivation of the above equation and for the expressions of the coefficients. It is
convenient to work with the new spatial vector ũi = Γvi (not coincident with the spatial component
of the 4-velocity, unless βi 6= 0 as in the Minkowski or Schwarzschild metrics), and ũi = Γvi, so
that Γ2 = 1 + ũiũi. Above we have also defined Ek? = X k? /

√
γ, where X k? are the electric field

components, multiplied by √γ, computed thanks to the previous explicit substeps j < i of the
IMEX scheme, or at the previous timestep when i = 1. Moreover

η̃ =
η/α

aii∆t
, (4.40)

with j = i referring to the last, implicit substep. Notice that when η = 0 and ξ = 0 we recover the
ideal GRMHD case.

The relation (4.39) allows one to calculate the electric field as a function of the velocity and of
the magnetic field at the end of each substep. However, since the numerical scheme evolves in time
the conserved variables U , primitives variables such as the velocity are not readily available and the
implicit step must be nested in the non-linear iterative procedure which recovers primitive variables
from the above set of conservative ones. We describe in the following paragraphs the two inversion
algorithms used in ECHO in the non-ideal and ideal cases.

4.4.1 Recovery of primitive variables in non-ideal GRMHD

Starting with a straightforward guess for ũj (0), that is the value corresponding to the set of conserved
variables at the previous timestep, we proceed by adopting the following Newton-Raphson scheme:

• at any iteration (k), with a value ũj (k) for the velocity, work out the electric field given by
solving Eq. (4.39);

1Equation (35) in Bucciantini and Del Zanna (2013) contains an error in the purely resistive term, fortunately
not in the corresponding part of the code. The correct version can also be found in Del Zanna et al. (2016)
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• evaluate the function
fi(ũ

j) = w̃γij ũ
j + εilmE

lBm − Si, (4.41)

where the modified enthalpy

w̃ = wΓ =
Γ[E − 1

2(B2 + E2)]−D/γ̂1

Γ2 − 1/γ̂1
, (4.42)

obtained using ω = ρh and placing γ̂1 = γ̂/(γ̂ − 1), is also given in terms of conservative
variables and velocity components alone;

• evaluate the Jacobian

Jij =
∂fi
∂ũj

= w̃γij + ũi
∂w̃

∂ũj
+ εilm

∂El

∂ũj
Bm, (4.43)

where
∂w̃

∂ũj
=

[E − 1
2(B2 + E2)]ũj/Γ− 2w̃ũj − ΓEi(∂E

i/∂ũj)

Γ2 − 1/γ̂1
, (4.44)

and where we have used ∂Γ/∂ũj = ũj/Γ. The expression for the Jacobian of the electric field
is more involved. Recalling that for any function f(Γ) we have ∂f/∂uj = ḟ uj/Γ, one can
write

A0Γ(∂Ei/∂ũj) = (4.45)

−Ȧ0E
iuj +A1ΓuiE?j + Ȧ3B

iuj +A4ΓuiBj

+(A1Γγij + Ȧ1u
iuj)(E?ku

k)+εilm(A2Γγlj + Ȧ2uluj)E?m

+(A4Γγij + Ȧ4u
iuj)(Bku

k)+εilm(A5Γγlj + Ȧ5uluj)Bm

and the expressions for the derivative of the coefficients are reported in the Appendix. Once
the full Jacobian is known, we can finally update the velocity as

ũj (k+1) = ũj (k) − [J
(k)
ij ]−1f

(k)
i . (4.46)

The iterations are repeated until the desired accuracy is reached, so that the primitive variables at
every substep j can be computed for the IMEX scheme.

The above 3-D Newton-Raphson scheme based on the vanishing of momentum equations and
using the ũm variables, first introduced by Bucciantini and Del Zanna (2013), has proved to be the
most robust one and has been recently adopted in other resistive relativistic MHD codes (Mignone
et al., 2019; Ripperda et al., 2019). The novel feature introduced here is the analytical calculation
of the Jacobian in Eq. (4.43), that appears to be more robust in critical situations and to require
10− 20% less iterations compared to the approach in Bucciantini and Del Zanna (2013), where the
Jacobian was computed numerically, by evaluating the momenta twice for nearby values of ũj .

4.4.2 Recovery of primitive variables in ideal GRMHD

A significant improvement in the procedure for recovering primitive variables in ideal GRMHD
was achieved by the adoption of the scheme proposed by Kastaun et al. (2021). The strengths of

52
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this work concern the mathematically demonstrated ability to always find a unique solution with
rigorously derived accuracy bounds. We show here the essential elements of the algorithm. Given
the conserved variables D, E , Si, we define:

q =
τ − 1

2(B2 + E2)

D
, ri =

Si − εijkEjBk

√
D

(4.47)

q =
τ

D
, ri =

Si√
D
, bi =

Bi√
D

(4.48)

We also need to decompose the momentum r in parts parallel and normal to the magnetic field:

ri‖ =
(blrl)b

i

b2
, ri⊥ = ri − ri‖ (4.49)

We note that the decomposition is undefined for the case of zero magnetic field, so we put ri‖ = 0

when Bi = 0. We now collect some definitions and fundamental relations in the construction of the
master function. First, we define two quantities that play a key role:

µ =
1

Γh
, x =

1

1 + µb2
(4.50)

with their ranges are limited to

0 < µ ≤ 1/h0, 0 < x ≤ 1 (4.51)

where h0 is a positive lower bound for the enthalpy.
Then we remove the electromagnetic part of the conserved variables. From the ideal condition (3.53)
we get:

E2 = x2µ2B2x2
⊥, (4.52)

ri = xri⊥ + ri‖. (4.53)

This allows to compute the pure fluid part of the conserved variables. The corresponding quantities
relevant for our purpose can be written as

r2 = x2r2
⊥ + r2

‖. (4.54)

q = q − 1

2
b2 − 1

2
x2µ2b2r2

⊥. (4.55)

We can now express the velocity as
v = µr. (4.56)

This expression does however not guarantee that v < 1. To avoid excessive speed values, the velocity
is required to be less than a threshold velocity v0 which depends on z0 = r/h0,

v0 =
z0√

1 + z2
0

(4.57)
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After obtaining velocity and Lorentz factor, we compute rest mass density and specific internal
energy using the expressions

ρ = D/Γ, (4.58)

ε = Γ(q − µr2) + v2 Γ2

1 + Γ
. (4.59)

Pressure and enthalpy are evaluated from the EOS.
We can now define the master function f(µ) as

f(µ) = µ− µ̂(µ), (4.60)

where
µ̂(µ) =

1

ν(µ) + r2(µ)µ
, (4.61)

with
ν(µ) = max(νA(µ), νB(µ)), (4.62)

νA(µ) =

[
1 +

p(µ)

ρ(µ)(1 + ε(µ))

]
1 + ε(µ)

Γ(µ)
, (4.63)

νB(µ) =

[
1 +

p(µ)

ρ(µ)(1 + ε(µ))

]
(1 + q(µ)− µr2(µ)). (4.64)

Kastaun et al. (2021) showed that the master function has always a unique root in the interval
(0, µ+], where µ+ is the root of a smooth auxiliary function,

fa(µ) = µ
√
h2

0 + r2(µ)− 1, (4.65)

obtained by using a Newton-Raphson method. Instead, in order to find the root of the master
function our implementation uses a Newton/bisection hybrid method. We can now retrieve the
primitive variables.
The algorithm proved to be extremely efficient in MAD simulations where there is high magne-
tization in low-density regions and did not produce any errors during iterations in the primitive
recovery phase.
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Chapter 5

Numerical simulations: GRMHD Code
Comparison Project

In the previous Chapters, we have seen that it is possible to write GRMHD equations in a conser-
vative form that allows us to evolve them using techniques commonly adopted for the treatment
of non-relativistic magnetized fluids. Over the last decades, several GRMHD codes have been
developed, most using conservation form, and applied to a large variety of astrophysical scenarios.

The non-linear properties of the equations allow the formation of fundamental phenomena such
as turbulence and shocks but necessarily complicate their treatment. In the scenario of accretion
around black holes, there are two crucial phenomena in modeling. First, the turbulence seeded by
the magnetorotational instability provides a mechanism to transport the angular momentum of the
orbiting plasma and although the nature of the problem is inherently chaotic, it can be demonstrated
that certain global properties of the solutions exhibit signs of convergence. A second challenge is
the region of the funnel near the polar axis where low angular momentum material falls into the
black hole. A magnetized near-vacuum region forms in this area, traditionally difficult to model.

An interesting question undoubtedly concerns the validity and robustness of the results obtained
by the community of GRMHD codes, each of which is specialized with different numerical techniques
in dealing with an increasing application of simulations. The GRMHD Code Comparison Project
aims to compare GRMHD solutions and quantify the magnitude of systematic differences for the
evolution of a thick accretion disk from a set of GRMHD codes. The work is divided into two parts:
the first part is described in Porth and EHT-Collaboration (2019) and deals with the modeling of
a SANE disk and involves nine codes (Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D,
HARM-Noble, IllinoisGRMHD, and KORAL); the second, concerning the more interesting MAD
regime, is currently in preparation (Olivares et al. in prep) and involves thirteen codes.

5.1 First part: SANE

The recent observations by EHT have confirmed the idea that M87∗ and SgrA∗ sources accrete as
MAD disks. However, it was considered appropriate that the first part of the project concerned the
study of the SANE regime which is well known in the literature, in order to standardize the results
and prepare the codes to deal with the modeling of the MAD regime. We present here the results
shown in Porth and EHT-Collaboration (2019) focusing in particular on ECHO simulations.
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5.1.1 Setup

As the initial condition for our 3D GRMHD simulations, a Fishbone and Moncrief torus in hydro-
dynamic equilibrium threaded by a single weak (β � 1) poloidal magnetic field loop is considered.
The spacetime is a Kerr black hole with dimensionless spin parameter a = 0.9375. The inner radius
of the torus is set to rin = 6M and the density maximum is located at rmax = 12M . An ideal gas
equation of state is adopted with an adiabatic index of γ̂ = 4/3 and a weak single magnetic field
loop defined by the vector potential

Aφ ∝ max(ρ/ρmax − 0.2, 0), (5.1)

is added to the stationary solution. The field strength is set such that 2pmax/B
2
max = 100, where

the global maxima of pressure pmax and magnetic field strength B2
max do not necessarily coincide.

With this choice of initial magnetic field geometry and strength, the simulations are anticipated to
progress according to the SANE regime, although this can only be verified a posteriori.

In order to excite the MRI inside the torus, the thermal pressure is perturbed by white noise of
amplitude 4%. More precisely,

p∗ = p(1 +Xp), (5.2)

and Xp is a uniformly distributed random variable between −0.02 and 0.02.
To avoid density and pressures dropping to zero in the funnel region, floor models are custom-

arily employed in fluid codes. Each code had the freedom to adopt the strategies it deemed most
appropriate. In ECHO we adopted the following floor model:

ρfl = 10−5r−3/2, pfl = 1/3 · 10−7r−5/2. (5.3)

Thus, for all cells that satisfy ρ ≤ ρfl and/or p ≤ pfl we set ρ = ρfl and/or p = pfl. The floor defined
by the relations (5.3) also defines the initial static and non-magnetized atmosphere. In addition, to
avoid high Lorentz factor in the funnel, we enforce that it stay within reasonable bounds, that is,
Γfl = 50. This delimits the momentum and energy of faulty cells and thus aids in keeping the error
localized.

In terms of coordinates and grids, ample freedom is left to the various codes for two reasons:
first, in this way, the results inform us about the setups used with a particular code and can allow
us to make comparisons between the various methods; the second reason is purely utilitarian, as
settling for a common grid setup would incur extra work and likely introduce unnecessary bugs.
The domain of interest is:

r ∈ [rh, 50], θ ∈ [0, π], φ ∈ [0, 2π], (5.4)

where rh is the radius at the event horizon defined by (3.87), and three rounds of resolutions are
suggested in order to judge the convergence between codes. These are low-res: 963, mid-res: 1283,
and high-res: 1923, where the resolution corresponds to the domain of interest mentioned above.

