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Glossary

Genotype by environment interaction The dif-
ference in response to environment changes
due to different genotypes.

Breeding value Expected performance measured
as deviation from the population mean of the
progeny generated by a progenitor.

Phenotype Observable characteristics of an
individual.

Resilience The ability to recover from stressful
conditions.

Robustness The ability of not being perturbated
by stressful conditions.

Tolerance The ability to cope with stressful
conditions.

Plasticity The ability to change in response to
environmental inputs.

Acclimation Increase of tolerance to stressful
levels of environmental parameters.

Definition of the subject

Genotype by environment interaction, often
referred to as “G 3 E,” is the phenomenon for

which the breeding value of an individual depends
on the environmental conditions and the effect of
an environmental factor depends on the individ-
ual’s genetic background. A breeding program
that accounts for GxE allows, among other things,
the development of breeds and lines that are par-
ticularly adapted to specific environmental and
management conditions. Historically, animal
breeders have neglected the phenomenon, and it
has seldom been exploited in genetic evaluations.
Conversely, plant breeders have made it familiar
and developed breeding plans that take advantage
of such interaction effects. The reasons for this
difference are multiple but can mainly be
reconducted to the following two: (1) The devel-
opment of new plant germplasm is a process that
is more affordable than the development of new
animal germplasm. Such cost-effectiveness of
plant breeding allows developing lines that will
be used under a limited number of conditions. The
development and maintenance of animal germ-
plasm adapted to only marginal breeding systems
will likely be uneconomical. (2) Animal hus-
bandry allows managing livestock in a more pre-
cise manner than agronomy does with plants. For
example, animals’ diets can be controlled with
high precision, while rainfall and nutrient avail-
ability in the (open-field) soil can only be con-
trolled to some extent. Better control of the
environmental conditions lower the need to
develop germplasm adapted to harsh conditions.

Introduction

Over the last seven decades, selective breeding
has significantly contributed to increasing the pro-
ductivity of animal systems. One significant step
forward was taken when breeding values
(BV) started to be calculated using mixed-model
equation systems [1, 2, 3]. One of the main advan-
tages of mixed models was the ability to disentan-
gle the genetic from the environmental
(systematic and random) effects. Consequently,
individuals could be compared for their breeding
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value even if they were reared under different
environmental conditions. In formula notation:

P ¼ Gþ Eþ G� E ð1Þ

where P is the individual’s phenotypic measure
for a given trait of interest, G is the genetic com-
ponent (the BV), E is the environmental compo-
nent, and G� E is the interaction between the two
components. In synthesis, mixed models were
able to extract the heritable component G from
P and provide an indicator for the BV of the
individual. The G component is obtained margin-
ally on the E component: an individual will have a
deviation value from the rest of the population
(the BV), regardless of the conditions under
which it will be raised. The E component is the
environmental deviation. This deviation is also
marginal on the BV of the individual: a change
in diet is assumed to change the performance of all
the individuals in the same way, regardless of their
genetic background and, therefore, their ability to
react to the change. The GxE component is
interpreted differently. Such component implies
that genotypes will differ in response
(P) according to the environmental conditions.
The environmental state might determine the
response depending on the genotype receiving it
[4]. For example, a heritable component on toler-
ance to heat stress has been found on all livestock
species ( [5]; see later sections of this entry). The
genetic control on tolerance to heat stress is attrib-
utable to the G � E component: the individual’s
BV depends on the temperature and humidity that
the individual is exposed to. Such BV could be
favorable under a comfortable environment but
unfavorable under an uncomfortable environ-
ment, which means that the individual is a top
performer under optimal conditions but is
outperformed by other individuals under heat
stress, that is, it is less tolerant than others and
cannot acclimate to the less comfortable condi-
tions. The same principle could apply to different
diet and management systems. The marginality of
the breeding value could be replaced with its
conditionality, that is, the BV will depend on the
environmental conditions. The inclusion of G� E
in genetic evaluations and, therefore, breeding

programs implies a shift in the setup of the
whole system. Since BV are no longer marginal
on environmental conditions, this implies that
such environmental conditions are adequately
accounted for in the genetic evaluation and, there-
fore, in the breeding decisions.

This entry will expand the description of the
concepts mentioned here: genotype by environ-
ment interaction, acclimation, tolerance, and envi-
ronmental conditions. Examples will be provided
that show the importance of accounting for G� E
in livestock breeding and the pitfalls of its
implementation.

The model mentioned above will be revisited
and expanded with components that describe the
genetic control of resilience in more detail. Next,
the different definitions of environmental compo-
nents and how these can be used in modeling G�
E will be revised. Successively, the conceptual
and practical description of the models that can
predict breeding values for resilience will be
described. A brief review of current literature on
the topic will be provided, followed by some
conceptual examples of the use of G � E in
livestock breeding.

Expanding the Model

1. The Model Revisited

The model reported in formula (1) is widely
accepted as a conceptual framework for the dis-
section of phenotypic variation in the two main
components and their interaction. For this entry,
that model will be expanded to better define the
environmental component.

Following Jinks and Pooni [6] and Mulder
et al. [7], E will be separated into two subcompo-
nents, specifically a proper E component and an
e component:

P ¼ Gþ Ec þ G� Ec þ er þ G� er ð2Þ

Using this parameterization:

– Ec is the controllable environmental component
such as temperature in a barn or percentage of
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protein in the feed. This can also be defined as
the macro-environmental component.

– er is the random noncontrollable component of
the environment, such as indirect social effects
or the exposure to uncontrollable pathogens,
termed micro-environmental component.

The genetic contribution needs to be redefined
in three components: G, G � Ec, and G � er.

– G is the marginal deviation of an individual
from the population genetic component mean
so that its performance will not depend on the
environmental conditions.

– G � Ec is the genetic component conditional
on the controllable environmental component.
If modeling can predict the Ec conditions in a
given contemporary group, proper genetic
material is allocated to optimize the use of
resources. For example, genetic material can
be tailored to expected temperature and humid-
ity conditions, availability of energy in the diet,
etc. This component expresses the macro-
environmental plasticity, i.e., how a genotype
shows a plastic phenotype given macro-envi-
ronmental changes.

– G� er is the genetic component conditional on
the uncontrollable environmental component.
Despite the advances in technology, some
environmental conditions will not be con-
trolled (er). Still, er will affect the phenotype
of farm animals and the G � er will imply a
different ability of the individuals to overcome
environmental changes. The ability of a geno-
type to show a plastic phenotype as defined by
this component is also known as micro-
environmental plasticity.

2. The Environmental Components

Formula (2) aims at dissecting the environmen-
tal component E in two parts, contingently on the
possibility of controlling the factors that deter-
mine it. Ultimately our ability to control it defines
whether the component is macro-environmental
or micro-environmental. This has a clear zootech-
nical meaning. In livestock farming, the optimal

conditions for the animals’ health, well-being,
growth, and production are pursued. Over time,
knowledge and technological inputs have shaped
how farm animals are raised, with consequences
on the systems’ productivity and the farmers’
welfare. The improvement of the farming condi-
tions, broadly speaking, has been provided by
controlling several factors. Among these are the
control of the diet, ambient conditions (e.g., air
temperature and humidity and CO2 and NH4 con-
centrations), and the control of the reproductive
cycle. The evolution of the farming system has led
to these factors being (at least potentially) con-
trolled with accuracy and precision.