Our simulations carried out with ECHO in Kerr–Schild coordinates adopt a numerical grid
logarithmically stretched in radius and uniform in both θ and φ, excluding from the polar angle
domain the regions close to the rotation axis to avoid excessively small time steps. At the radial and
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polar boundaries, we impose outflow boundary conditions, i.e., we copy the value of the primitive
variables and set the velocity normal to the boundary to zero whenever it has a positive (negative)
value at the inner (outer) boundary.

The time integration performed in ECHO uses the third-order accurate IMEX strong-stability-
preserving scheme, which in the case of ideal GRMHD reduces effectively to a third-order Runge–Kutta.
The upwind fluxes are computed with the HLL Riemann solver with PPM reconstruction, using
the UCT scheme for the treatment of the magnetic field. For the primitive variable recovery we
first use the three dimensional scheme described in paragraph 4.4.1, and in the case of failure we
attempt to retrieve the primitives using the advected entropy instead of the total energy. In case of
persisting failures, we finally reset the value of density and pressure to the atmospheric floor values
and set the Eulerian velocity to zero, without modifying the magnetic field.

5.1.2 Results

A consistent set of diagnostics focusing both on horizon scale quantities and on the global evolution
of the accretion flow is performed with all codes. We describe the quantifications and show the
results.

Horizon-penetrating fluxes

The relevant quantities: mass, magnetic, angular momentum, and (reduced) energy fluxes are
defined as follows:

Ṁ =

∫ 2π

0

∫ π

0
ρur(−g)1/2dθdφ, (5.5)

φBH =
1

2

∫ 2π

0

∫ π

0
|F ∗rt|(−g)1/2dθdφ, (5.6)

L̇ =

∫ 2π

0

∫ π

0
T rφ(−g)1/2dθdφ, (5.7)

Ė =

∫ 2π

0

∫ π

0
(−T rt )(−g)1/2dθdφ, (5.8)

where all quantities are evaluated at the outer horizon rh with a cadence of 1M . In practice, these
quantities are nondimensionalized with the accretion rate, yielding, for example, the normalized
magnetic flux that we have defined in paragraph 2.2.2, φ = φBH/

√
Ṁ , also known as the “MAD

parameter”. As we have already said, there is a critical value φmax for the amount of magnetic
field that the black hole can absorb depending on the scale height and spin of the black hole. For
a = 0.9375 and torus scale height H/R ∼ 0.3 the parameter has the critical value φmax ∼ 15.

Time series data of horizon-penetrating fluxes is presented in Figures 5.1-5.3 for low, medium,
and high resolutions respectively in which the results of our simulations performed with ECHO are
represented by light blue lines. Because the mass accretion governs the behavior of these fluxes, the
data have been appropriately normalized by the accretion rate. All codes capture accurately the
linear phase of the MRI leading to an onset of accretion to the black hole at t ' 300M . While there
is still a good correspondence of Ṁ for early times < 1000M , the chaotic nature of the problem
fully asserts itself after 2000M . At low resolution, there exist order of magnitude variations in the
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5.1. First part: SANE

data, most notably for the normalized horizon-penetrating magnetic fluxes and the energy fluxes.
Concerning our results, we can see how the magnetic flux and the angular momentum flux are
respectively lower and higher at the lower resolution compared to the high-resolution run. As
indicated by φ ∼ 0.5 − 6 < φmax, all simulations are in the SANE regime of radiatively inefficient
black hole accretion.

As a measure for the convergence and variance between the codes, the peak fluxes as well as the
average values far in the nonlinear regime are quantified in the table of Figure 5.4. Both average
and peak values show a tendency to converge to values common to all codes as resolution increases;
the agreement with very high resolution runs is also good. It is worthwhile to point out the good
agreement in angular momentum and energy fluxes at high resolution for the codes employing
spherical grids (Figure 5.3), where the highest average values differ from the lowest ones by 12%

and 40%. Because meshes with various amounts of compression in the midplane were employed by
the different groups, a comparison purely based on the number of grid cells is, however, hardly fair
even in the spherical cases. Hence, Figure 5.5 shows the data of Table in Figure 5.4 against the
proper grid spacing at the location of the initial density maximum, ∆θp: upon increased resolution,
the spread in the quantities decreases and one can make out a critical resolution ∆θp = 0.0125−0.25,
below which accretion rates and horizon-penetrating fluxes tend to converge to the same answer.
The accreted angular momentum flux L̇/Ṁ is very well captured at all resolutions with minimal
spread.

Disk-averaged quantities

We compare averages of the basic flow variables q ∈ {ρ, p, uφ,
√
bµbµ, β

−1}. Hence, for a quantity
q(r, θ, φ, t), the shell average is defined as

〈q〉(r, t) =

∫ 2π
0

∫ θmax
θmin

q(r, θ, φ, t)(−g)1/2dθdφ
∫ θmax
θmin

(−g)1/2dθdφ
, (5.9)

which is then further averaged over the time interval tKS ∈ [5000, 10000]M to yield 〈q〉(r). The
limits θmin = π/3 and θmax = 2π/3 ensure that only material from the disk is taken into account in
the averaging.

The disk-averaged profiles of the relevant quantities q are presented in Figures 5.6-5.8. At the
late times under consideration, viscous spreading and accretion have significantly transformed the
initial distributions; for example, the peak densities are now an order of magnitude below the initial
state. There is a fair spread in some quantities between codes, most notably in the profiles of
density and (inverse) plasma beta, while all codes capture very well the rotation law of the disk,
which can be approximated by a power law with slope r−1.75, somewhat steeper than the Keplerian
case. Interestingly, the profiles of the magnetic field are also captured quite accurately and tend to
agree very well with a very high-resolution reference case computed with the H-AMR code (dashed
red curves). The approximate scaling of the disk magnetic field as r−1 indicates a dominance of
the toroidal field component (e.g., Hirose et al. (2004)). Taking the inverse plasma β (bottom-right
panel) as a proxy for the Maxwell stresses, the decrease in torus density is consistent with an increase
in the turbulent transport of angular momentum, due to the increase in magnetization. Turning to
the high-resolution data, the spread in all quantities becomes dramatically reduced. Starting at a
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Figure 5.1: Time series at the resolution of 963 in the domain of interest for all codes. From top to bottom,
the panels show the mass accretion rate, horizon-penetrating magnetic flux, accretion of angular momentum
and energy. The data in panels 2–4 have been nondimensionalized with the accretion rate M (Figure adapted
from Porth and EHT-Collaboration (2019)).
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Figure 5.2: As Figure 5.1 for the 1283 data. Cartesian realizations next to the medium-resolution cases are
added here. It should be kept in mind though that the resolution in the Cartesian cases is typically much
worse near the horizon but better at larger radii, which makes it hard to directly compare the simulations.
Qualitatively, there is very good agreement of the Cartesian runs with the spherical data in all quantities
except for the energy fluxes where BHAC Cart. is systematically higher and IllinoisGRMHD is slightly lower
than all spherical codes (Figure adapted from Porth and EHT-Collaboration (2019)).
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Figure 5.3: As Figure 5.1 for the 1923 data.
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Figure 5.4: Quantities in angular brackets 〈·〉 denote time averages in the interval t ∈ [5000, 10000]M with
error given by the standard deviation. For further convergence testing, another two BHAC runs (256* using
256× 256× 128 cells and 384× 384× 384 cells) and an H-AMR run with 1608× 1056× 1024 cells are listed
here (Figure adapted from Porth and EHT-Collaboration (2019)).
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5.1. First part: SANE

Figure 5.5: Resolution dependence of the averaged quantities for all runs of Table of Figure 5.4. The figure
has been normalized to the mean of the distribution, allowing the overall spread to be judged, and errors
mark the standard deviation over the averaging interval.

few gravitational radii, the magnetization of the disk is nearly constant, with values in the range
0.04− 0.1. Here, the Cartesian runs are the exception (BHAC Cart. and IllinoisGRMHD in Figure
5.7); their magnetization decreases within r ∼ 10M and reaches a minimum of ∼ 0.01. We suppose
that this stems from increased numerical dissipation, due to the comparatively low resolution in the
inner regions of the Cartesian grids.

We compute also the density scale height averaged over time:

〈H/R〉(r, t) =

∫ 2π
0

∫ θmax
θmin

|π/2− θKS|ρ(t, r, θ, φ)(−g)1/2dθdφ
∫ θmax
θmin

ρ(t, r, θ, φ)(−g)1/2dθdφ
. (5.10)

A scale height of 〈H/R〉 = 0.25 − 0.3 between rKS ∈ [10, 50]M is consistently recovered with all
codes. As shown in Figure 5.9 The largest departures from the general trend are seen in the inner
regions for the Cartesian runs.

Emission proxy

We also integrate the pseudo-emissivity for thermal synchrotron radiation following an appropriate
nonlinear combination of flow variables:

L(t) =

∫ 2π

0

∫ θmax

θmin

∫ rmax

rh

j(B, p, ρ)(−g)1/2dφdθdr, (5.11)
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Figure 5.6: Disk-averaged quantities at the resolution of 963 in the domain of interest for all codes. Data
have been averaged over the θ and φ angles as well as over the time interval t ∈ [5000, 10000]M . For reference,
the H-AMR Nθ = 1056 solution was added.

Figure 5.7: As Figure 5.6 for the 1283 data.
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Figure 5.8: As Figure 5.6 for the 1923 data.

Figure 5.9: Scale height profiles of the high-resolution models (Nθ = 192) according to Eq. (5.10).
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Figure 5.10: Time series at the resolution of 963 of the pseudo-luminosity for all codes (Figure adapted
from Porth and EHT-Collaboration (2019)).

Figure 5.11: As Figure 5.10 for the 1283 data (Figure adapted from Porth and EHT-Collaboration (2019)).

where again θmin = π/3, θmax = 2π/3 and rmax = 50M . The emissivity jν is defined following the
description of the paragraph 2.1.2. In the dimensionless units adopted here, Eq. (2.31) integrated
in the frequencies can be written as

j = ρ3p−2 exp

[
−C
(
ρ2

Bp2

)1/3]
. (5.12)

The constant C is chosen such that the radiation is cut off after a few gravitational radii, resembling
the expected millimeter emission from the Galactic Center, that is, C = 0.2 in geometrized units.
This emission proxy is optimized for the science case of the EHT where near optically thin syn-
chrotron emission is expected. Figures 5.10-5.12 show the time series: also in this case the spread
is smaller at high resolution.

t, φ averages

Finally, we compare temporally and azimuthally averaged data for a more global impression of the
disk and jet system:

〈q〉(r, θ) =

∫ tend
tbeg

∫ 2π
0 q(r, θ, φ, t)(−g)1/2dφdt

2π(tend − tend)
(5.13)

for density, inverse beta-plasma and magnetization, q ∈ {ρ, β−1, σ}, in the time range delimited by
tmin = 5000M and tmax = 10000M .
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5.1. First part: SANE

Figure 5.12: As Figure 5.10 for the 1923 data (Figure adapted from Porth and EHT-Collaboration (2019)).

To gain an overall impression of the solutions in the quasi stationary state, we compute averages
over the t− and φ−coordinates in Figure 5.13. The different panels depict the rest-frame density,
inverse plasma β, and the magnetization obtained for ECHO at the highest resolution available.
Though qualitatively very similar between codes, the maps (in particular the maps of β−1) exhibit
spreads in the funnel region: depending on the pole treatment, the inverse plasma β decreases toward
the axis for some codes including ECHO, while others see an increase of β−1 or a near-constant
behavior.