Nonetheless, such control is often lacking for
several reasons that will not be covered in this
entry. From our perspective, it will be more impor-
tant to define the controllable and not controllable
parts of the environmental variation [7].

As the domestication of livestock species
occurred, the individual’s diet was one of the
first factors the farmers attempted to control.
Nowadays, diets consist of rations formulated to
maximize farm profitability and animal welfare.
Rations are administered to individuals as a group
or on an individual basis. The diet is controlled in
its composition (e.g., energy content, protein con-
tent) and its mean of administration (e.g., solid or
liquid). Often, the ration is also administered in a
way that does not allow the animal to select its
components.

Example: Environment and Diet Composition
(ExA)
For example, pigs’ rations are ground and/or
pelleted so that the animals cannot choose
between the corn and soybean that compose
it. Therefore, the diet of a pig kept in indoor
conditions is fully controllable, at least to the
extent that the farm manager aimed at controlling.
Let us assume that the ration of some growing
pigs is formulated based on its energy and protein
content, but its aminoacidic composition is not
considered. A trial could be run where two diets
are fed to groups of growing pigs, and their daily
weight gain compared. The feed is also made with
different batches of corn and soybean that vary in
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their aminoacidic composition. Animals in each
replicate of the study receive feed from different
batches. The phenotypic variation between the
groups in the trial could be reconducted to the
controllable environmental variation component
Ec because such variation was created in a con-
trolled fashion. However, the different replicates
received feed differing in aminoacidic composi-
tion, which inevitably affected their growth rate.
The phenotypic variation between the replicates
and within diet could be considered due to the not
controllable environmental variation component
er because it was not planned that the different
batches received different diets for such
parameters.

In this case, the Ec and er components could be
directly attributed specific parameters that defined
the diet, such as energy and protein content versus
the content of specific amino acids. In reality, the
same environmental parameter could show con-
trollable and not controllable components.

Example: Environment and SowHousing (ExB)
We could think of sows housed individually in
farrowing pens, which in turn are allocated in
different building rooms. The facility manager
can monitor and control the temperature in each
room with a dedicated thermostat located at the
center of the room. However, each room has a
window on only one side. The sows housed in
the pens next to the window will experience
higher temperatures during the day when the sun-
light hits the window glass and lower tempera-
tures at night since the windows cannot insulate as
well as the walls do. Conversely, the sows in the
other parts of the room will experience more sta-
ble conditions. If the breeder wanted to use the
temperature as an environmental covariate in
some heat tolerance study, a thermometer located
in the middle of the room would only provide an
average of the room conditions. But, ultimately,
the pen-specific temperature affects the welfare of
the sows, not the average room temperature.
Using the average room temperature, the animal
breeder would find some unexplained phenotypic
variability, determined by the unaccounted envi-
ronmental variance. While the average tempera-
ture in each room falls in the Ec component, being

controlled by the farm manager, the deviation
between the single-pen temperature and the
room average falls within the er component,
given this is not monitored nor controlled by the
farm manager.

The definition of Ec and er clearly implies a
hierarchy of the components [9]: the micro-
environmental component is nested within the
macro-environmental component, both conceptu-
ally and statistically. The uncontrollable environ-
mental changes in the micro-environment are
meant to happen within the controllable macro-
environment. This limitation is often convenient
because it implies that the micro-environmental
variation occurs within an individual and within a
macro-environment, which makes its interpreta-
tion easier.

This second example (ExB) should be further
expanded to mention the potential presence of
covariance between Ec and er. Hypothetically,
such covariance could be null: the average room
temperature in a given day is not related to the
range in temperature within the room, during that
day, which results in the two effects being
uncorrelated. However, one could also hypothe-
size that the range within the room (from closer to
farther from the window) could depend on the
average room temperature, having both these
parameters a common source of variation which
is the outside weather. For example, the sows
closer to the windows (as compared to those far-
ther from the windows) could suffer from cold
stress more likely during a cold night than a
warm day. Likewise, the same sows could suffer
from heat stress more likely during a warm sunny
day. Such covariance, inherent to the housing
facility, could drive the environmental sources of
variation to be correlated resulting in the two
components being collinear. Such collinearity
would be difficult to model and few attempts
have been made [10, 8]. For the sake of simplicity,
this covariance will be neglected in this entry;
nonetheless it should be kept in mind of its poten-
tial presence. Ultimately, the dissection of E into
Ec and er depends on the quality and completeness
of the data as well as the modeling strategy (e.g.,
availability and use of average room temperature
or pen-wise temperature). Consequently, the
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covariance between the two terms will depend on
the same factors.

The dissection of the environmental variance is
an essential component for the optimal modeling
of the G � E. This concept will be further
expanded in the following sections of this entry.

3. The Breeding Value(s) in Relation to the Envi-
ronmental Components

Both formulas (1, 2) include a genetic compo-
nent G. Such a component is marginal on the
environment, which means that it will not depend
on the environmental conditions experienced by
an individual. When estimated breeding values
are calculated and published, those are meant to
be a deviation from the contemporary group
(i.e., a set of individuals undergoing same
macro-environmental conditions) average. Such
definition acknowledges the presence of environ-
mental variation (absorbed by the contemporary
group effect) and assumes that such deviations
due to G are the same under every condition. For
example, dairy cows that are daughters of a given
bull will show different yields in different farms.
Still, the expectation of their deviation from the
contemporary group will be the same, for exam-
ple, 3 kilograms of milk above the group mates.

The G � Ec component, as defined in for-
mula (2), is the most valuable for the animal
breeder. Given the controllable environmental
variation and the known parameters that describe
it (e.g., energy content in the ration, average room
temperature), the G� Ec component can be easily
modeled with several statistical tools. In general,
every model will yield a prediction of the BV
conditionally on the environmental conditions,
that is, depending on how such conditions vary.
The deviation from the contemporary group
mean, used as an example in the previous para-
graph, now depends on the contemporary group
itself. Practically, the dairy cow daughters of a
given bull will show a deviation from the group
mates that depends on the group itself: it will be
(hypothetically) a +3 kilograms of milk in group
A but a -0.5 kilograms of milk in group B.

The different performance due to G � Ec can
probably be better understood going from the

individual to the breed level. Let us assume that
the trial in example ExA (section 2) is run on pigs
of different breeds, namely A and B. The growth
rate of such pigs heavily depends on the breed,
such that breed A pigs will show slower growth
rates as compared to the breed B pigs. Being the
average growth rate (of the pooled breeds) of
330 grams per day, the A and B pigs will show
deviations of +40 and -50 grams per day, respec-
tively. However, the market price of corn sud-
denly increases, and the farmer needs to find an
alternative ingredient. While some ingredients
could be more expensive, others will be more
economical and the farmer decides to venture
into the use of different feed ingredients hoping
that, on average, the animals will show the same
performance as if they were fed corn. The farmer
creates therefore three rations: one with corn
(CORN), one with distiller’s dry grains (DDGS,
lower energy content than corn), and one with
vegetable oil (OIL, higher energy content that
corn). The farmer feeds the three diets to both
breeds present on the farm. A schematic represen-
tation of such experiment is reported in Fig. 1.