It is interesting to examine the jet–disk boundary defined as σ = 1 in more detail. Figure 5.14
illustrates that as the resolution is increased, the contour is more faithfully recovered across codes:
whereas some low-resolution runs do not capture the highly magnetized funnel, at high resolution,
all runs show a clearly defined jet–disk boundary. Despite the large variances in floor treatment, at
Nθ = 192 cells, the difference is reduced to five degrees and the polar angle of the disk–jet boundary
ranges between 10◦ and 15◦ at r = 50M . For illustrative purposes, we also overplot flux-functions
of the approximate force-free solutions discussed in Tchekhovskoy et al. (2008) and Nakamura et al.
(2018):

Ψ(r, θ) =

(
r

rh

)κ
(1− cos θ). (5.14)

In the recent 2D simulations of Nakamura et al. (2018), the jet boundary given by σ = 1 was
accurately described by the choice κ = 0.75 for a wide range of initial conditions, black hole spins,
and horizon-penetrating flux: φ ∈ [5, 10]. This results in a field line shape z ∝ R1.6, which matches
well the shape derived from VLBI observations on the scale of 10 − 105M (Asada and Nakamura,
2012; Hada et al., 2013). In our ECHO models, the line κ = 0.75 is recovered at low resolution, and
the more collimated genuinely paraboloid shape κ = 1 (z ∝ R2) resembling the solution of Blandford
and Znajek (1977) seems to be a better match for the funnel-wall shape at higher resolutions for
all codes. We suspect that the narrower jet profile compared to Nakamura et al. (2018) is due to
the lower φ ' 2− 3 of our benchmark configuration (at high resolution). We believe that in ECHO
the polar cutout coupled with low resolution can negatively affect a correct modeling of the funnel
magnetization.

Comparing the torus density in more detail, in Figure 5.15 we illustrate contours of 〈ρ〉/〈ρ〉max

for the runs with Nθ = 192 cells. Normalized in this way, the agreement in torus extent generally
improves as it compensates for the spread in peak densities (see Figure 5.8). Nonetheless, there
remains a large variance in the given contours.
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5.1. First part: SANE

Figure 5.13: t− and φ−averaged data. We show averages of the rest-frame density, inverse plasma β, and
the magnetization σ (Figure adapted from Porth and EHT-Collaboration (2019)).

Figure 5.14: Contours of the jet–disk boundary σ = 1 for increasing resolution (left) and a zoom into
the region θ ∈ [0◦, 45◦] (right). Only in the high-resolution case is the jet recovered with all codes. The
paraboloid curves according to Eq. (5.14), corresponding to z ∝ R2 (κ = 1, thin dotted black) and z ∝ R1.6

(κ = 0.75, thin solid black) are also showed.
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Figure 5.15: Comparison of the density contours at fixed ratios of the peak value for the high-resolution
models. Contours are placed at 〈ρ〉/〈ρ〉max ∈ [0.0078125, 0.125, 0.5].
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5.2. Second part: MAD

Variability

In order to get a feeling for the predictive power of variability from GRMHD simulations in a
turbulent regime, we now compute the power-spectrum densities (PSDs) of the emission proxy L.
The data is presented in Figure 5.16 for all available resolutions. At low and mid resolution, all
light curves are compatible with a red-noise spectrum with β = 2, and we obtain a steepening near
f = 0.1M−1 while for high resolution this break is less apparent. The same analysis is performed
also with the time series of Ṁ . The right panels of Figure 5.16 indicates that the low-frequency
power law seen in L is not recovered in Ṁ . For frequencies f = 0.01M−1, the power in all codes is
definitely shallower than f−2, approaching a flicker-type noise, f−1, and indications for a spectral
break in the vicinity of the ISCO frequency are found.

Finally, the root mean square (RMS) of the accretion rate is computed after zeroing out all
Fourier amplitudes with frequency below 1/1000M . This serves as an effective detrending of the
low-frequency secular evolution. In order to avoid edge effects, the rms is computed in the region
t ∈ [2500, 7500]M . Exemplary data of the remaining high-frequency variability is shown for the
high-resolution runs in the left panel of Figure 5.17. The (normalized) rms values shown against
midplane resolution (right panel) quantify this further and indicate quite a universal behavior with
values in the range 1.2 − 1.6 across all codes and resolutions. With increased resolution, all codes
tend to be attracted to the point k = rms(Ṁ)/〈Ṁ〉 ' 1.3. Repeating the same analysis with the
emission proxy yielded essentially the same outcome. This quite striking result (after all, there is
a scatter in mean accretion rates itself by a factor of ∼8 in the sample) is a restatement of the
rms–flux relationship, which is a ubiquitous feature of black hole accretion across all mass ranges
(Uttley and McHardy, 2001; Heil et al., 2012). The quotient k ∼ 1.3 is consistent with the recent
simulations of Hogg and Reynolds (2016) who find an rms–flux relationship of the accretion rate
with k = 1.4± 0.4.

5.2 Second part: MAD

The first part of the EHT GRMHD Code Comparison Project (Porth and EHT-Collaboration,
2019) showed that different simulations of a SANE accretion flow starting from the same initial
conditions produce outcomes that are consistent against the diversity of numerical methods and
implementations employed by codes in the community. However, while SANEs are relatively sim-
ple to simulate and have been widely discussed in the literature, the transition to a MAD state
introduces significant changes in the dynamics that can easily bring GRMHD codes to their limits.
Given the importance of MADs as viable models for the plasma surrounding M87∗, it is essential
to assess the consistency of GRMHD codes also in this more challenging regime. As the work is in
progress, we show here only some results obtained with ECHO without making comparisons with
other codes.

5.2.1 Setup

The initial condition consists of a Fishbone-Moncrief torus around a Kerr black hole with dimen-
sionless spin parameter a = 0.9375. The inner radius of the torus is located at rin = 20M , and its
pressure maximum at rmax = 41M . An ideal gas equation of state is adopted with an adiabatic
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Figure 5.16: Periodograms, compensated with f−2, of the emission proxy L (left) and for the accretion
rate Ṁ (right) for increasing resolutions (top to bottom). Also, the PSD of a synthetic light curve at 230
GHz and inclination i = 0 is shown in the lower panel (light gray curve). To better visually separate the
curves, they have been progressively shifted by factors of 10. The blue dotted vertical line denotes the orbital
frequency of the ISCO.

Figure 5.17: Variability of the detrended accretion rates. The long time secular evolution has been removed
by zeroing out all Fourier amplitudes below 1/1000M . An example of the high-resolution data is shown in
the left panel. In the right, we compare the resolution dependence in the rms accretion rate normalized by
its mean value. We obtain a clear “rms–flux” relation in all codes with quotient converging to k ' 1.3.
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index of γ̂ = 13/9 and the magnetic field is given by the vector potential Aφ ∝ max(q, 0), where

q =
ρ

ρmax

(
r

rin

)3

sin3 θ exp

(
− r

400

)
− 0.2, (5.15)

and it is normalized in such a way that the ratio of the maximum gas pressure to that of the
maximum magnetic pressure in the disk (at different locations) is (pg)max/(pmag)max = 100. To
trigger the MRI, the equilibrium configuration is perturbed by adding white noise to the fluid
pressure according again to the Eq. (5.2).

The initial atmosphere profile adopted in our simulation is given again by relations (5.3). During
evolution, ceilings are applied to the Lorentz factor Γ the plasma magnetization σ, and the ratio
between magnetic and fluid pressure β−1

p . Velocity is limited in such a way that the Lorentz factor
is at most Γfl = 20 and matter or fluid pressure are added so that σ < σfl and β−1

p < (β−1
p )fl =

(10σfl)γ̂−1, with σfl = 100. The floors on density and pressure are therefore

ρfl =
b2

σfl
, pfl =

b2

2
(10σfl)1−γ̂ . (5.16)

For the present simulations at the two suggested resolutions, low (192x96x96) and high (384x192x192),
we have adopted the main numerical strategies adopted for the first part with the addition of the
scheme described in the paragraph 4.4.2 which turned out to be able to easily handle low-density
regions.

Like the first part, the grid is stretched logarithmically in the radial direction with r ∈ [rh −
∆r, 3000]M where ∆r is chosen to have five radial grid points for r < rh and uniform in the angular
directions. A small aperture cone is removed along the polar axis to avoid numerical problems.
Outflow boundary conditions are adopted in the radial direction, for both the inner and outer radii,
reflection conditions are applied at the polar axis whereas periodicity is assumed in the azimuthal
direction.

5.2.2 Results

We now briefly present some results obtained with ECHO: the main diagnostics are the same as in
the first part with the addition of a quantification used to estimate the power of the jets.

Horizon-penetrating fluxes

Figure 5.18 show time series of the radial fluxes defined in Section measured at the event horizon
(the blue line refers to low resolution and the red line to high resolution). Because the simulations
are scale free until the accretion rate is fixed, each of them has been been appropriately normalised
by the mass accretion rate Ṁ , similarly as in Porth and EHT-Collaboration (2019); however, due to
the larger variations in Ṁ that characterise the MAD state, here we have used the average value of
this quantity instead of pointwise values. Mass, magnetic and angular momentum flux rise during
a transient phase from roughly one orbital period of the original density maximum (≈ 1649.5) to
5500M , after which they reach a quasi-stationary state that lasts until the end of the simulations,
at ∼ 10000M . For both runs the normalised magnetic flux saturates at a value close to φmax ∼ 15

which confirms that they are in the MAD regime. Note that both a and H/R are the same as in

72



5.2. Second part: MAD

Figure 5.18: Horizon-penetrating fluxes as defined in Eqs. (5.5)-(5.8) for the low (blue line) and high (red
line) resolution simulations, after normalization by the average of Ṁ over t ∈ [6000, 10000]M .

SANE project (see Figure 5.20 for scale height profile), so the critical value φmax is again ∼ 15.
In the low-resolution run we observe an episode of interruption of the accretion at t ∼ 7500M . It
could be due to a sudden accumulation of magnetic field that managed to inhibit all the accretion
channels at the same time. We note, however, that the accretion immediately restarts and the
magnetic flux manages to reach the critical value. The energy flux through the event horizon is
fairly constant and higher in the high-resolution run.

Disk-averaged profiles

Disk- and time-averaged profiles of several quantities of interest are shown in Figure 5.19 for the
simulations performed at low and high resolutions. The averages are also computed during the
interval t ∈ [6000, 10000]M , when angular momentum has redistributed and the profiles of the
initial state is have been completely transformed into those of a new quasi-stationary state. A
first comparison of the codes (not reported here) shows a good agreement at high resolutions and
overall less spreads than SANE simulations. Figure 5.20 shows that the scale height profile of the
high-resolution model is ' 0.25 like the previous disk model adopted for SANE.
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Figure 5.19: Disk-averaged profiles for the low (blue line) and high (red line) resolution simulations. The
quantities as been averaged over θ and φ coordinates using the integral given in the Eq. (5.9) at every
snapshot, as well as over the time evolution over the interval t ∈ [6000, 10000]M .

Figure 5.20: Scale height profile of the high-resolution model according to Eq. (5.10) and averaged in the
interval t ∈ [6000, 10000]M .
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t, φ averages

In order to study the flow configuration in the quasi-stationary state, we studied time- and φ-
averaged quantities in the interval t ∈ [6000, 10000]M . Figure 5.21 show these averages for rest-
frame density, inverse plasma β and magnetisation σ for the run performed at highest resolution.
It is possible to see density rising and magnetization decreasing towards the pole probably due to
the effect of the reflecting boundary conditions.