When the ration includes corn as the main
energy sources, breed B pigs show a significantly
faster growth rate, as pictured in the middle of the
plot (CORN). When moved into a more energetic
diet (OIL), both breeds show faster growth, but
the advantage of breed B over breed A pigs
becomes even larger. Probably, the selection his-
tory of breed B gives it a better growth potential
which is not fully expressed on a corn diet but
increases the gap between the two breeds when
more energy is available. When the ration
includes DDGS, both breeds slow down their
growth and the difference between the breeds
becomes smaller.

The farmer by testing the impact of breed, diet,
and their interaction on the growth of the pigs has
completed an experimental design that allows the
dissection of the several components of for-
mula (2). First, average growth of the individuals
is represented by the horizontal black solid line.
The G component is represented by the dashed red
and blue lines, or actually by the difference
(in response y) between the black line and each
line. This difference is systematic across the diets
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(environments) and can be considered as the
impact of the genetic background of the different
breeds marginally on the environment. Likewise,
the difference between the diets (not indicated by
lines) can be considered as the Ec component,
being purely environmental and marginal on the
breed.

The G � Ec component is conceptually
explained by 1) the fact that the difference
between breeds changes depending on the diet,
making such different conditional on the Ec (diet)
components, and 2) the solid lines that interpolate
the average of the breed by diet blocks, which
show different slope. Such lines are considered
reaction norms [4, 11], as they report what is the
norm of the reaction of each genotype for going
from an environment to another (increasing or
decreasing dietary energy content). At the same
time, the presence of G � Ec is proven by the fact
the different diets show an impact on growth rate
that depends on the breed. While it could be
remunerative to replace DDGS with CORN or
even with OIL for breed A, it will not be the
case for breed B. Again, the effect of the diet
(Ec) is conditional on the breed. Using a simple

example, it can be demonstrated how the three
main components can be disentangled and
interpreted at least from a zootechnical
standpoint.

The G � er component, as introduced in (2), is
probably the least intuitive of the components. For
this component to be fully understood, the defini-
tion of er needs to be revisited in the modeling
context. As mentioned in section 2 of this entry,
the er component is the one that determines the
phenotype due to random, uncontrollable envi-
ronmental conditions. As such, these environmen-
tal conditions are unaccounted by the model, thus
normally considered as the (statistical) residual
error of the model. However, the presence of a
component defined as G� er implies that the error
will somehow be conditional on the genotype. In
fact, the simplest definition of G� er could be that
the genotype determines the residual error, that is,
the phenotype uniformity. Going back to the
example in Fig. 1, each point represents an indi-
vidual from a given breed that was fed a given
ration. It can be noted that the points for breed
A show larger variation around the mean than the
points from breed B, under any diet. This simple
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Genotype by Environment Interactions in Livestock Farming, Fig. 1 An idealized scenario for the dissection of
GXE
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example shows how the genotype can impact the
dispersion of phenotypic measures beyond the
variation due to the macro-environmental compo-
nent Ec. Such dispersion is measured as the devi-
ation of each phenotypic measure from the
expectation of the group, that is, from the average
of each breed by diet combination, which brings
back the conceptual hierarchy mentioned in sec-
tion 2 among the macro- and micro-
environmental components. It should be men-
tioned though that the within-genotype pheno-
typic variation could also be determined by the
within-family genomic variation, given by differ-
ent gametic disequilibrium among the families
[9]. However, for the sake of clarity, the within-
family variation that is not accounted by explicit
and controllable environmental variation should
only be determined by the environmental compo-
nents, in other words, the replicated observations
of a genotype should be considered as replicates
of a clone. While unrealistic, this will help the
interpretation of the different components
discussed in this entry. The G � er component
expresses the ability of each genotype to with-
stand random environmental variations, that is,
micro-environmental plasticity.

It should be stressed how the difference
between macro- and micro-environmental plastic-
ity depends on the availability and use of more or
less precise environmental data. If the variables
that define the macro-environment (and determine
Ec) cannot be measured, the er component will
absorb Ec and G � er (if modeled) will absorb
G � Ec. Using again Fig. 1 and assuming the
ignorance about different diets, breed B would
show larger within-genotype variation than the
breed A. This difference in within-breed variance
could be attributed to the breed-specific micro-
environmental plasticity (G � er). When diet
information is made available though, part of the
G � er will be absorbed by the macro-
environmental component (G � Ec). Again, the
modeling of the two components implies a trade-
off which depends mostly on the availability and
use of the environmental covariates.

4. Variables Defining the Environmental
Components

The environmental component of the models
described requires descriptors that fully define the
complexity of the environmental conditions. This
is no different than the quality of genomic markers
that are used in genomic selection. Markers are
chosen to represent the physical variability of the
genome together with their relevance for the traits
of interest [12, 13]. At the same time, the infor-
mation conveyed by the markers should not be
redundant or biased to avoid model over-
parameterization or overfitting. Just as the geno-
mic markers seldom account for the whole genetic
variability (e.g., missing heritability), the environ-
mental variables will not likely account for the
entire environmental variation. This concept is
central in modeling G � E and will be
reintroduced at the end of this section.

Environmental variables can be either cate-
gorical or continuous [14, 15]. When modeling
the diet, the different rations will (at least here)
be considered as categorical variables describing
discrete conditions. The assumption is that the
variability between the diets is maximized while
there is no (environmental) variation within the
diets. Each diet is a standalone condition, which
implies that each diet could have its peculiar
conditions. In the examples ExA and ExB
above (section 2), the categorical environmental
variables would be the ration or the room. The
environmental variables could also be continu-
ous and describe conditions that vary within
some interval. In this case, it is impossible to
contrast different conditions straightforwardly,
but rather the change in phenotype is described
given a unit change in the environmental covar-
iate. A single covariate only includes one dimen-
sion, but nonlinear modeling is possible. The
change in the environmental covariate could
lead to a different phenotype shift depending on
the interval in the covariate itself (see quadratic
trends). In the examples above, the continuous
environmental variables could be the room or
pen temperature or the energy and protein con-
tent in the ration. Several continuous variables
that can describe categorical conditions lead to
the possibility of having several continuous vari-
ables that describe the continuous variation. The
room climatic conditions could be characterized by
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daytime and nighttime temperatures, and the dif-
ferent rations are characterized by both energy and
protein content. In this case, all the variables should
be potentially considered in the model, but some
will likely be more relevant than others. For exam-
ple, heat stress for the sows (ExB) could result from
a high daytime temperature or lack of night
cooling. A good model should discern between
the two to provide the basis of reasonable inference
about the biology of the trait(s).

Nonetheless, the number of environmental
variables could be large (hundreds, sometimes
thousands), but their dimensionality could be
limited. Again, this is no different from genomic
markers that show low effective dimensionality
because of linkage disequilibrium. In the same
way, the environmental variables could have low
effective dimensionality because of their intrin-
sic collinearity or the limited sample size. In the
first case, daytime and nighttime temperatures
could show some degree of collinearity due to
common seasonal trends (ExB). In contrast, the
energy and protein contents could also show
collinearity because of some ration formulation
constraints (ExA).

The kind of environmental covariate will
strongly affect the choice of the model used to
analyze the trait. Consequently, the nature of the
environmental covariate will determine how the
G � Ec component can be interpreted.

In the example ExB of the sows housed in the
different pens of the room(s), the same environ-
mental variable (temperature) had a portion that
could be considered Ec and one that could be
regarded as er. Again, the difference between
the two components depended on the ability to
be controlled in an experiment or monitored in
the case of field data collection. Pen-specific
thermometers would allow the Ec component to
absorb er.

The breeder’s goal is to design experiments or
data collection protocols that maximize Ec and
minimize er by having a more detailed descrip-
tion of the environmental conditions. While the
purpose of this entry is not to emphasize the
importance of precision livestock farming, it

should be evident how precise (but also accurate)
data collection can significantly affect the quality
of the results. Going back to the sows’ example
(B), more precision in defining the categorical
environmental covariate would move the con-
temporary group to be defined as the pen rather
than the room. This, in turn, could have the
unwanted consequence of making data granular
to a point that hamper the statistical learning for
the model. Contiguous pen groups could have a
low number of individuals allocated, and conse-
quently, the standard errors for the group esti-
mates would be larger. Suppose the pen
temperature was used instead of the room tem-
perature, in that case, it could happen that indi-
viduals were allocated in different intervals of
temperature, with the experimental design poten-
tially unbalanced (see section 9 of this entry).
Ultimately, the optimal Ec and G � Ec effects
modeling is a trade-off between goodness of fit
and efficient parameterization.

5. Modeling the Components and Interpretation
of the Estimates: Part I

Once the experiment or the field data collection
is carried out, and the environmental variables are
defined, the choice of the model will fall within a
limited number of options. However, this should
not be a trivial choice, and literature is vast in
comparing statistical models given a fixed set of
data [16, 17, 18].

The modeling of the Ec component is simple and
is not different than, for example, an ANOVA aimed
at dissecting the variance components following a
complete randomized-blocks experimental design.

Categorical environmental variables can be
included in the model as (fixed or random)
cross-classified effects and contrasts can obtained.
Continuous variables can be included as
(multiple) linear or polynomial covariates.

First, ANOVA could be used in the case of a
balanced experimental design that includes specific
breeds, lines, or families. In the simplest case, where
categorical variables describe discreet environmen-
tal conditions, the model could be so defined as:
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y ¼ Bþ Tþ BTþ e ð3Þ

where y is the phenotypes of interest, B is the breed
component (or family, or genetic line, to be con-
sidered as modeling G), T is the treatment compo-
nent (to be considered as modeling Ec), BT is the
interaction between the two components
(as modeling the G � Ec), and e is the random
residual component (which could absorb both the
er and G � er). In this case, all the components are
disentangled using cross-classified effect, which
include multiple levels of breed and treatments.
When all the breeds are allocated over all the
treatments, the phenotypic variance can be easily
decomposed into the two main effects and their
interaction. From a breeding standpoint, the breed
estimates represent the germplasm’s performance
under average conditions. In contrast, the estimates
for the BT component will describe the perfor-
mance under specific conditions. At the same
time, the solutions for the T treatments will repre-
sent the impact of such treatment over all the
genetic material, while the solutions for the BT
effect will represent how the treatments affect
each breed specifically. If the design is not com-
plete, the model will not be able to estimate the
interaction component with the consequence of not
predicting the performance of a given breed under a
given treatment if this combination is not present in
the design. The prediction of y to unobserved con-
ditions could be obtained by replacing the categor-
ical descriptors with continuous descriptors, that is,
replacing the cross-classified effects with
covariates. In this case, the model becomes:

y ¼ Bþ tþ Btþ e ð4Þ

where t is the treatment component as defined
with a set of environmental covariates that
describe and Bt is the interaction component
modeled as a set of covariates for each breed.
Here, the model would give regression coefficient
estimates for all breeds (t) or specific for each
breed (Bt). A practical example could be example
A (section 3 and Fig. 1).

In comparison, the single regression coeffi-
cient of the t treatment component would show

the average change over the two breeds. Regard-
less, using the covariates would allow extrapolat-
ing each breed’s performance to protein contents
outside the formulated rations. While the predic-
tion may have low accuracy, it is statistically
possible and sets the basis for genomic predictions
incorporating G � Ec effects.

Formula (4) does not allow to predict the
performance of new, unobserved breeds
(or genotypes) because such levels are not
connected by any covariate. The use of pedigree
or genomic information allows such prediction,
similarly to how the environmental covariates
estimate the Ec term. The model could therefore
be reformulated as:

y ¼ bþ tþ btþ e ð5Þ

where b is the breed component modeled as a set of
covariates that describe (and link) the genotypes
and bt is the interaction component, modeled as the
product between genetic and environmental
covariates. The latter term is the least common to
find and should be interpreted as the interaction
between covariates: the change in y given the unit
change in b and the unit change in t. In practical
breeding terms, each genomic marker could be
assigned a specific regression coefficient for each
environmental covariate and vice versa. The graph-
ical representation of the predictions of this model
necessarily requires the use of a three axes plot,
also known as “surface plot.” The advantage of this
model is that the different genotypes and the dif-
ferent environments are not standalone items but
are connected by covariates that allow transferring
information from one level to another. In other
words, to predict the performance of a given geno-
type, the information can be “borrowed” from dif-
ferent genotypes; likewise, the information can
flow from a given environmental class to another.
Ultimately, the interaction term informs the model
of the particular outcome of a given genotype in a
given environment.

There could be a fourth way to rearrange the
same model, where the breed component is
defined by a covariate, but the environmental
effect is cross-classified. In formula:
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y ¼ bþ Tþ bTþ e ð6Þ

While all the terms are as described above, it
should be noted that the interaction component bT
is probably the most intuitive of all those
described. Here, a genetic effect (e.g., genomic
marker effect) is defined for each environment,
being the last categorically defined. In other
words, the biological model assumes that there
could be a different genetic architecture for each
of the environments considered, and this is explic-
itly modeled. This model allows to extrapolate the
prediction to new genotypes but not to new envi-
ronmental classes (Table 1).

6. Modeling the Components and Interpretation
of the Estimates: Part II, Ec, and G � Ec

Selective breeding has taken strong advantage
of the Best Linear Unbiased Prediction (BLUP)
methodology implemented in the mixed models.
These models allowed the estimation of both con-
temporary group (Ec) and additive genetic effects
(G) simultaneously thanks to a covariance matrix
that linked the different individuals (genotypes)
based on the expected sharing of alleles. With the
advent of inexpensive and high-throughput
genotyping platforms, the genomic markers
(mainly single nucleotide polymorphismmarkers)
replaced the expectations of covariance with a
more precise measure of shared inheritance of
alleles. Conveniently, this genetic covariance
matrix can be constructed considering markers

as covariates. In the case of its most common
application, BLUP includes the animal additive
genetic effect as cross-classified but connected by
several covariates, either observed or unobserved.
Such effect is usually fitted as random, where a
parameter allows the shrinkage of the solutions to
avoid overfitting and regulates the transmission of
information through the covariance matrix.

The Baseline Model
The baseline model for genetic evaluations could
be considered as follows:

yijk ¼ T0 þ Ti þ A j þ eijk ð7Þ

where yijk is the kth phenotypic record coming
from the ith contemporary group, belonging to
the jth individual, T0 indicates the overall treat-
ment effect, otherwise known as intercept in sta-
tistical terms, Ti is the cross-classified effect of
the ith contemporary group, Aj is the cross-
classified genetic effect of the jth individual,
and eijk is the random residual deviation. Alter-
natively, the cross-classified contemporary group
effect could be replaced by more covariates
describing the environmental variation. The for-
mula becomes:

yijk ¼ T0 þ
Xp

l¼1
tl þ A j þ eijk ð8Þ

where tl it the lth covariate, the number of
covariates can range from 1 to p. The presence
of the covariate does not prevent the presence of
the cross-classified effect, and for the sake of
clarity, they will be kept separate in this entry.