Jet luminosity

Given its importance in identifying viable models for the EHT observations of M87∗, we would
like to repeat one of the quantifications used in EHT-Collaboration (2019e) to estimate jet power.
However, to gain more information on the mechanisms of energy conversion in the jet and how
they are affected by floors, we split the energy momentum tensor into electromagnetic, particle
kinetic energy and thermal contributions, as done in McKinney et al. (2012). These are defined,
respectively, as:

(TEM)µν =

(
uµuν +

1

2
δµν

)
b2 − bµbν , (5.17)

(TPAKE)µν = (uν + δ0
ν)ρuµ, (5.18)

(TEN)µν = (ρε+ p)uµuν + pδµν , (5.19)

so that the total energy-momentum tensor is

Tµν = (TEM)µν + (TPAKE)µν + (TEN)µν − δ0
νρu

µ. (5.20)

The diagnostics that we measure are the outgoing radial energy fluxes integrated over a mask used
to define the jet, at several times and radii:

PEM(r, t) = −
∫ ∫

jet
(TEM)µν(−g)1/2dθdφ, (5.21)

PPAKE(r, t) = −
∫ ∫

jet
(TPAKE)µν(−g)1/2dθdφ, (5.22)

PEN(r, t) = −
∫ ∫

jet
(TEN)µν(−g)1/2dθdφ, (5.23)

together with the outgoing mass flux integrated over the same mask:

Ṁjet(r, t) =

∫ ∫
ρur(−g)1/2dθdφ. (5.24)

The total radial energy flux is given by Ptotal(r, t) = PEM(r, t) + PPAKE(r, t) + PEN(r, t) + Ṁjet(r, t)

while the jet power is defined, consistently with EHT-Collaboration (2019e) as Pjet(r, t) = Ptotal(r, t)−
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Ṁjet(r, t). Finally, the jet mask is defined as the region where vΓ > (vΓ)th, where

(vΓ)2 =

(−T rt
ρur

)2

− 1, (5.25)

and (vΓ)th = 1. Figure 5.22 show the radial dependence of time-averaged fluxes of mass and
energy, subdivided in thermal, kinetic and electromagnetic contributions, as well as the total jet
power, for the high resolution simulation. Consistently with what has been observed by other
codes, the magnetic energy decreases at large radii favoring an increase in the thermal and kinetic
contributions. However, we observe a bump of PEN close to r = 1000M which could be due to the
non-optimal treatment of the area near the edge in theta in which we have removed a slice probably
too large for correct modeling of the jet region; the role of the numerical resets in the atmosphere
could also be decisive.

Figure 5.21: Axisymmetrized and time-averaged spatial distributions of ρ, β−1 and σ over the interval
t ∈ [6000, 10000]M for the high resolution simulation.
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Figure 5.22: Contributions to the jet power versus radius, averaged over the interval t ∈ [6000, 10000]M
for the high resolution simulation.
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Chapter 6

Numerical simulations: GRMHD
mean-field dynamo in accretion disks

In the previous Chapter we showed the ideal GRMHD accretion simulations taken as a reference
to model EHT observations. However, it must be noticed that the simulations employed by the
EHT community and for the code comparison tests all rely on initial magnetic fields with pressure
which is one hundredth of the kinetic pressure. This value corresponds to a subdominant field, but
it is not far from the value needed to reproduce both the dynamics needed to launch the polar
jets and the non-thermal synchrotron emission (once a model for the distribution for the emitting
electrons has been established). A more natural scenario would be the one in which a very low
initial field is evolved and amplified by some kind of dynamo process, so to reach self-consistently
the correct threshold for MRI to induce accretion and to reproduce the correct dynamical and
emission properties. A promising mechanism is α − Ω dynamo described in the Paragraph 2.4.
Synthetically, α-effect is supposed to be given by the coupling between unresolved velocity and field
fluctuations while the Ω-effect is due to the differential rotation of the disk.

The first mean-field simulations in resistive GRMHD applied to the accretion disks are found
in the work of Bugli et al. (2014) that we summarized in the Paragraph 3.5. As we have seen, it
characterizes the kinematic regime in which only the magnetic field evolves, growing exponentially.
However, to study consistently the accretion it is necessary to consider the feedback on the disk
due to the action of the dynamo. The new results obtained in the dynamic regime are published in
two works: Tomei et al. (2020, 2021). While the first work focuses on the characterization of the
saturation of the exponential growth of the magnetic field, the second reconnects to the diagnostics
analyzed in the Code Comparison Project with the idea of proposing a valid alternative to ideal 3D
GRMHD modeling.

6.1 First fully non-linear simulations

In the first paper (Tomei et al., 2020) we generalize our previous work on the mean-field dynamo
in accreting discs (Bugli et al., 2014) by investigating the completely self-consistent and non-linear
regime (dynamic regime) during the accretion phase. The linear growth of the fields cannot rea-
sonably continue for an arbitrarily long time, and it is expected to be quenched naturally by the
feedback on the disc. Our goal is to see how the transition to the non-linear phase occurs, to inves-
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aBH rin rc wc A0 ρmin pmin

0.9375 6 12 1 10−8 10−4 10−6

Table 6.1: Parameters of the initial equilibrium model.

tigate the interplay with MRI, and the effect of accretion on the dynamo process itself, for a given
disc model and a variety of dynamo parameters. Finally, on top of our GRMHD model based on
the dynamo action, we compute the local emissivity and integrated flux in the radio band (in the
approximation of an optically thin plasma), and we propose a comparison with observational data
for Sgr A∗.

6.1.1 Disk model and numerical setup

The simulations are initialized with the hydrodynamical equilibrium solution for a differentially
rotating thick disk with l = const described in the paragraph 3.4.2. A small magnetic field is then
introduced in such a way that the initial equilibrium is not affected by its presence (B2 � w). In
particular, a large poloidal loop has been superimposed over the hydrodynamical torus, described
by the vector potential (Liska et al., 2018)

A = A0ρ
2r3, (6.1)

where A0 is a constant. In Table 6.1 the parameters used to characterize the disk configuration are
shown. Lengths and times are expressed in units of rg = GMBH/c

2 (the gravitational radius) and
rg/c, respectively. The mass density is normalized against ρ0 = n0mp, where n0 is a reference peak
number density in the disk, whereas enthalpy, energy density and fluid and magnetic pressure are
normalized against ρ0c

2. The spin parameter aBH must also be provided in order to characterize
the Kerr-type metric, and here we choose the same value used in Porth and EHT-Collaboration
(2019).

Outside the disk we introduce a static, unmagnetized and tenuous atmosphere, with density and
pressure radial profiles given by

ρatm = ρminr
−3/2, patm = pminr

−5/2. (6.2)

In order to quantify the dynamo action, we can introduce the two characteristic numbers defined
by Eqs. (2.73)-(2.74) that describe the importance of α dynamo and rotation with respect to the
dissipation of magnetic fields. The η and ξ profiles are chosen so that the diffusion and dynamo
processes occur only within the disk. Starting from the maximum values ξmax and ηmax, those
actually entering the definition of the dynamo numbers, at each point of the domain we impose

η(r, θ) = ηmaxSη(r, θ), (6.3)

with
Sη(r, θ) =

ρ− ρatm

ρmax
, (6.4)
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Figure 6.1: The time evolution of the average values of the toroidal BT =
√
BφBφ and poloidal BP =√

B2 −B2
T components of the magnetic field. Here, time is normalized with the initial central period,

Pc = 268.

and

ξ(r, θ) =




ξmaxSξ(r, θ), inside the disk,

0 in the atmosphere,
(6.5)

with
Sξ(r, θ) =

ρ cos θ

[ρ cos θ]max
, (6.6)

where the presence of an odd function with respect to the equator will lead to a symmetric dynamo
action. In Table 6.2 we show the models we have considered for our simulations. We have explored
different dynamo numbers Cξ, starting from a reference value (Run1), in order to cover a significant
range in the parameter space. In the present analysis, we have chosen to leave the hydrodynamical
equilibrium, hence the Ω(r) profile, unchanged as well as a fixed ηmax, so that Cη has also been
kept constant.

We adopt here the horizon-penetrating Kerr-Schild metric (see section 3.4) and 2-D axisymmetric
spherical coordinates. The two-dimensional numerical domain extends in the regions delimited by
rmin = rh − 0.3, inside the horizon rh, and rmax = 100 in the radial direction, and by 0.06 and
π − 0.06 in the θ direction. The grid (512× 256) employed is uniform in θ but not along the radial
direction, where points are defined by the nonlinear function

ri = rmin +
rmax − rmin

Ψ
tan(mi arctan Ψ), (6.7)

with mi covering uniformly the range [0, 1] and Ψ a stretching factor fixed to 10 as in Bugli et al.
(2014). This choice allows to have a higher resolution in the inner region where larger gradients are
expected.
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Figure 6.2: Time evolution of pmag = 1
2b

2 and pgas ≡ p, both evaluated where pmag takes its maximum
value.

6.1.2 Results

In this section we show the results of α−Ω dynamo simulations. We start by defining the average
on the disk of any quantity f = f(r, θ) as

〈f〉 =

∫ r2
r1

dr
∫ θ2
θ1

dθ α
√
γ f

∫ r2
r1

dr
∫ θ2
θ1

dθ α
√
γ
, (6.8)

where r1 = 4, r2 = 30, θ1 = π/3, and θ2 = 2π/3. The assumption of limiting the average in
this range is arbitrary, the reason behind this choice is to define a region of the disk in which the
quantities of interest are significantly appreciable. Note that because of the presence of the lapse
function α this is not a proper 3 + 1 spatial averaging, though the above formula is the one most
commonly adopted within the GRMHD community (Porth and EHT-Collaboration, 2019). The
time range of the simulations goes from 0 to 13Pc, where Pc = 268 is the initial central period.

Figure 6.1 shows the time evolution of the average poloidal and toroidal components of the
magnetic field in the Run1. We can see that a toroidal field immediately arises due to the Ω

effect and, after a transient, the mean-field α−dynamo starts as well and supports the exponential
amplification of the two components up to ∼ 4.5 t/Pc. This phase coincides with the kinematic
regime studied by Bugli et al. (2014), as there is there is no noticeable feedback on the disk and
the field grows following the normal modes of the dynamo, propagating towards the outer edge
of the disk. During this linear phase the toroidal fields remain always stronger than the poloidal
component. The new interesting aspect is represented by the situation around t ' 4.5Pc, where the
linear dynamo action saturates. As shown in the Figure 6.2, the transition occurs when there are
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Figure 6.3: Color maps of the poloidal magnetic field BP in logarithmic scale, for three different times
t/Pc Black lines near the origin are the contours of the black hole’s ergosphere (dashed line) and horizon rh
(solid line).
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ηmax ξmax Cξ CΩ γ1(BP ) γ1(BT ) γ2(BP ) γ2(BT )

Run1 1.0 · 10−3 3.0 · 10−2 3.6 · 102 8.3 · 102 3.76± 0.010 3.57± 0.01 0.720± 0.010 0.634± 0.008

Run2 1.0 · 10−3 3.5 · 10−2 4.2 · 102 8.3 · 102 4.190± 0.030 3.960± 0.030 0.220± 0.009 0.225± 0.008

Run3 1.0 · 10−3 4.0 · 10−2 4.8 · 102 8.3 · 102 4.930± 0.030 4.660± 0.040 0.460± 0.010 0.490± 0.020

Run4 1.0 · 10−3 2.5 · 10−2 3.0 · 102 8.3 · 102 2.980± 0.010 2.800± 0.002 0.597± 0.008 0.476± 0.004

Run5 1.0 · 10−3 2.0 · 10−2 2.4 · 102 8.3 · 102 2.460± 0.010 2.267± 0.009 0.436± 0.002 0.412± 0.005

Run1q 1.0 · 10−3 3.0 · 10−2 3.6 · 102 8.3 · 102 3.450± 0.010 3.200± 0.020 0.486± 0.005 0.396± 0.003

Run2q 1.0 · 10−3 3.5 · 10−2 4.2 · 102 8.3 · 102 3.990± 0.020 3.820± 0.030 0.513± 0.006 0.449± 0.004

Run3q 1.0 · 10−3 4.0 · 10−2 4.8 · 102 8.3 · 102 4.760± 0.020 4.540± 0.040 0.570± 0.003 0.526± 0.003

Run4q 1.0 · 10−3 2.5 · 10−2 3.0 · 102 8.3 · 102 2.850± 0.010 2.760± 0.010 0.408± 0.006 0.352± 0.004

Run5q 1.0 · 10−3 2.0 · 10−2 2.4 · 102 8.3 · 102 2.336± 0.007 2.220± 0.010 0.354± 0.005 0.318± 0.003

Table 6.2: Initialization parameters for the various runs and growth rates in the two phases. The reported
dynamo numbers refer to their maximum value. The initial plasma beta is β = 109 for all runs.

regions where the gas pressure locally equals the magnetic one

pmag =
1

2
b2 =

1

2
(B2 − E2), (6.9)

and the sharp jump means that the most magnetized regions are no longer within the disk but
start to form in the low-density atmosphere, where accretion is taking place. This corresponds to
a change of slope in the growth of the magnetic field displayed in Figure 6.1: the dynamo action
is less strong, though a secondary linear phase can still be recognized, and the values for the two
magnetic field components are basically the same. After t ' 8Pc a second and definitive saturation
stage has been reached, the dynamo amplification slowly begins to decrease, and the magnetic field
approaches more or less to a constant value.

The three phases are more clearly apparent in Figure 6.3, where spatial maps of the (poloidal)
magnetic field are presented (in logarithmic scale) at three different times. In the upper panel we
are clearly still in the kinematic, linear phase of the dynamo. The magnetic field does not affect the
disk shape, magnetic islands corresponding to the linear dynamo modes migrate towards the outer
edge of the disk while growing in amplitude. In the middle panel the disk starts to be affected by the
presence of the growing field and dynamo waves are dragged towards the black hole by the accretion.
The accretion process is most probably triggered by MRI (see the discussion below), that also drives
turbulent motions. In this dynamic regime, magnetic structures tend to form low-pressure vortices
that drag matter away (bottom panel), that for high values of the magnetic field can even evacuate
the plasma locally (and safety floor density values can be required numerically, in order to limit
this effect). The dynamo modes are barely visible during the phase of the secondary growth (third
panel), and they seem to be localized only at the external boundary of the disk, where density and
the dynamo term ξ are lower (this point will be addressed in the next section).

6.1.3 Dependence on the α−dynamo number and on the quenching effect

We now investigate the dependence of the results on the α−dynamo number Cξ and on the employ-
ment of an explicit quenching effect (see below). The list of runs with the corresponding parameters
is reported in Table 6.2. In particular, Run2 and Run3 are characterized by increasing values of ξ
and Cξ with respect to our reference Run1 values, whereas Run4 and Run5 by decreasing values
of the same parameters. Figure 6.4 shows the dependence of the exponential growth rates of the
kinematic (γ1) and dynamic (γ2) phases, respectively, with the dynamo number Cξ. Growth rates
are measured for both the poloidal field component (blue triangles) and for the toroidal one (blue
circles), values also reported in Table 6.2. The red symbols indicate the corresponding quantities
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Figure 6.4: Dependence of growth rates γ1 and γ2 on the dynamo number Cξ. Triangles (circles) for the
poloidal (toroidal) field components, blue (red) color for runs without (with) quenching.

84



6.1. First fully non-linear simulations

for simulations where quenching is active (labeled with a ’q’ in the table of runs).
We observe that the rates γ1 corresponding to the kinematic phase follow a linear trend, as

expected, whereas the rates γ2, corresponding to the phase where accretion affects the dynamo
modes, show an unexpected drop at high values of ξ (blue symbols). This may be due to the rapid
growth of the magnetic field, leading to values able to modify the fluid equilibrium itself. This
seems to prevent, or at least to lower, a subsequent amplification, as if a saturated state has been
reached.

In order to limit the dynamo action and to obtain a more regular growth it is possible to adopt
a technique, used in purely kinematic dynamo models to simulate dynamic effects, that is to impose
an explicit quenching in the dynamo term in situations when the field becomes comparable to the
equipartition value (Brandenburg and Subramanian, 2005, e.g.). This is obtained by introducing,
locally at any point, the replacement

ξ → ξ

1 +B2/B2
eq

, (6.10)

where we have considered an equipartition turbulent field defined as a given fraction of the thermal
pressure (Shakura and Sunyaev, 1973), B2

eq = ᾱdiskp, with ᾱ = 0.1. This value is the one most
commonly used to model the turbulent magnetic stresses in disks (King et al., 2007).

Here we want to check whether our GRMHD simulations without quenching lead to a turbulent
state with fluctuations of the required intensity. We thus compare this value with the coefficient
αdisk defined by the averages

αdisk =
〈W 〉

〈p+ pmag〉
, (6.11)

where, for rotating disks in GRMHD (e.g. Bugli et al., 2018)

W = [(w + p+ b2)δurδuφ − brbφ]
√
γφφ
√
γrr (6.12)

is the r, φ component of the stress tensor of fluctuations, based on the variations of the relevant
4-velocity components (compared to the equilibrium state at t = 0) and on the growing fluctuations
of the magnetic 4-vector components (negligible at t = 0). As shown in Figure 6.5, the choice of
the value ᾱ = 0.1 for the quenching is reasonable, since all runs saturate towards average values of
αdisk with this value, or slightly lower. This means that the introduction of the quenching effect is
not expected to affect the overall dynamics, but just to limit the growth of the field in localized,
critical zones.

The five runs have been repeated with identical parameters and the addition of the quenching
effect, labelled as Run1q-Run5q in Table 6.2. As expected, the dynamo growth rates are basically
unchanged in the quasi-kinematic phase. However, now the rates γ2 appear to grow linearly with
Cξ, exactly as rates γ1, even in the phase where turbulence and accretion are present (see the red
symbols in Figure 6.4, for both γ1 and γ2). Notice that below Cξ = 400 the γ2 values are lower
than the corresponding cases without quenching, as expected, but higher above that value, where
however the blue data looked pathological since no regular trend was followed. Four additional runs
with Cξ increasing from ' 750 up to ' 1800 have also been performed, again in presence of the
quenching term. The linear trend for γ2 is less evident than what shown in Figure 6.4, though we
find a final value γ2 ' 1.5, that is more or less what one would expect from a linear extrapolation.
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Figure 6.5: The quantity αdisk defined in Eq. (6.11) as a function of time, for three runs with different
dynamo number Cξ.

Figure 6.6: Map of the poloidal field (in logarithmic scale) for t = 6Pc (Run1q, with quenching), to be
compared with the third panel of Figure 6.3 (Run1, without quenching).
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Figure 6.7: Time series of the dynamo number Cξ averaged over the whole disk.

These results show that the dynamo appears to be the main mechanism for amplifying magnetic
fields even during the phase in which the disk starts to lose mass, which is accreting onto the
black hole. Furthermore, when quenching is activated, since a lower magnetic field is present, the
formation of vortices evacuating the plasma is inhibited and the dynamo structures evolve more
smoothly even in a turbulent environment, as clearly shown in Figure 6.6.

In order to better clarify why the secondary growth rate γ2 is lower than the corresponding γ1,
we plot in Figure 6.7 the time series of the spatial averages of the Cξ dynamo number. We clearly
see that, when the accretion begins and the first saturation phase starts, the quantity decreases for
all runs without the quenching term and for Run3q as well. This is due to the fact that during
accretion the density can be modified substantially, and 〈Cξ〉 as well, and this effect is stronger for
higher magnetization levels. When the quenching term is present both magnetization and turbulence
are generally lower, the presence of the low-density vortices is avoided, and the overall dynamics
is certainly more regular. In any case, especially for runs with quenching, the lower values of γ2

cannot be attributed to correspondingly smaller values of 〈Cξ〉, while migration of the plasma near
the border of the disk, where Cξ is reduced, appears to be more important. In addition, when the
density is low, the other dynamo term, CΩ, gets larger values, and for a constant Cξ the overall
growth rates are expected to be reduced (see Table 1 in Bugli et al., 2014).

A very interesting result is that the value of Cξ and the presence of quenching do not affect too
much the value of the quantities in the final saturation stage, as can be seen in Figure 6.8, where
the growth of the average strength of the magnetic field is plotted for our six reference runs. The
initial kinematic growth and also the first saturation phase clearly depend on Cξ, as the fastest
growing mode occurs at a wavenumber ∼ ξ/η (Brandenburg and Subramanian, 2005), with smaller
scales triggered by MRI leading to a turbulent cascade towards the dissipative scales. However,
the second and final saturation phase looks approximately independent on the Cξ value and on the
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Figure 6.8: Time evolution of the averaged intensity of the magnetic field, for three runs without and with
quenching.
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Figure 6.9: Time evolution of the magnetic flux ΦBH penetrating the horizon, divided by the accretion
rate, for the same six runs as in Figure 6.8.
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presence of quenching (all curves tend to the same value of < B > within a factor of ' 3), hence
we deem that the accretion dynamics and the reached equipartition with the fluid component play
a major role at this final stage (see the similar behavior of αdisk).

For completeness, the magnetic flux threading one hemisphere of the black hole horizon, ΦBH,
has been evaluated, a quantity which is very important because the rotational energy extracted, the
Blandford-Znajek power, is proportional to its square (Blandford and Znajek, 1977; Tchekhovskoy
et al., 2011). This is defined as

ΦBH =
1

2
2π

∫ π

0
|Br|√γ dθ, (6.13)

to be evaluated at the outer event horizon rh. Note that throughout the literature there are two
different definitions of the magnetic field components in terms of the dual of the Faraday tensor:
one as Bi = F ?i0 (e.g. McKinney and Gammie, 2004), the other as Bi = −nµF ?µi = αF ?0i (e.g.
Del Zanna et al., 2007), where nµ is the Eulerian observer unit vector (only this second one is a
proper spatial projection according to the 3+1 splitting). Figure 6.9 describes, for our six reference
runs, the time evolution of the MAD parameter φ = ΦBH/

√
Ṁ . This quantity, as we said, is

commonly used to discriminate SANE evolution models from MAD ones (e.g. Porth and EHT-
Collaboration, 2019), depending whether its maximum value is below or above a certain threshold.
In our runs, in order to reach the typical SANE values we have of course to wait for the saturation
of the first magnetic field growth. However the comparison with the values obtained in the Code
Comparison Project is not possible here due to the different disk model adopted.

6.1.4 On the magnetorotational instability

In the non-linear regime it is interesting to investigate whether MRI is capable of affecting the
dynamo action or, more generally, of changing substantially the structure of the magnetic field.

It is custom to define the so-called MRI quality factor, a parameter that allows to establish if a
given simulation is able to resolve the characteristic MRI wavelength λMRI, precisely by measuring
the number of cells contained in λMRI, for a given direction. In our axisymmetric case the important
quality factor is the one along the direction θ, hence here we define

Qθ =
λMRI,θ√
γθθ∆θ

=
2π|vθA|

Ω
√
γθθ∆θ

, (6.14)

where vθA = Bθ/
√
w +B2 is the θ-component of the relativistic Alfvén velocity (here neglecting

the contribution by the electric fields). Values of Qθ > 6 − 8 have been shown to be necessary to
capture locally the linear growth of MRI, while a threshold of Qθ > 10 can capture its nonlinear
growth (Noble et al., 2010; McKinney et al., 2012; Hogg and Reynolds, 2018).

Figure 6.10 shows the time evolution of the factor Qθ, averaged over the whole disk, in the case of
Run1. Apparently the MRI instability could be resolved during the dynamical phase and therefore,
if present, it would be expected to play a role in the growth of the magnetic field, competing with
the ongoing dynamo process.

To investigate this aspect we have re-executed Run1 twice, the first time by setting ξ = 0 for
t/Pc > 4.5, at the end of the first linear stage, and the second one for t/Pc > 8.0, just before the
final saturation after the second linear phase. As we can see in Figure 6.11, the magnetic field
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Figure 6.10: Time dependence of the averaged MRI quality factor Qθ, for Run1 parameters. The two
horizontal lines are the thresholds for resolving the linear (dashed line) and nonlinear (dotted line) phases.
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Figure 6.11: Growth of the magnetic field components for Run1 and for two additional runs with the
same parameters but switching off the dynamo (ξ = 0) for t/Pc > 4.5 (dashed lines) and for t/Pc > 8.0
(dot-dashed lines).

90



6.1. First fully non-linear simulations

components immediately start to decrease after the dynamo has been switched off, in both cases.
Notice that the poloidal component is the one suffering the fastest decrease, the toroidal one is
probably still supported by a residual amplification due to rotation (a purely Ω effect).

This result means that the dynamo action is the main driver for magnetic field enhancement
in all phases, whereas MRI, which is surely present and resolved numerically in our simulations,
seems to be responsible mainly for triggering turbulence and driving the accretion. Amplification of
magnetic fields by MRI is instead less strong than the one due to the mean-field dynamo (we recall
that our simulations are 2D axisymmetric), and its effect is only visible in the final saturation stage,
where a faster decrease due to dissipation is inhibited. We conclude by saying that the adopted
resistivity value of η = 10−3 is still above the level of numerical dissipation, which is estimated to
be η ∼ 10−4 for the resolution employed.