These models do not include any interaction
between the genotype and the environment effect
but represent the most common models used in
genetic evaluations.

The Multiple-Trait Model
The first model that should be considered for
estimating GxE is the multiple-trait model
(MTM). This category of models is widely
used in animal breeding when more than one
trait enters the selection index. Making use of
the covariance existing among traits, this model

Genotype by Environment Interactions in Livestock
Farming, Table 1 Recapitulation of the four models
presented in formulas 3 to 6 and which models allow
phenotype prediction across lines, environments, or both

Across
lines

Across
environments

Across lines and
environments

y ¼ B þ
Tþ BTþ e

. . .

y ¼ B þ
t þ Bt þ e

. X .

y ¼ b þ
T þ bT þ e

X . .

y¼ bþ tþ
bt þ e

X X X
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can produce breeding values for all individuals’
traits, even if some traits are not recorded on the
individual(s) of interest.

The MTM can estimate GxE by assuming that
the phenotype belongs to a different trait
depending on the (categorical) environmental
condition of recording (different environments
are different traits). Using the example of the
pigs fed different diets (example A, section 2 of
this entry), growth would be considered a differ-
ent trait depending on the diet provided to the
individuals (where the diet is the environment
Ec). The model could be formulated as:

yijk ¼ Ti þ Aij þ eijk ð9Þ

where the term T0 (the overall intercept) does not
appear but is replaced by Ti, which is the trait-
specific intercept. Likewise, the term Aj is replaced
by a trait-specific genetic effect Aij, that is, each
individual is assigned a breeding value for the traits
considered. The terms Ti andAj are trait-specific but,
in this case, also environment-specific. The possi-
bility to transfer information across individuals is
given by using a covariance structure imposed to the
model via a matrix built on the pedigree or the
genomic markers. Likewise, the possibility to trans-
fer information across traits is given by a covariance
structure that is imposed on the model via a
variance-covariance matrix among the traits [19].
Considered together, the model allows transferring
information across traits and individuals.

The MTM requires a categorical (discrete) def-
inition of Ec, assuming that each environment is
distinct and independent. The trait-specific inter-
cept absorbs the difference between the categorical
environments (i.e., Ec). The trait-specific breeding
values absorb the variance of both the G and G �
Ec components. The MTM does not provide solu-
tions for the overall G component producing a
breeding value estimation for each environment
instead. However, since a non-null covariance is
generally imposed on the calculation of the vectors
of breeding values, the overall G component is
blended into the single-environment components.
In other words, the MTM cannot explicitly disen-
tangle the G and G � Ec components.

The Random-Regression Model
A category of models widely used in estimating
G � Ec are the random regression model (RRM),
which were initially developed in livestock to
model lactation curves [20]. An RRM involves
defining the environmental component as a con-
tinuous gradient and fitting it in the model as a
covariate. The general model is an expansion of
the model in (6) and can be expressed as follows:

yijk ¼ T0 þ ti þ A0j þ A1j þ eijk ð10Þ

As in (7), T0 indicates the overall treatment
effect, ti it the environmental effect Ec modeled
as a covariate, A0j is the jth-individual-wise inter-
cept (G), A1j is the jth-individual-wise effects over
for the (nested) covariate (G � Ec). The latter two
terms could be counterintuitive but deserve
attention.

First, it should be highlighted that T0 and t1 are
population effects, as they are estimated for the
whole sample of individuals included in the anal-
ysis. They express the value of the phenotype
when all covariates have zero value (intercept)
and the change in phenotype given a unit change
in the covariate, respectively. Their interpretation
is no different than the one from a regular regres-
sion model.

The terms A0j and A1j are individual effects,
and they express the genetic value of the individ-
ual when the covariate has zero value and the
change in genetic value for the individual given
a unit change in the covariate. The term A0j is
conceptually (but not statistically) equivalent to
the term Aj in formula (7), while the term A1j is
specific to the RRM. Such a term is, in fact, a
regression coefficient that uses a covariate and is
fitted as a nested random effect. Such a covariate
is nested within the animal genetic effect and is
fitted as random to limit overfitting. Biologically,
the A1j term represents the reaction norm as
defined by Falconer [4]. Conceptually, the reac-
tion norm shows the individual’s reaction in the
phenotype given a unit change in the environmen-
tal condition Ec.

The RRM requires a definition of the environ-
mental component Ec as continuous. This
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component is then absorbed by the model term t1.
The G component is expressed by the term A0j,
whereas the G � Ec component is defined by the
term A1j. It should be noted that the RRMprovides
explicit modeling of the G � Ec component,
which the MTM did not provide. The solutions
for such a term express how an individual reacts to
environmental changes compared to the popula-
tion average reaction (t1). Such expressions can be
instrumental in the study of biology and the imple-
mentation of breeding programs. The individual-
specific reaction indicates whether individuals are
plastic or resilient to environmental changes. For a
further comparison on the estimation of variance
components for G � Ec reading Calus et al. [21]
and Fikse et al. [18] is suggested.

The Reproducing Kernel Hilbert Spaces
Regression Model
Both MTM and RRM provide an estimation of
all G, Ec, and G� Ec components. Still, they have
limitations in the number of environmental
covariates that are included in the model. As men-
tioned in the previous sections, the number of
environmental covariates describing Ec can be
larger than 1, potentially assuming large values
despite the limitation in their effective dimension-
ality given by collinearity. The RRM can explic-
itly model the genotype’s reaction norms over
each environmental covariate, but when the num-
ber of covariates becomes large (e.g., larger than
2), the model performance deteriorates in both the
ability of estimating the model parameters as well
as in the interpretability of the results. Ignoring the
need to model the reaction norms over each covar-
iate explicitly, multidimensional environmental
data can be incorporated using Reproducing Ker-
nel Hilbert Spaces (RKHS) regression. This class
of models takes advantage of “kernels” that
impose a covariance structure over the observa-
tions in a dataset. Animal breeders should be
familiar with this type of model since BLUP solu-
tions for breeding values are also based on a
kernel (the relationship matrix among individ-
uals). In fact, the BLUP animal model is a special
case of RKHS [22].

Similar to using genomic markers
(as covariates) to build a genomic kernel,

environmental covariates can be used to construct
an environmental kernel. The latter can be used to
let information flow among contemporary groups,
in the same way that genomic marker information
connects the individuals. The contemporary
groups will be linked conditionally on the envi-
ronmental covariates used: recalling the example
(A) of the different diets fed to the pigs and
assuming a larger number of diets tested, the
different groups fed different diets will have dif-
ferent covariance whether they are linked based
on energy and protein content alone or through a
deeper characterization of the diets (e.g., fiber,
amino acids, minerals).

Given a set of environmental covariates, the
model can be formulated as:

yijk ¼ T0 þ
Xp

l¼1
tl þ A0j þ

Xp

l¼1
Alj þ eijk

ð11Þ

where T0 and A0j are as defined above, tl is now a
set p of fixed population effects based on
covariates, and Alj is now a set p of random indi-
vidual effects based on these covariates. Because
of high dimensionality ( p) of Alj and, potentially,
also tl; such covariance can be modeled using the
kernels constructed on the same set of covariates
and the genomic markers.