6.1.5 Comparison with Sgr A* radio emission

Our GRMHD models based on the dynamo action will be used here to infer the synthetic emission
by the magnetized plasma of the accreting matter and to compare it with observational data. The
most straightforward targets are obviously the two sources observed by EHT, Sgr A* and M87*,
i.e. the cores containing the super-massive black holes of our Galactic center and of the elliptical
galaxy M87. In the latter case the very first image of the emission from the regions around a black
hole’s event horizon has been recently taken (EHT-Collaboration, 2019a), whereas at the moment
work is in progress to reduce data in the case of Sgr A*.

Since our simulations are more focused on the plasma dynamics occurring inside the disk, with
the magnetic field growing from initial seed values, we choose here to compare our model with Sgr
A* data, as in the case of M87* a substantial fraction of the emission is known to come from the
polar jet. The structure of Sgr A* is rather uncertain because the source is hidden by optically
thick interstellar medium that surrounds it. For this reason models with or without a jet have been
built over the years to infer its emission properties (Mościbrodzka et al., 2009; Mościbrodzka and
Falcke, 2013; Mościbrodzka et al., 2014).

The radio emission in the mm band of the Sgr A* spectrum can be modelled by the radiation
produced by thermal synchrotron-emitting relativistic electrons in a ADAF model. As described in
chapter 2, most of the energy is stored in the thick pressure-supported disk and advected inwards
with high speed and efficiency. The large scale-height and accretion velocity makes the density low,
the gas cooling time long compared to advection times (the temperature of proton remains high,
Tp ∼ 1011 − 1012 K), and the plasma is optically thin.

The total emissivity per unit frequency jν is given by Eq. (2.31). For an optically thin source,
like Sgr A∗, the spectral luminosity is simply defined by

Lν = 2π

∫ r2

rh

dr

∫ θ2

θ1

dθ
√
γ jν , (6.15)

and the observed flux would be Fν = Lν/4πd
2, where d = 7.86 kpc is the estimated distance of the

Galactic Center (Boehle et al., 2016).
In ADAF systems, as we said, electrons are cooled by synchrotron, inverse-Compton, and

magneto-bremsstrahlung emission losses, but ions maintain their high temperatures due to inef-
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Figure 6.12: Time evolution of the synthetic flux Fν computed on top of Run1 (solid line), and of Run1q
(dashed line). The horizontal dashed lines represent the observed value at for the reference frequency
ν = 230 GHz.

ficient thermalization, thus a two-temperature plasma where the electron temperature is much
lower than that of protons, Te � Tp, is usually assumed. The ratio between proton and electron
temperatures is assumed to be given by Eq. (2.32).

In order compute the above emission quantities it is necessary to appropriately convert all
quantities from code units to the CGS system, hence

ne = np = (ρ/ρ0)n0, (6.16)

where we recall that n0 is a free parameter providing the number density at the disk center, the
magnetic field in expressed in units B0 =

√
4πρ0c2, the normalized proton temperature is defined

as
Θp =

kTp
mpc2

=
p/p0

ρ/ρ0
, (6.17)

whereas Θe can be inferred from Eq. (2.32). Reference units for length and time are determined
once the mass of the black hole has been assigned, for Sgr A* we assume MBH = 4.02 × 106M�

(Boehle et al., 2016).
In the following, we show that our model (we choose Run1 and Run1q parameters) can predict

that the initial magnetic field (∼ 10−4 G) is amplified by the mean-field dynamo up to a level able
to explain the observed flux in the millimeter wavelengths. The three free parameters left, namely
ν, Rhigh and n0, are chosen as follows: ν is set to 230 GHz, the same used for M87*, Rhigh is
fixed to 20, a reasonable value in the disk and n0 is chosen as the value that best reproduces the
observed flux of 2.64 ± 0.14 Jy at 230 GHz (Mościbrodzka and Falcke, 2013; Mościbrodzka et al.,
2014; EHT-Collaboration, 2019b). Let us look at Figure 6.12. The predicted synthetic flux follows
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Figure 6.13: Time evolution of the maximum value of the magnetic field strength (upper panel) and of the
average electron temperature (lower panel) for Run1 (solid line), and of Run1q (dashed line).
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Figure 6.14: Local emissivity map for Run1 parameters in CGS units and logarithmic scale for t/Pc = 6.0.
In the upper panel we show the situation without quenching and in the bottom panel with quenching. Values
on the color bar are chosen to be the same for ease of comparison, hence the highest values of jν in the upper
panel are actually saturated. (Figure not present in TO20)

94



6.2. Are GRMHD Mean-Field Dynamo Models of Thick Accretion Disks SANE?

the average magnetic field trend, increasing until it reaches a quasi-stationary value. We perform a
time average in the range t/Pc = [7−13], obtaining a flux of 2.59 Jy consistent with the observations
when assuming n0 = 6.5 · 107 cm−3 for Run1 and n0 = 5.5 · 107 cm−3 for Run1q.

In Figure 6.13 (upper panel) we show the time evolution of the maximum value of the magnetic
field in the disk, reaching Bmax ' 3− 4 kG at the saturation of the dynamo process. At the same
time, the average electron temperature reaches 〈Te〉 just below 1011 K (lower panel). Overall these
quantities result in agreement with the values obtained in the simulations of Mościbrodzka et al.
(2009); Mościbrodzka and Falcke (2013).

Finally, emissivity maps (Figure 6.14) show that in this model most of the emission comes from
the disk, as anticipated. In particular, significant emission comes from the very central accreting
region, and from the outer regions of the disk where the dynamo process is still at work, with the
same vortical structures observed for the magnetic field (much reduced in the case with quenching,
as well as part of the emission from the polar jets).

6.2 Are GRMHD Mean-Field Dynamo Models of Thick Accretion
Disks SANE?

The goal of the second paper (Tomei et al., 2021) is to extend the analysis of Tomei et al. (2020)
(TO20 from here on), recently confirmed by Vourellis and Fendt (2021) including the case of a thin
accretion disk, to a wider range of parameters and to much longer dynamical times and, above all,
to reproduce the relevant standard diagnostics of the Code Comparison Project, and hence also the
EHT observations, by using axisymmetric GRMHD simulations of accretion disks with mean-field
dynamo action. The main purpose is to show how we can correctly model the SANE accretion
scenario that, although SANE models now seem to be less favored compared to MAD models for
M87∗ (EHT-Collaboration, 2021b), can still be considered an interesting case for other sources and
a perfect benchmark for GRMHD theoretical models. In particular we show how it is possible to
model this regime even adopting much cheaper 2D simulations, rather than 3D, and this can be
achieved by starting from a more agnostic, though very unfavorable, initial configuration of a very
weak (toroidal) magnetic field (σmax ∼ 10−6), which is to be naturally amplified in both the toroidal
and poloidal components by the action of the dynamo.

6.2.1 Disk Model and Numerical Setup

We consider the hydrodynamic torus described by the Fishbone–Moncrief’s solution (Fishbone and
Moncrief, 1976) commonly adopted in the literature, as well as in Porth and EHT-Collaboration
(2019). The space-time is determined by a Kerr black hole with dimensionless spin a = 0.9375.
The inner edge of the disk is localized at rin = 6M , and the density has a maximum of ρ = ρc

at rc = 12M . We assumed an ideal gas equation of state with adiabatic index γ̂ = 4/3. Unlike
TO20, here, we chose to superimpose on the hydrodynamic torus an initial toroidal magnetic field
with negligible amplitude, so that the equilibrium is essentially preserved. Such a configuration
is the most unfavorable to reproduce the conditions observed in ideal GRMHD models, as they
generally assume large-scale poloidal magnetic fields. We take an initial magnetic field intensity
Bφ ∝ ρ as in Vourellis and Fendt (2021), with a maximum magnetization at the center of the torus
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of σmax = 10−6. The resistivity and dynamo profiles are similar to those in TO20, that is:

η =




η0

√
ρ/ρc ρ ≥ ρdisk

0 ρ < ρdisk,
(6.18)

ξ =




ξ0(ρ/ρc) cos θ ρ ≥ ρdisk
0 ρ < ρdisk,

(6.19)

where η0 and ξ0 are the maximum values of the resistivity and dynamo coefficients at t = 0 (note
that the density varies both in space and time), and ρdisk = 10−3ρc is the density threshold that
defines the boundary between disk and atmosphere. We also define the dynamo numbers as in
Vourellis and Fendt (2021):

CΩ = r

∣∣∣∣
∂Ω

∂r

∣∣∣∣
H2

η
, (6.20)

Cξ = H
ξ

η
, (6.21)

where Ω = uφ/ut, and H ' 0.25r is the scale height of the disk.
Using the horizon-penetrating Kerr–Schild coordinates, we carried out a series of axisymmetric

simulations, expanding the range of parameters with respect to TO20 (see Table 6.3). In order to
assess the validity of our results with respect to the diagnostics in the Code Comparison Project,
we adopted the same resolutions as the simulations of Porth and EHT-Collaboration (2019) (see
Table 6.4 for details). Unlike in TO20, here, we did not adopt any explicit dynamo quenching.

Table 6.3: Maximum initial values of η, ξ, CΩ, and Cξ for each model.

Run η0 ξ0 CmaxΩ,0 Cmaxξ,0

Eta-3Xi-3 10−3 10−3 8.2× 104 0.75

Eta-3Xi-2 10−3 10−2 8.2× 104 7.5

Eta-3Xi-1 10−3 10−1 8.2× 104 75

Eta-4Xi-3 10−4 10−3 8.2× 105 7.5

Eta-4Xi-2 10−4 10−2 8.2× 105 75

Eta-4Xi-1 10−4 10−1 8.2× 105 750

Table 6.4: Details on the numerical grid adopted. Here rh 'M is the event horizon radius.

Axis Grid Points Domain Stretching

r 192 (rh − 0.25M, 3000M) Logarithmic
θ 192 (0.06, π − 0.06) Uniform

6.2.2 Results

We first describe the time evolution of the radial magnetic field in the torus driven by the mean-
field dynamo. The creation of a poloidal component within the disk begins from the earliest times,
as shown in Figure 6.15, where the temporal evolution of the disk-averaged 〈|br|〉, with |br| =
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Figure 6.15: Time evolution of |br| averaged on the disk for each model.

√
brbrgrr, is plotted (we consider the comoving field). Here, the averaging operation of any quantity

q is defined as Eq. (6.8) in TO20, with r1 = rh, r2 = 50M , θ1 = π/3, θ2 = 2π/3.
The dependence on ξ0 (i.e., the dynamo α effect) is evident in the duration of the initial kinematic

phase, in the steepness of the curve, and in the maximum value that is reached: the higher the ξ0,
the faster the evolution towards a higher radial magnetic field value. After a transient, there is a
saturation phase followed by a decrease in |br| inside the torus. In particular, in the runs of strong
and intermediate dynamo, the saturation value is similar, while it is lower in models with weak
dynamo. As shown later, the low intensity of the initial dynamo in runs Eta-3Xi-3 and Eta-4Xi-3
seems not to be able to produce the turbulence needed to resolve the fastest growing mode of the
MRI, and thus, the accretion is entirely driven by the action of the weak dynamo.

The decrease of the amplification of the poloidal magnetic field in all simulations does not seem
to depend on an intrinsic decrease in dynamo action. Figure 6.16 shows that dynamo numbers
remain fairly constant over time. The most likely explanation is that the fragmentation of the
magnetic structures leads to a global loss of efficiency in the dynamo coupling mechanism, hence
leading naturally to a self-regulated quenching, as first observed by TO20 and later confirmed in
Vourellis and Fendt (2021).

In order to understand whether the accretion regime that is established in our dynamo runs is
consistent with 3D ideal GRMHD simulations of SANE disks, in the remainder of the paper, we
attempt to reproduce the main standard diagnostics as studied in Porth and EHT-Collaboration
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Figure 6.16: Time evolution of the dynamo numbers averaged on the disk for each model.

98



6.2. Are GRMHD Mean-Field Dynamo Models of Thick Accretion Disks SANE?

(2019).

Horizon Penetrating Fluxes

We briefly recall that the definitions of the mass, magnetic, angular momentum and energy fluxes
evaluated at the horizon (see Section 5.1.2) in the axisymmetric case are

Ṁ = 2π

∫ π

0
ρur
√−g dθ, (6.22)

ΦBH = π

∫ π

0
|∗F rt|√−g dθ, (6.23)

L̇ = 2π

∫ π

0
T rφ
√−g dθ, (6.24)

Ė = 2π

∫ π

0
(−T rt )

√−g dθ, (6.25)

where ∗Fµν is the Maxwell tensor, and Tµν is the stress-energy tensor. Usually, the fluxes defined
by (6.22)–(6.25) are normalized with the accretion rate Ṁ . We also remember that the critical
value of the normalized magnetic flux is φmax = 15 in the case of a black hole with spin a = 0.9375

and a disk with scale ratio H/R ∼ 0.25

In the ideal simulations of Porth and EHT-Collaboration (2019), the accretion starts at t ' 300M
when the linear MRI, triggered by pressure perturbations, is captured. After the transient, φ reaches
the value φ ∼ 1, typical of the SANE regime. Accretion rate, angular momentum flow, and net
energy flow efficiency also become stationary, with average values of Ṁ ∼ 0.1, L̇/Ṁ ∼ 2, and
|Ė − Ṁ |/Ṁ ∼ 0.05.

Figure 6.17 shows the time series of the normalized fluxes obtained in our dynamo runs. The evo-
lution clearly depends on the value of ξ0, while there is no substantial dependence on η0. The two
runs with weak dynamo (Eta-3Xi-3, Eta-4Xi-3) produce low accretion rates and cannot be consid-
ered good SANE models. Instead, the two runs with intermediate dynamo (Eta-3Xi-2, Eta-4Xi-2)
show a very good agreement with the results shown in Figure 4 of Porth and EHT-Collaboration
(2019): the accretion starts at t ∼ 1000M, and after an initial transient, the accretion rate saturates
to the value of Ṁ ∼ 0.1.

The magnetic flux and the angular momentum flux remain almost constant during the simula-
tion, φ ∼ 1 and L̇/Ṁ ∼ 2. The trend in net energy flow efficiency, (Ė − Ṁ)/Ṁ , differs slightly
from that of Porth and EHT-Collaboration (2019): in our dynamo models it can assume negative
values, although the final value is consistent with the one presented in the code comparison project,
(Ė − Ṁ)/Ṁ . 0.1. Finally, the two models with strong dynamo (Eta-3Xi-1, Eta-4Xi-1) show a
good agreement with Porth and EHT-Collaboration (2019), although with some differences com-
pared to the case of intermediate dynamo. The initial transient is characterized by a higher and
more impulsive accretion rate.

The magnetic flux in our models with ξ0 = 0.1 is on average higher, with run Eta-3Xi-1 even
showing two intensity spikes approaching the critical threshold of φ = 15. The action of the stronger
dynamo seems to affect the evolution of the angular momentum flux, which is less smooth and has
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Figure 6.17: Time series of the horizon penetrating fluxes for each model (on the left panels, runs with
η0 = 10−3; on the right panels, runs with η0 = 10−4).

values L̇/Ṁ . 2 in the stationary phase. As for net energy flow efficiency, an initial phase dominated
by negative values is observed, except for the two positive bursts in run Eta-3Xi-1. The negative
contribution to the energy efficiency is given by the enthalpy term (McKinney et al., 2012). In our
simulations, we note that the contribution of enthalpy grows with ξ0, meaning that the black hole
is accreting more and more thermo-kinetically unbound matter.

MRI Quality Factors

The role of the MRI can be studied from the values assumed by the so-called quality factor. Along
the θ direction, Qθ is defined by Eq. (6.14). As in TO20, we considered 〈Qθ〉 = 6 to be the threshold
for resolving the MRI. Figure 6.18 shows that there is an initial time interval in which 〈Qθ〉 > 6

for runs Eta-3Xi-2, Eta-3Xi-1, Eta-4Xi-2, and Eta-4Xi-1. Then the dissipation stops the MRI and
the accretion is driven by the mean-field dynamo. Run Eta-3Xi-1 has a higher value of 〈Qθ〉 and is
kept above the threshold for a longer time than the other runs, which is consistent with the higher
observed magnetic flux. Overall, according to what has been observed by TO20, it seems that
MRI cannot develop for a long time with an axisymmetric mean-field dynamo mechanism: while
in the initial transient, MRI and dynamo can coexist, the subsequent stationary phase seems to be
regulated exclusively by the self-quenched dynamo.

Time-Averaged Maps

To better appreciate the spatial structure of various quantities, a picture of the quasi-stationary state
can be obtained from the time averaged rest-frame density, inverse plasma β, and the magnetization
σ (Figures 6.20 and 6.21). We identify the disk with the regions occupied by bound denser and
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Figure 6.18: Time evolution of the Qθ quality factor averaged on the disk for each model. The dashed
black line indicates the minimum threshold for solving the linear MRI.
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Figure 6.19: Time evolution of the pseudo-luminosity for each model. In runs with strong and intermediate
dynamo, we see more noise than simulations of Porth and EHT-Collaboration (2019).

weakly magnetized plasma, the funnel by low-density and highly magnetized (Poynting-dominated)
plasma, and the jet sheath separating them and containing the larger part of the material outflows.
The time window [5000M, 10,000M ] is chosen so as to cover the stationary state for all simulations,
and by adopting the same color scale used in Porth and EHT-Collaboration (2019), we will more
easily compare our results.

The dynamo action of the dynamo significantly changes the structure of the torus. By increasing
the parameter ξ0, the disk evolves to a stationary state with lower density and pressure and has a
more flattened shape on the equatorial plane. The funnel and the jet sheath are progressively wider
as ξ0 increases, as the central and right panels in Figures 6.20 and 6.21 show. By increasing CΩ by
a factor of 10 (i.e., reducing the resistivity), the contribution of the α effect of the dynamo during
the initial transient is probably less dominant, leading the torus to lose less matter and tend more
to the ideal case of Porth and EHT-Collaboration (2019) (Figure 6.21).

6.2.3 Synchrotron Pseudo-Luminosity

A further diagnostic is a proxy for the luminosity due to (thermal) synchrotron radiation defined as
in Section 5.1.2 by Eq (5.11). Again, the time series of the luminosity in Figure 6.19 shows the best
agreement with Porth and EHT-Collaboration (2019) in the two runs with intermediate dynamo,
where L/Ṁ ∼ 200 in the stationary phase. The strong dynamo produces lower luminosity because
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Figure 6.20: Time-averaged data for rest-mass density, inverse plasma β, and magnetization for runs with
η0 = 10−3. We indicate with 〈·〉t the time average in the range [5000M, 10, 000M ].
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Figure 6.21: Time-averaged data for rest-mass density, inverse plasma β, and magnetization for runs with
η0 = 10−4.
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the disk has lost more matter, while the weak dynamo fails to produce a magnetic field intense
enough to support this emission. This diagnostic shows greater variability than the ideal case due
to the presence of extra fluctuations in both the magnetic field and the mass accretion rate.
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Conclusions

In this thesis work, we describe the non-ideal axisymmetric simulations, including both the resistive
effects and, above all, the mean-field dynamo action due to sub-scale, unresolved turbulence, applied
for the first time to black hole accretion disks in the fully non-linear regime. The work contained in
the paper Tomei et al. (2020) can be seen as a first follow-up of our previous analysis in the purely
kinematical regime (Bugli et al., 2014). Similar GRMHD simulations have been recently employed
to model the dynamics and emission of the central core of the galaxy M87 (EHT-Collaboration,
2019e), comparing with observational data including the very first image of the shadow of a black
hole’s event horizon (EHT-Collaboration, 2019c). Contrary to the standard numerical initial set-
up, where subdominant but non-negligible magnetic field (pmag/p ∼ 10−2) is present in the disc
right from the start (e.g. Porth and EHT-Collaboration (2019)), here we initialize the simulation
with an extremely small magnetic field (pmag/p ∼ 10−9), which is later self-consistently amplified
during the evolution by the α−Ω dynamo process. A linear kinematic exponential growth, followed
by another one with a reduced rate when accretion becomes important, is observed for a variety
of dynamo parameters. Both rates increase linearly with the dynamo parameter at least for the
limited range explored here. The dynamo is clearly the main driver, with the second, reduced stage
due to the fact that due to accretion the density in the disc is modified and the non-dimensional
dynamo number Cξ reduces in time, especially for runs with a stronger dynamo. At later times the
accretion process and the stronger field are capable of affecting the overall structure of the disc itself
and the growth of the magnetic field ceases, reaching a saturation phase where the magnetic field
is approximately constant in time. The presence of an explicit quenching term in the α-dynamo
shortens the linear phase but seems not to affect the final saturation stage, occurring roughly for
similar values of the magnetic field strength (within a factor of three). The quenching also helps in
avoiding the formation of a few pathological structures with highly magnetized vortices evacuating
the plasma in the outer disc regions, and the overall dynamics is more regular. In spite of the widely
recognized importance of MRI for global simulation of discs around black holes (e.g. Bugli et al.
(2018), and references therein), and in spite of our simulations having the sufficient spatial accuracy
to resolve such instability (the MRI quality factor exceeds 10 after a few rotational periods), this
does not seem to play a major role here, if not as an initial trigger for the turbulent cascade and
accretion on to the black hole. We have tested this hypothesis by switching off the dynamo term
at the end of each growth phase (in different runs with otherwise the same parameters): the field
starts to decrease immediately, and MRI seems to be just capable of balancing dissipation at small
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scales, reaching a steady (turbulent) state at late times. By assuming the approximation of an
optically thin plasma, as expected for Sgr A∗, the accreting supermassive black hole of our Galaxy,
we have computed on top of our simulations the expected emission, at millimetre wavelengths, for
such source. A two-temperature plasma and all the recipes commonly employed for ADAF systems
have been used, obtaining very reasonable results, compared to previous works (Mościbrodzka et al.,
2009, 2014). This confirms that the dynamo action, believed to occur in these systems due to small-
scale turbulence, is capable of amplifying the magnetic fields, in a self-consistent way, up to the
values required to reproduce the observations.

Recently our results have been confirmed by the α−Ω dynamo GRMHD simulations of Vourellis
and Fendt (2021) although the configuration of the torus and the initial magnetic field are differ-
ent from ours and this does not allow quantitative comparisons. The authors observe an initial
exponential amplification of the magnetic field and a mechanism of self-quenching that leads to
interrupting the growth. In accordance with our work, they also argue that the induced magnetic
field dynamo is strong enough to remove angular momentum from the disk, triggering accretion. In
agreement with Tomei et al. (2020), the authors also argue that that MRI, although detectable in
simulations, does not play a crucial role in determining the steady-state of accretion.