7. Modeling the Components and Interpretation
of the Estimates. Part III, er, and G � er

The models presented in sections 5 and
6 assume the presence of a set of environmental
covariates describing the environmental variation.
Using the terminology introduced in section 2,
these environmental covariates explain the
macro-environmental changes that the individuals
experience. In absence of such covariates, the
animal breeder has the only option to model the
variability that is found among the observations of
a given genotype once all the other effects are
accounted for. In its simplest modeling, the
within-genotype variance is extracted from the
residuals of any statistical analysis. Since all the
models in section 6 include the residual term eijk,
the necessary steps will involve calculating the
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variance of the residuals for each individual. In
fact, the residuals will contain the variation that is
not accounted by the model and, potentially,
absorbed by the G, Ec and G � Ec components.
The G � er component will be considered as the
differential ability, of each genotype, to determine
the residual variation [9]. In other words, how the
individual can maintain the uniformity of its phe-
notypes beyond the variation induced from the
other components.

The analysis of the individual variance gener-
ated by the residuals could present some statistical
challenges. First, if the residuals eijk are truly
normally distributed, their squared values should
be chi-square distributed. Since this could gener-
ate several issues in modeling, some data trans-
formation procedures have been proposed [3].
Second, the repeated records of an individual
could show some degree of autocorrelation, with
consequent reduction of the measured variance, at
least as expressed in (12). Therefore, covariance
among the observations should be accounted for
and some autoregressive structures among the
residuals have been proposed [23].

Finally, eijk depends on the quality of the esti-
mates for the other components. Lack in precision
for such estimates would introduce noise in the
residuals. While such noise cannot be removed
with certainty, it can be definitely minimized with
the appropriate modeling. Double hierarchical
generalized linear modeling has been proposed
as a class of structural models capable of estimat-
ing the components determining the expectation
and the variance of all the factors in the model
[24]. While such models present an enormous
potential for modeling G � er, they will not be
further discussed in this entry but the reading of
Rönnegård et al. [24, 25, 26] is encouraged.

In general, modeling the G� er, component, in
absence of environmental descriptors, is not a
trivial task and needs particular attention.

8. Studies That Aimed at Estimating GxE for
Economically Relevant Traits in Livestock

The literature of modeling G� Ec and G� er is
vast, especially since the topic has gained more
relevance during the last decade. The advent of

genomic selection has in fact made more feasible
the estimation of these components given its abil-
ity to provide a stronger link between individuals,
with consequent improved transfer of information
across environments [15].

Dairy cattle is the livestock sector where this
subject has been more frequently studied. One
possible explanation for this is related to the
large use of artificial insemination that allows the
dissemination of germplasm across environments,
with consequent strong genetic connectedness
across environments through the paternal half-
sib families. One of the most relevant applications
of the study of G � Ec is when the environmental
conditions are considered as the different coun-
tries, as was proposed by Fikse et al. [17], who
studied across-country GxE for production traits
in Guernsey cattle.

Farming system can also provide an alternative
definition of the macro-environmental compo-
nent. Within this space, organic farms vs
pasture-based vs confined systems appear to be
the first obvious distinction. Van Pelt et al. [27]
studied macro-environmental plasticity of dairy
cows for several traits when the environment
was defined as the “use of grazing,” while Liu
et al. [28], Pfeiffer et al. [29], and Shabalina
et al. [30] used the organic certification as envi-
ronmental condition, in Danish Holstein, Austrian
Fleckvieh cattle, and German Holstein,
respectively.

Similarly, Gerber et al. [31], Huquet et al. [32],
Calus et al. [21], and Schmid et al. [33] studied
macro-environmental plasticity for production
traits in German Simmental, French Holstein,
Dutch Holstein Friesian cattle, and German
Brown Swiss cattle, defining the environmental
conditions with different management parame-
ters. Similarly, Santos et al. [34] and Mulim
et al. [35, 36] studied production traits in Brazilian
Holstein, and Bohlouli et al. [37] studied produc-
tion traits as well as milk fat composition in Ger-
man Holstein.

The genetic control of heat tolerance has
largely justified the study of its G � Ec.
Ravagnolo et al. [38] conducted one of the first
studies for tolerance to heat stress in US dairy
cattle, Carrara et al. [39] and Negri et al. [40]
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studied heat tolerance for production traits in Bra-
zilian Holstein, while Ansari-Mahyari et al. [41]
studied fertility in Iranian Holstein.

Nguyen et al. [42] and Cheruiyot et al. [43]
worked toward the implementation of genomic
selection for heat tolerance in Australian dairy
cattle, so far being the only country that has
implemented selection for heat tolerance in dairy
cattle.

Fertility traits have also been subject of study.
Strandberg et al. [44] studied fertility in UK Hol-
stein, while Ismael et al. [45] worked on fertility
traits in Danish Holstein, defining the environ-
mental condition as the herd production level.

Finally, Lassen and Mark [46] studied confor-
mation and workability traits defining the envi-
ronmental conditions using herd housing.

The use of the RKHS model while popular in
plants has been limited in livestock, but Tiezzi
et al. [47] studied production traits in US Holstein
cattle using this model, testing different sets of
environmental covariates, from climatic, to herd
management to geographical location.

Micro-environmental plasticity has not
received the same attention. Initially, Clay et al.
[48] were the first to study the genetic basis of the
different within-family residual variance. Later
on, Rönnegård et al. [49] studied micro-
environmental plasticity for milk yield and
somatic cell score in Swedish dairy cattle.

Environmental plasticity has also been studied
in beef cattle. Paulo et al. [50] studied age at first
calving in Italian Limousine and Charolais, Car-
doso and Tempelman [51] studied post-weaning
growth in Brazilian Angus using reaction norms
on the contemporary group solutions, with the
same model Silva et al. [52] studied reproductive
traits in Nellore cattle and found non-null GxE for
scrotal circumference and gestation length. As
opposed to the study of the genetic basis of toler-
ance to heat stress in dairy cattle, Toghiani et al.
[53] studied cold tolerance in composite beef
breeds.

Again, micro-environmental plasticity has
received less attention, but Neves et al. [54, 55]
studied it in Nellore cattle and found non-null
heritability estimates for birth weight and health
scores.

Other studies on G� Ec can be found in swine.
Silva et al. [15], Chen et al. [56], and Song et al.
[57] studied productive and reproductive traits
using the contemporary group solutions as envi-
ronmental covariate. The necessity of improving
heat tolerance of pigs has led to studies of G � Ec

in this species. Zumbach et al. [58], Fragomeni
et al. [59], Tiezzi et al. [60], and Usala et al. [61]
studied the genetic components of heat tolerance
on different traits.

Micro-environmental plasticity has also been
studied in different minor livestock species.
Mulder et al. [62] studied micro-environmental
plasticity in broilers, Berghof et al. [63] studied
layer chickens, Gutierrez et al. [64] studied it in
mice, and Garreau et al. [65] studied it in rabbit.

Some methodological studies have to be men-
tioned. Since the definition of the environmental
covariate is crucial in modeling G� Ec, its choice
will also impose some limitations in the potential
outcome of the analysis. The covariate(s) could be
estimated from the data itself using a two-step
approach as in Silva et al. [15] in swine and
Mota et al. [66] when studying tick resistance in
Hereford and Bradford breeds. However, this has
the limitation of being a “fixed” covariate, whose
values are defined a priori when estimating the
variance components for G � Ec.

Su et al. [67] proposed a method where the
environmental covariate could be directly esti-
mated from the data, in a single pass, using
MCMC sampling of the covariate value itself.
This method has been applied several times [68,
69, 70] and appears to be promising in under-
standing the complex determination of the G� Ec.

9. Effective Use of GxE in Livestock Breeding
Programs

Livestock breeding programs have changed
dramatically over the last century and further
changes are coming as new technology and
needs develop. While a relevant improvement
was brought forward by the use of BLUP, new
models will need to provide more precise breed-
ing values. As an example, these improved breed-
ing values could couple the G and the G � Ec

components in order to tailor the breeding values
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to specific management conditions [71, 72]. In
support of this, just looking at the increases in
global temperatures or the fluctuations of com-
modities prices illustrate that livestock, in less
than 20 years, will be fed a different diet and
will experience different ambient temperatures
than today. These changes will be more or less
gradual, but the animal breeder needs to be ready
to provide precise breeding values in a timely
fashion to improve animal welfare and farm pro-
ductivity [73, 74, 75, 76, 77].

While the modeling of the macro- and micro-
environmental components has been widely
discussed in the previous sections of this entry,
this section will focus on how these breeding
values could be reported and published, what
could be the limitations in their use, and how
selection could take place once this information
is made available.

How to Express and Report the Breeding
Values
If the macro-environmental component is taken
into account, breeding values can be defined as
Gþ G� Ec. These breeding values can in turn be
generated using either MTM, RRM, or RKHS.
These different implementations can provide dif-
ferent predictive abilities depending on the data
structure and the quality and number of environ-
mental covariates (see section 6 of this entry).
MTM models will explicitly generate breeding
values for each categorical environmental condi-
tion, facilitating their use [14]. In contrast, the
RRM will generate breeding values for the inter-
cept term (genetic value of an individual when the
environmental covariate is zero) and for the slope
term (change in genetic value of an individual per
unit change in the environmental covariate, also
known as reaction norm). Both these components
will be centered to the population average. Con-
sequently, breeding values for the slope term will
be interpreted as a “resilience” parameter [17, 18].

If we assume that an environmental covariate is
(or is correlated to) a measure of hypothetical
stress, the model will estimate a population slope
(t1 in (10)), expressing the degree by which the
population (on average) “reacts” to that stressor.
RRMmodels will additionally produce individual

breeding values (A1j in (10)) predicting how an
individual will react to the environmental chal-
lenge, conditional on its genetic background.
The breeding value will be adjusted by the popu-
lation average, such that individuals with a nega-
tive value will have a stronger change when the
environmental covariate increases (or decreases)
in value, while individuals with positive values
will show a weaker change. While in the former
case, individuals will be considered more plastic
(i.e., the environment more strongly shapes their
phenotype), the latter case will identify the more
resilient or robust individuals (i.e., whose pheno-
type is less affected by the environment). Impor-
tantly since we are talking about breeding values,
plasticity resilience characteristics will be passed
to the offspring, to the extent that this parameter is
heritable. Whether these characteristics will be
desirable or not in a livestock breeding scenario
will be dependent largely on breeding objectives,
as well as industry structure. The RRM will also
generate breeding values for specific environmen-
tal conditions. Notably, while conditions might be
defined by continuous covariates, in order to facil-
itate their use, it is likely that these will still be
discretized in a second step.

In example ExA (also reported in Fig. 1), an
RRM could be implemented using the energy
content in the ration as environmental covariate,
yet the breeding value could be extrapolated to
discrete values of such environmental parameter
to mimic an MTM. In this case, RRM could be
advantageous compared to the MTM in situations
in which the number of macro-environmental
conditions is large and can be defined by some
continuous covariate. In example ExB, the breed-
ing values for heat tolerance could be expressed as
those under hot, uncomfortable conditions simply
by extrapolating the prediction under the high-
temperature conditions.

RKHS are currently probably the least popular
models to obtain breeding values for G � Ec in
livestock. Nonetheless, their popularity is grow-
ing, and they can be advantageous when many
environmental covariates are measurable [78].
Notably, RKHS can provide estimates of breeding
value conditional on the environmental condi-
tions. These predictions can be produced for all
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combinations of environmental factors, even if
not observed in the training dataset. Breeders
could then optimize the use of germplasm under
complex experimental designs or farming
scenarios.

Caveats When Estimating Breeding Values
for GxE
In the previous sections of this entry, a number of
approaches used in estimating G � E have been
described. Each of these models has pros and cons
that are specific. All models described can per-
form poorly or produce misleading results,
regardless of the statistical machinery employed.
In most cases, these pitfalls are the result of hidden
data structure not appropriately accounted for in
the analysis. The estimation of the G � Ec com-
ponent suffers the most when the experimental
design (or the stratification in the field data col-
lection) introduces artificial collinearity between
the G and the Ec components. This collinearity
will inevitably affect the estimation of the inter-
action among these components.

Macro-environmental Plasticity: Estimation of
Variance Components
Considering the dataset pictured in Fig. 1, it can
be safely assumed that the experimental design is
balanced among the G and Ec components, that is,
individuals from all breeds received all the diets,
in equal numbers. In this case, a non-null estima-
tion of the G � Ec component could be safely
considered as robust. Nonetheless, a balanced
design is necessary also for the proper estimation
of the G and Ec components. The combination of
breed and diet represents a “block,” that is, a
group of individuals from the same breed
(G) that received the same treatment (Ec). In a
hypothetical unbalanced design, each breed
might be fed a ration preferably, which is normally
called preferential treatment. For instance,
assume the least performing breed A was fed the
DDGS ration and some of the CORN ration, while
breed B was fed mostly the OIL ration and some
of the CORN ration. While both breeds were fed
the CORN diet and some “connection” was
maintained, individuals from each breed were

preferentially treated. This could be the case
where the farmer preferred to optimize the nutri-
tion plan by tailoring it to the breed’s expected
growth: the more “promising” breed was fed the
more energetic diet, and vice versa. While this is
unlikely to happen for an experimental design, it
is actually frequently observed in studies from
commercial livestock facilities.

The scenario pictured above would introduce
collinearity between the genetic (e.g., breed) and
environmental (e.g., diet) factors as a result of an
artifact. This collinearity could be practically
expressed if extracting a statistical unit from the
OIL diet group will more probably be from
breed B, while a statistical unit from the DDGS
diet group will more probably be from breed A. In
that case (again, the connection was maintained
on the CORN diet) the estimation of the G � Ec

component would be highly compromised, and
the estimation of the G and Ec components
would be compromised as well, regardless of the
model employed (3) or (4). Specifically, in
model (3) obtaining BTestimates for some blocks
is not possible (e.g., breed A on OIL diet), which
would become an evident limit of the model. In
contrast, when using model (4), the breed-specific
reaction norms coming from the element Bt would
be estimated but with a large degree of error and
the investigator would be required to interpret
results extremely carefully.