The second paper Tomei et al. (2021) was born with the idea of linking dynamo simulations
in a more quantitative way with the literature and can be considered an extension of our previous
work. We have reproduced some of the SANE disk diagnostics of the Code Comparison Project of
Porth and EHT-Collaboration (2019) by expanding the range of resistivity and dynamo parameters
compared to our previous paper. We have also extended the duration of simulations to investigate
the stationary regime in more detail. Our main purpose is to show that the approach of mean-field
dynamo in axisymmetric simulations is able to reproduce the amplification of the magnetic field due
to MRI-driven turbulence. Even when starting from initial conditions not particularly favorable,
such as a seed (toroidal) magnetic field with very low magnetization, our models can reproduce
the same results of expensive 3D GRMHD simulations after saturation and dynamical quenching of
the dynamo process, similarly to the simulated disks of Sądowski et al. (2015) exhibiting sustained
turbulence, with the poloidal and toroidal magnetic field components driven towards a state not
different to that seen in 3D studies. We observe that the action of a mean-field dynamo is able to
generate equipartition-like poloidal fields as already seen in Tomei et al. (2020) and later confirmed
by Vourellis and Fendt (2021). Then in our simulations, we find a considerable dependence on the
initialization value of the α effect. In particular, there is a minimum initial ξ0 (≡ ξmax in Tomei et al.
(2020)) under which the dynamo is too weak to grow out the poloidal magnetic field significantly
within the duration of our runs. On the other hand, an excessively high value causes a rapid and
violent initial evolution, bringing a discrepancy of the diagnostics with the ideal three-dimensional
case. However, we find an intermediate range that has a good agreement in all the diagnostics
analyzed. The dependence from η0 (≡ ηmax in Tomei et al. (2020)) is less evident in the horizon
fluxes. However, the time averages in the stationary phase show that as η0 increases, the average
disk density decreases and the magnetization in the funnel increases. This is probably due to the
fact that the action of α − Ω dynamo is stronger, and it more effectively influences the accretion
dynamics. Finally, we evaluated the time evolution of the θ-quality factor to test the ability to solve
MRI in our simulations. In runs with intermediate and strong dynamo, the action of the dynamo
combined with the adopted resolution allows for resolving the characteristic MRI wavelength during
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the initial phase. If the dynamo is too low, the instability can never develop. This behavior is
confirmed by the fact that as ξ0 increases, the accretion during the transient is progressively more
intense. On the other hand, the stationary regime seems to be regulated exclusively by the action
of the mean-field dynamo, as also stated by Vourellis and Fendt (2021). In conclusion, we believe
that the much more computationally convenient approach of mean-field dynamo in axisymmetric
simulations can reproduce SANE accretion disks whose properties are in accordance with the fully
three-dimensional ideal simulations present in the literature. This result opens up the possibility of
performing large parameter studies of axisymmetric thick disks to fit observational data and better
constrain the physical properties of the accretion flows.

Part of the thesis work included our participation with ECHO in the Code Comparison project
that aims to compare the results obtained by the various participating groups in some well-defined
black hole accretion tests. In the first part of the project, we studied the SANE configuration in the
paper Porth and EHT-Collaboration (2019). Each code was given ample freedom on the algorithm,
implementation and grid choice: the main similarities of ECHO with the other codes concern the
use of the PPM for spatial reconstruction and the Riemann solver HLL. The suggested resolution
is the one commonly adopted in the literature to study the black hole accretion. In general, the
level of concordance between the various codes improves as the resolution increases: for example,
the spread between the lowest and the highest value of the mean horizon fluxes decreases from
∼ 3.9 to ∼ 1.7 for the mass accretion rate. ECHO results follow the general trend: in particular,
we can see how the high spread of the magnetic flux and the flux of the angular momentum in
the low-resolution run is significantly reduced in the high-resolution runs. We observe that the
magnetic flux is the lowest among all the other high-resolution values. Similar considerations about
convergence apply to disk-averaged quantities and the contour of the jet-disk boundary. As for the
latter, the low-resolution run shows good agreement with the profile observed in the 2D simulations
of Nakamura et al. (2018), although the high-resolution simulations converge on a narrower jet
profile. The non-consistency with the other codes at low resolution is probably due to the polar
cutout adopted in our grids that generally leads to a decrease in magnetization in the funnel. By
increasing the resolution this effect becomes less important and the agreement with the other codes
is recovered. The comparison with light curves and their spectra shows good agreement between
all codes (including ECHO) at all resolutions. The Power Sectral Density of the light curves is
compatible with a red-noise spectrum up to 0.1M−1 where a steepening is observed indicating the
presence of an inner emission ring at or within the ISCO. Finally, the results of the convergence test
carried out are interesting, showing that there is a midplane resolution threshold ∆θp ∼ 0.25−0.0125

beyond which the differences between the algorithms become less important and the scatter between
the results obtained decreases significantly.

The second part of the project concerning the MAD configuration is currently in progress and
although our results are ready, the comparison with the other codes involved has not yet been
completed. The initial difficulties in dealing with the modeling of the highly magnetized funnel led
us to modify the algorithm for the recovery of primitive variables. We currently believe that the
code has improved in terms of robustness. The preliminary results obtained in the MAD test show
a good agreement with the other codes except for the jets diagnostics probably due to the polar
cutout again.

As we have said, the polarized image of M87∗ seems to exclude that the accretion evolves in the
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SANE configuration, favoring the MAD models instead (EHT-Collaboration, 2021b). The future
development of this thesis work therefore naturally moves towards the search for efficient modeling
of this regime: on the one hand, through the completion of the ideal simulations and analyzes of
the second part of the code comparison project; on the other hand, through further advances in the
characterization of the dynamo mean-field mechanism, which can be even more crucial in MAD disks
than SANE disks due to the need to deal with more magnetized and turbulent environments. First,
it will be necessary to perform 3D GRMHD simulations since in axisymmetric MAD configurations
the intense magnetic field, not being absorbed by the black hole, completely inhibits the accretion at
almost regular intervals. In 3D configuration the situation is different because the magnetic field is
unable to inhibit all the accretion channels; matter falls into the black hole through irregular bursts
but never stops. The 3D simulations also allow studying possible interactions of the dynamo with
non-axisymmetric instabilities (Bugli et al., 2018). Furthermore, a more accurate prescription of the
spatial profile of resistivity could be crucial. In our study the regions of high magnetization coincide
with those of high density, hence the magnetic field dissipation was particularly effective. However,
there are shearing box studies that seem to indicate that the most dissipative regions are rather
the edges of the disk (Gressel and Pessah, 2015). For this reason, more accurate and consistent
implementation of resistivity and dynamo profiles could lead to increased dynamo amplification
action and reduced MRI damping.
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Appendix A

Kerr-Schild coordinates

The coordinate singularity at the event horizon in the Boyer-Lindquist coordinates can be removed
via the following integrable coordinate transformation (Komissarov, 2004), also singular at the event
horizon

dt→ dt+G(r)dr, (A.1)

dφ→ dφ+H(r)dr, (A.2)

where
G(r) = −2r

∆
, H(r) = − a

∆
. (A.3)

The corresponding transformation matrix is

Aµµ′ =




1 G 0 0

0 1 0 0

0 0 1 0

0 H 0 1



, (A.4)

where the primed indices refer to the Boyer-Lindquist coordinates. This transformation relates
vector and tensor respectively

xµ = Aµµ′xµ
′
, (A.5)

Tµν = Aµµ′Aνν′Tµ
′ν′ . (A.6)

The line element is expressed as

ds2 = gttdt2 + 2gtφdtdφ+ grrdr2 + gθθdθ2 + gφφdφ2 + grφdrdφ, (A.7)

where the coefficients are given by
gtt = z − 1, (A.8)

gtr = z, (A.9)
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gtφ = −za sin2 θ, (A.10)

grr = z + 1, (A.11)

grφ = −a(1 + z) sin2 θ, (A.12)

gθθ = %2, (A.13)

gφφ = ω2, (A.14)

where
z = 2r/%2 (A.15)

and the Kerr-Schild shift vector and the lapse function are

β =

(
z

1 + z
, 0, 0

)
, α =

1

(1 + z)1/2
. (A.16)

We have to consider that Eulerian observers in the two coordinate systems are not identical in
general: if we want to derive the quantities measured by a Kerr-Schild Eulerian observer we cannot
apply the transformations (A.4) to the quantities measured by a Boyer-Lindquist Eulerian observer.
We follow the procedure described in Bugli et al. (2018):

• first consider the quantities measured by an Eulerian Kerr-Schild observer

viKS =
1

αKS

(
uiKS
utKS

+ βiKS

)
, (A.17)

Bi
KS = αKSF

∗ti
KS , (A.18)

EiKS = αKSF
ti
KS; (A.19)

• we use Eq. (A.4) to transform the components of uiKS, F
∗ti
KS , F

ti
KS in BL coordinates;

• then, using Eqs. (3.21), (3.23), (3.24), we write them in terms of vi′BL, B
i′
BL, E

i′
BL

The result gives the correct transformation rules:

viKS =
1

αKS

[Aij′(αBLv
j′

BL − β
j′

BL)

1−A0
r′αBLv

r′
BL

+ βiKS

]
, (A.20)

Bi
KS =

αKS

αBL

{
Bi
BL −A0

r′

[
Br′
BLβ

i
BL +

αBL

γ
1/2
BL

(δiφ′E
BL
θ′ − δiθ′EBL

φ′ )

]}
, (A.21)
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EiKS =
αKS

αBL

{
EiBL −A0

r′

[
Er
′

BLβ
i
BL −

αBL

γ
1/2
BL

(δiφ′B
BL
θ′ − δiθ′BBL

φ′ )

]}
, (A.22)
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Appendix B

The coefficients for the electric field and
for its Jacobian

In the present Appendix we show how Eq. (4.39) has been derived and we provide the expressions
for the required coefficients of Γ and of their derivatives, to be used in Eq. (4.45). Since we are
working with spatial vectors alone, involving the 3-D metric tensor γij (not diagonal in Kerr-Schild
coordinates), we use here for simplicity the standard vector notation, for which v is employed rather
than vi.

The implicit step of the IMEX scheme for the electric field can be written as

E = E?−η̃−1Γ{E + v ×B − (E · v)v

− ξ[B − v ×E − (B · v)v]}
(B.1)

and after the introduction of ũ = Γv, for which Γ2 = 1 + ũ2, we can rewrite the above expression
as

(Γ + η̃)E = η̃E? − ũ×B + (E · ũ)ũ/Γ

+ ξΓB − ξ(ũ×E)− ξ(B · ũ)ũ/Γ.
(B.2)

The dot product with ũ allows one to write

(1 + η̃Γ)(E · ũ) = η̃Γ(E? · ũ) + ξ(B · ũ), (B.3)

whereas the curl with ũ (necessary when ξ 6= 0) leads to

(Γ + η̃)(ũ×E) = η̃(ũ×E?) + (Γ2 − 1)B

− (B · ũ)ũ+ ξΓ(ũ×B) + ξ[(Γ2 − 1)E − (E · ũ)ũ].
(B.4)

Eqs. (B.3 - B.4) can be plugged into Eq. (B.2) to derive an explicit expression for E. In a compact
form the required expression is

A0E = η̃E? +A1 (E? · ũ)ũ+A2 ũ×E?
+A3B +A4 (B · ũ)ũ+A5 ũ×B,

(B.5)
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that is precisely Eq. (4.39), where we have defined six new coefficients, functions of Γ alone, namely

A0(Γ) = Γ + η̃ + ξ2 Γ2 − 1

Γ + η̃
, (B.6)

A1(Γ) =
η̃

1 + η̃Γ
+ ξ2 η̃Γ

(Γ + η̃)(1 + η̃Γ)
, (B.7)

A2(Γ) = −ξ η̃

Γ + η̃
, (B.8)

A3(Γ) = ξ
1 + η̃Γ

Γ + η̃
, (B.9)

A4(Γ) = ξ
1− η̃2 + ξ2

(Γ + η̃)(1 + η̃Γ)
, (B.10)

A5(Γ) = −1− ξ2 Γ

Γ + η̃
. (B.11)

The derivatives of the above coefficients, to be plugged into Eq. (4.45), are

Ȧ0(Γ) = 1 + ξ2 1 + Γ2 + 2η̃Γ

(Γ + η̃)2
, (B.12)

Ȧ1(Γ) = − η̃2

(1 + η̃Γ)2
− ξ2 η̃2(Γ2 − 1)

(1 + η̃Γ)2(Γ + η̃)2
, (B.13)

Ȧ2(Γ) = ξ
η̃

(Γ + η̃)2
, (B.14)

Ȧ3(Γ) = ξ
η̃2 − 1

(Γ + η̃)2
, (B.15)

Ȧ4(Γ) = −ξ (1− η̃2 + ξ2)(1 + η̃2 + 2η̃Γ)

(Γ + η̃)2(1 + η̃Γ)2
, (B.16)

Ȧ5(Γ) = −ξ2 η̃

(Γ + η̃)2
, (B.17)

and thanks to the above expressions the Jacobian of the electric field can be computed.
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