Let us further hypothesize a less evident case
of unbalanced design, in which all the breeds
would receive all rations, but the number of indi-
viduals within each (breed by diet) block would
be different. For example, the same number of
individuals was initially allocated per group but
the different mortality and morbidity for each
block made them unbalanced in frequency, such
that individuals from breed A could not thrive on
the OIL diet while individuals from breed B could
not thrive on the DDGS diet. Again, while the
G and Ec components would be estimable with
little distortion included, the G � Ec component
would be compromised because of the collinearity
mentioned introduced by the inherent structure of
the experiment. The model (3) would provide BT
estimates for the underrepresented blocks that
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have larger standard errors. The model (4) would
mask the bias in the estimates for the Bt slopes,
since the most represented blocks would have a
stronger impact than the other ones on the slope of
the regression. Yet, such bias introduced in the Bt
estimates would be hardly detectable, if not with a
dedicated bootstrapping analysis or analysis of the
within-block residuals. This latter case is probably
the most frequent when breeding values for the
G � Ec component is estimated even with robust
methods. The model would produce variance
components estimation as well as breeding values
that do not show any particular issue, but the
variance components for G� Ec would be inflated
or deflated due to the artificial covariance between
G and Ec. While the detection and estimation of
such bias is beyond the scope of this entry, it is
important to mention that bias would likely result
in model overfitting and poor predictive ability.

Macro-environmental Plasticity: Prediction of
Breeding Values
The ultimate goal of statistical modeling in animal
breeding is to predict breeding values for selection
candidates. If a G � Ec component is included,
predictions are produced for a reasonable interval
of environmental condition. Starting once more
from the example in Fig. 1, breeding values will
be obtained for individuals from both breeds over
the three possible diets. As mentioned in the pre-
vious paragraph, such prediction would be
obtained just like variance components assuming
a valid design. In the case of unbalanced design
when some breeds are not fed a specific diet
breeding values prediction under those
unobserved conditions would still be produced
but would require a cautious interpretation. In
this case the correct model would be conceptually
similar to the one in (5), with covariates linking
the categorical levels of breed/individual and diet
so that the information can be transferred across
breeds/individuals and across environmental con-
ditions. In practical terms, MTM, RRM, and
RKHS could all be used to obtain these predic-
tions. However, in the absence of observations for
breed A on the OIL diet, the estimation of the
breed reaction norms from Bt (4) would be biased.
This would lead to poor predictive ability.

In the case where all the breeds are fed all the
diets but with different frequency per block, the
model would provide better prediction of breed-
ing values for each block. Yet, within-
environment breeding value prediction would
still be hampered by the experimental design,
since bias would still be introduced in the solu-
tions. In the example where morbidity and mor-
tality were the factors that altered the structure of
the design, it should be checked whether these
factors occurred at random or were stratified
over the breeds, diets, or both. In the case that
they occurred as random, each block would pre-
sent an equal number of “losses” (i.e., individuals
whose phenotype could not be observed) and the
designed would not be particularly altered. In the
most unfortunate case where these losses might
have occurred mostly within few blocks, and the
breeder should proceed with extreme caution. If,
for example, breed A showed more losses under
the OIL diet because of excessive energy content
and breed B showed more losses under diet
DDGS for poor energy content, the experimental
design would no longer provide a fair assessment
of the performance of the two breeds over the
three diets. Only the breed A individuals that
acclimated to the high energy content were able
to express their phenotype (no death or culling).
For the same reason only the breed B individuals
that acclimated a low energy content showed
would have a phenotypic measure.

While in the previous section two extreme cases
were presented, the animal breeder should always
be cautious when performing G � Ec statistical
analyses using field data, specifically concerning
potential sources of bias in the design factors. Other
sources of collinearity can be related to the distri-
bution of genetic material in large breeding
schemes, which is usually an issue when working
with field data. Cao et al. [79] have for example
shown out that such across-environment selection
and sharing of germplasm can benefit genomic
selection schemes that incorporate G � Ec.

Micro-environmental Plasticity and Its Covariance
with Macro-environmental Plasticity
In animal breeding, little attention is usually given
to the study of micro-environmental plasticity,
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consequently in this entry more relevance was
given to macro-environmental plasticity. It should
be considered that the difference between the two
components is often arbitrary and rely for the most
part on the ability to model this environmental
component. The presence of one or more environ-
mental covariates will allow to explain the within-
genotype variation and reconduct it to estimates of
one or more reaction norms. Yet, micro-
environmental plasticity could be present and
could be included in breeding programs.

Despite of the differences in data transforma-
tion and model used for this component, the use of
breeding values for the G � er could be concep-
tually reduced to resilience, in a broad sense.

The breeding values for the G � er component
will indicate how likely are the observations of an
individual to be dispersed around an expected
value (the breeding value for the G) component.
Individuals with high resilience will also have
highly stable and uniform phenotypes, and individ-
uals with low resilience will also have unstable
phenotypes. The random environmental variations
will impact more individuals from the latter than
the former group. These less resilient individuals
will show more unpredictable variation because of
their reduced ability to maintain homeostasis.

Uniformity is an important component in mod-
ern livestock farming systems, which are highly
mechanized and need to rely on predictable out-
comes. The predictability of the farm flow, meant
as awhole frombreeding to processing and packing,
also allows better allocation of the resources. For
example, uniform groups of individuals allow better
care from the farm operators, examples can be found
in the diet formulation of dairy cows or pen alloca-
tions in pigs. Therefore, there is an intrinsic value in
having uniform individuals. At the same time, uni-
formity could be an indicator of robustness, since
the individuals that show less variation could also be
less perturbated by environmental changes. Last but
not least, individuals withmore uniform phenotypes
could allow more precise culling or breeding deci-
sions. We could make an example that culling
depends on an independent threshold such that indi-
viduals are culled if not meeting the minimum

requirement and two cows, with same breeding
value for the G component, are to be compared.
Here, the cow with less uniform phenotypes would
have higher chances of being culled because of the
larger probability that the shown phenotype would
fall below the threshold [9].

Breeding values for resilience (or uniformity,
robustness) could be expressed simply as a gradi-
ent from a maximum to a minimum. These breed-
ing values will probably gain more importance as
livestock farming is becoming more “precise” and
will need more predictable individual in order to
optimize the inputs and forecast the outputs. Also,
more uniform individuals will be needed as live-
stock farming operations become larger. As the
monitoring of the individual welfare and perfor-
mance will be performed by automated system,
uniformity in phenotype (with particular rele-
vance of behavior) will become essential for the
successful management of the operation.

Future directions
In this entry a high-level conceptual framework of
genotype by environment interactions and its
importance in the selection and breeding process
has been provided. While this has been a fertile
area of research in crop science and plant breed-
ing, the logistics and biological constraints have
made G 3 E more difficult to study and less
applicable in livestock farming. Recently, the
development of methods to quantify genetic var-
iability (through SNP panels and sequence infor-
mation) and environmental variability (through
increased technology present in the farm) has
made the exploitation of G 3 E in livestock
more promising. This confluence of technologies
is happening at a critical time for agriculture in
general, and in livestock specifically. Rising
global temperature and extreme conditions are
becoming more frequent and concerning. The
understanding of genotype by environment inter-
action will become an increasingly crucial aspect
of livestock practice both for granting uniformity
of production in the face of more volatile condi-
tions, as well in the ability to disseminate opti-
mized germplasm in specific environments.
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